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designed to convert Y units into X units; they then transfer to X the full
amplitude of Y, as converted into X units; and fourth, none of the methods
take account of the degree of correlation between X and Y or of the relative
amplitude of variation in X and Y.

It may further be worth noting that, among these methods alone, only
methods (1), (2), (3), and (4) are satisfactory on formal grounds. Methods (Sb)
and (6b) reduce to (2); methods (5a) and (6a) in the form in which they are
generally used are technically defective since the results depend on a purely
arbitrary decision; the variants of (6a) listed in a footnote that are free from
this defect are analogous to (3) in their motivation and seem less appealing
than (3).

II. ERRORS OF ESTIMATION ASSOCIATED WITH NONCORRELATION METHODS6

It will clearly suffice to confine attention to method (1), designated as
in analyzing the errors associated with these noncorrelation methods. The
other acceptable methods simply involve applying method (1) to data expressed
in a different form—in logarithms, as ratios to an arithmetic trend, or as dif-
ferences from a geometric trend. In consequence, results for method (1) can be
readily translated into corresponding results for the other methods.

A. Formal specification of M1
It will involve no loss of generality to confine our attention to three equally

spaced time units, say 10, t1, and t2, for which the values 0f X are x0, x1, x2, and
the values of Y are Yo, Yi, Y2. The values Xo, x2, and all three values of Y are
known. The problem is to estimate the unknown value of X, x1, by interpola-
tion.

We may further simplify the analysis by expressing our observations as
deviations from the corresponding trend values. This mathematical step corre-
sponds to a practical maxim implicit in the preceding section (maxim I): First
interpolate mathematically. The deviation of the related series from a corre-
spondingly interpolated value can then be used to adjust the interpolated
value so obtained. We shall further simplify by using a simple form of mathe-
matical interpolation, namely linear interpolation. Other forms can either be
reduced to the linear form by suitable transformations of the data (see Section
IV) or require the use. of more information than two known observations.

Designate the deviation of X from its trend value by u and the deviation of
Y from its trend value by v. We then have

uo=o vo==o
= — (1/2)(xo + X2) = y' — (•l/2)(yo + Y2) (7)

u2=O v2=O.

Curiously enough, the problems considered in this and the next section are formally identical with those in-
volved in judging the circumstances under which a government policy designed to be countercyclical will in fact
succeed in reducing instability, and in specifying the optimum mganitude of countercyclical action. In conse-
quence, these sections largely parallel my article 'The Effects of 'Full Employment Policy' on Economic Sta-
bility: A Formal Analysis," published in my Essays in Positive Economics, Chicago., 1953, pp. 117—32.
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Since we shall be concerned solely with u1 and v1, we can drop the subscripts
and refer simply to u and v.

Let us continue to use an asterisk to indicate an estimate of an unknown
value. Then, in our new notation M1 provides an estimate as follows:

= v, (8)

where the subscript on the left of indicates the method by which the esti-
mate is made.

Expressing our problem in these terms makes it obvious that it is identical
with an ancient and elementary statistical problem: given a pair of correlated
variables, to predict the value of one variable from the value of the other vari-
able. In its simplest form, this is the problem of simple correlation or ele-
mentary regression, which perhaps makes it obvious that (8) is by no means
the estimate of u from v that has the lowest average error and that an estimate
with a lower average error can be obtained by taking account of the degree of
correlation between u and v and the amount of variation in each. But it may be
well to proceed more slowly and postpone these considerations to a later stage,
both because of the widespread use of (8), i.e., of one or another of the.variants
of method (1) discussed above, and because the examination of the estimate
described by (8) will give us greater insight when we turn to the problem of
reducing the error of estimation.

Moreover, the widespread use of (8) may be justified despite the availability
of alternative methods yielding lower errors. The use of such alternatives re-
quires more information than the use of (8), hence is likely to be more costly.
It may not be worth the extra cost to reduce the error of estimation, especially
when a great many interpolations are to be made involving many different
series so that only a few interpolations could 'use the same additional informa-
tion.

In referring to the average error of M1, we are implicitly regarding the (un-
known) value of u for a particular date together with the known value of v as
a random sample of one pair of observations from some bivariate universe.
While we have described t1 as a particular date, we are not really interested in
the error made iii using (8) for any one date but rather in the "average" error.
that is made (or, more generally, the distribution of errors) in repeated appli-
cations of M1. As always with time series, there are thorny problems about the
meaning of the "universe." We shall bypass these problems and simply suppose
that u and v can be regarded as a pair of correlated random variables with
means and zr,, standard deviations and and correlation coefficient,
Puv. These are the only parameters of the universe that we shall need for what
follows. (They completely describe the universe from which a particular pair
u, v is regarded as a sample if the universe is bivariate normal. For most of
what follows, it is unnecessary to suppose that this is the case, since complete
description is not needed.)

See Appendix Note 1 for a discussion of the relation between the parameters describing the distribution.of
u and v and those describing the distribution of zo, xi, Z2, yo, yi, y2; and Appendix Note 2 for the statistical justifica-
tion for the straight-line interpolation entering into transformation (7).
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Similarly x0, xi, x2, Yo, Y2, of which u and v are functions, are to be re-
garded as a set of random intercorrelated variables, and each sextet of values,
as a sample of one from the corresponding universe.7

B. The Mean Values of u and v
If the straight-line trend is a satisfactory method of mathematical interpola-

tion and so of transforming the X and Y variables into u and v—or, put dif-
ferently, if the original observations have been expressed in a form that makes
a straight line trend satisfactory—then and might be expected in
to equal zero, which is to say that the deviations from the straight-line trend
might be expected to average zero.

Perhaps the chief exception relevant to practical work arises when interpola-
tion is for intrayear observations of a series that is subject to a seasonal. If the
seasonal of X is known—as it may be from another period or other evidence
even if the value of X is not—an obvious improvement over straight-line inter-
polation is to superimpose the seasonal deviation on the straight-line trend.

Similarly, in applying M1 when the seasonal in both X and Y are known and
are not identical, an obvious improvement is to use the deviation, of v from its
mean to estimate the deviation of u from its mean, i.e., to use the estimate

= + (v — (8.1)

Another possibility is that the seasonal in X is not known but that in V is
and it can be assumed that the two seasonals are identical (i.e., that =
(8) and (8.1) then give the same result. That is, it makes no difference whether
a seasonally unadjusted Y series is used to interpolate X by method (1) or a
seasonally adjusted series is and then the seasonal in V is added to X. How-
ever, this statement does not hold for the correlation method discussed in the
next section, for which it is better to adjust for seasonal before interpolation.

These considerations suggest that, whenever and are known, the related
series should be used to interpolate the deviation of u from its mean. But obvi-
ously this is equivalent to defining u and v in the first place as deviations from
the sum of the straight-line trend and the known average of the deviations
from the trend, in which case and would be equal to zero. In consequence,
the only case that needs to be considered under the heading "means of u and
v known" is that in which =0.

This conclusion can be stated in the form of an important practical maxim
(maxim II): Carry out interpolation with seasonally adjusted data.8 If the final
series is desired in seasonally unadjusted form, introduce the seasonal after
interpolation, and do this even if the seasonal in the interpolated series is esti-
mated from the interpolator.

It is not easy to visualize many practical examples in which it will be desir-
able to consider and as unknown. If the relationship between the two
means were also considered unknown, this would be equivalent to ruling v out
as an interpolator. A correlation between deviations of u from its mean and

8 Clearly, this maxim can be regarded as an immediate corollary of maxim I, the particular form of mathe-
matical interpolation being the superposition of a seasonal on a straight-line (or other) trend.

11



deviations of v from its mean, no matter hOw would be of little use if
nothing were known about the two means. Consequently, the only case of any
interest is that in which something is assumed about the relation between
and Such cases can generally be reduced (by changing the units in which v
is measured) to the case in which it is assumed that = but that the com-
mon value of the two means is unknown. I believe that in actual interpolation
it will seldom be found desirable to use these assumptions. They have, how-
ever, considerable theoretical interest since they—and they alone of those so
far mentioned—imply that method (1) is in one sense the "best" method of
interpolation regardless of the correlation between u and v. We shall postpone
detailed consideration of this case until Section hID. Until that point, we shall
deal primarily with the case However, we shall derive all relevant
formulas in general form.

C. Corn pari.son of M1 and Straight-Line Interpolation
If we use (8), the error for any particular date is the difference between the

estimate, u, or
v — u. (9)

The expected value of the errOrs—the "bias" in this' method of estimation—is
= E(v — u) = /2v — (10)

where E stands for expected value. If as we shall for the most parts
suppose, the bias is, of course, zero.

A more important question is the expected value of the error or "average
error" in' 'a that disregards the sign of the error. It will he convenient to
measure by the mean square error,9 which will then be given by

M.S.E. (M1) = E1d2 = E(v — u)2 = +
2 2 2 2 (11)

= + cu — + + —

In order to judge whether the mean square error given, by (ii) is large or
small, we may compare it with the mean square error of mathematical inter-
polation of X, i.e., the mean square error of estimating x1 as equal to
plus a seasonal deviation, if any, or of setting u equal to zero. There is clearly
no point to using the related series V unless doing so reduces the error below
that of mathematical interpolation. The gain from using Y can therefore be
judged by the fraction of the total error in the mathematically
value that can be eliminated thereby. AOcordingly, we shall use straight-line
interpolation as our yardstick—let us call it method (0) or Mo. Intuitively,
one is likely to expect M1 to be better than M0 if there is any positive
tion between the movements of the related series and the series to be inter-
polated. As we shall see, however, this is not so; if there ispositive correlation,
it is always possible to do better than M0, but not necessarily by using M1.

can be described as giving an estimate
= 0. (12)

9 Mote that unless the bias is zero, i.e.. this is nog the same thing as the variance of the errors.
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The error for any particular date in using this estimate is
0d — u = — u, (13)

so the mean error, or "bias," is
M0d = — Mu, (14)

which will, 0_f course, be zero if =0; and the mean square error is

M.S.E. (M0) = E(0d2) = E(u2) = + (15)

To compare the errors of the two methods, divide (11) by (15), which gives
2 2 9 9

M.S.E. (M1) + 0u — 2PuvOuCu + Mv + —

M.S.E. (M0) + (16)

= 1 +
'2

— 2
,UuJlv

\
It follows that the mean square error of M1 is smaller, the same, or larger than
that of M0 according as

+ — 2
(Puvv

+
0 (17)

- + /A
U

or

+ Mv

2

2 2

For MvMuO, this reduces to
1

Puv (20)
2

The fraction by which the mean square error of linear interpolation is reduced
by use of method (1) can be derived from (16). When M•u=Mv=O, it is given by

M.S.E. (M1) /
1— (21)

M.S.E. (M0) \
If, as is generally the hope, = method (1) will be an improvement over

straight-line interpolation if and only if the correlation between u and v exceeds
0.5; if the correlation is less than 0.5, method (1) will lead to larger errors on the
average.

This result, which may at first seem surprising, can perhaps be made intui-
tively plausible by the following considerations. Suppose that the movements
of Y were strictly uncorrelated with those of X. Transferring the movements of
Y to X would then be equivalent to adding a strictly random series to the
straight-line interpolation of X. This would obviously be worse than using the
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straight-line interpolations themselves. Now introduce some correlation be-
tween the movements in V and X. Until the correlation reaches it
serves oniy to offset part of the damage done by the uncorrelated variation in
Y; the net effect is an improvement oniy when the correlation exceeds

It may be worth emphasizing that the relevant correlation is that between
u and v, not that between X. and Y. The former may be quite low even though
the latter is quite high because of high serial correlation between: the successive
values of X and V (see the formulas in Appendix Note 1). This is one of the
major reasons why graphic inspection of time series plotted in their original
form may be extremely misleading in judging the value of a series as an inter-
polator. Sad experience persuades me that it is not easy to find an interpolator
for which the relevant correlation is above the critical value. In view of the
widespread use of method (1), and the rather casual way in which
are often chosen, I would not be at all surprised to find that in practice the use
of related series generally gives larger errors than straight-line interpolation.

III. CORRELATION METHODS

A. Method (b) and the Errors Associated with It
Both M1 and M0 can be regarded as special cases of a more general method,

which we may call method (b), or Mb, and which consists of estimating u by
the following:

= (22)

If b=1, this is M1; if b=0, this is M0.
The error involved in using "b

(23)

so the mean error is

= = E(bv — u) = — (24)

which will, of course, be zero if = = 0,10 and the mean square error is

M.S.E. (Mb) = E(bd2) = E(bv
— )2

= +
2 22 2 22 (25)

= + b — + + b —

The results of the preceding section can, of course, all be derived from these
formulas by setting b equal to zero and 1, respectively.

'We may now ask what value of b (say, $) is optimum in the sense of mini-
mizing the mean square error. Differentiating the right-hand side of (25) and
setting the derivative equal to zero gives

— 2Puv0'uO'u + = 0, (26)

u But not, as in M1, if
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