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Abstract

This paper proposes and applies new methods to value water rights and
assess misallocation across competing uses in California, the world’s fifth
largest economy. The empirical strategy combines detailed microdata on
farms, evapotranspiration, historical water rights, and the hydrological flow
network in order to isolate sources of inefficiency within the hydrological
network, assess distributional implications of water access under current
property rights, and evaluate alternative mechanisms for water reallocation.
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1 Introduction

Methods to value existing water property rights are critical to design and assess
a range of increasingly important environmental and economic policies. This pa-
per proposes and applies a unified approach to value water property rights in
settings where they are rarely or never traded. The approach combines insights
from recent work on agricultural production, equilibrium land use, and factor
misallocation in a setting where water use can be inferred over time from de-
tailed remote sensing data on crop choices, orchard ages, yields, prices, and local
evapotranspiration data on weather and soil conditions used to manage irrigation
in real time.

The analysis is framed in the context of California, which is intrinsically eco-
nomically important, notorious for its legacy water rights, and a place with mod-
ern, high-resolution data newly collected over the last decade in response to grow-
ing concerns with water scarcity. Most of the state’s water is owned and used by
sophisticated irrigators who plant a diverse collection of crops, but rarely trade
water rights. On one hand, many express concern with water misallocation in
California given that the earliest, or most “senior,” appropriative water rights—
many of which date to the 19th century—have priority over later claims when
water is scarce. On the other hand, California water infrastructure supports the
largest agricultural sector and population of any state in the United States.1 This
paper is an attempt to think about water misallocation in this setting, which is
especially important given new hydrological and climatic challenges that alter
water scarcity and abundance across space by intensifying the hydrological cycle
and creating new environmental concerns that may require reallocating existing
sources of water to solve.

I focus on water users above and below the most important component of
the water conveyance system in California, the Sacramento–San Joaquin River
Delta, through which water must flow in order to reach the southern parts of the
state. In particular, I use very detailed high-dimensional data, combined with a
model of agricultural production and irrigation scheduling for nearly forty distinct
crops—including annual crops like wheat, rice, and hay that must be replanted
each year, and perennial crops such as almonds, oranges, and pistachios grown
on trees that live for decades—to make some statements about the productivity

1The service area of just one of the two largest surface water infrastructure projects in
California contains what would be the eighth-largest economy in the world (DWR, 2023).
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of water use at a very fine level of resolution, and then think about what that
might or might not imply about misallocation.

To take advantage of this new high-resolution data, the paper develops a
microeconomic model useful to value water rights and misallocation building
on two key ingredients not present in prior work. First, I follow the insight of
Burness and Quirk (1979) to imagine water rights as random variables that give
owners access to certain volumes of water in certain states of the world. As I
show in the data, water rights on paper differ significantly in terms of actual
water available for diversion, both for water rights with the same face value
and within the same water right over time.2,3 In the model, water rationing will
arise differentially across the network and water right priority tiers, through the
interaction of (a) equilibrium diversion decisions by owners of water rights and (b)
exogenous idiosyncratic and aggregate shocks to water abundance and physical
crop water requirements. Up to water conveyance and delivery costs, the optimal
water allocation can be obtained when all users face a shadow value of water that
corresponds to the marginal use value, which can be (and often is!) zero or even
negative. Testing for misallocation in this incomplete model is challenging even in
a fully-connected network without flow constraints: with sufficient heterogeneity
across water users or water rights, unobserved planting or other adjustment costs
can rationalize any water allocation.

Second, I embed a tractable set of Rust (1987) regenerative optimal stopping
problems within the model of water rights, in order to model investments in
capital varieties that require uninterrupted water inputs to survive. Water rights
are typically perpetual, granting owners access to a sequence of annual water
endowments over an infinite horizon, and the reliability of these rights are critical
for high-value investment in cities, orchards, and vineyards that rely on continued
water access across diverse conditions. I can take this to the data because, like
Rust (1987) but unlike any prior work in California of which I am aware, I observe
the full age structure of all orchards in California, as well as the panel of replanting

2The cutoffs that determine priority across competing water rights—the “priority date” or
first year of the claim—differ considerably across users, with more senior water rights receiving
approximately similar allocations in drought and non-drought years, but junior rights being
severely curtailed. With constraints on water trade, this implies differential surface water
rationing across the network and within tranches. Senior water rights are disproportionately
owned by irrigators rather than cities, but many irrigators also rely on junior rights claims.

3Where feasible, farms also complement surface water with groundwater by incurring Burlig
et al. (2024) pumping costs as functions of aquifer depth and extraction volume.
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decisions. This aspect of the analysis—complementary investment based on the
infinite sequence of annual water endowments—allows me to account for some of
the adjustment costs that otherwise hinder the analysis of misallocation. That
is, it allows me to microfound and estimate what are, in the simplest version of
the model, unspecified planting costs that can rationalize any allocation of water.
These complementary investments are also crucial to accomodate the fact that my
estimates of water used for irrigation in the Central Valley exhibit high degrees of
persistence, despite immense cyclical and stochastic components of surface water
supply. Even during extreme drought, water volumes used for perennial crops,
as well as many annual crops replanted each year, exhibit little variation.

In the model, farmers decide each year how to allocate their water endowment
across annual and perennial crops. Conditional on allocating water to some
perennial crops, such as trees in orchards or vines in vineyards, farmers then
decide whether to maintain or cut down the trees or vines. As in Rust (1987),
the productivity of the unit of capital investment depreciates over time—tree yield
declines with age—and the farm faces an optimal stopping problem of when to
replant, thereby renewing the asset, switching to a different variety of long-lived
perennial crop, switching the status of the water to grow annual crops, or trading
the water allocation to another user.

Understanding misallocation across water rights in this model, then, starts
from each water right’s history of planting decisions, which, together with lo-
cal growing conditions, determine its sequence of annual productivities. In this
setting, there exists a wide range of cross-sectional dispersion in marginal prod-
ucts that need not correspond to any real inefficiency, for the same reason as in
models of capital misallocation under uncertainty and adjustment costs (Asker
et al., 2014). Planting decisions are characterized by location of use, tree type,
and tree age—e.g., some water will be embodied in newly-planted orchards that
have yet to bear fruit, some in productive orchards, some in vineyards, and some
used flexibly to grow annual crops—and determine the water’s annual produc-
tivity, as well as the adjustment costs related to its reallocation. For example,
orchards typically remain productive for ten to thirty years, with some crops
(e.g., pistachios) having no yield declines for more than one hundred years.

A key step in combining the two ingredients introduced above—state-contingent
Burness and Quirk (1979) water rights and state-dependent Rust (1987) opti-
mal investment—into a tractable empirical model is to distinguish between the
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permanent and transient components of a water right. In general, variable wa-
ter rights make the optimal crop allocation nonseparable across fields, I cannot
directly apply the canonical Scott (2013) approach to simplify the general equi-
librium dynamics of land use by studying a continuum of independent field-level
choices. However, when water, not land, is the binding constraint, I can analyze
a more tractable problem in “water space,” where units of water rather than land
are assigned to different crops, making the problem separable even when water
constraints bind. As these water-level decisions can be made independently from
another, I can leverage the computationally tractable Berry (1994) discrete choice
apparatus and its extensions (e.g., Gowrisankaran and Rysman, 2012) to value
water at an extremely fine level of spatial and temporal resolution, allowing for
unobserved heterogeneity in planting costs that can help explain the diverse allo-
cations of water to crops. Unlike existing revealed-preference models of land use,
which will rationalize inefficient uses of water through differences in farmer tastes
for crops, this paper’s model will not directly foreclose questions of water misal-
location because the assumption used to identify planting costs is that, given the
various water rights that they own, a farm will grow the most valuable crops.

Four main empirical findings flow from interpreting the data through the lens
of the model and its estimates. First, using data on field-level planting deci-
sions, crop evapotranspiration, agricultural yields and prices, the model allows
me to estimate irrigation volumes and annual marginal products of water, or
“water productivities,” for every field in California from 2014–2022. I find that
estimated marginal products of water exhibit significant dispersion within and
across regions, as well as remarkable persistence over time as mentioned earlier,
despite large hydrological variability, with greater dispersion and lower average
water values during drought. As emphasized above, this dispersion in annual
water values cannot be interpreted directly as evidence of misallocation due to
unobserved differences in planting costs.

Second, combining the water productivity estimates with data on the hy-
drological flow network, I document a clear gradient in estimated water values
above and below the most critical chokepoint in the network, the Sacramento-
San Joaquin Delta, with persistently higher values below the constraint, where
trade constraints are likely to bind. I show that this gradient mirrors gaps in
willingness-to-pay to extract groundwater obtained from well depths, as well as
the typical price gradient among the few annual water allocation trades from
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1980–2024, which further support the hypothesis that Delta flow constraints lead
to water misallocation. This finding corroborates some of the longstanding policy
concerns that have led to extensive debate in California over the construction of
new conveyance infrastructure in the Delta. Those conversations typically focus
on the opportunity to reallocate water from agricultural users in the Sacramento
Valley to large urban suppliers in southern California; these results indicate pos-
sible gains from trade even within agricultural uses, which is important given
that most of California’s water is used for agriculture and many marginal values
of urban water use are not clearly greater than perennial irrigation.4

Third, combining the water productivity estimates with administrative data
on all water rights on paper, I find that water values correlate with the seniority
of water rights; watersheds endowed with more senior water rights exhibit less
dispersion in marginal values and higher values overall. These findings provide
support for theories of complementarity in capital investments and more reliable
senior water rights (Burness and Quirk, 1979) as well as more general models of
directed technical change (Acemoglu, 2002) where more abundant factor supply
leads to innovation that raises that factor’s productivity.5 However, the finding
that more senior water owners are more productive on average contravenes the
common perception (and prediction of some models of moral hazard) of more
wasteful water use by senior water owners (“use-it-or-lose-it”).

Fourth, combining water productivity estimates with the full age distribu-
tion of tree varieties, I find an endogenous partition of water rights, where most
(>90%) of the water used by orchards is “locked in” in a given year, in the
sense that it would typically not make economic sense to reallocate to other
uses. This follows directly from the observed orchard demographics and an
assumption—strongly supported by the data and the implied economic costs
of the counterfactual—that farmers almost never cut down orchards in the first
decade of their productive life. The resulting endogenous distribution of water-
augmenting capital varieties—reminiscent of the Atkeson and Kehoe (1999) mi-

4About 80% of California’s water is used for agriculture. While this paper focuses on ir-
rigation, similar arguments here apply to water that sustains human populations, which also
entails large fixed investments in housing stock that require reliable water supply to operate.
A major open empirical question is the extent to which water scarcity, versus other zoning and
land use restrictions that create barriers to new development, inhibits urban development and
expansion (see, e.g., Edelstein, 2025 for progress in this direction).

5Two countervailing forces are at work: abundance raises the value of such investments, but
also lowers equilibrium factor prices (Acemoglu, 2002). If water is not priced at its opportunity
cost, however, there will be no countervailing equilibrium price channel.
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crofoundation for low short-run and large long-run energy price elasticities in
macroeconomics—provides an explanation for why aggregate water demand ap-
pears conspicuously inelastic to fluctuations in aggregate water surface supplies
by factors of two or more. It also has implications for long-run water contracts
in the design of water markets—because very little of California’s water can be
productively reallocated within a year, partial reforms to liberalize annual trade
without also allowing longer-run trades seem unlikely to deliver substantial gains.6

Beyond the work cited above, this paper makes two primary contributions
to the existing literature. One, the paper’s general empirical model enables the
valuation of water rights by combining the rich detail of agricultural production
models with some of the information implied from revealed preference about crop
choices and replanting decisions within fields over time. Modern agricultural pro-
duction models can make use of rich data and do not rely on revealed preference,
which allow them to deliver large differences across water values (D’Odorico et al.,
2020; Medellin-Azuara et al., 2022). However, these models typically rule out
unobservable heterogeneity that correlates with water use, rather than using ob-
served decisions to learn about unobservable heterogeneity. In contrast, modern
equilibrium models of land use (Scott, 2013; Burlig et al., 2024), when identified
with valid instruments, can recover certain forms of unobservable heterogeneity
from aggregate data in a consistent way, for the same reason as in other product
markets (Berry et al., 1995). However, the source of that advantage—to rely on
revealed preference and quasi-experimental price shifters to recover valuations—
can limit the ability of these models to test for arbitrary misallocation. The key
idea here to combine the two approaches without foreclosing the analysis of mis-
allocation is that, holding fixed a given water right of a certain type in a given
location, the crop choices made for that water right can reveal information about
the relative planting costs across different potential crops, as well as the costs
of renewal and replanting for perennial crops like almonds, pistachios, or wine
grapes—even when that water could have a much greater value elsewhere.

Two, the paper’s substantive empirical work contributes the new findings on
the value of water in California discussed above: how value varies with flow con-
straints in the surface water network, characteristics of historical water property
rights, and over time through equilibrium investment decisions. Each of these as-

6Under California law, trading water rights for more than one year or water rights with
pre-1914 seniority status involve several additional legal frictions than annual trades.
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pects of water interact to determine the value of water reallocation,7 a recurring
question in this literature—whether places that so rarely trade water on markets,
like California (Hanak et al., 2021; Hagerty, 2023), stand to gain by introducing
more advanced water markets. Valuing water rights across competing uses is
central to answering this question, but has been inhibited by data issues with
extant water contracts and prices,8 except in rare cases like Australia (Rafey,
2023). This paper confronts the challenge of valuing water without trades, by
far the most common situation worldwide. It follows in the line of supply-side
industrial organization papers like Borenstein et al. (2002), Syverson (2004), and
Asker et al. (2019) to start with details of the production process—for example,
the physics of electricity, oil, and water flow at the point of generation, extrac-
tion, or diversion—and try to learn from the resulting distribution of economic
activity, tailoring the analysis as close as possible to the observed set of produc-
ers. This allows the study of rich distributions of marginal water productivities
over time and across the hydrological network and varied hydrological conditions.
Working with water use data also lets me account for conjunctive use of surface
and groundwater, an important limitation to previous research in California.

In addition to the primary contributions, this builds on a large body of work
using extensive satellite imagery to characterize economic activity on the surface
of the Earth and address measurement issues with conventional economic data.9

Much of this study’s empirical progress is enabled by observables beyond land
cover; here, differentiated capital varieties implied by tree planting dates and
local water requirements implied by daily evapotranspiration. Finally, a broader
literature documents significant dispersion in marginal products across various
factors, like capital, labor, land, and oil; how we interpret that dispersion is

7Some recent work on California water includes Gartrell et al. (2017), Hanak et al. (2021),
Ayres et al. (2021), Zeff et al. (2021), Medellin-Azuara et al. (2022), Hagerty (2023, 2022),
Burlig et al. (2024), and Leonard et al. (2025), as well as recent PhD dissertations analyzing
groundwater regulations and labor on small farms (Sum, 2024), urban-agricultural water price
gaps (Ferguson, 2024), and water impact fees and housing development (Edelstein, 2025).

8See Rafey (2023, pp. 433–434) for a discussion. Water is rarely traded, the terms of these
contracts are often unobserved, and water rates are typically not market prices, but rather fees
set formulaically by utilities or irrigation districts to recover fixed costs.

9On evapotranspiration, see D’Odorico et al. (2020), Wong et al. (2021), Boser et al. (2022),
and Leonard et al. (2025). On groundwater subsidence, see Carleton et al. (2025). Beyond
water, the satellite data renaissance has enabled progress on several other problems in the
economics of land use and the environment, such as deforestation (Burgess et al., 2012; Souza-
Rodrigues, 2019; Hsiao, 2021; Balboni et al., forthcoming), agriculture (Scott, 2013; Costinot
et al., 2016), and wetland conservation (Aronoff and Rafey, 2023).
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obviously a challenge and this is one paper in that line of thinking.10

The rest of the paper starts with some background on California water insti-
tutions from an economic perspective in Section 2. I then introduce the model
in Section 3, describe what I do with data in Section 4, and finally provide some
results and some discussion of the limitations of interpreting the estimates as
allocative inefficiency in Section 5.

2 Institutional details

This section discusses where California’s water comes from, where we move it and
how, and who uses it. This context will then allow us to think about overlapping
water rights and some of the constraints on water reallocation.

2.1 Water sources and supply network

The water in California comes from two places. About 200 million acre feet in
an average year falls from the sky, or about four to five times as much water
as the entire state uses annually. Most of this water is not directly usable, but
some stays in the mountains, turns into snow, and then slowly melts down into
valleys through massive rivers. The triangles in Figure A1A depict the dams
built in California to capture this surface water, modulate its variability, and
deliver it to where it is most economically useful. This surface water then travels
throughout California, flowing through the rivers plotted in Figure A1C, and the
network of canals, primarily operated by the State Water and the Central Valley
Projects, depicted in Figure A1D, which move water from Northern California
and, critically, as shown in detail in the inset with more precision, through the
Sacramento–San Joaquin Delta.

Surface water exhibits large cyclical and stochastic components, as illustrated
by the useable river inflows in Figure 1. Annual volumes from 1980–2021 for the
Sacramento and San Joaquin River Basins, given existing conveyance infrastruc-
ture, range from less than 10 million acre-feet to more than 30 million acre-feet
across years.

The natural surface water flow network also serves as the origin of California’s
groundwater. Much of the water that lands on California seeps into the earth

10On misallocation and its discontents, see, e.g., Hsieh and Klenow (2009), Midrigan and Xu
(2014), Adamopoulos and Restuccia (2014), Asker et al. (2014, 2019), Baqaee and Farhi (2020).
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over many thousands of years, forming the gigantic aquifers depicted in Figure
A1B. The dark blue aquifer in the Central Valley is the state’s largest source of
groundwater, though aquifers also serve as important water sources in the Central
Coast, where there are a lot of vineyards, and in southern California, especially
for municipal users in desert areas.

2.2 Water users

The water that travels through the hydrological network has three main compet-
ing users in California: irrigators who use water to grow crops; people who drink
water to not die; and ecosystems, which rely on natural flows to survive and
thrive.11 The water rights defined for these different uses are primarily owned by
irrigators, and in particular, as I show below, many of the irrigation water rights
were established prior to the complete settlement of California. Figure A3 reports
a map of agricultural production in California in 2020. It shows just two colors;
purple corresponds to perennial crops such as almonds, pistachios, oranges, and
grapes, and orange corresponds to annual crops like wheat, rice, and pasture.

Agricultural users comprise about 70–80% of California water use, or 30–35
million acre-feet of water, in a given year. Most of the agriculture occurs in the
Central Valley.12 In contrast, Figure A3, Panel B, shows where the people are.
Although California is the largest state by population in the US, it is sparsely
populated outside of Los Angeles and the Bay Area; in the aggregate, municipal
uses account for only about 15% of water in California. Finally, water flows serve
critical ecological functions. Water throughout the network delivers value to the
species that live in the rivers and water bodies; I discuss some of these values in
Section 2.4 below.

2.3 Water rights, contracts, and rationing

The immense cyclical and stochastic components of water supply and flow create
several difficulties with specifying well-defined water property rights. Most water
rights in the western United States emerged based on historical claims by original

11California also generates a lot of hydroelectricity, but hydroelectricity is typically a “non-
consumptive” use that does not compete with agricultural or municipal uses.

12While the main focus of this study is the Central Valley, agriculture also occurs in the
Central Coast as well as the Imperial Irrigation District in the southeast corner of the state
that uses senior Colorado River rights, as seen in Figure A3, Panel A.
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water users. The fundamental problem is that these “appropriative” rights are
typically defined at the place of use (“point of diversion”), and not the point of
origin. This creates significant problems if (and only if) multiple competing uses
conflict with one another, because they then have to be reconciled. In an ideal
world, if we know exactly where all the water is coming from, for example, from
a single dam, then we just define property rights over the water in the dam. One
still needs to charge users along the conveyance network for transmission costs
and solve the optimal routing problem, but there’s no incompleteness because we
have fully specified the rights over the water.

But historically, surface water rights are often defined in ways that depart
from this ideal case, because water comes from so many diverse places and water
abundance varies across so many states of the world. Water property rights
evolved in California, and the western United States more broadly—and, similarly
in places like Australia—by granting property rights to people who claimed them.
In California, many of these claims originated when people started moving to
California during the Gold Rush in 1848. California also has some very large
infrastructure projects, which create a close to complete property rights case,
because they involve constructing large dams with known volumetric capacities,
and we can subdivide and tranche the rights over units of water held in the dam.

Appropriative surface water rights are defined by two attributes. First, a “face
value” amount, denominated in acre-feet per year, which equals the maximum
amount of water that the user can take in a given year. Second, a “priority” year
or tranche, which determines how water rationing occurs in states of the world
in which the water right conflicts with other rights. Rationing can arise due to
(i) shocks that lead to lower river inflows and aggregate water availability and
(ii) excess demand by other water rightsholders with greater or equal seniority.
In other words, if there is no water in the river, you cannot take the water; fur-
thermore, even when there is water in the river, that water may not be legally
yours when other, overlapping water rights have legal priority over your appro-
priation. All of this implies that rationing can occur in some, but not all, states
of the world, as reported in Table 1. This fact is also partly why climate change
raises new risks for water rights, because only in states of the world where supply
constraints bind is it important to sort out these competing claims.13

13A separate but related concern with appropriative rights defined by historical use, distinct
from inefficient rationing across users, is that these rights can create perverse “use it or lose
it” incentives. In practice, the threshold to show beneficial use is very low. And, in part to
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Figure 2 reports the claims for water for irrigation. Panel A shows cumulative
claims from 1790 to 2020. Before the 1914 Water Commission Act, there were
already nearly 20 million acre-feet of water claims, close to the total amount of
water that the Central Valley uses today. While these administrative records
do contain measurement issues, they show clear evidence of large legacy rights
that date prior to California becoming part of the US,14 as well as an uptick in
cumulative water rights when people start moving California to mine gold, using
water-reliant methods like sluice boxes and hydraulic mining. Water claims also
provided for the new population; for example, Pacific Gas and Electric (PG&E),
which remains the largest utility in California today, owns many large water
rights that date to the 1860’s and 70’s. Cumulative rights grow over time; in
particular, Figure 2 shows large jumps in 1940 and 1960, the completion decades
of the state’s two largest infrastructure conveyance projects, which significantly
expanded available surface water supply. By the 1980s, all sources of surface
water for the Central Valley have been fully appropriated.

In contrast to appropriative surface rights, property rights to groundwa-
ter are tied to the land. While there have been some regulations that have
started to change the way people drill for groundwater in California, broadly,
the landowner’s right in California extends to subsurface drilling rights.15 Fig-
ure A4, Panel A, shows meaningful groundwater extraction capacity relative to
appropriative rights, with about 20–25 million acre-feet of capacity of groundwa-
ter wells by 2022.16 Figure A4, Panel B, which stacks cumulative well capacity
together with appropriative water rights, shows that farmers start to drill for
groundwater as surface water becomes fully appropriated.

An important aspect of groundwater, unlike most surface water, is its non-
trivial marginal extraction cost. The cost of extracting water from a well can be

encourage people to transfer water rights, and to avoid the kind of overuse incentives under
a use-it-or-lose-it regime, since the 1970’s, it’s been very clear in California law that, in most
cases, even if you don’t use the water, you still own the water rights.

14One can see similar patterns in land parcel data. There are still ranches exactly the size of
Spanish land grants, because many of these land rights were given as concessions to landowners
when the United States annexed California from Mexico in 1848 (Gates, 1991, pp. 3–13).

15This subsurface water is, essentially, open-access; if your land sits above an aquifer you
can drill as much water as you want, limited by rising extraction costs as aquifer levels fall.
The California Sustainable Groundwater Management Act, passed in 2014, aimed to limit
groundwater extraction in critically overdrafted regions; how its regional objectives will be
enforced in practice remain unclear more than a decade after the law’s passage.

16In California, you need to get a permit to drill a well, and so there about a million of these
well reports, about 100,000 of which are in the Central Valley.
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calculated in proportion to drilling depth (“lift-height”) (Timmins, 2002). Table
A5 calculates these costs using data on all the wells that have been drilled, show-
ing meaningful differences across watersheds within the Central Valley, as well as
difference of about a factor of two in average lift heights and implied pumping
costs above and below the Delta.

2.4 Trade constraints and frictions

Constraints on water trade among owners of water rights arise for several reasons.
One reason is flow requirements for ecosystems. Figure A3, Panel C illustrates
some of the environmental assets in California. The purple polygon is the legal
boundary of the Sacramento–San Joaquin Delta, and this has a lot of environmen-
tal value. Many endangered species that inhabit the Delta are federally regulated
under the Endangered Species Act of 1973. The Delta is also ecologically critical
to prevent saltwater intrusion because drains into the Pacific Ocean through the
San Francisco Bay. California hydrology has been so altered from its natural
state that the saline ocean water could overrun the Delta without minimum out-
flows from the Delta to protect California from turning into a wasteland. These
environmental priorities restrict how water can be moved through this state,
stipulating certain seasonal outflow requirements to maintain species and deliver
environmental value in the Delta. Figure A5 plots variation in the water used for
environmental requirements over 1980–2022.

Infrastructural constraints on water transport also limit water transfers. The
Central Valley, where most of California’s agriculture occurs, is largely divided
between the Sacramento Basin and the San Joaquin Basin. Water flow through
the Delta to southern California must be lifted at the bottom of the Delta be-
fore it can flow into the San Joaquin River Valley.17 This is the primary flow
constraint that precludes greater reallocation of water across these two basins.
While significant volumes of water flow through the Delta each year (about 4–8m
acre-feet)—the source of much of the water used in the southern component of
the network—there are still considerable water volumes consumed in the North
that may not be able to cross the Delta.18

17Only two pumping plants transport water out of the Delta, the (federal) Bill Jones and
(state) Harvey Banks Pumping Plants. The proposed Bethany Reservoir Pumping Plant, which
would convey about 400,000 acre feet more water to flow through the Delta to southern users,
is planned for completion by 2040 at an estimated cost of about $20 billion.

18Another, more general, friction to trade is the prospect of legal challenges to water owners
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In part due to these constraints, annual trade in water allocation rights in
California (Hanak et al., 2021) appears to usually be less than one percent of
water use and never much more, even during severe drought.19 Despite this
sparsity, there are a few transactions. I did my best to pull as much water trading
data as I could for these two regions and then construct price distributions across
the regions, so that we could compare them. The results corroborate estimates
of Regnacq et al. (2016) and Hagerty (2023) of large transaction costs across
the Delta. The ratio of these prices, reported in the rightmost column in Table
2, ranges between one-and-a-half and two or two-and-half through the deciles.
Corroborating these long-run differences, Figure 3 shows, in 2023, two lines. The
blue shows prices south of the Delta (SOD), the water that has to go through
the Delta in the San Joaquin River Valley. The red line is the prices of the water
that are transacted above the flow constraint in the north of the Delta. One can
see a large wedge, a factor of three or four, even out to August, when people
start wanting water to plant. Prices are very flat along the red line, north of the
Delta, where there is plenty of water. But the SOD price exhibits much larger
fluctuations. The lower panel of Figure 3 shows a similar pattern in the year 2024.
Taken together, these prices would suggest a wide Delta price gradient if one takes
the data seriously—approximately a factor of two, even towards the end of the
growing season. This motivates my analysis below of how water productivity and
water use differ across these two regions.

who propose to transfer some or all of their water property rights to another user. For example,
imagine that someone who takes water from one location on a network instead declines to take
that water so that someone else in the network can take more. In principle, that reallocation
would affect other flows throughout the network. So, anybody between the two counterparties
can litigate. Under the California Environmental Quality Act of 1970, there also needs to be
environmental review to make sure that all the species whose existences and locations and
habitats have been predicated on the existing distribution of water are not adversely affected.
This has, in practice, turned out to be an easy way to obtain standing to file lawsuits and
obtain injunctions against proposed water transfers.

19Figure A7 reports California water trades from 1985 to 2022. The units are in acre-feet, and
range in the top panel from zero to one-and-a-half million acre feet. The numbers on the top of
the bars are the number of trades. For example, in 1993, you have 17 trades, in 1994, 16 trades.
This is a very sparse market. The lower panel of Figure A7 report the same trade volumes
alongside the reported water volumes used (after mid-2010s legislation introduced mandatory
reporting requirements), to emphasize that trade volumes are less than one percent of water.
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3 Model

This section introduces an empirical model of water rights and irrigated agri-
cultural production to clarify some of the economic mechanisms at work in the
institutions described above, and to motivate the use of data to explore the pos-
sibilities of water misallocation in the subsequent section.

I specify the model in two ways. First, I outline a general model of irrigation
and water rights for which I can estimate annual marginal products of water
under a relatively small set of assumptions that leave water rights, the water
market, and planting costs unspecified. Water misallocation is not identified
from the distribution of water productivities without further structure, such as
assumptions that unobserved planting costs are the same across certain places
in the network. Second, I specialize the general model to a fully-specified model
of equilibrium water use, which provides a microfoundation for heterogeneous
planting costs under the assumption that permanent and transient water rights
can be distinguished. The planting costs and implied values of water rights can be
identified in the fully-specified model with panel data on farms with sufficiently
similar planting costs and instruments for crop prices.

3.1 Irrigation technology

Irrigators, the main users of water, indexed by i, produce various crops indexed
by c. Agricultural calendars operate on an annual basis, so we think about annual
production in each year t.20 Total annual crop production, Qict, is a function of
the land that the farmer uses and the irrigation that they apply to the field.
On farm i in year t, each crop c has a potential yield per acre, Aict. Annual
production technology for irrigator i, crop c, in year t, is then given by

Qict = Aict min

{
Kict,

(
wict(τ)

ωict(τ)

)365

τ=0

}
(1)

where output Qict is measured in tons, the irrigation application rate wict(τ) is
measured in acre-feet/day, land Kict in acres, and yield Aict in tons per acre,
with Aict = 0 for c = fallow. The key feature of (1) is to allow the value of daily
irrigation wict(τ) in production to depend on each crop’s inherent water efficiency,

20Some crops are grown more than once a year. While the empirical work below abstracts
from multi-cropping, to incorporate it, just let c index each potential multi-crop combination.
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ωict(τ), which corresponds to how much water the crop needs, in theory, on day
τ of that year. For example, ωict(τ) will be zero in times when the crop needs no
water, and ωict(τ) will be larger as you need to provide more irrigation.

Water efficiency differs (i) across crops at the same location and year, (ii)
across locations for the same crop and year, and (iii) across years within loca-
tions growing the same crop. The reason that the function ωict : [0, 365] → R+

varies with i, c, and t is that location influences the climate conditions that deter-
mine the plant’s water demand through local soil characteristics, daily weather
conditions, and the relevant growing season. For example, a crop will typically
need more water on hotter, windier, or sunnier days, and more water when fully
grown than when still a seedling.

In addition to equation (1), the key assumption that I will make in order
to learn about the water used in California from the crop choices that I see is
that irrigation scheduling for each crop over its growing season is optimal. These
assumptions are stated on endogenous objects, but straightforward to state in
terms of primitives:

A1. No overwatering over the growing season (nonnegative marginal irrigation
costs or declining yield).
A2. No deficit irrigation over the growing season, i.e., Kict ≤ minτ

wict(τ)
ωict(τ)

in
equilibrium.

Assumption A1 rules out farms that irrigate more than the crop would need,
which can be microfounded with any nonzero marginal cost of irrigation, or
a yield function where yield declines if you overwater the crop. Similarly, A2
rules out under-irrigation. While there is immense interest in deficit irrigation—
conceptually, it would be great if you could get more for less—agronomy exper-
iments have largely found that deficit irrigation is not a viable strategy in most
settings because under-watering severely compromises crop yield.21 No-deficit
irrigation will be violated by pasture planting with multiple cuts in a single year
(e.g., alfalfa), where deficit irrigation corresponds to fewer plantings within the
year. Regardless of their microfoundations, A1 and A2 give us the ability to use
(1) to combine observed land allocations Kict with crop-location-day irrigation
efficiencies for the crops to recover the amount of water used for irrigation on

21One can think about the global production function in water as quadratic, a parabola where
yield declines very fast on either side of the optimal amount of water that the plant needs.
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each field, via the integral

Wict = Kict ·
∫ 365

0

ωict(τ)dτ (2)

because water demand coincides with optimal irrigation requirements.
Crucially, A1 and A2 restrict how farms irrigate the crop they have planted

in a given field, not how they choose which crop to plant. The assumptions do
not restrict equilibrium crop choices nor require that the assignment of land or
water rights to crops is optimal.

3.2 Sketch of the farm’s problem

Given the production technology in (1), the farm will solve a problem that I first
specify at a general level that I do not directly take the data. Suppose that an
irrigator has some amount of land, Ki, and water rights, W̃it, which they can
assign to different crops c at t, given some general planting cost function Γit(K)

that depends on the full vector of crop choices. The land allocation solves

max
{Kc}

∑

c

PictQict − Γit(K) (3)

such that
∑

cKc = Ki and
∑

cKict

∫ 365
0

ωict(τ)dτ ≤ W̃it. That is, the farm’s crop
choices maximize profits given their productivities embedded in Qict, the prices
that they obtain for each crop, the planting and other costs Γit, and constraints
that the farm uses as much land as they have—one of the crop categories is
fallowing, so this constraint always binds—and such that they do not go beyond
the water rights that they have, W̃it. If, for example, the cost function Γit is
linear, the two constraints in (3) form a convex polytope that one explores to
find the optimal crop choice.

Several aspects of (3) are worth noting. One, farmers take output prices, Pct,
as given, which seems not implausible given that these are agricultural commodi-
ties. Aggregate yield shocks and acreage in California may affect these prices,
but the output market is assumed to be perfectly competitive. Two, planting
costs are a function Γit of the full vector of crop choices. In the fully-specified
dynamic setting of Section 3.3, this Γit reflects underlying technological prim-
itives, the farm’s (endogenous) past decisions, and the implications of current
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decisions for (endogenous) future decisions and payoffs. Here, all of these details
are represented implicitly by an unknown function that varies with i and t.

Three, the value function Vit(Ki, W̃ ), defined as the maximand of (3) at W̃it =

W̃ , reveals the value of water rights through farm i’s water constraint at t. Various
comparative statics with respect to attributes of that water right can then be used
to trace the value of the water right through the changes in irrigator i’s value
at t. In doing so, we obtain the marginal (shadow) value of changing the water
right,

∂Vit

∂W̃
=
∑

c

AictPct
ωict

∂Wict

∂W̃︸ ︷︷ ︸
∆ marginal products

−
∑

c

∂Γit
∂Kc

∂Kict

∂W̃︸ ︷︷ ︸
∆ planting costs

. (4)

The general expression for the shadow value in (4) consists of two terms. One
is the change in the annual marginal product of water, which depends on how
water is reallocated across crops and each crop’s value per unit water. The other
is the change in planting costs, including dynamic considerations embedded in
Γit. A farm might, for example, reallocate land to crops with much higher annual
marginal products under a different W̃ , but that reallocation could involve new
planting costs such that the total value of (4) is not large. Alternatively, switching
costs may be so great that the change in water rights does not change the crops
grown, i.e., ∂

∂W̃
Wict = 0 for all c.

One goal of writing down the derivative in (4) is to point out that, to the
extent that planting costs are similar across different irrigators, we can study the
difference in annual marginal products of water as a way to compare the true value
of the water right (embodied in the crops that are being grown) in some place i
with the value of the water right (embodied in crops) in some other place j. This
motivates the analysis of the joint distribution of the annual marginal products
of water and the allocation of land, {Kict,

AictPct∫
ωict(τ)dτ

}i,c,t, studied in Section 5.
A related goal is to emphasize that, where planting costs differ meaningfully

across i and j, differences in marginal products across i and j need not be evidence
of inefficiency. For example, where irrigators embody water in different kinds of
trees, planting costs depend on the history of a farm’s crop choices. In this case,
systematic differences in marginal products of water could be entirely efficient;
reflecting differences in optimal investment, not misallocation. This is reminiscent
of Asker et al. (2014), who show how substantial cross-sectional dispersion in
marginal products of capital can arise in models of investment by firms with
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different productivity shocks over time, even when very little of the dispersion is
welfare-relevant in the sense that there exists a feasible reallocation to improve
allocative efficiency.

3.3 Farm’s problem, fully specified

To address this ambiguity, I now specialize the above model to specify planting
costs across fields that reflect the evolving opportunity cost of replanting long-
lived orchards of different ages and varied types, in order to (a) more directly
capture the varied value of water rights across reliability tiers and sunk invest-
ments and (b) obtain primitives to study alternative water allocation mechanisms.
While this requires some additional structure on the cost function Γit and equilib-
rium behavior that determines crop choices, the exercise will remain disciplined
by the additional panel data that I have on the age of trees and within-orchard
planting and replanting decisions.

Water rights. Water rights are random variables that are realized at the
start of each year, W̃it ∼ Gi. For tractability, I distinguish between the reliable
and transient component of each water right,

W̃it = W p
i +W a

it, (5)

with the reliable component of the water right defined as delivering water almost
surely, i.e., Gi(W

p
i ) = Pi(W̃it ≥ W p

i ) = 1. In practice, such rights can be a
senior surface water right that always delivers water, or a surface water right
that delivers in fewer than all years combined with a groundwater well that can
make up the difference in low surface water years.22 The decomposition in (5)
allows me to define values for different units of water in the water right; without
loss of generality, I index the units (acre-feet) of a water right ι ∈ [0, W̃it] such
that the first ι ∈ [0,W p

i ] units are reliable.
Flow payoffs. I assume that water, not land, is the scarce factor of produc-

tion. Each year, a unit ι (acre-foot) of water allocated by farm i to a crop c ∈ C
22As the earlier discussion of priority and rationing indicated, this random variable could

depend on all the equilibrium different decisions of everyone else in the network. But from
the farm’s standpoint as a producer, they just care about the probability that they have a
certain amount of water W̃it. Also note that W̃it captures all available water—both surface
and groundwater—even while costs may differ depending on the source. Variable irrigation
costs, such as groundwater pumping, are accounted for as “planting costs” in the model.
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of age x ∈ {0, 1, 2, . . . } delivers a payoff, denominated in $/af, of

πit(c, x)− ξicxt + σεεcxt(ι), (6)

where πit(c, x) = αict(x)Pct = Aict(x)∫
ωict(τ)dτ

Pct is the revenue ($/af) from the crop
derived from equation (1) and assumptions A1 and A2, given the (random) per-
acre-foot yield coefficient αict(x), observed crop prices Pct, average planting costs
ξicxt, and idiosyncratic planting costs σεεcxt(ι), independently and identically dis-
tributed Type 1 Extreme Value (T1EV) at the acre-foot-crop-age-level, scaled by
the parameter σε ∈ [0,∞).

Interannual choice sets. In equation (6), payoffs to i depend on the year
t as well as the state of the water right, (c, x). Dynamics arise because the
state of the water unit, (c, x), can determine the choice set of the farmer. For
annual planting, the problem is truly static; age x = 0 and the choice set is
c ∈ Ca. For new perennial plantings, c ∈ Cp and the age in the next period
becomes x = 1. For perennial plantings with age x > 0, the choice set becomes
either to maintain the orchard, leading to (c, x + 1), or to cut down the tree to
return to (0, 0). Consequently, when growing a given perennial crop, the farm’s
subproblem resembles a Rust (1987) optimal regenerative stopping problem with
a Gowrisankaran and Rysman (2012) renewal value that depends on the payoffs
for all perennial crops in the choice set; when selecting a new perennial planting,
the farm’s problem can be reduced to a static Berry et al. (1995) discrete choice
over payoffs that correspond to the value functions derived below.

Equilibrium values of water. Farms discount periods with a common
factor β < 1. The value of a water right committed for x years to a perennial
crop c can be constructed recursively via

Vi(c, x) = max
{
αict(x)Pct − ξicxt + σεεcxt(ι) + βV i(c, x+ 1),

−ξi0t + σεε0t(ι) + βV i(0, 0)
}
,

(7)

for x > 0, with the overline V i denoting the ex-ante value function prior to
drawing the ε shocks that period, and

Vi(0, 0) = max
c∈Cp

{
V i(c, 1)− ξic1t + σεεc1t(ι)

}
(8)

at the event of replanting.
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Two special cases of (7)–(8) illustrate the generality of this empirical model
as a way to value water rights. First, as σε → 0, field-crop-level heterogeneity in
planting costs vanish. If, in this case, crop prices and planting costs are also time-
invariant, there will be a perennial crop c∗i that always maximizes (8). Further,
when ∂

∂x
αict(x) < 0, there exists a finite stopping time x∗i at which replacement

becomes optimal, so that the value of the water right (8) admits the simple closed
form:

Vi(0, 0) =
1

1− βx∗i
∑

s≤x∗i

βs [αic∗t(s)P − ξic∗ ]− βx
∗
i

1− βx∗i ξi0. (9)

In this case, the water right’s value equals the net-present-discounted profits from
growing and harvesting the best crop for its optimal lifespan, then replanting the
same crop for a cost ξi0, ad nauseam, ad infinitum. Second, as σε → ∞, any
pattern of choices in a finite sample can be explained by the model. In this sense,
the model nests the case in which microdata on water use and marginal products
cannot reveal anything about misallocation.

Importantly, the additional heterogeneity in planting costs across crop types
and the evolution in crop prices, switching costs, and yields do not qualitatively
change the nature of the farm’s problem from the simpler case of (9) above.
The basic economic principle is always the same: a water right tied to a specific
location and irrigator is used by that irrigator to grow the most valuable crop
or sequence of crops. The additional heterogeneity simply enriches the decision
space to better account for data where an otherwise identical (on observables)
water right is observed to be used to grow a different sequence of crops over time.
Misallocation, in this model, arises from the way in which nontradable water
rights are tethered to specific locations and irrigators, not from mistakes made
by irrigators in the use of the water they own.

3.4 Identification

The previous section describes the choices for a single irrigator owning a given
water right. Practically, we would like to use data from many irrigators, and
within the same irrigator over time, to estimate the structural parameters. Here,
I describe the additional assumptions across and within irrigator choices over time
that one can use to identify planting costs; these are the standard assumptions
used in the dynamic discrete choice literature (Rust, 1987; Berry, 1994; Berry
et al., 1995; Gowrisankaran and Rysman, 2012; Scott, 2013), described here for
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the model of water rights where water, not land, is the scarce factor of production:

A3. Planting costs from revealed preference. Water uses ι across i can be aggre-
gated to known sets M of positive measure, such that each M satisfies:
(i) Price instruments (Berry, 1994). Shifters Zict of Pct such that E[Zictξict] = 0.
(ii) Common choice sets (Berry et al., 1995; Scott, 2013). Some interval ι ∈M

with the same average planting costs ξict and curvature σε.
(iii) Common, stable beliefs over future states (Rust, 1987; Gowrisankaran and

Rysman, 2012). Pct follows the same law across ι ∈ M ; the evolution of
{ξict} is stable over t and common across i.

Under Assumption A3(ii), aggregate choices over ι ∈ M can be used to recover
the planting costs that rationalize annual planting decisions at the start of the
year—which, by assumption, do not depend on future periods. For annual crops,
the share of water in M allocated to c ∈ Ca rather than the outside option (sa0t)
can be written as

lnPi(c(ι) = c) = ln sa0t +
1

σεa

∫

M

αict(0)Pct − ξc0tdι, (10)

for each annual crop c ∈ Ca in each year t and each interval M . Under A3(iii),
choices for i ∈ M reveal the planting costs and yield curvature that rationalize
within-orchard decisions over time, because the assumption of common beliefs
over future states withinM mean that the only variation in choices arises through
the structural parameters ξ and σε. Let iit(c, x) = 1 if i chooses the renewal
action at (c, x); then the odds ratio that characterizes the choice probability can
be obtained by integrating over ι ∈M ,

ln
Pi(iit(c, x) = 1)

1− Pi(iit(c, x) = 1)
=

1

σε

∫

M

αict(x)Pct−ξicxt+ξi0t+βV i(c, x+1)−βV i(0, 0)dι.

(11)
Finally, for irrigation water rights ι ∈ M that share both common planting

costs and beliefs, i.e., A3(ii) and A3(iii), aggregate choices over ι ∈M can be used
to recover the planting costs that rationalize new perennial planting decisions at
the start of the year. The share is only calculated for newly planted perennials
(ii,t−1 = 1) in that year:

lnPi(cit(ι) = c|ii,t−1 = 1) = ln sp0t +
1

σεp

∫

M

V i(c, 1)− ξc0tdι, (12)
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which is identical to the previous equation (10) except choice-specific payoffs
depend on the value functions derived from the full lifecycle of perennial planting.

The core identification concern in this model is explicit from the equilibrium
planting and replanting decisions characterized by (10), (11), and (12). Equilib-
rium water use across water rights and over time and reflects differences in water
right reliability Gi, water productivity, α(x), and unobserved planting costs ξ, all
of which could be correlated with crop prices P . The broad strategy to address
these concerns uses the model of irrigation scheduling (A1–A2) and observed
land allocations to recover water productivity across space, time, and crops, and
infer water water rights’ reliability, and uses the model of revealed preference
with panel data over new and replanting decisions (A3) to identify the curva-
ture of yield over time within an orchard, α′(x), and the extent of heterogeneity,
σε, across fields. Identifying the latter requires instruments that shift payoffs to
planting, such as instruments for crop prices (Scott, 2013); the intuition is that
the distribution of planting cost heterogeneity can be identified with these instru-
ments via the responsiveness of planting decisions—if large (quasi-)random shifts
in a given crop’s expected price at the time of planting induce limited changes in
water allocated to that crop, relative planting costs must be quite heterogeneous
to explain the few marginal users; in contrast, larger changes in planting decisions
imply less heterogeneous planting costs across fields.

3.5 Measuring misallocation

As emphasized, the model delivers a microfoundation to value water rights. To
value i’s water rights, which recall are distributed via Gi, let (ci(ι), xi(ι))ι∈i denote
the state of i’s planting decisions. Then the value of the water right Gi is

Vi(Gi) =

∫ ∞

0

V i(ci(ι), xi(ι))dGi(ι),

which can be decomposed into the reliable and unreliable components as

Vi(Gi) =

∫ W p
i

0

V i(ci(ι), xi(ι))dGi(ι) +

∫ ∞

W p
i

V i(ci(ι), xi(ι))dGi(ι), (13)

where the first integral integrates only over the distribution of planting decisions,
since Gi(w) = 1 for all w ∈ [0,W p

i ], while the second integral integrates over the
probability distribution of the remaining (unreliable) rights.
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Asymmetric incentives for trade. Interestingly, equation (13) shows how
the presence of reliable water rights lead short-run incentives for water trade to
generally differ from long-run incentives, due to the rigidities associated with
water rights invested in perennial crops with nonzero ages. In particular, i’s
reservation utility, or minimum price at which they will sell a marginal unit of
reliable water, equals the lowest opportunity cost of keeping the water within
their existing orchard fleet, {ci(ι), xi(ι)}ι,

∂−Vi = min
ι
V i(ci(ι), xi(ι))

whereas their willingness to pay for a unit of new reliable water, if their land
constraint does not bind, equals its value in new production, ∂+Vi = V i(0, 0).
Given that Vi(ci(ι), xi(ι)) is bounded below by βV i(0, 0), since the latter includes
the option to cut down the orchard and newly plant to obtain V i(0, 0), generally
this implies that reliable water rights will be less valuable to transfer until the
tree capital in which they are embodied is sufficiently depreciated.

Aggregate effects of reallocation. Let the vectorV = (Vi)i collect the val-
ues of existing water rights across owners i and the matrix

[
∂V

∂ ln W̃

]
=
(

∂Vi

∂ ln W̃j

)
i,j

collect the semi-elasticities of the value functions with respect to one’s own
and others’ water rights. Consider a vector of water right changes, ∆ ln W̃ =

(∆ ln W̃i)i. As Baqaee and Sangani (2025, Proposition 5) show, the aggregate
value of this water reallocation,

∑
i Vi, can be approximated via the quadratic

form
∆ ln

∑

i

Vi = V′(∆ ln W̃ ) +
1

2
(∆ ln W̃ )′

[
∂V

∂ ln W̃

]
(∆ ln W̃ ), (14)

so that the approximate aggregate value of the reallocation reflects the correla-
tion of the reallocation vector with the productivity of existing values and their
curvature.

4 Data and empirical approach

I now describe the empirical analysis. A centerpiece of this project is very high-
resolution satellite data that tracks irrigated crop choices at the field level in
California for nearly forty different crops.23 Yield and price data come the Cal-

23This data is costly to produce: one needs to train the model to recognize all of the land-use
patterns, with extensive ground-truthing to verify the model’s classification. This data was
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ifornia County Agricultural Commissioners, 1980–2022, collated by the USDA
Census. I take evapotranspiration data from California’s Irrigation Management
System, and crop coefficients from the DWR, to measure water efficiencies at the
crop level at different locations. I then compare different places using the US
Geological Service hydrological network, which allows me to partition California
into the components of the river network that are relevant for the analysis.

4.1 Fields

California farms grow a wide range of crops under the current system of water
property rights. I observe about forty distinct crops, {Kict}, by field-year in
annual data from 2014–2022. To illustrate the granularity of this data, Figure
A8 shows an map of a subset of the field-level data near Fresno. I just have two
colors because I want to emphasize the abundance of perennial orchards as well
as annual crops. In practice, this data has about 40 different colors, and one
could construct a rainbow picture.

To understand this diversity, Table A1 reports long-run average shares of
farmland statewide and for the two Central Valley regions, the Sacramento and
San Joaquin Valleys, over this period, for all crops with at least a 0.5% land
share. Given that 78% of the state’s agricultural land lies in the two Central
Valley regions, statewide shares broadly approximate Central Valley totals, with
a few small exceptions—for example, avocados, while iconically Californian, are
mainly grown farther south; leafy vegetables like lettuce and broccoli are more
commonly grown along the coast; and alfalfa is more frequently observed outside
the Central Valley.

Table A1 also shows some meaningful differences between the Sacramento and
the San Joaquin. Both places involve harvests from large quantities of almond
and walnut trees, though San Joaquin irrigators grow more almonds (21.6% of
land relative to 11.6%), while Sacramento farmers grow more walnuts (10.7%
relative to 3.5%). San Joaquin growers also plant grapes (9.8% of irrigated land),
pistachios (8.2%), sweet corn (9.7%) and orange trees (4.5%), at much higher
rates than Sacramento farmers. Notably, Sacramento growers plant a great deal
of rice (19.7% of irrigated land), a water-intensive but relatively low-value crop
almost never grown in the San Joaquin.

funded through the Department of Water Resources and has been improved, corroborated, and
verified, and is used for policymaking in California to track water use.
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4.2 Trees

As mentioned in the introduction, a key element of the data is field-level infor-
mation on the year of planting for orchards observed in 2020, 2021, and 2022.
Plant dates range from 1984–2022, as depicted in Figure 4. Table 3 documents
the significance of replanting decisions across farms. Orchard investments exhibit
extremely high persistence. Among the 2.97 million acres of fields growing peren-
nial crops observed in my data in 2020, the unconditional annual probability that
a tree is cut down between WY 2020 and 2022 is 2.8% statewide. Without cor-
recting for differences in water consumption across tree types that correlate with
optimal replanting times, this implies that, in the observed equilibrium, more
than 97% of water used in a given year by perennial crops is “committed” to
forms of capital with potentially costly adjustment.

Table 3 also shows important heterogeneity in replanting decisions across crop
types and ages. Age is a key determinant of replanting; farmers cut down trees
planted in the 1990s—between two and three decades old—at an annual rate of
8.3%, in contrast to 2.5% for trees in the second decade of their life, and 0.9%
for the first decade. The broad pattern—at least, given existing surface and
groundwater rights—is that irrigators appear to have strong economic incentives
not to cut down trees for at least two decades, though these rates vary quite
meaningfully across crops. Peach and other stone fruit trees live the shortest
productive lives, with annual hazard rates of 2.6% in the first decade of life,
then climbing rapidly to between 14–17%. Almond trees last longer, with low
probabilities of annual replacement (< 3%) in the first two decades, rising to 16%
in the third decade. Walnut, orange, and olive tree replacement rates remain
below 2–3% for the first three decades of their lives, but replacement rates rise in
their fourth decade to 8.3%, 4.4%, and 2.9%, respectively. Pistachio trees appear
to live forever, with annual replacement rates in the data never above 1%.24

These differences across ages and crop types are important to explain the
difference in unconditional replanting rates across the hydrological network; 2.6%
in the San Joaquin and 3.2% in the Sacramento River Valley. Most of this
aggregate difference appears to reflect the San Joaquin’s large share of orange and
pistachio trees—which live much longer than the other tree types, and comprise
about 13% of irrigated land in the San Joaquin in 2020 relative to <1% in the
Sacramento—as well as the much larger share of peach and stone fruit trees in

24Pistachio trees have been documented to maintain yields for up to three hundred years.
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the Sacramento River Valley, which live the shortest fruitful lifespans.

4.3 Irrigation

The calculation of irrigation water demand, the functions ωict(τ), is conceptually
very straightforward, but computationally somewhat involved. The surface of cli-
mate data allows us to calculate, in theory, how much water a plant would need
in a given location i on day τ , what is known as “reference evapotranspiration,”
ηit(τ). Since the 1980s, the state of California has published reference evapotran-
spiration for irrigators, who use the information in the same way that you might
check the weather. Irrigators input this data into their irrigation scheduling al-
gorithms to calculate how much water they should apply to their crops. These
calculations use what are known as crop coefficients, ϑic(τ), which parametrize
the demand of water for the crop over time given its location and growing season.

Figure A9 gives some examples of the daily gridded reference evapotranspira-
tion data. I show maps at the end of October and in mid-July to emphasize how
different the growing conditions can be at different points in the year. From the
beginning of the California water year in October, it becomes less water-intensive
to grow plants through December and January, and then as spring and summer
arrive, it becomes necessary to use more water to grow the same crops.

Irrigators then combine reference evapotranspiration, ηit(τ), with crop coeffi-
cients, ϑic(τ), that vary by crop type c, phase of the growing cycle in which τ lies,
and by i through regional differences in optimal growing seasons and soil quality,
to determine per-acre crop water demand, defined as ωict(τ) = ηit(τ)ϑic(τ). For
example, Figure A10 shows monthly crop coefficients, ϑic(τ), for almonds in the
San Joaquin Valley. The curve plots the crop coefficients from the government’s
recommendations for optimal irrigation. Over time, as the almond tree grows lots
of leaves and starts to bear almonds, it needs more water, so ϑic(τ) rises. The
annual water that the almond tree requires is then obtained by integrating un-
der the curve that interacts the crop coefficient with reference evapotranspiration.
The black line plots reference evapotranspiration over time, the same variable de-
picted in the maps of Figure A9, and then the dotted line is the realized demand
of the crop based on the crop coefficients. This is the engineering behind how we
grow crops, and it is the same for annual crops, with more seasonal variability
because annual crops start from zero before growing up to be harvested.
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4.4 Estimated water use

The model of irrigation scheduling then implies realized water demand, though
the optimal irrigation weights

∫
ωict(τ)dτ for each crop and the land allocated to

grow these crops, via the identity (2) that follows from (1) and Assumptions A1
and A2. Figure A2, Panel A, shows the implied water use in California in 2020
across watersheds. As expected, most of the state’s water is used in the Central
Valley, where large areas of land are used for agriculture and irrigators grow very
water-intensive crops. Figure 6 zooms in to compare upstream and downstream
regions. On the left is the water used North of the Delta, in the Sacramento
River Basin, and the right total water used in the San Joaquin River Basin.

4.5 Crop prices and yields

In addition to observed crop choices and estimated water demand, annual marginal
products require crop prices and yields. I use California-wide realized prices Pct
and county-wide yields Aict for all fields i in a given county growing crop c and
year t, substituting California-wide yields for counties where Census redacts yields
(those without enough production). Table A2 considers a local HUC12 water-
shed in the Sacramento River Valley, showing the three largest crops that were
produced by acreage. Yields and prices each vary quite a lot between years. The
implied revenue-per-acre for different crops, also reported, underly the estimates
of the marginal products of water.

4.6 Marginal products of water

I now report the revenue per acre foot of water corresponding to the marginal
product of water for that specific field for that crop,

αictPct ≡
AictPct∫
ωict(τ)dτ

. (15)

Table A3 shows approximately the 95th percentile of revenue per unit water,
on the order of about $4,000 per acre-foot. This significantly exceeds the water
prices reported earlier, which range no more than a thousand dollars per acre-foot
in the most constrained case in 2024 in the southern Delta. As we look instead
at the bottom distribution of these shadow values of water in the lower half of
Table A3, one sees very different mixes of crops. Wheat and hay, annual crops
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that have much lower value per acre, use reasonable amounts of water. These
crops use a lot less water per acre than pistachios, avocados, pears, et cetera, but
even though they use less water, they still have much lower values per acre-foot,
because their yields and prices are so low.

4.7 Planting costs

To measure average planting costs, I use cost data from the bidecadal USDA Agri-
cultural Census, which reports county-level input costs in 2002, 2007, 2012, 2017,
2022. I construct average input cost shares for each county, including expenditure
on seeds, plants, chemicals, fertilizer, fuels, utilities, supplies and repair, contract
labor, hired labor, and machinery rental. I omit operating costs labeled taxes,
interest, depreciation, livestock, feed, and custom and other agricultural services.
I assume that these average planting costs are allocated across crops in propor-
tion to that crop’s revenue, which can be microfounded with a model of flexible
factor choice and constant output elasticities with respect to input expenditures
(see Rafey, 2023, p. 451).

To recover unobserved planting costs, with estimates of water use and annual
marginal products, I require the additional structure of the model in Section 3.3.
I estimate unobserved planting costs separately across the reliable and transient
components of water rights, since the two types involve very different decision
problems. To infer water right reliability, I assume local volumes of reliable water
rights {W 0

i }i correspond to the minimum volume of water used for perennial crops
across 2014–2022, so that the distribution of unreliable water rights, {W 1

it}i,t, is
the residual volume of water used across all crops each year.

Unbiased estimates of the extent of heterogeneity across unreliable water
rights—i.e., the scale parameter σε in (10)—cannot be obtained with OLS because
crop prices will correlate with ξict. I estimate the scale parameters by instrument-
ing for crop prices using lagged yield shocks, controlling for crop and year fixed
effects. Such lagged yield shocks are often used to identify agricultural supply
elasticities; they shift current agricultural commodity prices through expectations
and commodity storage (Roberts and Schlenker, 2013). The water productivity
coefficients, {αict}c∈Ca , necessitate numerical integration for the same reasons as
the random coefficients in Berry et al. (1995).

Similar instruments also identify the sensitivity of perennial crop choice at the
time of planting to the expected net present discounted value of returns, since
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the observed planting shares used to estimate these structural parameters are
endogenous to crop yield, prices, and water productivities. For perennial water
rights, the Rust (1987) method searches for parameters such that the optimal
regenerative stopping problem implies similar replacement rates and planting
choices. I jointly estimate σε and the dynamic parameters, θ and the ξct’s, via
a Berry (1994) nested fixed point algorithm embedded in the Rust (1987) value
functions, an approach similar in spirit to Gowrisankaran and Rysman (2012). I
numerically integrate over the water productivity coefficients for perennial crops,
{αict}c∈Cp , in the same way as for annual crops.

Table A7 reports some preliminary estimates of planting costs for newly-
planted perennial crops, based on a region-year panel from 1984–2020, for the
northern and southern regions, with choices restricted to perennial crops with at
least 1% share of water use in each region. In estimation, I set β = 0.95, con-
strain average expected planting costs to be nonzero and not to exceed the crop’s
total net present discounted revenue, and use current and lagged yield shocks as
instruments to form GMM moments from E[ξ′ict(1, Zic,t−1, Zict)] = 0. The current
estimates do not reject a common σε across both regions. The reference utility is
constructed using almond planting costs inferred from almond total net present
discounted revenue and almond orchard land prices (about $25,000/acre in the
Sacramento Valley, $30,000/acre in Tulare, and $35,000/acre in the San Joaquin).

Columns 1–3 of Table A7 show some of the variation in the data underlying
the estimates. The first and second columns show the average share of water
used, and the average annualized net-present-discount-value of revenue flows,
Eit[ 1

1−β
∑

t≥0 β
t(1 − iit(c, t))αict(t)Pct], for the different crop types; broadly, the

Berry et al. (1995) style estimator aims to find planting costs that rationalize
these water shares given the expected revenue flows. The differences in optimal
replacement rates, iit(c, x), across crops create an additional subtlety; the third
column reports a measure of aggreggate replanting rate, Eit[

∑
t≥0 β

t
∏t−1

s=0(1 −
iis(c, s))iit(c, t)]; for pistachios, this is close to zero (0.05) because pistachio trees
are hardly ever cut down; it is much higher (≈ 0.5) for stone fruits like peaches
and cherries that are replaced earlier, and takes on more medium values for
moderately long-lived almonds and walnuts. This variation alters the expected
revenue flows on which planting costs are based; crops with higher replanting
rates have lower annualized NPDV revenue flows but also return to the renewal
action, receiving V (0, 0), sooner than the other crops.
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The estimate of the scale parameter, σε, is 4015.87, implying own-price plant-
ing elasticities ranging 0.34–1.16 across the first and third quartiles and cross-
price elasticities ranging between 0.01–0.07. Columns 4–5 of Table A7 report
parameter estimates for planting costs, ξict, common across all i ∈ r for the two
regions considered; the within-crop standard deviation across years shows that
planting costs vary meaningfully across years but that most of the variation in
planting costs is across crops. Column 6 reports the predicted shares. When
{ξ} is unconstrained, these predicted shares should match observed shares by
construction, in the Berry (1994) fixed point algorithm; when {ξ} is constrained,
they need not match observed shares perfectly—indeed, model fit is particularly
poor for the most and least popular crops, almonds and olives, underpredicting
the share allocated to the former and overpredicting the latter.

A final source of differential planting costs are costs of irrigation. Reliable
water rights with greater groundwater shares will be more costly; further, mean-
ingful differences exist in groundwater extraction costs across space. The first two
columns of Table A5 show the average well depth across the San Joaquin and
the Sacramento. And in fact, the typical well in the San Joaquin is about twice
as deep as the typical well in Sacramento—about 40% deeper. This will trans-
late into differences in variable pumping costs that are meaningful in terms of
groundwater extraction, although they don’t come close to the magnitude of the
differences in marginal products from the shadow values. However, as the right-
most column of Table A5 shows, extraction costs differ across regions by about
a factor of two through the empirical distribution of watershed-level costs. One
interpretation of this difference is that the farmers in the San Joaquin are willing
to to pull groundwater for a cost of almost twice that of the Sacramento River
Basin, providing some evidence of misallocation, which would be more severe if
we consider intertemporal or environmental externalities of groundwater overex-
traction. Another is that these marginal groundwater costs should be accounted
for in the valuation of a region’s water rights, implying a smaller gap in water
values across regions through the higher pumping costs incurred to maintain the
reliability of water rights in the San Joaquin and Tulare River Basins.
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5 Results

I now use the estimates of water use, annual marginal products, and planting costs
to study water allocation in California. Throughout, I emphasize comparisons
between the value of water used above and below the Sacramento-San Joaquin
Delta, and what might that imply about the efficiency of the allocation of water
in California.

5.1 Regional hydrological network and water values

Figure 8 plots the value per acre foot of water at the HUC12 level.25 The lighter
green colors are lower values, ranging from zero about $2,500/af, and one can
see much lighter shades of green north of the Delta, particularly in the northern
part of the Sacramento River Valley, relative to the much darker patterns below
in the San Joaquin River Basin. These patterns illustrate a systematic difference
across these two regions, as well as substantial dispersion within each region.

Table 5 reports deciles of the realized marginal water values for 2020; Panel A
conditions the distribution on region. To construct this distribution, also reported
in Figure 7, we take all the water used in a region, e.g., the San Joaquin Valley,
and for each unit of water, we calculate its value. So, for example, three acre-feet
of water used to grow an acre of almonds implies three units of almond water
values. One then continues across crops to construct the empirical distribution of
water values reported in Table 5. The leftmost column of Panel A is the empirical
distribution of water values in the San Joaquin, south of the Delta. The ratio of
the two regional distributions is striking—at least, it implies, depending on your
story of relative planting costs, that we should move a lot of water to the south
that we have not. This is the sharp difference between these two places that we
saw in Figure 8. Most of the difference across watersheds comes from the first
through sixth or seventh decile, places where, in the San Joaquin, irrigators are
still growing a lot of these high-value fruits and nuts, whereas Sacramento grows
more of the annual crops.

Alternatively, we could think of the question posed by the rightmost columns
of Table 5 as whether the distribution of marginal values of water for the San
Joaquin, the southern component of the network, first-order stochastically dom-

25A HUC12 subwatershed covers about 40 square miles; this is the finest partition of the
USGS (2013) hydrological network.
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inates the distribution in the north. It’s clear that it doesn’t, in particular, in
the tails, but for most of the distribution, the marginal values of water are sig-
nificantly higher in the lower part the network.

In considering flow constraints as an explanation for the difference in these
productivity distributions, it is interesting to compare the ratios in these water
values with the earlier differences discussed in water prices for trades above or
below the Delta chokepoint. Recalling Table 2, the Delta price ratio typically
ranged from one-and-a-half to two or two-and-half. And this price ratio is some-
what comparable to that derived from the microfoundations of the crop model,
suggesting that, as we think about interpreting these results, flow constraints
could be important. That is, revisiting the water price gradient in light of the
similar gradient in estimated marginal products suggests, potentially, that there
could be some value to relaxing flow constraints in the Delta through infrastruc-
ture or changes in environmental law.

5.2 Investment, planting costs, and water values

As emphasized throughout this paper, places below the Delta and with more
senior water rights also have more investment in orchards. The last column of
Table 7 shows that both region and historical priority predict significantly higher
shares of perennial water uses, and Figure A11 shows these differences are highly
persistent over 2014–2022. If the planting costs are proportional to the value of
the crop, then they should be differenced out in the comparison between these
two distributions, but not otherwise. Figure 7, Panel B shows the large effect of
removing average planting costs from the distribution of water values: in general,
because input costs for higher-value crops rise more than proportionally with the
value of the crop, comparing marginal water products alone can overstate dis-
persion. In addition to these average planting costs, unobservable, idiosyncratic
planting costs will also affect any interpretation of the differences that integrates
under the empirical distributions of marginal products to obtain hypothetical
gains from trade, which I do not do here.

Table 5, Panel B explores the differences between perennial and annual crops
in terms of annual marginal products of water. As expected, the distribution of
marginal products of water applied to perennial crops comes close to stochasti-
cally dominating the distribution for annual crops, with deciles ratios between
the 10% and 90%-iles ranging between 1.06–2.15. However, as shown in Panels A
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and B of Figure 9, conditioning on perenniality does not fully explain the Delta
gradient in water productivity. Panel B shows ratios of perennial marginal prod-
ucts in the interdecile range of the regional distributions of between 0.99–1.43, so
that the San Joaquin River Valley plants more valuable perennial crops per unit
of water than the Sacramento. The differences are more striking among annual
crops: the San Joaquin grows much more water-efficient annual crops, in $/af,
than in the Sacramento Valley—marginal products remain similar across the two
regions until the median unreliable water right, at which point the ratio of the
distributions rises, to more than a factor of two in the upper deciles.

A final question is how planting costs change the comparisons within peren-
nial crops. As discussed in Section 4.7, the estimated extent of heterogeneity in
planting costs across fields do not differ across regions, but the average plant-
ing cost estimates and choice sets across perennial crops do differ meaningfully.
Subject to the current simplifications used in the preliminary estimation proce-
dure, the final three columns of Table A7 report the implied value of planting
each perennial crop, V (c, 1), the average planting cost conditional on choosing c,
E[ξct+εict(ι)|cit(ι) = c] = ξct+σεγ, where γ ≈ 0.57 is Euler’s constant, and finally
the ex-ante value of an average de novo or uncommitted reliable water right in
the two regions, V r(0, 0). As some types of orchards last longer than others, the
option value of replanting a new perennial crop differentially influences the value
of the water use; for example, as peach trees depreciate relatively swiftly, the
value of the renewal action becomes a more important part of the value of plant-
ing such a crop than, for example, pistachio trees, where most of the water value
reflects the flow of revenue over time from continued production. Overall, the es-
timates of the value of a new, uncommitted reliable water right, V r(0, 0), narrow
the gap between the two regions and preserve the sign of the Delta gradient, with
the long-run value of water rights in the southern component of the network, net
of planting costs, about 10% higher than in the northern component.

5.3 Water values and historical property rights

Finally, I consider how water productivity dispersion within watersheds correlates
with features of the hydrological network and the legacy of historical property
rights. Specifically, I ask how standard Syverson (2004) measures of the empirical
distribution of water productivities—over water rights in each watershed-year
from 2014–2022—correlate with fixed attributes of historical property rights (the

33



share of paper water rights at baseline with priority dates prior to 1914, depicted
in Figure A6), the share of “reliable” water rights used to grow perennials, and
the hydrological network (location above or below the Delta, and an indicator for
drought that varies by year but not watershed). These regressions are descriptive
and should not be interpreted as causal, but reveal some interesting patterns.

Tables 6–7 reports the results, of which three are noteworthy. First, the cor-
relations corroborate earlier discussion about intra- and inter-regional dispersion
in marginal products. Within a HUC10 watershed, the interquartile range of the
log marginal products (the first of Syverson (2004)’s four measures of productiv-
ity dispersion) averages about 0.5, in line with the dispersion discussed above.
Further, mean and median marginal products south of the Delta are significantly
greater than than the North, consistent with the regional comparisons in the
previous section, as well as the results of Table , which show the stability of the
Delta gradient in annual marginal products from 2014–2022.

Second, Table 6 interestingly shows that interquartile and interdecile ranges
increase during drought years, contrasting findings in settings with functioning
water markets, where water trade can lower misallocation in times of scarcity
(Rafey, 2023). Further, the mean, median, and bottom 10%-ile values fall, indi-
cating the drought’s negative effects on water productivity throughout the dis-
tribution. However, the result in column (7) of Table 7 provides some evidence
(consistent with findings in Hagerty, 2022) that the least productive crops are
being fallowed during these droughts.

Third, a legacy of senior water rights predicts less dispersion in the marginal
value of water. Tables 6–7 show that watersheds with greater pre-1914 water
rights have significantly lower interquartile and interdecile ranges, higher median
and means, and much higher bottom decile values. These are weaker effects than
for the share of perennial crops—a more direct proxy for reliable water rights—
which predict considerably more productive uses of water.

The principle mechanism behind both the geographic and historical seniority
correlations appears to be investment in perennial crops. As the last column
of Table 7 shows, places with more senior water rights or below the Delta also
invest more by planting perennial crops, providing some evidence of the greater
reliability—and higher value—of these water rights, and contravening a story of
moral hazard where senior rightsholders waste water rather than risk expropria-
tion of inherited water rights.
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6 Conclusion

This paper outlined some economics of water property rights and a framework for
evaluating water misallocation. The general approach captures three important
sources of water value not present in some prior empirical models. First, equilib-
rium investment in complementary forms of capital, such as trees in orchards, will
raise the productivity of water use; these investment costs need to be subtracted
from the marginal product of water to determine the water owner’s reservation
value, and they also imply rigidities that limit short-run water reallocation and
create value from commitment to longer-run water trades. Second, water rights
often have random components, and the probability of rationing affects the value
of the water right and comparisons across water owners. When annual spot mar-
kets are incomplete and investment gives rise to adjustment costs, the probability
of rationing will affect the value of the right nonlinearly, with more reliable rights
creating more value than a mean-preserving spread of those rights across mul-
tiple less-reliable tiers. Third, inherent differences in water productivity across
locations, correlated with the observed use of water rights, make learning about
the counterfactual values of water not straightforward.

The empirical work currently delivers two findings. First, empirically, there
seems to be significantly greater marginal products of water used in places below
the network bottleneck—where water can be scarce due to flow constraints—and
places endowed with senior water rights that are more reliable during drought.
These complementary investments are what we might expect in most models of
factor-augmenting technical change. Second, this gradient in marginal values has
some implications for welfare that depend on the extent to which the gradient
reflects planting costs consistent with more senior appropriative rights, or more
welfare-relevant constraints on trade. More work is needed to sift through these
competing explanations for the dispersion in marginal products, including—but
not limited to—finalizing the estimation of planting costs, which is under way.
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Table 1. Natural Variability and Water Rationing

Wet Dry Dry, pre-1914 Dry, post-1914

0 0 0 0 0
0.1 0 0 0 0
0.2 0.0002 0 0.001 0
0.3 0.031 0.002 0.032 0
0.4 0.105 0.040 0.093 0.016
0.5 0.234 0.120 0.191 0.086
0.6 0.426 0.251 0.356 0.203
0.7 0.676 0.475 0.593 0.400
0.8 0.935 0.774 0.890 0.714
0.9 1 1 1 1

1 1 1 1 1

Central Valley irrigators’ reported annual water diversions divided by reported face value
— deciles of the water right × year distribution, 2010–2023.

Columns (3) and (4) split the sample by water right priority date, into rightsholders
whose claims date before (“pre-1914”) and after (“post-1914”) the 1914 Water Commis-
sion Act. Wet and (critically) dry water-year designations ≡ the California Eight River
Index (Sacramento River + San Joaquin River Runoff).

Source. Author’s calculation using SWRCB WRIMS data. 27,010 wet year diversion
statements; 26,750 critically dry year diversion statements.
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Table 2. Surface Water Price Gradients Across the Delta

San Joaquin (SOD) Sacramento (NOD) diff ratio

0 5.2 1.1 4.1 4.7
0.1 30.8 43.6 −12.9 0.7
0.2 48.8 51.3 −2.5 1.0
0.3 71.2 60.6 10.6 1.2
0.4 102.5 65 37.5 1.6
0.5 146.7 65 81.7 2.3
0.6 166 83.1 82.9 2.0
0.7 241.6 107 134.6 2.3
0.8 278.4 133.5 145.0 2.1
0.9 983 250 733 3.9

1 1, 550 342.3 1, 207.7 4.5

Distribution of annual surface water allocation prices (2024 $/af), trade-level, over as-
sembled trades 1987–2009 (Libecap 2011) and 2022–2023 (WestWater, LLC).
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Table 3. Hazard Rate by Decade Planted, 2020–2022

tree type acres 2020 haz CA haz SV haz SJ

all / 2,970,885 0.028 0.032 0.026
1980s / 340,255 0.056 0.076 0.049
1990s / 353,306 0.083 0.073 0.092
2000s / 879,352 0.025 0.022 0.025
2010s / 1,397,972 0.009 0.012 0.008
/ oranges unspecified 299,025 0.021 0.030 0.020
/ olives 48,269 0.006 0.008 0.010
/ almonds all 1,390,516 0.030 0.024 0.031
/ walnuts english 426,503 0.021 0.018 0.023
/ pistachios 460,887 0.001 0.003 0.001
/ peaches unspecified 65,854 0.082 0.107 0.077

1980s / oranges unspecified 79,438 0.044 0.067 0.043
1990s / oranges unspecified 58,230 0.019 0.038 0.018
2000s / oranges unspecified 72,489 0.025 0.011 0.023
2010s / oranges unspecified 88,868 0.002 0.000 0.006
1980s / olives 14,055 0.029 0.031 0.035
1990s / olives 5,770 0.008 0.012 0.012
2000s / olives 16,121 0.013 0.013 0.020
2010s / olives 12,323 0.003 0.013 0.000
1980s / almonds all 52,929 0.093 0.084 0.095
1990s / almonds all 137,412 0.164 0.117 0.178
2000s / almonds all 464,376 0.029 0.027 0.030
2010s / almonds all 735,800 0.003 0.000 0.004
1980s / walnuts english 72,678 0.083 0.092 0.070
1990s / walnuts english 66,512 0.030 0.021 0.036
2000s / walnuts english 104,072 0.008 0.006 0.012
2010s / walnuts english 183,241 0.012 0.011 0.011
1980s / pistachios 50,966 0.008 0.016 0.007
1990s / pistachios 40,435 0.004 0.000 0.004
2000s / pistachios 127,947 0.001 0.001 0.001
2010s / pistachios 241,538 0.000 0.002 0.000
1980s / peaches unspecified 3,834 0.173 0.372 0.134
1990s / peaches unspecified 4,088 0.174 0.174 0.174
2000s / peaches unspecified 22,154 0.148 0.170 0.143
2010s / peaches unspecified 35,778 0.026 0.041 0.024

Average share of perennial trees cut down (annual “hazard rate”) between WYs 2020–21
and WYs 2021–22, by decade of original planting date and crop type. Reported for the
top six perennial crops, by acreage among Central Valley irrigators in 2020. Calculated
for all of California, for the Sacramento Valley (SV) and San Joaquin and Tulare River
Basins (SJ).
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Table 4. New Perennial Planting Decisions, 2000–2020

Dependent Variable: 1(choose c)
Model: (1) (2) (3) (4) (5)

Variables
log(yieldict×priceict) −0.0675∗∗∗ 0.0549∗∗∗ 0.0640∗∗∗ 0.1541∗∗∗ 0.1675∗∗∗

(0.0225) (0.0126) (0.0167) (0.0217) (0.0295)

Instruments X X
Fixed-effects
region-year X X X
region-crop X X
region-crop-year X X
Fit statistics
Observations 417,586 417,586 417,586 407,575 407,575
R2 0.01424 0.19760 0.21985 0.19328 0.21773
Within R2 0.00818 0.00305 0.00240 −0.00402 −0.00153

Clustered (crop-year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Illustrative linear regression at the field-crop-year-planted level for newly-planted peren-
nial orchards from 2000–2020. Outcome is 1 if the crop planted equals c and 0 otherwise.

Columns (1)–(3) regress choice on log annual marginal products and covariates.
Columns (4)–(5) instrument for log annual marginal products, ln(yieldict×priceict), with
ln(yieldic,t−1×priceic,t−1).
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Table 5. Average Estimated Water Values, 2020

A. Distribution of water values per acre-foot by region

San Joaquin (SOD) Sacramento (NOD) diff ratio

0 27.80 28.58 −0.78 0.97
0.1 87.59 128.82 −41.23 0.68
0.2 163.86 164.92 −1.06 0.99
0.3 229.88 240.07 −10.19 0.96
0.4 259.55 248.55 11.00 1.04
0.5 318.25 298.24 20.01 1.07
0.6 377.77 302.96 74.80 1.25
0.7 669.29 315.29 354.00 2.12
0.8 895.32 347.14 548.18 2.58
0.9 1, 991.35 432.39 1, 558.96 4.61

1 7, 871.46 880.26 6, 991.20 8.94

B. Distribution of water values per acre-foot by reliability

Perennial crops Annual crops diff ratio

0 42.09 27.80 14.29 1.51
0.1 182.70 87.59 95.11 2.09
0.2 291.37 163.86 127.51 1.78
0.3 494.68 229.88 264.80 2.15
0.4 537.35 259.55 277.80 2.07
0.5 583.52 318.25 265.27 1.83
0.6 661.68 377.77 283.91 1.75
0.7 725.91 669.29 56.62 1.08
0.8 1, 567.66 895.32 672.34 1.75
0.9 2, 109.74 1, 991.35 118.39 1.06

1 3, 630.11 7, 871.46 −4, 241.34 0.46

Annual marginal values of water ($/af), Central Valley irrigators, WY 2020.
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Table 6. Dispersion, Water Rights, and Network Structure

Moment of the water value distribution:

IQR IDR ln(median) ln(mean) ln(q10) share per

(1) (2) (3) (4) (5) (6)

pre-1914 water rights share −0.146∗ −0.155 0.189 0.213∗ 0.299∗∗ 0.094∗

(0.086) (0.112) (0.135) (0.120) (0.145) (0.053)

1(south of the Delta) 0.171∗∗ 0.370∗∗∗ 0.266∗∗ 0.228∗∗ −0.047 0.216∗∗∗

(0.072) (0.091) (0.106) (0.094) (0.114) (0.041)

1(drought year) 0.050∗∗∗ 0.061∗∗∗ −0.076∗∗∗ −0.042∗∗ −0.082∗∗∗ 0.013∗∗

(0.019) (0.022) (0.022) (0.018) (0.024) (0.006)

Mean of dependent variable 0.482 0.841 6.442 6.506 5.997 0.653

Observations 1,640 1,640 1,640 1,640 1,640 1,903
Adjusted R2 0.021 0.051 0.032 0.036 0.015 0.108

Some descriptive linear regressions. The unit of observation is the watershed-year distri-
bution of marginal water values, over all Central Valley (Sacramento, San Joaquin, and
Tulare) HUC10 watersheds and water years with land use data (2014, 2016, 2018–2022)
and water property rights claimed up to the baseline (2013).

Outcomes defined using Syverson (2004) measures of productivity dispersion:
(1)–(3) interquartile range, (4)–(6) ln(median),
(7)–(9) 10th percentile ln(water productivities).

See Table 7 for results on the interdecile range, ln(volume-weighted mean), and more.

Explanatory variables:
“pre-1914 water rights share” ≡ reported pre-1914 face value (in af-year) by irrigators,
divided by reported face value for all water rights with priority date before 2014.
“perennial (reliable) water rights share” ≡ share of water used to irrigate perennials.
“South of the Delta” ≡ San Joaquin and Tulare River Basins. Omitted category is North
of the Delta ≡ Sacramento River Basin.
“Drought year” ≡ critical (C) water-year, from the SJI-SVI Eight River Index.

Robust (HC0) standard errors clustered at the HUC10 level.

44



Table 7. More Dispersion, Water Rights

Moment of the water value distribution:

ln(mean) IDR share per

(1) (2) (3) (4) (5) (6) (7)

perennial water rights share 0.859 0.038
(0.096) (0.122)

pre-1914 water rights share 0.253 −0.090 0.094
(0.120) (0.121) (0.053)

1(south of the Delta) 0.252 0.353 0.216
(0.093) (0.091) (0.041)

1(drought year) −0.058 −0.042 −0.042 0.060 0.061 0.060 0.013
(0.018) (0.018) (0.018) (0.022) (0.022) (0.022) (0.006)

Mean of dependent variable 6.506 6.506 6.506 0.841 0.841 0.841 0.653

Observations 1,640 1,640 1,640 1,640 1,640 1,640 1,903
Adjusted R2 0.158 0.016 0.025 0.0004 0.002 0.047 0.108

Additional results for Table 6.

Outcomes defined using Syverson (2004) measures of productivity dispersion:
(1)–(3) ln(volume-weighted mean),
(4)–(6) interdecile range.

Outcomes in columns (7) and (8) correspond to covariates.

See Table 6 for variable definitions.

Robust (HC0) standard errors clustered at the HUC10 level.
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Figure 1. Total Usable Inflows + Appropriative Rights, 1980–2021

Source. Author’s calculations from data in Gartrell, et al. (2022).

NB. Vertical axes differ in the two panels.
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(a) Irrigation Water Rights, by Priority Date

(b) Irrigation Water Rights, by Seniority and Point of Diversion
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Figure 2. The Legacy of Appropriative Water Rights

Source. Author’s calculations using the California State Water Resources Control Board
Water Rights Information Management System. Central Valley irrigation water rights
only. 2,571 water rights claimed prior to 1914; 3,069 water rights claimed after 1914.
See Figure A6 for richer spatial distribution of water rights.
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Figure 3. Cross-Delta Water Price Gradients, 2023–2024

Source. Author’s calculations from data reported by WestWater Research, LLC.
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A. Age Distribution, 2022
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B. Hazard Rates by Age, 2021–2022
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Figure 4. Orchard Demographics

Age distribution of all Central Valley orchards, 2022. Average orchard in 2020 was
planted 12.3 years ago.

The data does not distinguish between trees planted in 1984 or in earlier years; read
“1984” as “≤1984” (but also consider reading 1984 . . . ).

Source. Author’s calculations from DWR data described in the text.
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(a) Sacramento River Basin (b) San Joaquin River Basin
(North of the Delta) (South of the Delta)

Figure 5. Implied Agricultural Water Rights, by Location

Implied agricultural water rights by subwatershed (HUC12), ln(acre-feet), 2020. See
Figure A2 for map of all California.
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A. North of the Delta
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Figure 6. Implied Agricultural Water Rights, by Reliability Class

Implied water rights reliability, 2014–2023, inferred from agricultural uses.
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A. Water Values
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B. Planting Costs
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Figure 7. Annual Marginal Values of Water, $/af, 2014–2022

A. Estimated annual water values (marginal products of water net of average planting
costs), 2014–2022. Rightmost bin includes all values ≥$2500/af.

B. Estimated annual water values and marginal products, 2014–2022.
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Figure 8. Annual Marginal Values of Water, $/af, 2020

Estimated annual marginal values (marginal products net planting costs) of water, 2020.
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A. Reliable Water Rights
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B. Variable Water Rights
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Figure 9. Marginal Values by Region and Reliability Class

Estimated marginal values of water, 2014–2022.

Reliable water rights ≡ water used for perennial crops. Variable ≡ annual crops.
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Table A1. All Crop Land Shares, 2020

crop share CA share SJ share SV

C oranges unspecified 0.032 0.045 0.000
C5 avocados all 0.006 0.000 0.000
C6 olives 0.005 0.004 0.013
D12 almonds all 0.146 0.216 0.116
D13 walnuts english 0.044 0.035 0.107
D14 pistachios 0.048 0.082 0.006
D16 plums 0.005 0.004 0.013
D3 cherries sweet 0.004 0.007 0.001
D5 peaches unspecified 0.007 0.011 0.005
D8 plums dried 0.002 0.000 0.008
F1 cotton lint unspecified 0.021 0.036 0.001
F10 beans dry edible unspecified 0.004 0.004 0.006
F12 sunflower seed planting 0.005 0.000 0.022
F16 corn sweet all 0.065 0.097 0.024
F2 safflower 0.005 0.006 0.008
G2 wheat all 0.023 0.026 0.022
G6 hay grain 0.039 0.024 0.042
I1 fallow (1-3 yrs) 0.015 0.015 0.014
I4 fallow (4+ yrs) 0.012 0.015 0.004
P1 hay alfalfa 0.074 0.054 0.052
P3 pasture irrigated, mixed 0.049 0.021 0.079
P4 pasture irrigated, native 0.014 0.000 0.033
P6 misc pasture 0.019 0.004 0.013
R rice 0.003 0.000 0.013
R1 rice milling 0.045 0.002 0.197
R2 rice wild 0.001 0.000 0.006
T10 onions 0.007 0.008 0.001
T15 tomatoes processing 0.019 0.025 0.024
T18 misc truck 0.014 0.004 0.002
T30 lettuce head 0.011 0.002 0.000
T32 tomatoes processing 0.007 0.008 0.010
T4 broccoli, cabbage, etc 0.008 0.001 0.000
T9 melons unspecified 0.007 0.008 0.008
V grapes wine 0.088 0.098 0.023
X fallow 0.094 0.093 0.094
YP young perennial 0.015 0.019 0.017

Land shares by all crops with at least 0.5% acreage in at least one of the two regions.
Central Valley irrigators, calculated for WY 2020.
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Table A2. Example of Agricultural Data

year crop crop name acres yield price rev/acre

2014 D6 pears unspecified 2857.8 12.5 973.6 3434.7
2016 D6 pears unspecified 2755.5 15.2 1069.4 4688.0
2018 D6 pears unspecified 2678.5 11.2 941.0 3061.6
2019 D6 pears unspecified 2787.5 16.0 450.7 2131.9
2020 D6 pears unspecified 2739.3 11.9 1021.6 3435.6
2021 D6 pears unspecified 2788.0 19.0 649.3 3271.9
2022 D6 pears unspecified 2751.0 19.1 751.6 3844.7
2014 F16 corn sweet all 7237.8 8.1 507.9 1787.2
2016 F16 corn sweet all 7073.8 10.1 464.1 2027.4
2018 F16 corn sweet all 5191.0 9.2 485.0 1937.4
2019 F16 corn sweet all 4979.6 10.1 405.5 1840.4
2020 F16 corn sweet all 4301.3 14.4 564.3 3494.3
2021 F16 corn sweet all 4094.1 8.4 532.4 1804.1
2022 F16 corn sweet all 4877.2 9.0 477.0 1780.1
2014 V grapes 2707.2 6.9 889.3 2529.3
2016 V grapes 3650.1 6.7 923.4 2581.1
2018 V grapes 4557.7 7.3 1024.9 3175.4
2019 V grapes 4578.1 6.9 970.6 2922.8
2020 V grapes 4855.7 6.2 789.6 2033.6
2021 V grapes 4799.8 7.8 781.5 2330.4
2022 V grapes 4756.9 7.4 826.0 2401.6

Example of agricultural acreage, yields, prices for the three most commonly-planted
crops by acreage in HUC12 #180201630702 (Beaver Lake-Sacramento River).
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Table A3. Example of Crop Water Efficiencies

A. Top 95%-ile

year crop crop name acres ωict (af/acre) revenue/af

231747 2020 C5 avocados all 169.62 2.55 4397.16
627492 2020 T10 onions 217.53 1.49 4395.87
687594 2020 F16 corn sweet all 7.81 1.86 4382.60
619519 2020 D6 pears unspecified 12.05 2.80 4358.52
683065 2020 D14 pistachios 9.90 1.39 4356.88
677584 2020 D6 pears unspecified 10.63 2.81 4346.57
307508 2020 C5 avocados all 167.29 2.59 4326.93
637180 2020 D16 plums 245.26 2.96 4318.76
245572 2020 C5 avocados all 23.37 2.61 4307.35
308614 2020 C5 avocados all 56.97 2.61 4301.22
310826 2020 C5 avocados all 107.18 2.61 4296.90
682512 2020 D14 pistachios 68.53 1.41 4295.48
94050 2020 C5 avocados all 942.86 2.61 4294.76
891546 2020 D14 pistachios 90.84 1.41 4290.29
309167 2020 C5 avocados all 569.41 2.62 4289.47
688147 2020 F16 corn sweet all 0.85 1.90 4284.35
311379 2020 C5 avocados all 239.89 2.63 4274.65
636627 2020 D16 plums 4.84 2.99 4271.80
636074 2020 D16 plums 4.02 3.00 4271.01
231194 2020 C5 avocados all 94.25 2.63 4267.27
677031 2020 D6 pears unspecified 156.29 2.86 4265.33

B. Bottom 5%-ile

year crop crop name acres ωict (af/acre) revenue/af

69935 2020 G6 hay grain 188.38 1.69 302.97
418871 2020 G2 wheat all 24.32 1.76 303.02
90949 2020 G6 hay grain 10.15 1.69 303.08
685977 2020 G6 hay grain 35.72 1.69 303.27
429378 2020 G2 wheat all 74.45 1.76 303.39
245789 2020 G6 hay grain 281.02 1.69 303.40
78230 2020 G6 hay grain 16.80 1.69 303.44
901094 2020 G6 hay grain 1337.38 1.69 303.45
292241 2020 G6 hay grain 109.98 1.69 303.45
192148 2020 G6 hay grain 96.55 1.68 303.51
161173 2020 G2 wheat all 36.82 1.76 303.58
870126 2020 G6 hay grain 1627.70 1.68 303.60
800448 2020 G6 hay grain 945.64 1.68 303.60
291688 2020 G6 hay grain 10575.79 1.68 303.97
424954 2020 G2 wheat all 101.59 1.76 304.00
582013 2020 G6 hay grain 107.15 1.68 304.11
309384 2020 G6 hay grain 69.95 1.68 304.12
866255 2020 G6 hay grain 43.23 1.68 304.22
431037 2020 G2 wheat all 106.34 1.76 304.23
906624 2020 G6 hay grain 153.94 1.68 304.24
245236 2020 G6 hay grain 356.06 1.68 304.47

Example of optimal irrigation application rates and revenue per-acre-foot of water ap-
plied, for various watershed-crops.
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Table A4. Illustrative Hazard Rate Regressions, 2020–2022

Dependent Variable: 1(cut down i between 2020-22)
Model: (1)

Variables
age 0.0046∗∗∗

(8.56 × 10−5)
C6 olives −0.0068

(0.0045)
D1 apples 0.0320∗∗∗

(0.0094)
D12 almonds 0.0852∗∗∗

(0.0027)
D13 walnuts 0.0480∗∗∗

(0.0032)
D14 pistachios −0.0285∗∗∗

(0.0025)
D15 pomegranates 0.0639∗∗∗

(0.0114)
D16 apricots etc 0.1448∗∗∗

(0.0066)
D3 cherries 0.0724∗∗∗

(0.0070)
D5 peaches 0.1754∗∗∗

(0.0058)

Fixed-effects
region X
Fit statistics
Observations 128,240
R2 0.04231
Within R2 0.04201

Clustered (id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Illustrative linear regression at the field level for perennial orchards at least three years
old in 2020. Outcome is 1 if the orchard is cut down in WYs 2020–21, 2021–22, or
2022–23. Omitted crop type is citrus (C).
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Table A5. Groundwater Marginal Cost Gradients Across the Delta

San Joaquin Sacramento diff ratio diff, USD/af

0 2 2 0 1 24.3
0.1 26.3 14.6 11.7 1.8 27.7
0.2 37.7 22.4 15.3 1.7 28.8
0.3 54.7 30.2 24.5 1.8 31.4
0.4 73.4 38.4 35.0 1.9 34.5
0.5 96.5 57.0 39.5 1.7 35.8
0.6 120 70 50 1.7 38.8
0.7 173.3 86.3 87.0 2.0 49.6
0.8 252.5 110.2 142.3 2.3 65.6
0.9 386.1 155.8 230.3 2.5 91.1

1 1, 220.3 578 642.3 2.1 210.5

Distribution of static water levels (depth in feet) and implied marginal pumping cost
per acre-foot, watershed-level.

Costs calculated for each irrigation well using observed lift height (static water level +
86’ average drawdown) from well reports, a pumping efficiency of 0.53 from CEC (2023),
and a marginal agricultural electricity rate of 0.15$/kWh from Burlig et al. (2024). Table
reports capacity-weighted averages of all wells in each HUC12 subwatershed.
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Table A6. Marginal Water Products Across the Delta, 2014–2022

San Joaquin (SOD) Sacramento (NOD) diff ratio

1, 845.24 1, 621.89 223.34 1.14
1, 614.35 1, 323.44 290.91 1.22
1, 731.79 1, 226.50 505.29 1.41
1, 623.34 1, 231.81 391.54 1.32
1, 673.84 1, 180.39 493.45 1.42
1, 631.02 1, 234.76 396.27 1.32
1, 445.07 1, 131.77 313.30 1.28

Average annual marginal product of water ($/af), Central Valley irrigators.

San Joaquin ≡ San Joaquin River Basin (HUC4 1803) and Tulare Lake (HUC4 1804).
Sacramento ≡ Sacramento River Basin (HUC4 1802).
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Figure A1. Water Sources and Flow Network

A. Dams. Locations from CDEC. Capacities (acre-feet) from CDEC.

B. Bulletin 118 groundwater basins. Source: CA Department of Water Resources.

C. Major California rivers. Source: USGS National Hydrography Dataset.

D. Major aqueducts. Source: CA DWR.
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(a) All California

Figure A2. Implied Agricultural Water Rights, All California

Version of Figure 6 containing watershed-level estimates for the entire state of California
in 2020.
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A. Irrigated Agriculture B. Urban Development

Perennial crops

Annual crops
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Urban

C. Environmental Sites D. Hydropower
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Figure A3. Economic Values of Water Use and Water Flow

A. Irrigated agriculture

Perennial crops Annual crops

B. Urban areas

Urban

C. Environmental sites

Legal Delta Suisun Marsh NCCAG Wetlands NCCAG Vegetation Wild Rivers

D. Hydropower.
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A. Cumulative groundwater well capacity
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Figure A4. Groundwater Wells Drilled, Central Valley Irrigators
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Figure A5. Total Usable Inflows + Environmental Requirements, 1980–
2021

Source. Author’s calculations from data in Gartrell, et al. (2022).
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(a) Sacramento River Basin (b) San Joaquin River Basin
(North of the Delta) (South of the Delta)

Figure A6. Historical Water Rights By Watershed

Share of pre-1914 surface water rights by HUC10 regional watershed and river basin.
Irrigation water rights only. Surface water rights assigned to HUC10 watersheds by
principal point of diversion.

Source. Author’s calculations using the California State Water Resources Control Board
Water Rights Information Management System.
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Figure A7. Historical Water Transfers, 1985–2022

Source. In Panel A, public records request to DWR + manual cleaning. Vertical axis
plots the total volume in each year, with the number of distinct trades listed at the
top of each column. Eric Edwards brought to my attention that the post-2010 DWR
data likely undercounts multi-year transfers, I am working on fixing this. (Also note
that none of this data is used for estimation.) In Panel B, the volumes in Panel A are
reported alongside post-2016 diversion reports under 2015 S.B. 88.
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Figure A8. Example of Land Allocation Data

Land use and crop choices in 2020, near Fresno. perennial annual.
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31 October 2023 1 July 2024

Figure A9. Example of Evapotranspiration Data

Example of daily reference evapotranspiration from CIMIS.
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A. B.

Figure A10. Example of Crop Coefficients

Panel A. Reference (ETo) and crop (ETc) evapotranspiration for almonds near Bakers-
field, CA.

Panel B. Crop coefficients for almonds in the San Joaquin Valley. Segment B is leafout,
C is 60% ground shading, E is leafdrop.

Source. California Department of Water Resources (DWR) Leaflet 21428, Figures 1–2.
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Figure A11. Planting Decisions, 2014–2022

Irrigated land allocated to perennial, annual, and fallow crop choices.

San Joaquin ≡ San Joaquin River Basin (HUC4 1803) and Tulare Lake (HUC4 1804).
Sacramento ≡ Sacramento River Basin (HUC4 1802).
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Figure A12. GMM Objective Function

GMM objective evaluated on a grid of σε for perennial (panel A) and annual (panel B)
planting decisions.
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