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Abstract

The effects of global warming on crop yield risk are critically important to U.S.

agriculture, particularly to crop insurance programs. We introduce a nonparametric

model, using a copula density approach, to construct flexible conditional yield distri-

butions given temperature and precipitation. This approach facilitates probabilistic

predictions of quantities such as the probability of crop disasters and large crop insur-

ance payouts in response to temperature and precipitation shocks. We use our model

to estimate the probability of a yield shortfall. By combining our estimated conditional

distribution with projected climate data, we simulate the probability of catastrophic

yields in response to global warming. Our approach has two advantages over the tra-

ditional approaches. First, our nonparametric, copula approach allows us to estimate
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complex, flexible interaction effects of temperature and precipitation. Second, because

we know the full distribution, we can coherently examine the effects on not only mean

yields as in regression analyses, but also the effects on the probability of disastrous

outcomes, variance, skewness, and other risk measures.
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1 Introduction

Many articles show that temperature and precipitation, as well as their links to drought and

humidity, have a complex, nonlinear relationship with crop yield and quality (Peng et al.,

2004; Schlenker and Roberts, 2009; Welch et al., 2010; Fezzi and Bateman, 2015; Tack et al.,

2015; Zhang et al., 2015; Kawasaki and Uchida, 2016; Eck et al., 2020; Li et al., 2021; dos

Santos et al., 2022; Perry et al., 2020; Boyer et al., 2023; Sumner et al., 2025). For example,

the APSIM crop model in Lobell et al. (2013) offers physiological explanations for why

extreme heat has a stronger impact on crop yields than precipitation. Both temperature

and precipitation affect the water balance of a crop, but extreme heat affects it through

multiple pathways, amplifying its impact. Precipitation primarily supports crop growth by

replenishing soil moisture. In contrast, extreme heat negatively affects crop productivity in

two ways: it accelerates soil moisture loss through both evaporation and plant transpiration,

and it increases plants’ water requirements to maintain the same level of carbon uptake.

These dual effects of extreme heat, on both water supply and plant demand, make yields more

sensitive to temperature spikes than to changes in precipitation, which primarily influences

water supply alone. Accurately capturing the complex interplay between temperature and

precipitation is therefore essential for understanding crop responses.

It is generally possible to adapt to extreme heat. However, farmers achieve a lower

sensitivity to extreme heat at the cost of a lower average yield. Schlenker et al. (2013)

found that for warming by 2°C, the beneficial effects of a lower sensitivity to extreme heat

is roughly offset by the loss in average yield. This result aligns with our expectations, as

the envelope theorem suggests that for sufficiently small changes, the first-order effect of

temperature on yields accurately approximates the total effect once the system has adapted.

Altogether, there are three major components to track in this relationship: (i) how crop

yields respond to gradual, long term changes in temperature and precipitation, (ii) how crop

yields respond to extreme changes in temperature and precipitation, and (iii) the distribution

of crop yield responses to changes in these climatic variables. While the first two components

3



are relatively well-studied, the third requires more attention.

Recent work has increasingly turned to copula-based models to examine the joint ef-

fects of climate variables on crop yield and price risk. Several studies have used copulas

to characterize the dependence between climate extremes, such as drought and heat, and

agricultural yields. For example, Alidoost et al. (2019) employ copulas to explore the joint

distribution of climate variables, crop yields, and prices, highlighting the importance of mul-

tivariate approaches to understand agricultural risk. Similarly, Li et al. (2021) and Ribeiro

et al. (2019) apply copula frameworks to evaluate the effects of drought on crop yields in

China and Southern Europe, respectively. These studies underscore how copulas allow for

flexible modeling of nonlinear dependencies. Gaupp et al. (2017) extend this to the spatial

dimension, showing how copulas can capture spatial dependence in simultaneous crop failures

across major wheat-producing regions, while Leng and Hall (2019) use a variety of copula

families to assess drought impacts on global staple crops. In addition to modeling average

relationships, copulas are particularly useful for capturing tail dependence, the tendency of

extreme values in one variable to occur alongside extreme values in another. Du et al. (2018)

emphasize this in their work on yield resilience, and Hochrainer-Stigler et al. (2019) show

how copulas can simulate extreme drought risk under climate change.

An extensive literature examines how to incorporate knowledge about yield-weather re-

lationships into designing superior crop insurance programs. For example, see Annan et al.

(2014), Tack et al. (2018), Maestro et al. (2016), Belasco et al. (2020), Bucheli et al. (2022),

and Regmi et al. (2023). Copulas have also been widely used to inform agricultural insur-

ance. Goodwin and Hungerford (2015) assess copula-based approaches to modeling systemic

risk for crop insurance and reinsurance purposes, while Ghosh et al. (2011) model the joint

distribution of price and yield for revenue insurance pricing. Finally, Bokusheva (2018)

examines whether weather-yield dependence is stable over time using Bayesian copulas.

Our work contributes to a growing literature that uses copula-based models to understand

joint dependencies between climate variables and agricultural yields. While several studies
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have estimated unconditional or joint distributions of yields and weather (e.g., Alidoost et al.

2019; Ribeiro et al. 2019; Du et al. 2018), our approach is distinct in two ways. First, we

focus on estimating the full conditional distribution of crop yields given temperature, pre-

cipitation, and other agronomic and environmental variables. This allows us to simulate

yield outcomes under specific climate scenarios and investigate the likelihood of catastrophic

crop failures under future conditions. Where conventional regression methods estimate con-

ditional means, and quantile regressions estimate target specific quantiles, our copula-based

framework enables a more flexible and complete characterization of the distribution, from

central tendencies to extreme tail risks.

Second, and most importantly, we employ nonparametric copula estimation, which avoids

the limitations of traditional parametric copulas used in much of the existing literature. Para-

metric copulas, such as those used by Ribeiro et al. (2019) and Du et al. (2018) impose func-

tional forms that potentially constrain the ability to capture complex, nonlinear dependence

structures. In contrast, our nonparametric approach provides a data-driven representation

of the joint distribution, allowing for greater flexibility in modeling the interactions between

weather extremes and yield responses. This flexibility is crucial for uncovering hidden or

asymmetric relationships, particularly in the tails of the distribution where risk is most

concentrated.

Our approach yields internally consistent estimates for a range of risk measures, includ-

ing mean, variance, skewness, tail probabilities, and yield thresholds. These quantities are

derived from a single joint distribution, ensuring coherence across moments. In contrast,

estimating separate regressions for each moment can lead to logically inconsistent outcomes.

For example, Chebyshev’s inequality places a mathematical bound on tail probabilities based

on the variance, but this relationship can break down if variance and tail risk are modeled

separately. By producing consistent risk metrics, our model offers a reliable foundation for

risk management and policy design.

These insights have practical implications for the design of climate-resilient crop insur-
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ance programs, including Area Yield Protection and weather-indexed insurance. Our results

complement earlier work on improving insurance design under climate risk (e.g., Annan et al.

2014; Tack et al. 2018; Maestro et al. 2016) by offering a forward-looking, nonparametric

framework for evaluating how warming and weather volatility may influence both average

losses and extreme outcomes.

Our paper proceeds as follows: Section 2 details the modeling approach, Section 3 de-

scribes the data, Section 4 shows the model output and compares its features to a standard

linear model, Section 5 presents results of the future simulations and implications for crop

insurance policy, and Section 6 concludes.

2 Copula Density Approach

Estimating multivariate or conditional distributions can be difficult. Researchers have de-

veloped various strategies to address this challenge. A common approach is to assume a

parametric form, such as the multivariate Gaussian distribution. While reasonable, such

models impose strong structural assumptions—including symmetry, elliptical contours, and

tail independence—which may not reflect the true nature of agricultural data. Alternatively,

nonparametric methods, such as kernel density estimation, offer greater flexibility but suf-

fer from the curse of dimensionality, especially when modeling multiple interacting climate

variables (Scott, 2015).

Because of these challenges, much of the literature focuses on estimating specific features

of the conditional distribution rather than the full distribution itself. A common example is

the use of regression models to estimate the conditional mean and conditional variance, as

in the Just and Pope (1979) production function framework. Others have employed quantile

regression to estimate conditional quantiles of yield (Koenker and Bassett Jr., 1978). While

it is theoretically possible to recover a full distribution from a complete set of quantiles, it is

difficult in practice: estimated quantiles often violate monotonicity and cannot be guaranteed
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to form a valid distribution function (He, 1997; Chernozhukov et al., 2010).

We use a conditional density approach, which does not require separate models for the

mean, median, percentiles, or higher moments. Instead, it estimates them in a unified

model. We calculate these moments based on a common conditional distribution, so they

are consistent with each other. In contrast, when one uses separate regression analyses,

the results may conflict. The copula approach provides a flexible way of constructing or

estimating multivariate densities. The separation of the marginal and copula densities makes

the estimation problem easier, allowing the use of a “divide and conquer” approach, which

mitigates the curse of dimensionality. Second, copula densities are often easier to estimate

than joint densities because this approach removes the variations associated with marginal

densities.

Let Y denote a univariate random variable (e.g., log yield), and let X = (X1, X2, . . . , Xd)

be a d-dimensional vector of environmental and agronomic variables (e.g., temperature,

precipitation, and soil texture). Let F (y, x) denote the joint cumulative distribution function

(CDF) of (Y,X), and f(y, x) its associated joint density. The marginal distributions are

FY (y) for yield and Fj(xj) for each component Xj, with corresponding marginal densities

fY (y) and fj(xj) for j = 1, . . . , d.

By Sklar’s Theorem (Sklar, 1959), the joint distribution can be expressed as a copula

composition:

F (y, x) = C (FY (y), F1(x1), . . . , Fd(xd)) , (1)

where C is a copula function that captures the dependence structure between the variables.

Differentiating both sides with respect to y and x yields the joint density:

f(y, x) = fY (y)f1(x1) . . . fd(xd) c (FY (y), F1(x1), . . . , Fd(xd)) , (2)

where c(·) is the copula density, which is a density function on the unit hypercube [0, 1]d+1

with uniform margins.
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The copula formulation allows the joint density to be decomposed into marginal den-

sities and a copula density, enabling a flexible, modular approach to multivariate density

estimation. Let fX(x1, . . . , xd) be the joint density of X. Then, Sklar’s Theorem implies:

fX(x1, . . . , xd) = f1(x1) . . . fd(xd) cX (F1(x1), . . . , Fd(xd)) , (3)

where cX is the copula density associated with X. Using Equation (1), the conditional

density of Y given X = x is:

f(y | x) = f(y, x)

fX(x)
= fY (y)

c (FY (y), F1(x1), . . . , Fd(xd))

cX (F1(x1), . . . , Fd(xd))
. (4)

Because cX(F1(x1), . . . , Fd(xd)) is constant with respect to y, we can write:

f(y | x) = a0 fY (y) c (FY (y), F1(x1), . . . , Fd(xd)) , (5)

where

a0 = [cX (F1(x1), . . . , Fd(xd))]
−1 (6)

is a normalization constant ensuring that f(y | x) integrates to 1.

In contrast, conventional kernel-based methods often estimate the conditional density via

the ratio:

f̂(y | x) = f̂(y, x)

f̂X(x)
, (7)

where f̂(y, x) and f̂X(x) are nonparametric estimators of the joint and marginal densities.

However, as Zellner (1978) and others have shown, the presence of a random variable in the

denominator can render this ratio estimator unstable. This can lead to moments that do

not exist, or a distribution that may be bimodal or even explosive.

The copula-based estimator avoids this problem by estimating the conditional density

from the marginal and copula components. In our application, we estimate both the marginal
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density fY (y) and the copula density c(FY (y), F1(x1), . . . , Fd(xd)) using the multivariate

Exponential Series Estimator (ESE), a method particularly well-suited for flexible copula

density estimation (Wu, 2010; Gao et al., 2015; Chang and Wu, 2015).

3 Data

We illustrate the usefulness of the copula density approach by estimating the conditional

distributions of U.S. corn and soybean yields, given temperature and precipitation. Our

analysis focuses on the primarily unirrigated agricultural regions east of the 100th merid-

ian. To do this, we combine publicly available county-level yield data with finely resolved

historical and projected weather data.

We evaluate model performance by comparing root mean square out-of-sample prediction

errors (RMSE) from both linear and nonlinear approaches. For the linear model, we calculate

RMSE as the square root of the average squared difference between predicted and actual

yields. For the nonlinear model, we use a similar procedure, but the predicted yield is

taken from the “nearest” temperature–precipitation combination in a discretized output grid.

Conditional mean yields are computed on a temperature–precipitation grid at 49 quantiles,

ranging from the 2nd to the 98th percentile in 2% increments. We use these quantiles to

construct the temperature–precipitation grid because it balances coverage of the data with

statistical stability. The most extreme values in the tails are rare, which makes conditional

mean estimates at those points noisy and unreliable in a copula framework. Trimming to

the 2–98% range avoids sparse tail regions and boundary effects in density estimation, while

still covering almost the full observed climate space.

County-level yield data for corn and soybeans are obtained from the National Agricultural

Statistics Service (NASS) for the years 1950–2016. NASS also provides state-level weekly

data on the share of planted and harvested acreage. We use these data to define each state’s

growing season: it begins at the start of the first week when 50% of the crop is planted and
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ends at the conclusion of the first week when 50% is harvested. To avoid endogeneity due to

adaptive planting or harvesting behavior in response to weather, we fix the growing season

to its average start and end dates over the 1950–2016 period.

Our historical weather dataset extends the Schlenker and Roberts (2009) dataset to 2016.

The data are based on a consistent set of approximately 2,000 weather stations with daily

observations of minimum and maximum temperature. We interpolated missing values using

an inverse-distance weighted average of percentile ranks across nearby stations. Specifi-

cally, for each weather station and variable, we first estimate its cumulative distribution

function (CDF). If a station has a missing value on a given day, we compute the inverse-

distance weighted average percentile from the other stations’ values that day and use the

corresponding percentile of the missing station’s CDF to impute the value. For instance, if

the interpolated percentile is 80%, we substitute the 80th percentile of the missing station’s

CDF as the estimated value. Cross-validation exercises, where observed values are omitted

and then interpolated using this method, show that it performs well for temperature, which

tends to be spatially smooth. Importantly, maintaining a fixed set of weather stations en-

sures that our estimates are not affected by changes in station coverage over time, which is

critical in a panel setting where we rely on deviations from long-term averages.

We assign each 2.5 × 2.5-mile PRISM grid to its 10 nearest weather stations. We then

regress monthly PRISM values on the corresponding station data to obtain station-specific

weights for each grid cell. Using these weights, we construct daily minimum and maximum

temperatures for each grid cell. We then fit a sinusoidal curve between each day’s minimum

and maximum to approximate within-day temperature distributions. To generate county-

level measures, we average across grid cells within a county using satellite-derived land-use

weights, which are fixed over time.

Prior work has established that the yield–weather relationship is highly nonlinear, espe-

cially with respect to temperature. Thus, constructing weather variables on a fine spatial grid

before aggregating to the county level is essential. For example, Tack et al. (2015) demon-
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strated that models that average temperatures before applying nonlinear transformations

perform worse than those that apply transformation prior to averaging. For precipitation,

which is more localized and harder to interpolate at the daily level, we instead use monthly

totals from the PRISM Climate Group.

For future projections, we use data from the NASA NEX-GDDP dataset1, which provides

daily, bias-corrected minimum and maximum temperatures and precipitation from 21 CMIP5

climate models at a 0.25◦ spatial resolution. The dataset spans a historical period from 1950–

2005 and includes projections for 2006–2099 under RCP 4.5 and RCP 8.5 scenarios. We apply

the same processing steps to the projected data as with the historical data: we fit sinusoidal

temperature curves for each day, compute growing degree days, and aggregate to the county

level based on the agricultural area that lies within each grid cell whose centroid falls inside

the county boundary.

4 Copula Density Analysis

Previous research identified extreme heat as the most reliable predictor of corn and soybean

yields, particularly in dryland regions where irrigation cannot offset heat-related damage

(Schlenker and Roberts, 2009). Our model incorporates climate effects using a flexible spec-

ification that allows for rich interactions among variables. However, the curse of dimen-

sionality limits our ability to model numerous interactions simultaneously. Consequently,

we concentrate on the interaction between extreme heat and precipitation, motivated by

prior findings that water availability may buffer the harmful effects of high temperatures

(Ortiz-Bobea et al., 2019).

Throughout the analysis, our temperature variable refers specifically to extreme heat

degree days, or the number of degree days above 29◦C (84.2◦F) for corn and 30◦C (86◦F)

for soybeans, measured during the middle third of the growing season, when crops are most

vulnerable to heat stress.

1https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp
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We use a two-step estimation strategy. In the first step, we regress the logarithm of

county-level yield, temperature, and precipitation on county fixed effects, county-specific

quadratic time trends, and year fixed effects. This removes confounding variation due to

spatial and temporal heterogeneity. We experimented with including additional variables,

such as moderate growing degree days (days between 10◦C and 29/30◦C), but found they

had minimal impact. In the second step, we use the residuals from the first regression as

inputs to estimate the conditional density of yield, allowing for flexible interactions between

extreme heat and total seasonal precipitation.

4.1 Contour Maps

The figures below present contour plots of the conditional mean, standard deviation, co-

efficient of variation, and probability of a yield shortfall for corn and soybeans during the

middle third of the growing season. In a standard linear regression, these contours would

appear straight and parallel, reflecting additively separable effects. In contrast, our nonlinear

copula-based approach produces curved, non-parallel contours, illustrating the advantages

of modeling flexibility.

4.1.1 Conditional Mean

Figure 1 displays contour maps of the conditional mean log yield for corn and soybeans as

functions of temperature and precipitation, restricted to counties east of the 100th meridian

where irrigation is uncommon. Estimates for “hot” and “cool” counties, classified by histor-

ical average temperatures, are shown in Figure 2. Because the first-stage regression removes

fixed effects, both temperature and precipitation are measured relative to county-level his-

torical averages. For example, a precipitation value of −0.1 denotes 10 cm less rainfall than

the historical average for that county during the growing season.

The contour maps reveal that the lowest average yields for both crops occur under hot and

dry conditions. For corn, yields peak under relatively cool temperatures regardless of rainfall.
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(a) Corn yield (b) Soybean yield

Figure 1: Conditional mean for corn yield (a) and soybean yield (b).

In contrast, soybean yields are highest when rainfall is abundant and temperatures are

low, indicating a stronger interaction between temperature and moisture availability. These

results highlight the potential bias from imposing linear or additively separable functional

forms, given the clear crop-specific and nonlinear weather–yield relationships.

For corn, we further divide the sample into two groups based on the historical average

growing-season temperature of each county: the hotter third of observations (“hot” counties)

and the colder third (“cool” counties). This approach captures persistent regional climate

differences rather than short-term weather variability. Figure 2 presents conditional mean

contour plots for each group. Hot counties exhibit pronounced sensitivity to high temper-

atures regardless of precipitation, indicating that moisture cannot fully offset heat stress.

In contrast, cool counties are less sensitive to relatively high temperatures, and abundant

precipitation can mitigate much of the yield loss caused by warming.

4.1.2 Conditional Standard Deviation

Figure 3 shows the conditional standard deviation of yield, an absolute measure of production

risk. For both crops, the standard deviation peaks under cooler, wetter conditions, while

extreme heat—though damaging to yields—is associated with lower variability, particularly
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(a) Hot counties (b) Cold counties

Figure 2: Conditional mean for corn yield in hot counties (a) and cold counties (b).

in corn. This suggests that extreme heat reduces uncertainty by consistently producing poor

outcomes. Precipitation plays a limited role in variability except under cooler conditions.

(a) Corn yield (b) Soybean yield

Figure 3: Conditional standard deviation for corn yield (a) and soybean yield (b).

Soybeans display a more complex pattern. High temperatures combined with low precip-

itation yield both low mean yields and low variability, whereas cool, wet conditions produce

the highest variability. Across the full range of conditions, corn exhibits a higher maximum

standard deviation than soybeans, indicating greater absolute production risk.
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4.1.3 Coefficient of Variation

Figure 4 presents the coefficient of variation (CV), or the standard deviation normalized by

the mean. This captures relative rather than absolute risk. Patterns broadly mirror those of

the standard deviation but differ in scale. In corn, relative risk at high temperatures is largely

unaffected by precipitation. In soybeans, both extremes of temperature and precipitation

can raise relative risk, and the magnitude of these fluctuations can be larger (or smaller)

than those seen in corn, reflecting different crop responses to weather stress.

(a) Corn yield (b) Soybean yield

Figure 4: Conditional coefficient of variation for corn yield (a) and soybean yield (b).

4.1.4 Conditional Skewness and Studentized Skewness

Higher moments offer further insight into yield distribution shapes. Figure 5 reports con-

ditional skewness estimates for both crops. Skewness is predominantly negative, indicating

a heavier lower tail (more frequent low-yield outcomes), and this negative skew intensifies

under weather extremes, particularly under high temperatures with low precipitation and

low temperatures with high precipitation.

To evaluate how weather affects crop insurance programs, we estimate the probability

of extreme yield shortfalls. Our model predicts the likelihood that yields fall below critical

thresholds. In U.S. crop insurance, an example of where this estimation is particularly
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(a) Corn yield (b) Soybean yield

Figure 5: Conditional skewness for corn yield (a) and soybean yield (b).

relevant is Area Yield Protection (AYP), which compensates producers when county-level

yields fall below a selected coverage level, typically ranging from 70% to 90% of the county’s

historical average yield. While farm-level Revenue Protection and Yield Protection policies

now dominate the market, county yields (and yield shortfalls) remain central to many crop

insurance products. They inform premium rating, validate farm-level yields for revenue

and yield protection policies, and trigger supplemental area-based coverage like SCO and

ECO. Our estimates of extreme county yield shortfall probabilities are therefore relevant

well beyond AYP.

We estimate the probability that county-level yields drop at least 10% below the historical

average (i.e., to 90% or less of the benchmark). Figure 6 shows that while the spatial patterns

of shortfall probability are similar for corn and soybeans, the probability is generally higher

for soybeans, underscoring subtle but important differences in vulnerability between the

crops.
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(a) Corn yield (b) Soybean yield

Figure 6: Conditional probability of a 10% yield shortfall in corn yields (a) and soybean
yields (b).

5 Dependence Model Fit

5.1 Comparisons to Linear Model

We evaluate in-sample and out-of-sample predictive accuracy of our nonlinear copula model

relative to a standard linear regression of yield on temperature and precipitation. Using 14

randomly selected years between 1950 and 2016, we predict conditional mean county yields

and compute root mean squared error (RMSE) for both models.

Our nonlinear model uses a grid of temperature and precipitation quantiles (2% to 98%

in 2% steps) to estimate conditional means by numerical integration, while the linear model

directly predicts conditional means. The RMSE results, summarized in Table 1, show the

nonlinear model performs slightly better in-sample for corn (RMSE 0.0415 vs. 0.0428) and

equivalently for soybeans (0.0285 for both). The linear model outperforms the nonlinear

in out-of-sample corn predictions (0.0471 vs. 0.0557), but differences are small, indicating

comparable predictive capability. We observe no significant sensitivity to the choice of tem-

perature–precipitation grid for the linear model, reinforcing the robustness of these findings.
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Table 1: RMSE for in-sample and out-of-sample predictions of conditional mean county
yields

In-Sample Out-of-Sample
Crop Linear Nonlinear Linear Nonlinear

Corn 0.0428 0.0415 0.0471 0.0557
Soybeans 0.0285 0.0285 0.0288 0.0376

5.2 Yield Shortfall Prediction

We further evaluate how well the nonlinear copula model predicts yield shortfalls, defined

as yields 10% below historical means. Using data from 1950–2002 for estimation, we predict

shortfalls for 2003–2016 and compare predictions to actual shortfall occurrences. There were

4,782 actual shortfall events and 16,469 non-shortfall observations in this period.

As shown in Table 2, the nonlinear model identifies 2,060 of the shortfalls but also predicts

many false positives (3,015). The linear model identifies fewer shortfalls (1,568) but also has

fewer false positives (1,829). This indicates the nonlinear model is somewhat more sensitive

to shortfalls, though at the cost of specificity.

Table 2: Prediction of yield shortfalls, 2003–2016

Linear Model Nonlinear Model
Shortfall No Shortfall Shortfall No Shortfall

Predicted Shortfall 1,568 1,829 2,060 3,015
Predicted No Shortfall 3,214 14,640 2,722 13,454

5.3 Probability of Large Losses

To examine how the nonparametric copula performs under particularly poor yield events,

we focus on counties with yield losses exceeding 20% below historical averages during 2003–

2016. For each yield shortfall event, we compute the model’s predicted probability of a

shortfall and average these probabilities over all such events. We repeat this for periods

without shortfalls. The model predicts, on average, a 21.56% chance of shortfall during
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actual shortfall years/counties, compared to only 13.42% during non-shortfall years/counties.

This demonstrates that the nonparametric copula effectively quantifies the increased risk of

extreme adverse outcomes, a feature unavailable in mean-based linear models.

In sum, our findings support the presence of tail dependence in crop yield–weather re-

lationships. Relative to linear models, the nonlinear copula approach delivers comparable

predictive accuracy for mean yields and adds unique capacity for predicting rare, extreme

events. To evaluate the robustness of our copula framework, we are extending the analysis to

compare the nonparametric copula with benchmark Gaussian and Student’s t copulas using

out-of-sample validation, with an 80/20 train-test split. Preliminary results suggest that

the t copula performs best in capturing tail dependence, while the nonparametric copula

offers flexibility that improves upon the Gaussian in many cases. Full model comparisons

are ongoing.

6 Simulation of Climate Change Impacts on Crop Yields

To assess the potential impact of global warming on crop yields, we use our estimated model

to simulate the effects of simultaneous shocks to temperature and precipitation. These shocks

are derived from scientific climate projections, focusing on two representative concentration

pathways (RCPs): RCP 4.5, representing a moderate, low-emission scenario, and RCP 8.5,

representing a high-emission scenario. The resulting simulations provide valuable inputs

for analyzing agricultural risk and informing crop insurance program design under changing

climate conditions.

6.1 Historical Baseline: Probability of Yield Shortfalls (1980–

2005)

We first evaluate the baseline probability of a yield shortfall by county during the histor-

ical period of 1980–2005. For each county and year, we calculate the probability that the
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average county yield falls at least 10% below its historical mean. These probabilities are

then averaged across all years to produce a spatial map of average shortfall risk, as depicted

in Figure 7. Results show that southern counties generally exhibit higher probabilities of

yield shortfalls during this period. However, several counties in Wisconsin and Michigan

also faced relatively elevated risks. It is important to note that these probabilities represent

county-level average yields and a relatively severe threshold (10% below the historical mean).

Individual farms may experience higher shortfall probabilities due to local variability.

Figure 7: Average probability of a 10% yield shortfall in corn, 1980–2005.

6.2 Future Projections under RCP 4.5 (2035–2065 and 2070–2099)

Next, we project yield shortfall probabilities under the moderate emissions scenario (RCP

4.5) for two future periods: mid-century (2035–2065) and late-century (2070–2099) in Figure

8. These simulated shortfalls are measured relative to the same historical county means to

enable consistent comparison. Our results indicate a general increase in the probability

of yield shortfalls across the region compared to the historical baseline. Notably, northern

counties are projected to experience larger increases in shortfall risk by the end of the century,
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suggesting that climate change may exacerbate adverse yield outcomes even in areas currently

less vulnerable.

(a) 2035–2065 (Avg. Prob.) (b) 2070–2099 (Avg. Prob.)

(c) 2035–2065 (Difference) (d) 2070–2099 (Difference)

Figure 8: (a,b) Average probability of a 10% yield shortfall in corn under RCP 4.5 for two
future periods, and (c,d) difference in probability relative to 1980–2005.

6.3 Future Projections under RCP 8.5 (2035–2065 and 2070–2099)

Figure 9 illustrates the analogous projections under the high-emission scenario (RCP 8.5).

By mid-century, we observe a widespread increase in yield shortfall risk across nearly all

counties, reflecting the more severe climate shocks anticipated under this pathway. By the

late-century period, the spatial pattern shifts: southern counties become the hardest hit,

with substantially elevated probabilities of yield shortfalls, while northern counties appear
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to experience some improvement relative to the historical baseline. This divergence aligns

with findings in the broader climate and agricultural economics literature, which suggests

potential northward shifts in suitable growing conditions under extreme warming scenarios.

(a) 2035–2065 (Avg. Prob.) (b) 2070–2099 (Avg. Prob.)

(c) 2035–2065 (Difference) (d) 2070–2099 (Difference)

Figure 9: (a,b) Average probability of a 10% yield shortfall in corn under RCP 8.5 for two
future periods, and (c,d) difference in probability relative to 1980–2005.

Our simulation results underscore the heightened risks that climate change poses to

agricultural productivity, with important spatial heterogeneity depending on emissions tra-

jectories and time horizons. These insights highlight the need for regionally tailored risk

management strategies and insurance products capable of accommodating changing yield

risk profiles in a warming world.
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7 Conclusion

Our findings demonstrate that a nonparametric copula model effectively captures the com-

plex, nonlinear relationships between temperature, precipitation, and crop yields across dif-

ferent crops and regions. This framework allows us to move beyond modeling only conditional

means or variances and instead characterize the entire conditional distribution of yields, in-

cluding its higher moments and tail behavior. Using the estimated model, we simulate the

potential effects of climate change on yield shortfall risks under two representative concen-

tration pathways (RCP 4.5 and RCP 8.5). These simulations indicate that the probability

of yield shortfalls is likely to rise across most of the region, with particularly large increases

projected in northern counties under the moderate emissions scenario and in southern coun-

ties under the high-emissions scenario by late century. The spatial heterogeneity in these

projections underscores the importance of modeling nonlinear dependencies between tem-

perature and precipitation, as well as the value of distributional information for assessing

agricultural climate risks.

While this approach performs comparably to traditional linear models in predicting con-

ditional mean yields, its real strength lies in its ability to estimate the probability of large

yield losses, which is outside the scope of a linear model. Preliminary validation using an

80/20 train–test split against other copulas suggests that tail dependence is an important fea-

ture of the yield–weather relationship: the Student’s t copula generally achieves the highest

log-likelihood, particularly during colder periods and earlier decades, while the nonparamet-

ric copula improves upon the Gaussian but does not consistently surpass the t. Ongoing

work extends this comparison across additional crops and model specifications to better

understand the trade-offs between flexibility and statistical efficiency.

This modeling capability has important practical implications for policymakers and stake-

holders in agricultural risk management. For instance, crop insurance programs could lever-

age farm- or field-specific weather data integrated with our model to predict the likelihood

that a grower experiences a yield shortfall relative to county averages. Such probabilistic
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assessments can help insurers more accurately price premiums, forecast indemnities, and

anticipate evolving risk patterns under changing climate conditions. Similarly, the ability to

characterize yield distribution tails provides growers and policymakers with richer informa-

tion on downside risks and the potential for extreme losses, which is increasingly critical as

climate variability intensifies.

Looking forward, a promising extension of this research would be to apply our modeling

framework to field-level yield and weather data. This would enable direct comparison of

model-predicted yield shortfalls with actual insurance indemnity payouts, offering a robust

test of predictive accuracy at finer spatial scales. Moreover, exploring the model’s applica-

bility to other crop insurance products, such as Prevent Plant, could yield valuable insights.

If early-season weather indicators reliably forecast yield shortfall probabilities at the end of

the growing season, growers could use this information to make more informed planting and

management decisions under uncertainty.

Overall, our nonparametric modeling approach offers a flexible and powerful tool for

quantifying agricultural climate risks, supporting better-informed decision-making in a world

of growing environmental variability and economic uncertainty.
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