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Abstract

We propose a policy-relevant research agenda examining how market power in up-

stream artificial intelligence (AI) affects downstream prices, industry structure, factor

returns, and welfare—especially whether labor-displacing AI leaves workers worse off.

In our open-economy general equilibrium model, AI is a priced, imported input. Our

main model features two nontraded sectors and firms making discrete adoption deci-

sions about technology. Adoption reduces unit costs, displaces some types of workers,

and depresses wages for those workers via diminishing returns elsewhere, while leaking

AI fees abroad. We identify conditions under which market power in AI leads to a

”double harm” for displaced workers, who may experience real wages cuts when AI

becomes available at low prices, and then experience further harm from increases in

AI prices. Strategic AI pricing reduces welfare by raising downstream marginal costs

(via usage fees) and limiting entry and variety (via access fees). We derive an adoption

frontier linking feasible usage fees to displaced workers’ outside options, showing that a

monopolist typically makes use of both types of fees and prices on the frontier; capping

one fee shifts rents to the other. Regulating both fees, alongside policies that absorb

displaced labor, can raise national welfare.

∗We are grateful to our discussant, Catherine Tucker, as well as conference participants and particularly
Daron Acemoglu, Joshua Gans, Sam Kortum, Stephen Redding, Pascual Restrepo, Joseph Stiglitz, Dan
Trefler, Ellie Tyger, for insightful comments. Nick Jacobson provided careful research assistance. All errors
are our own.
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Introduction

Economists have observed that artificial intelligence (AI) may have a variety of downstream

benefits for the economy: it may improve productivity, enable innovation and increase entry

of new firms. Alongside potential benefits, AI poses economic risks. Prominent among these

are worker displacement and industry restructuring, with consequences for income distribu-

tion both within and across countries. For example, unlike a typical productivity shock that

may allow a country to increase exports and thus national income (possibly counterbalanced

by distributional costs and resource squeezes that raise prices), the global introduction of

a labor-displacing technology may decrease the value of labor-intensive exports and thus

reduce national income for some countries.

In this paper, we take as a starting point general equilibrium frameworks that can capture

effects like these. Our main contribution is to introduce to the models what we view as a

critical factor affecting the magnitudes and balance of benefits and risks: market power in AI.

We propose a research agenda that studies the impact of such market power on downstream

industries, including impacts on downstream industry structure, profits, innovation, and

consumer prices. We further highlight indirect effects on wages, inequality, productivity in

other sectors, and welfare.

We find that market power in AI creates negative effects even for countries that do not

rely on exports: when the profits obtained by the AI provider are not recirculated in the

economy, for example, if the country imports AI technology, welfare in a country may fall

in aggregate as a result of the introduction of AI. Productivity gains are leaked abroad,

prices do not reflect the fall in labor costs, and displaced worker groups may be particularly

harmed by falling wages without corresponding increases in the variety of goods or decreases

in prices.

When considering a future scenario with “transformative” AI, the presence of scale

economies and other barriers to entry such as proprietary usage data or distribution im-

ply that oligopoly or even monopoly are outcomes that could emerge in the absence of

policy intervention. This paper shows that AI market power can have outsized impacts on a

country’s welfare, so that policies that reduce the risk of monopoly may play an important

role. Competition authorities worldwide have recognized that AI may create new bottlenecks

in various layers of the AI stack. Examples include NVIDIA’s dominance in advanced chips,

concentration among foundation model providers, and the dependence of downstream appli-

cations (e.g. search engines, language tutors, writing assistants, customer service platforms)

on a few foundation models. Access to data that is crucial for AI performance may be gated

by incumbents in both the consumer and enterprise software markets. Distribution chan-
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nels, such as mobile operating systems, productivity software, and online platforms, may

become bottlenecks given that many are controlled by incumbents with substantial market

power. When these channels are controlled by firms that also supply AI, or by firms that

have control over critical proprietary data, entrants face foreclosure risk, and even efficient

AI applications may struggle to gain distribution, data and scale. The United Kingdom’s

Competition and Markets Authority, the US Federal Trade Commission, and other agencies

have issued reports highlighting these issues and are monitoring commercial relationships.1

In this paper, we focus on the business-to-business use case, where AI is an input to large

parts of the economy. Our starting point is to observe that the arrival of a new technology can

be modeled similarly to the availability of a new input factor available through trade. Thus,

we consider models of a small economy, considering both open and partially closed economies,

where in all cases AI is an imported factor of production. We vary the competitiveness of

the AI industry between competition and monopoly. The price of AI is therefore a strategic

variable chosen by the upstream supplier who may set the price to maximize revenue, perhaps

subject to regulation. We are particularly interested in the impact of AI market power on

the restructuring of industry and the real wages of workers, and whether high prices for AI

lead to reductions in the real wage despite efficiency benefits in production. We highlight the

realistic scenario where AI providers can use nonlinear pricing schemes, influencing entry,

innovation and industry structure in downstream industries.

The assumption that AI is imported may be accurate for countries that do not participate

in the AI value chain, and it may be a useful approximation for scenarios where domestic

firm profits are not broadly recirculated in the domestic economy. We argue that the extent

to which AI providers sell at competitive prices has critical implications for the impact of AI

on income distribution and welfare. Unlike much of the literature that focuses primarily on

tradeoffs between efficiency and distribution, we consider assumptions that are rich enough

such that productivity improvements from AI do not necessarily result in improvements in

economy-wide welfare. In our model, the firms adopting AI do not internalize the negative

externality on worker wages, and they do not internalize that AI payments leave the economy

rather than flowing back into country income.

We further identify conditions under which the introduction of AI at a low or moderate

factor price hurts a group of displaced workers, while, at the same time, the subsequent

exercise of market power inflicts additional loss on the displaced workers. This “double

harm” scenario contrasts with traditional results where, if a technology is introduced that

disproportionately displaces a group of workers, raising prices for the input helps that group

by diminishing the substitution.

1see, e.g., Competition and Markets Authority (2023) and Portuguese Competition Authority (2023).
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Our model also highlights the key question of whether other sectors, either nontraded

sectors or export sectors, can productively absorb displaced workers, an assumption that

may be questionable in the face of a major technological shift. This focus underscores the

critical role played by government policies that change how productive workers are in sectors

less affected by AI. For example, the government may increase spending on services like

healthcare and education and then help displaced workers transition into those industries,

perhaps using AI to be more productive in their new roles.

We show that conclusions about wages and aggregate welfare turn on a small set of

modeling choices that are especially salient for AI: whether goods are traded versus nontraded

(and in turn, whether there is diminishing marginal utility in the output markets); whether

automation reduces demand for some or all groups of labor to (near) zero so that output

expansions, if they exist, in newly productive industries do not lead to increases in labor

demand; whether displaced workers can be productive in other sectors, and whether they

are substitutes or complements for other factors of production in those sectors; and whether

the upstream supplier can use nonlinear pricing. We consider both continuous and discrete

production functions, where a large fall in the price of an AI input may fundamentally

change which factor of production (e.g. skilled or unskilled labor) is dominant, and where

with discrete adoption some types of labor demand may be locally insensitive to input prices

for technologies that fully automate. We also pay special attention to whether it is optimal

for firms to adopt AI when competitors have adopted, since wages will be lower, reducing

cost savings from AI adoption.

The popular interest in AI has stimulated a macroeconomic literature modeling possible

faster growth from AI. Aghion, B. F. Jones, and C. I. Jones (2019) explore the implications

of AI for the labor–capital ratio and the share of expenditure on automated tasks, where

outcomes depend on parameters such as substitution elasticities between automated and non-

automated goods. Nordhaus (2021) presents a model in which AI induces capital deepening

which in turn accelerates growth, emphasizing that returns accrue primarily to capital:

“Capital eventually gets virtually all the cake, but the crumbs left for labor—which are really

small pieces of the increasingly huge mountains of cake—are still growing at a phenomenal

rate” (p. 14). In our setting, the question is whether labor actually does benefit from the

crumbs, if the things capital produces remain expensive to them.

The literature on growth models AI as a driver of factor usage and total factor productiv-

ity (e.g., Aghion, B. F. Jones, and C. I. Jones 2019; Nordhaus 2021); open-economy work on

directed technical change treats final goods as traded and incidence of impacts as disciplined

by terms-of-trade movements (e.g., Korinek and Stiglitz 2018; Korinek and Stiglitz 2021).

We incorporate many of these forces in our model.
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Studies of task–based and automation frameworks (for an early example, see Autor,

Levy, and Murnane (2003)) study how technology displaces or complements labor when

technology costs and output prices are taken as parametric. In our model, we show in

a general equilibrium framework how outcomes depend on whether displaced workers are

substitutes or complements for other factors of production in other sectors.

Korinek and Stiglitz (2018) and Korinek and Stiglitz (2021) propose a series of models

that focus on distributional consequences and policy responses from exogenous technological

shocks or changes in the returns to the resources of small countries. A complementary line

of work, going back to Stiglitz (1976) and further developed in Delli Gatti et al. (2012b) and

Delli Gatti et al. (2012a), studies dual-economy settings in which a constant-returns agricul-

tural sector coexists with an urban sector featuring wage rigidity (e.g., due to efficiency-wage

considerations). In their baseline environment, an agricultural productivity improvement

is unambiguously welfare-reducing: higher rural productivity contracts urban employment

when nominal wages cannot adjust, and with flexible wages an induced wage decline can

further depress demand and raise unemployment. Our models connect to these results but

identify distinct channels that do not rely on nominal rigidities.

Our framework also connects to two classic ideas in economics—Baumol’s “cost disease”

and the “Dutch disease”—but also shows why the forces they highlight may not apply or

may be more nuanced in the case of AI. More precisely, classic Dutch disease logic (Corden

and Neary, 1982) raises nontraded prices when resources are pulled into a booming sector,

and Baumol and Bowen (1966) shows that uneven productivity growth can raise relative

prices in stagnant sectors because wages equalize economy-wide. With AI, we argue that

the analogy is incomplete. Adoption of AI often releases labor rather than absorbing it, so

there is little (labor) resource pull into the ”booming” activity; displaced workers crowd into

nontraded services, and whether prices rise depends on wages and sectoral productivities

rather than on reallocation alone. Further, global availability of AI may limit the ability

of AI-adopting industries to expand exports. We formalize benchmark models that capture

these ideas, building up to our main model that adds entry/variety and analyzes the welfare

impact of market power and nonlinear pricing of AI.

A related perspective comes from growth accounting. Domar (1961) and Hulten (1978)

showed that the aggregate effect of a sector’s productivity change depends on its “Domar

weight”—the ratio of its gross output to GDP. Because an upstream general purpose tech-

nology supplies inputs to many final sectors, its Domar weight is disproportionately large

and shocks there propagate strongly through the economy. In our setting, AI plays exactly

this role: changes in its usage fee resemble productivity shocks in a sector with very high Do-

mar weight. As Baqaee and Farhi (2019) and Baqaee and Farhi (2020) emphasize, however,
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the Hulten–Domar formula captures only first-order effects. General equilibrium forces can

overturn the first-order gain. In our framework, several such general equilibrium effects play

a role: (i) labor displacement, which lowers wages in the sectors that absorb redundant

workers; (ii) nontraded scarcity, which raises the cost of living if national income rises;

and (iii) market power, which allows a monopolist AI supplier to charge high usage and

access fees, leak rents abroad, and blunt pass-through of productivity gains. Our contri-

bution is to highlight how market power shapes outcomes in the third channel. The forces

we identify imply that even if AI appears beneficial in a Hulten–Domar sense, cheaper AI

can still reduce real wages and national welfare once displacement, nontraded scarcity, and

monopoly rents are accounted for.

Our model is also related to the literature on offshoring. For example, Grossman and

Rossi-Hansberg, 2008 developed a model where firms perform a continuum of tasks, and

some can be moved abroad at lower cost. Offshoring acts like a productivity improvement:

it reduces production costs, expands output, and has wage effects as tasks intensive in

one factor shift abroad. Our model considers the case where the factor price is set by a

monopolist, and also where output expansion may be limited.

Benchmarks: Incorporating AI in Standard Models.

We begin by highlighting forces (with details in the Online Appendix) that arise in the

standard two–good Heckscher–Ohlin model with AI as an imported factor; in this model

we show that, with larger technical shifts that may occur with AI, income inequality can

experience what we call “double-harm.”

In the first baseline, sector A produces using skilled and unskilled labor (LS, LU) alone;

sector B combines (LS, LU) with AI, purchased at price pX from the foreign supplier. We

write the quantity of labor type i ∈ {S, U} in sector j ∈ {A,B} as Lj
i . Both goods A and B

are traded at exogenous world prices (p̄A, p̄B).

When pX = ∞, AI is unavailable. When pX is finite, sector B’s costs cB depend on

(wS, wU , pX), where (wS, wU) are the equilibrium wages of skilled and unskilled labor.

Zero–profit conditions determine (wS, wU) as a function of pX . For each sector j ∈ {A,B},
let θji = wia

j
i/cj denote the cost share of factor i ∈ {S, U}, and let Rj = θjS/θ

j
U denote the

sectoral intensity ratio. B is skill–intensive relative to A if RB > RA, and unskilled–intensive

if RB < RA.

For expositional simplicity, we assume that for sufficiently high pX , sector B’s skill in-

tensity RB(pX) := θBS /θ
B
U is decreasing in pX (equivalently, increasing as AI gets cheaper).
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General-equilibrium mapping and reallocation. Totally differentiating zero-profit in

A and B at fixed (p̄A, p̄B) yields

θAS dwS + θAU dwU = 0, θBS dwS + θBU dwU + θBX dpX = 0.

Eliminating dwU ,(
θBS − θBU

θAS
θAU

)
dwS = − θBX dpX ,

=⇒ sign
(
dwU

dpX

)
= sign(RB −RA), sign

(
dwS

dpX

)
= − sign(RB −RA).

(GE)

How do the introduction of AI and the exercise of market power affect workers?

National income increases with cheaper AI: applying the envelope theorem to national in-

come, we have dY
dpX

= −MX ≤ 0. Further, one wage rises while the other falls when pX

changes; which factor gains depends on the relative intensity of A and B. A change in

pX affects RB through both substitution across sectors as well as across factors. If B is

unskilled-intensive (RB < RA) and pX increases, then wS rises and wU falls; activity tilts

from B toward A (which is relatively more skill-intensive).

How does market power interact with income distribution? Given RB decreasing

in pX , let the crossing point with RA (if it exists) be denoted p∗X . For pX < p∗X , B is skill-

intensive and low AI prices can depress wU , but increases in pX then help. For pX > p∗X ,

both of these forces reverse.

This is the standard trade intuition that the losers from ongoing technology adoption

in the skill-intensive region may be locally helped by a higher pX (e.g., a tariff). However,

if unskilled workers are hurt by the introduction of AI, its price must be low enough that

Sector B is skill-intensive, so that higher pX helps the unskilled.

Double vs. single reversals.

RB(pX) need not be monotone, and for large changes in technology, it may not be. In

autarky, sector B may be unskilled-intensive. As the AI price falls, it becomes skill-intensive,

but at very low prices, it may again appear unskilled-intensive, as AI substitutes for both

labor types. In such a case, the introduction of AI supplied by a firm with market power can

deliver a ”double-harm”: for sufficiently low pX , the unskilled wage can lie below its autarky

value (wU(∞)−wU(p
′) =

∫∞
p′

dwU

dpX
(pX)dpX > 0 and be locally decreasing in pX (dwU

dpX
(p′) < 0);

this holds in Figure 1 for p′ just below p
(2)
X . The local decrease arises because at those very

low prices, B is again unskilled–intensive relative to A, so a higher pX reduces B’s output

and differentially reduces demand for unskilled labor.
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Figure 1: Local incidence of AI input prices on the unskilled wage: dwU

dpX
vs. pX . Above the

zero line, unskilled wages rise with pX ; below, they fall. A monotone path yields a single
crossing of wages as pX changes (dashed), while a non-monotone path yields two crossings
(dotted).

A Nontraded Good and Dutch Disease

Now extend the benchmark model to consider a nontraded good A and a traded good B,

with Cobb–Douglas preferences. Aggregate real income (or welfare) satisfies

d logW = d log Y − (1− α) d log pA, (1)

where pA is the nontraded price. The mechanism is well known: if the nontraded price rises

sufficiently relative to income, both groups’ real wages can fall, something which cannot

occur when all goods are traded.

We assume that AI only lowers costs in B. The Online Appendix presents comparative

statics of pX on income Y and the untraded price pA, and then on real income via (1). This

analysis illustrates the classic logic: as pX falls, production of the export good B expands,

pA rises, and both groups’ real wages can fall simultaneously if the CPI channel dominates.

This is the textbook Dutch disease result (Corden and Neary, 1982; Corden, 1984), where

countries that discover a valuable natural resource experience a boom in the resource sector,

attracting labor and capital away from other industries and raising national income but also

making nontraded goods more expensive. This squeezes households through higher cost of

living and erodes competitiveness in other tradables. Closely related is the Baumol and
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Bowen (1966) cost: when productivity rises in some sectors but not others, wages equalize

across the economy at higher levels (supported by rising aggregate income) and stagnant

sectors see rising labor costs, leading to higher prices, lower welfare, and distributional

harm.

With AI, the dynamics differ: adoption raises productivity in one sector but pushes,

rather than pulls, at least some categories of workers into the rest of the economy, where

their marginal productivity and thus wages fall. In the context of the benchmark models,

if labor-displacing AI is cheap and efficiency gains remain domestic, higher income boosts

demand for nontradables, raising their relative prices and worsening the cost of living. If

instead a monopolist extracts large fees, national income may not increase and workers face

lower wages without the offsetting demand-driven price surge.

Further, unlike resource booms, global adoption of AI may shrink export markets by

lowering the world price of previously labor-intensive exports, reducing national income but

also alleviating Dutch disease and Baumol cost pressures.

Main Model

This model builds on the benchmarks, tailoring assumptions to capture mechanisms we argue

may be important in practice. We incorporate two new features. First, both sectors are

non–traded, so that output prices and the expansion of the AI-augmented sector are limited

by diminishing marginal utility of consumers. We leave for future work the possibility for a

discrete fall in previously labor-intensive exports, which would exacerbate the challenges we

highlight here, and simply start from a scenario without exports. Second, sector B consists

of many differentiated varieties under Constant Elasticity of Substitution (CES) demand

(elasticity σ > 1) with constant markup µ = σ/(σ − 1) > 1 and free entry subject to a

per-firm domestic license fee F (rebated lump-sum and shared equally across households, for

example this could be a government license fee or rent for a resource used by firms) and a

fixed access fee, ϕ, that is collected by the foreign monopolist. This allows us to consider the

impact of AI on industry structure and entry, and further opens the door for more realistic

pricing strategies by the AI monopolist. Note that our qualitative results can be extended to

the more general case of Hierarchical Structure of Aggregation (HSA) preferences following

Matsuyama (2019).

Studying AI in a fixed-cost framework is natural, since digital technologies involve high

up-front investments (training, deployment, access) but low marginal costs of use. A differen-

tiated product and free-entry structure makes it possible to analyze how AI pricing reshapes

industry structure (the equilibrium number of firms, variety, and the quality-adjusted price
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index). Moreover, because AI is a general-purpose technology that enables a wide range of

applications, entry and variety are themselves first-order welfare channels.

Primitives and price indices. Households spend a constant share α ∈ (0, 1) on B and

1− α on A:

U = C 1−α
A C α

B , EB = αY, EA = (1− α)Y. (2)

Symmetry across the N active firms in B yields that the CPI is

P = p 1−α
A P α

B , PB = µmBN
1

1−σ . (3)

Without loss of generality, we normalize pA ≡ 1 so that all prices are relative to the price

index in Sector A; although at times we discuss the price effects in Sector A, these should

be interpreted as relative prices.

Pricing and free entry in B. Let mB be the unit marginal cost and pB = µmB the

symmetric price (cf. (25)). With per-firm outlays F + ϕ and free entry,

(pB −mB)q = (F + ϕ) ⇒ pB q = µ
µ−1

(F + ϕ). (4)

Because the expenditure in Sector B is EB = αY = NpBq, we have

N = µ−1
µ

α
Y

F + ϕ
, PB = µmB

(
µ−1
µ

α
Y

F + ϕ

) 1
1−σ

. (5)

Thus, holding Y and (F + ϕ) fixed, changes in mB move pB but do not move N directly. In

general equilibrium, however, pX and ϕ move Y and hence N through free entry.

AI technology and marginal cost in B. A foreign upstream supplier charges a per-firm

access fee ϕ and a per-unit usage fee pX (we start by setting ϕ = 0 to facilitate comparisons

to the benchmarks, and then generalize the model). Adoption in B is discrete and leads to

marginal cost mB = sBwS + pX with no need for unskilled labor (uB = 0), where we say

automation is partial if sB > 0 and (informally) full if sB is significantly lower than the

no-AI baseline, which requires s0 units of skilled labor and u0 units of unskilled labor. For

simplicity of exposition, we consider the case where under partial automation sB is at least

as large as the skilled labor used per unit in the benchmark without AI. The case where

marginal cost is zero (sB = 0) is an edge case given our assumptions about free entry, so

we rule it out for simplicity. In both cases, adoption implies uB = 0, so displaced unskilled
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labor reallocates to A. In contrast to the benchmarks, a marginal expansion of B does not

pull U from A. The effect of pX on prices now arises primarily through pB (via mB and N),

not through pA (via QA).

Sector A and factor markets. Following the benchmarks, sector A is produced compet-

itively with both skilled and unskilled labor, and labor markets clear:

LS = LA
S + LB

S , LU = LA
U + LB

U . (6)

With diminishing returns in A, the crowding of unskilled labor into A lowers wU , while wS

reflects the allocation of LS across sectors and the demand for LS in B. For some results

below, we assume that production in Sector A is CES with factor shares (where factors are

skilled and unskilled labor) parameterized by β and substitution parameter ρ.

Income and external payments. Domestic income includes wages and the rebated F

but excludes foreign AI payments, where QB is output in B:

Y = wSLS + wULU + FN, Foreign outflow = ϕN + pXQB. (7)

Unlike F , ϕ reduces both entry and domestic absorption.

Exogenous AI Prices

Adoption frontier defined. AI is adopted by all firms in Sector B only if each firm sees

higher profits from adopting AI when all rivals adopt. As we discuss in more detail below,

this yields a downward-sloping frontier of the set of incentive-compatible (ϕ, pX) pairs, where

the frontier can be written as pX ≤ pX,max(ϕ). Importantly, adoption constraints are more

challenging when other firms adopt, since adoption frees up labor and pushes down wages,

and the firm’s alternative without AI involves producing B using unskilled labor. In this

section, we first consider comparative statics on usage and access fees within the frontier,

and then return to consider the frontier in more detail when we consider the problem faced

by a monopolist AI provider.

Equilibrium. Let Z = (α, σ, F, sB; LS, LU) denote the vector of exogenous primitives

(preferences, technologies, and endowments) for Model 3. Given (Z, ϕ, pX), a (competitive)

equilibrium consists of prices, quantities, and allocations(
pA, pB, PB,mB, N, q,QB, Y, wS, wU , L

A
S , L

B
S , L

A
U , L

B
U

)∗r(
Z, ϕ, pX

)
,
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where the superscript ∗r denotes equilibrium values in Model 3 for regime r ∈ {AI, 0} (r = 0

being no AI), that jointly satisfy equations (2)-(7). The feasible (ϕ, pX) must also satisfy

an incentive constraint for technology adoption pX ≤ pX,max(ϕ), developed in more detail

below. For any equilibrium variable X in the list above, we use the superscript notation

X∗r(Z, ϕ, pX) to denote its equilibrium value as a function of (Z, ϕ, pX).

Welfare Ratio In the Online Appendix, we show that applying equilibrium conditions

yields the following expression for the ratio of welfare (real income) across regimes:

W ∗AI

W ∗0 =

(
m∗0

B

m∗AI
B

)α

︸ ︷︷ ︸
unit cost / B price index

(
F

F + ϕ

) α
σ−1

︸ ︷︷ ︸
variety / entry

(
Y ∗AI

Y ∗0

)1+ α
σ−1

︸ ︷︷ ︸
aggregate income

(8)

The first term reflects unit costs (the sector-B price index), the second variety/entry, and

the third aggregate income (with pA normalized to 1). Low AI fees lower unit costs, raise

income, and increase variety.

The same decomposition can also be applied separately for skilled and unskilled workers.

Displaced workers may have lower labor income, so that unskilled workers may be harmed

even by cheap AI, depending on parameter values, similar to the analysis of the benchmark

models.

Linear pricing (usage–only, ϕ = 0). Under linear pricing the foreign supplier sets the

per–unit usage fee pX with no access fee (ϕ = 0).

We model the introduction of the technology as a shift from autarky (pX = ∞) to finite

pX . Two new forces arise relative to the benchmarks. First, a variety channel : lower pX

reduces unit costs in B, raises output and income, and—through free entry—supports more

firms and more varieties. More varieties lower the quality–adjusted price index PB, a channel

absent when B was traded at a fixed world price. Second, a displacement channel : once AI

is adopted, all LU is pushed into sector A. With Cobb–Douglas in A, this crowding reduces

wU through diminishing returns, an additional effect beyond the benchmark.

In equilibrium, a lower pX reduces unit costs in B and raises variety. Under partial

automation, the additional production in B pulls LS out of A, which increases costs and

thus prices in B. Under mild conditions, welfare rises relative to autarky, as the unit–cost

and variety gains outweigh the rise in pA. But unskilled workers’ real wage typically falls,

since the unskilled nominal wage is depressed by crowding in A while the CPI rises. Skilled

workers may gain under partial automation (more demand for LS in B), but under full

automation, they too may lose as almost all labor is absorbed into A while gains leak abroad
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through pX .

A small increase dpX > 0 when the AI adoption constraint is slack. Suppose the adoption

constraint is slack. Then, raising pX increases unit costs in B and contracts its output.

Because B has CES demand and free–entry, this also reduces the number of firms, raising

PB via the variety channel. At the same time, fewer firms in B release some LS back to A,

lowering pA.

Unlike the benchmarks, these local changes do not induce substitution back to LU in B:

adoption is discrete, so a marginally higher pX worsens PB without undoing displacement.

When the expenditure share α is moderate, the worsening of PB and the fall in income

dominate any decrease in pA, so the CPI rises and welfare falls. In this case both wS/P

and wU/P typically decline. In the Online Appendix, we analyze these comparative statics

under CES production in sector A, showing how the incidence depends on the substitution

parameter ρ. The outcomes are most stark when ρ is large (labor types highly substitutable):

the decrease in pA vanishes, and both real wages fall unconditionally. Conversely, when ρ

is small (close to Leontief), unskilled labor can be partially cushioned or even gain, so the

negative incidence is less certain. Thus, as long as α is not too small and A is not extremely

unskilled-intensive, the local and global incidence can align negatively for at least one worker

group, reproducing the ”double harm” result highlighted in Models 1 and 2.

Two–part tariffs (ϕ, pX). Allowing the foreign AI supplier to set both a per–unit price

pX and an access fee ϕ adds a second lever. A higher ϕ directly reduces entry in B, raising

PB, and, unlike F , ϕ’s proceeds leak abroad, lowering domestic income.

Relative to the benchmark models without foreign ownership, the CES environment

introduces two additional channels when the AI supplier raises pX . First, higher unit costs

and lower variety both raise PB, strengthening the CPI channel. Second, because profits

include foreign revenues, a new income–leakage effect arises: as pX rises, domestic license

rebates FN shrink, depressing Y . Together these channels imply the price index rises and

real wages fall. Moreover, the loss of domestic license rebates increases inequality across

workers: all lose in real terms, but the erosion of FN magnifies relative differences between

skilled and unskilled labor.

Overall, the combination of discrete displacement, endogenous variety, and two–part

tariffs makes it far easier for market power in AI supply to depress welfare, and it is more

likely that the introduction of AI harms unskilled workers, and that local exercise of market

power exacerbates the harm.
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AI Monopolist Choice of Usage and Access Fees

Sector B Firm Profits. We can also examine the impact of access and usage fees on Sector

B production and gross profits. Define the gross firm–side aggregate operating surplus before

fees as follows (where we substitute in equilibrium conditions):

Egross(Z, ϕ, pX) ≡ (µ− 1)m∗AI
B (Z, ϕ, pX)Q

∗AI
B (Z, ϕ, pX) =

(µ− 1)α

µ
Y ∗AI(Z, ϕ, pX). (9)

Note that AI access and usage fees impact this only through Y ∗AI . If we think of

Egross(Z, ϕ, pX)−N∗AIF =
(µ− 1)α

µ
Y ∗AI(Z, ϕ, pX)

( ϕ

F + ϕ

)
as the “size of the pie” to be extracted by the monopolist through access and usage fees, we

can see that both ϕ and pX affect the size of the pie through their effect on income. This

contrasts with the typical nonlinear pricing problem from industrial organization, where the

number of firms is fixed and there are no general equilibrium effects, so that access fees do

not distort production while usage fees do. In the latter case, it is optimal for a monopolist

to keep usage fees as low as possible and extract surplus using access fees; in contrast, in our

model both fees increase the share of profits that go to the AI monopolist.

The slope of income with respect to ϕ is

∂Egross

∂ϕ
(Z, ϕ, pX) =

(µ− 1)α

µ

dY ∗AI

dϕ
(Z, ϕ, pX) < 0, (10)

where dY ∗AI/dϕ incorporates a direct income effect, where ϕ affects the share of consumer

expenditure retained by firms, and an indirect effect via the induced change in Q∗AI
B . In

contrast, pX has only an indirect effect on Egross, through wages and output that affect

income.

Adoption frontier in equilibrium. To analyze strategic pricing by the monopolist, we

develop the adoption frontier which characterizes the set of fees where AI adoption is an

equilibrium. When rivals adopt, wages (w∗AI
S , w∗AI

U ) fall for the displaced factor, so the

baseline alternative improves; sustaining adoption therefore requires lower pX or lower ϕ.

Consider one firm that deviates to the baseline (non-adopting) technology while all rivals

keep adopting and charging p∗AI
B = µm∗AI

B . Let the deviator set the usual markup price

pdev = µmdev, where its baseline marginal cost is evaluated at the AI equilibrium wages:

mdev(Z, ϕ, pX) ≡ s0w
∗AI
S (Z, ϕ, pX) + u0w

∗AI
U (Z, ϕ, pX). (11)
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Under CES demand and substituting in equilibrium conditions, the deviator’s quantity at

(Z, ϕ, pX) is

qdev(Z, ϕ, pX) = αY ∗AI (µmdev)
−σ (P ∗AI

B )σ−1 =
α

µ

Y ∗AI

mdev

(
m∗AI

B

mdev

)σ−1
1

N∗AI
. (12)

The deviator does not pay the AI access fee (it does not adopt), so its profit is

πdev(Z, ϕ, pX) = (µ− 1)mdev qdev − F =
(µ− 1)α

µ
Y ∗AI

(
m∗AI

B

mdev

)σ−1
1

N∗AI
− F. (13)

Using (5), the no-deviation condition πdev ≤ 0 is equivalent to(
m∗AI

B

mdev

)σ−1

≤ F
F+ϕ

⇐⇒ pX ≤ mdev

(
F

F+ϕ

) 1
σ−1 − sBw

∗AI
S . (14)

Usage fee. Consider linear pricing with ϕ = 0, so the monopolist’s revenue is

Πlin(pX) = pX QB =
α

µ

Y

mB

pX ,

where mB = sBwS + pX and QB = (α/µ)(Y/mB) in equilibrium. Differentiating shows that

profits rise with pX so long as the negative impact of pX on income Y is not too strong

relative to the positive cost-share transfer from skilled labor to the monopolist. In this case

the profit function is increasing up to the adoption cap, so the optimal usage fee is set at

the boundary.

Intuitively, when sector B still requires some skilled labor (sB > 0), a higher pX both

raises mB and shifts part of the cost burden away from domestic wages, increasing the

monopolist’s margin. The opposing force is the contraction of income Y , which lowers overall

expenditure on B. Profits rise with pX provided this income contraction is not too severe.

This condition is more likely to hold when the expenditure share α on B is moderate, when

skilled labor’s cost share in mB is sizable, and when demand for B is relatively elastic (so

markups µ are modest). It is also easier to satisfy when technology in sector A allows factors

to substitute smoothly: in that case the fall in skilled wages is cushioned, the rise in unskilled

wages is limited, and the overall income decline is modest. By contrast, when technology in

A is close to fixed-proportions, the rise in pX depresses Y more strongly, making it harder

for the cost-share transfer to dominate. Note, however, that at intermediate levels of ρ (the

parameter governing factor substitution in Sector A), outcomes can be nonmonotone in ρ.
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Access fee. Now consider the AI monopolist’s choice of both usage and access fees,

Πacc(Z, ϕ | pX) ≡ ϕN∗AI(Z, ϕ, pX)︸ ︷︷ ︸
access revenue

+ pX Q∗AI
B (Z, ϕ, pX)︸ ︷︷ ︸

usage revenue

. (15)

Using the CES/free–entry identities, differentiation gives

∂Πacc

∂ϕ
= N∗AI

[
F

F + ϕ
− ϕ

Y ∗AI

dY ∗AI

dϕ
− pX

(µ− 1)m∗AI
B

· F + ϕ

Q∗AI
B

· dQ
∗AI
B

dϕ

]
.

The first term is strictly positive. The profit slope in ϕ reflects a direct positive channel and

indirect negative channels through Y and QB. When adoption is slack, any interior optimum

ϕ⋆(Z | pX) requires these effects to balance exactly. If the adoption frontier is binding, the

optimum lies on the boundary at the highest ϕ consistent with adoption.

The strength of the indirect terms depends on how easily factors can reallocate in A.

When technology in A allows smooth substitution between skilled and unskilled labor, the

contraction in Y from a higher ϕ is relatively muted. In this case, the direct access-revenue

channel dominates, so interior optima are less likely and the monopolist tends to push ϕ to

the frontier. By contrast, when A is closer to fixed proportions, the fall in income is sharper,

the negative terms dominate sooner, and an interior optimum in ϕ is more plausible. At

the extreme, with highly substitutable A, the indirect contraction is small enough that

unskilled wages can still fall with ϕ, while with fixed-proportions A, unskilled wages may

rise in nominal terms even as welfare declines. Thus, with smooth substitution in A the

monopolist relies more on the per–unit fee, while with rigid A technology the fixed access

fee is relatively more attractive to the monopolist. At intermediate levels of ρ, outcomes can

be non-monotone in ρ.

Summary of results

Market power in AI depresses welfare and can harm both skilled and unskilled workers

through several distinctive mechanisms:

(i) No unskilled pull in B. Adoption is discrete, so marginal fee changes do not restore

unskilled demand in B; displaced labor must be absorbed by A.

(ii) Two CPI channels. The per–unit usage fee raises unit costs in B, while the fixed access

fee reduces the number of active firms and thus variety. Both channels raise the sector-B

price index and contribute to CPI inflation.
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(iii) Income leakage. Both fees transfer income abroad, leading to declines in national income

and a more concentrated domestic industry with less variety.

(iv) Distributional impacts. Unskilled nominal wages can rise with higher pX , but real wages

typically fall once CPI effects are considered. Access fees further magnify inequality by

reducing entry and thus eroding domestic recirculation of firm fixed costs.

(v) Labor productivity and substitutability in A. With high substitution between skilled and

unskilled labor in A, both groups lose in real terms; with fixed proportions, unskilled

labor may gain nominally from higher access fees.

(vi) Access and Usage Fees. In general, the monopolist allocates extraction across fixed

and variable fees, adjusting one upward if the other is capped, so effective regulation

considers both.

A Policy-Relevant Research Agenda

The models developed above are deliberately stylized, but we argue that they help identify

and prioritize open questions for research and considerations for policy-makers. First, in the

models, broad welfare gains require that AI prices fall with real cost savings (either through

competition enforcement or regulation of pX and ϕ) and that displaced labor be absorbed

productively in sectors less affected by AI. Second, we show that policies that only cap one

instrument risk rent-shifting into the other; disciplining both levers is necessary when the

upstream supplier prices on the adoption frontier.

What policies increase competition? In some cases, multiple global providers may exist,

but not all make investments in customizing and distributing to small countries, reducing

local competition and leaving a role for industrial policy. The AI stack spans many layers,

including chips, training, models, and applications. A single bottleneck can lead to high

downstream prices. Where bottlenecks are likely, how pricing at each layer translates into

end-user prices and pricing structure, and which policy tools best counteract market power

are all important research topics. The presence of open models, competitive entrants, or fast

followers might discipline incumbents and reduce the scope for sustained market power.

From a country’s perspective, a key factor is where AI value added accrues. If domestic

firms earn the profits and those profits recirculate broadly in the economy, they raise na-

tional income and help sustain demand for nontradables. Future research might consider

what policies enable a country to participate in the high-value-added parts of the AI stack.

Competition policy and industrial policy might be able to improve a country’s bargaining
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leverage with outside suppliers. For example, a country may be able to control access to

data or financial systems. It might consider whether open models (such as Meta’s Llama)

should be regulated for national security reasons (though the arrival of DeepSeek demon-

strated that it may be difficult to keep countries from fast-following others’ innovations),

considering the role that open source may play in constraining AI prices and promoting

competition in AI services. Outcomes may depend on where a country’s local assets (e.g.,

data, finance, compute, talent) create favorable outside options.

From a modeling perspective, the simple structure of CES/HSA demand, a monolithic AI

industry, and two sectors could be generalized, yielding more nuanced insights. For example,

a more general model might include multiple sectors and illustrate the role that government

procurement of services plays in stimulating labor demand, in combination with the role of

labor-augmenting technologies, as well as in improving consumer welfare. AI may also affect

entrepreneurship and idea generation. A long tradition in industrial organization (see, e.g.

Lee, Whinston, and Yurukoglu (2021) for a recent survey) and a recent literature in trade

(e.g. Grossman, Helpman, and Sabal (2024)) microfound markups in supply chains, and the

latter explores general equilibrium implications.

Another risk is capability loss: if adoption displaces domestic production that is costly to

rebuild (learning-by-doing, organizational capital, supply-chain agglomeration), dependence

on external suppliers increases. A country’s outside option, and therefore ability to bargain

over and regulate AI import prices, may deteriorate. That raises more industrial-policy ques-

tions: how should local capabilities be maintained, and how should any short-run efficiency

gains be weighed against longer-run resilience and expertise? Closely related is the risk that

a dominant AI provider falls under control of a hostile trading partner, so that objectives

other than profit—e.g., degrading local capabilities—become salient.

For workers, the key question is whether displaced labor can be reallocated productively.

Policy levers include education and training, procurement of nontraded services (teaching,

nursing, care), and targeted subsidies that raise productivity where displaced workers are

absorbed. AI assistants may ease both transitions and on-the-job productivity. The political

economy around these large fiscal and operational decisions for government will have a big

impact on outcomes such as who pays, how efficient redistribution is, and whether AI owners

shape policy to avoid bearing social costs. Concentrated ownership, even by domestic firms,

may increase their political power and make taxation more difficult.

In standard models, if AI-enabled industries are exportable, higher productivity and in-

creased output mitigate the decreases in per-unit labor demand. However, this result depends

on the ability to increase exports at similar prices, when in practice world-wide adoption of

AI may compress prices and limit export-led adjustment. Some traded services (e.g., call-
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center outsourcing) may shrink materially. The implications of AI for developing countries’

competitiveness and the global distribution of production are critical to understand.

The interaction between AI and innovation itself also opens a rich research agenda. On

the one hand, AI can erode market power in existing downstream industries by lowering costs

and enabling entry. On the other hand, our analysis shows that if fixed costs rise, industry

structure may become more concentrated, reducing the variety available to end consumers

and slowing innovation. From the perspective of AI innovation, if monopoly rents are the

primary reward for investing in frontier AI, restricting those rents too aggressively might dull

incentives for innovation. Understanding how different forms of pricing, competition, and

regulation shape innovation incentives in AI, and how this interacts with broader patterns

of technological progress, remains a pressing challenge.

Conclusions

This paper argues that the payoff from preserving competition in AI has been underappre-

ciated in macroeconomic discussions. Growth models and popular narratives often assume

that AI will deliver cheap goods and services in abundance. Our observation is that this

outcome is unlikely in the absence of competition, particularly if the profits from the tech-

nology accrue outside a country or are not shared throughout the economy. Instead, we

show how market power in AI factors of production allows the provider to extract rents

and prevent prices from falling to match declines in labor. A profit-maximizing downstream

firm may be just indifferent about adopting AI, but the decision redistributes rents outside

the country and away from displaced workers within the country. Because AI is a general-

purpose upstream technology, monopoly harms include increased concentration and higher

prices within downstream sectors but extend well beyond directly impacted sectors, justify-

ing a general equilibrium framework. Our models demonstrate that the welfare impact of AI

depends critically on market structure; they further highlight the important role of worker

transitions and their unique value and productivity in alternative sectors.
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ONLINE APPENDIX
Artificial Intelligence, Competition, and Welfare

Susan Athey and Fiona Scott Morton

1 Benchmark: Open Economy, Two Traded Goods

This is a baseline model with two traded goods, a small open economy where consumption

is not modeled.

1.1 Setup, accounting, and objects

Goods, prices, and factors. The economy consists of two traded final goods A,B sold

at exogenous world prices (p̄A, p̄B) (small open economy) and produced with two primary

factors: skilled labor S and unskilled labor U , with endowments (LS, LU) and factor prices

(wS, wU). A foreign input X is used only by sector B at price pX set abroad. Technologies

are CRS; markets are competitive.

Unit costs, unit input coefficients, and zero profit. Let cA(wS, wU) and cB(wS, wU , pX)

be unit-cost functions. Zero-profit (unit-cost) equalities:

p̄A = cA(wS, wU), p̄B = cB(wS, wU , pX). (ZP)

Define unit input coefficients (Hicksian, i.e., per unit of output):

aAS :=
∂cA
∂wS

, aAU :=
∂cA
∂wU

; aBS :=
∂cB
∂wS

, aBU :=
∂cB
∂wU

, aBX :=
∂cB
∂pX

.

Define cost shares: θjS =
wSa

j
S

p̄j
, θjU =

wUajU
p̄j

, and in B also θBX =
pXaBX
p̄B

, with θAS + θAU = 1 and

θBS + θBU + θBX = 1.

Full employment.

aASQA + aBSQB = LS, aAUQA + aBUQB = LU . (FE)
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Imports and national income (GNP at world prices). The quantity of X imported

is MX = aBXQB; the import bill is pXMX .

Y = p̄AQA + p̄BQB − pXMX = wSLS + wULU . (NI)

The first equality is value-added (final output value minus imported intermediates); the

second uses zero profits in A,B. Envelope in pX :

dY

dpX
= −MX ≤ 0. (Y–pX)

Hence a fall in pX raises national income (aggregate welfare at traded-goods prices), while a

rise lowers it.

Trade and consumption. We do not model home demand; production and factor prices

are determined by (ZP)–(FE). The trade-balance identity is p̄A(CA−QA)+ p̄B(CB −QB)+

pXMX = 0; the country can export B (QB > CB). Welfare statements use Y (equivalently,

any homothetic utility at prices (p̄A, p̄B)).

1.2 Comparative statics

The relative factor intensities and sign patterns for wage changes are stated in the main text.

For completeness, define the relative factor-intensity indices :

RA :=
θAS
θAU

, RB(pX) :=
θBS
θBU

.

We say B is skill-intensive (relative to A) if RB(pX) > RA, and unskilled-intensive if

RB(pX) < RA. Totally differentiating the zero-profit conditions at fixed (p̄A, p̄B) yields

the sign pattern
RB(pX) > RA (B skill-intensive) ⇒ dwS

dpX
< 0,

dwU

dpX
> 0,

RB(pX) < RA (B unskilled-intensive) ⇒ dwS

dpX
> 0,

dwU

dpX
< 0.

(Signs)

Aggregate income moves monotonically: dpX ↓ raises Y , dpX ↑ lowers Y .
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Hicksian substitution. We say X is a Hicksian substitute for U in B if the Hicksian unit

demand satisfies
∂aBU (wS, wU , pX)

∂pX
> 0.

This ensures that when pX rises, demand for unskilled labor aBU also rises. We do not assume

smoothness at technique switches, if the production function allows firms to select among

different techniques with different unit costs; at the point of a switch, aBU may jump upward.

Single intensity reversal. A single intensity reversal occurs at some p∗X ∈ (0,∞) if

RB(pX)


< RA, pX > p∗X ,

= RA, pX = p∗X ,

> RA, pX < p∗X .

(Rev)

1.3 The introduction of AI and divergence near a reversal

Fix a low input price pℓX and compare to autarky in X (pX = ∞). The level change in the

unskilled wage is

wU(p
ℓ
X)− wU(∞) = −

∫ ∞

pℓX

dwU

dpX
dpX ,

where the integrand’s sign at each pX is given by (Signs). The local effect at pℓX is sign
(

dwU

dpX

∣∣
pℓX

)
and depends only on the current ordering RB(p

ℓ
X) vs. RA.

Proposition 1 (Single intensity reversal). Suppose p∗X satisfies (Rev). Then in neighbor-

hoods of p∗X :

• If pℓX ↓ p∗X from above (so RB(p
ℓ
X) < RA), then

wU(p
ℓ
X)− wU(∞) > 0 and

dwU

dpX

∣∣∣
pℓX

< 0.

Thus introducing a cheap X is good for unskilled, and a marginal increase in pX at

that point is bad for unskilled.

• If pℓX ↑ p∗X from below (so RB(p
ℓ
X) > RA), then wU(p

ℓ
X)−wU(∞) > 0 while dwU

dpX

∣∣
pℓX

> 0:

opening to cheap X is good for unskilled, and a marginal increase in pX is good for

them. That implies that the opening is bad for skilled, and a marginal increase in pX

is also bad for skilled workers.

In all cases, aggregate income moves with pX by (Y–pX).
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Proof. By (Signs), sign
(
dwU/dpX

)
= sign

(
RB − RA

)
in a neighborhood of p∗X . If pℓX ↓

p∗X from above, then RB < RA so dwU/dpX < 0 locally, while the level change satisfies

wU(p
ℓ
X)−wU(∞) =

∫ pℓX
∞ (dwU/dpX) dpX > 0 because the integrand is positive on most of the

path before the crossing. The case approaching from below is analogous with RB > RA.

Proposition 2 (Double-harm in the all-traded model with non-monotone skill intensities).

Suppose there exist thresholds p
(1)
X > p

(2)
X > 0 such that a double-reversal holds

RB(pX)


< RA, pX > p

(1)
X (very high pX : B unskilled-intensive),

> RA, p
(2)
X < pX < p

(1)
X (intermediate pX : B skill-intensive),

< RA, pX < p
(2)
X (very low pX : B unskilled-intensive again).

(TwoX)

Then it is possible that for pℓX ∈ (0, p
(2)
X ) sufficiently close to p

(2)
X ,

wU(p
ℓ
X)− wU(∞)︸ ︷︷ ︸

level vs. autarky

< 0 and
dwU

dpX

∣∣∣
pℓX︸ ︷︷ ︸

local at pℓX

< 0.

Hence introducing (very) cheap X makes unskilled worse off in levels and a marginal increase

in pX at pℓX also makes them worse off locally.

Sketch. By (Signs), sign
(
dwU

dpX

)
equals the sign of RB(pX)−RA. Under (TwoX), the derivative

is positive on the intermediate band (p
(2)
X , p

(1)
X ) and negative on the tails (p

(1)
X ,∞) and (0, p

(2)
X ).

The level change is the path integral wU(p
ℓ
X) − wU(∞) =

∫ pℓX
∞

dwU

dpX
dpX , whose sign is the

net of those regions. For pℓX close to p
(2)
X , the (large) positive-derivative region in (p

(2)
X , p

(1)
X )

dominates, making the integral negative; at pℓX < p
(2)
X , we have RB < RA so the local

derivative is negative.

Example of Double Reversal We provide an example demonstrating that the conditions

of Proposition 2 are feasible.

For production functions, we let Sector A be CRS and let B choose among three tech-

niques Tk, k ∈ {1, 2, 3}: (i) T1 uses no AI and is unskilled-intensive; (ii) T2 uses moderate AI

and is skill-intensive; (iii) T3 uses heavy AI and reverts to unskilled-intensive. Standard dual-

ity results imply the equilibrium wage ratio ω(pX) := wS/wU lies in a compact interval as pX

varies. The technique-switch prices p12(ω) and p23(ω) are determined by cost equalization;

by appropriate choice of AI input coefficients, we can ensure p12(ω) > p23(ω) throughout.

As pX falls from ∞, firms switch from T1 to T2 (B becomes skill-intensive) and then to T3

(B becomes unskilled-intensive again), generating the double crossing in Figure 1.
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Numerical example. With Ω = [0.8, 1.5], Leontief A with (aAS , a
A
U) = (0.50, 0.45), and

techniques T1 : (0.40, 1.20, 0), T2 : (1.00, 0.40, 0.60), T3 : (0.15, 0.45, 3.50), the intensity

ordering R
(1)
B < RA < R

(2)
B and again R

(3)
B < RA holds on Ω, with switch prices p12 ≈

0.333 > p23 ≈ 0.276 at unit wages. Proposition 2 then applies.

1.4 Output responses in the general comparative statics of usage

fees

Stack the full-employment system (FE) as AY = F̄ with

A :=

[
aAS aBS
aAU aBU

]
, Y :=

[
QA

QB

]
, F̄ :=

[
LS

LU

]
.

Totally differentiate at fixed endowments:

AdY = − (dA)Y =⇒ dY = −A−1(dA)Y. (Mix)

With A−1 = 1
∆

[
aBU −aBS
−aAU aAS

]
where ∆ := aASa

B
U − aBS a

A
U > 0 (distinct factor intensities), the

B-output response is

dQB =
1

∆

{
QA

(
aAU daAS − aAS daAU

)
+ QB

(
aAU daBS − aAS daBU

)}
. (⋆)

Here each daji is a Hicksian coefficient response induced by the endogenous wage changes

from (Signs) and the direct pX-effect in B.

What can be signed in general. Let RB ≶ RA denote the local intensity ordering.

Under standard Hicksian regularity (negative own-price effects, symmetric substitution) and

mild cross-substitution assumptions, we obtain:

Proposition 3 (Output of B as pX changes). Fix a point pX and suppose: (i) B is unskilled-

intensive locally, RB < RA; (ii) X is a (weak) Hicksian substitute for U in B, so ∂aBU/∂pX >

0 (equivalently, lowering pX reduces aBU ); (iii) own-price effects are negative for A and B

(e.g., ∂aAU/∂wU < 0, ∂aAS/∂wS < 0). Then, for a small change in pX ,

dQB

dpX
< 0.

If instead RB > RA (skill-intensive B), the sign of dQB

dpX
is a priori ambiguous without further
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structure (e.g., on ∂aBS /∂pX and cross-substitution magnitudes).

Proof sketch. Plug the wage responses from (Signs) (for RB < RA, we have dwU

dpX
< 0,

dwS/dpX > 0) into the Hicksian responses daji and evaluate (⋆). Under (iii), daAU/dpX > 0

and daAS/dpX < 0 via the induced wage changes. Under (ii), daBU/dpX > 0; daBS /dpX

is not needed to be signed if it does not overturn the two summands in (⋆). Because

aAU/a
A
S < R−1

A < R−1
B = aBU/a

B
S (unskilled intensity of B), the bracketed terms deliver a

negative total in (⋆).

Interpretation. When B is unskilled-intensive, a rise in pX makes B less competitive and,

via (Signs), lowers wU and raises wS. Hicksian coefficients then adjust so that each unit uses

more U in B and (through wages) more U in A as well; to clear factor markets at fixed

endowments, the output mix must tilt away from B (hence dQB/dpX < 0). Conversely, for

dpX < 0, QB expands (dQB > 0). If B is skill-intensive, the induced coefficient changes pull

in opposing directions and the sign becomes model-specific.

2 Benchmark Model with One Nontraded Good

We now make sector A nontraded and close the model with Cobb-Douglas preferences over

(A,B). This endogenizes the domestic relative price pA/p̄B and introduces a demand/price-

index channel that interacts with the income and output-mix effects analyzed above.

2.1 Setup and market closure

Preferences and demand. A representative household has utility

U(CA, CB) = C 1−α
A C α

B , α ∈ (0, 1),

facing the price vector (pA, p̄B). Given nominal income Y , Cobb-Douglas demand implies

CA =
(1− α)Y

pA
, CB =

αY

p̄B
.

The exact consumption price index is P = p 1−α
A p̄α

B.
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Nontraded market clearing. Because A is nontraded, CA = QA. Hence the equilibrium

price of the nontraded good is

pA =
(1− α)Y

QA

⇐⇒ d ln pA = d lnY − d lnQA. (NT-P)

Intuitively, demand pressure from higher income (Y ↑) and production scarcity in A

(QA ↓) both bid up pA.

2.2 Equilibrium

Indirect utility and a two-channel welfare map. With CD, indirect utility satisfies

lnU = const + lnY − (1− α) ln pA − α ln p̄B.

Using (NT-P), the welfare differential is

d lnU = α d lnY + (1− α) d lnQA. (W)

Let MX denote domestic spending on input X (Hicksian demand times price). Then the

envelope theorem gives dY/dpX = −MX .

For upstream shocks to pX ,

d lnU

dpX
= −α

MX

Y
+ (1− α)

1

QA

dQA

dpX
, (W–pX)

combining the effect on income (applying the envelope theorem, dY/dpX = −MX) with the

output response of A.

Real wages. Let i ∈ {S, U}. The real consumption wage is wi/P . Because d lnP =

(1− α) d ln pA = (1− α)(d lnY − d lnQA),

d ln
(
wi

P

)
= d lnwi − (1− α) d ln pA = d lnwi − (1− α) (d lnY − d lnQA). (RW)

Thus nominal Stolper–Samuelson–type changes from (Signs) are channeled through a

cost-of-living term driven by the nontraded price.
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Outputs and factor markets. Production, factor prices, and Hicksian coefficients con-

tinue to be determined by (ZP)–(FE). Using the standard full-employment mix mapping,

dY = −A−1(dA)Y, dQB as in (⋆),

while dQA follows from factor balance and the Hicksian responses. Signs can thus be tracked

using the same local intensity and substitution conditions as in Prop. 3.

2.3 Comparative statics: entry, reversals, and incidence

We interpret “entry” as a drop in the foreign upstream price pX to a low level due to the

arrival of an efficient supplier.

Low-price entry. Under the conditions of Proposition 3 with RB < RA (sector B locally

unskilled-intensive) and X a Hicksian substitute for U in B:

dpX < 0 ⇒ dY > 0, dQB > 0, dQA < 0, dpA > 0.

Welfare then moves according to (W–pX): the income gain α(−MX/Y ) > 0 is partially

offset by the nontraded scarcity channel (1− α) d lnQA < 0 (a “Dutch disease” effect).

Real-wage dominance of the cost-of-living channel. Nominally, at fixed traded-good

prices one wage rises and the other falls (by (Signs)). With a nontraded good, however, both

real wages can decline locally if the cost-of-living effect dominates:

d

dpX
ln
(wS

P

)
> 0,

d

dpX
ln
(wU

P

)
> 0, (BH)

that is, as the upstream price pX falls (AI becomes cheaper), both wS/P and wU/P fall.

Sufficient conditions include a large α and a sharp contraction of QA (hence a strong rise

in pA) relative to the nominal gain of the winning factor.

Reversals at very low entry prices. Two reversals are possible as pX falls:

1. An intensity reversal RB(pX) crossing RA (as in (Rev)), flipping the nominal incidence

in (Signs).

2. A welfare reversal from the nontraded channel: even though dY/dpX = −MX < 0

everywhere, the sign of d lnU/dpX in (W–pX) can reverse depending on dQA/dpX .
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Proposition 4 (Effects of changes in pX). 1. dY/dpX = −MX < 0.

2. d ln pA/dpX = d lnY/dpX − d lnQA/dpX .

3. If RB < RA and X (weakly) substitutes for U in B (so dQB/dpX < 0 by Prop. 3), then

factor reallocation raises QA, i.e. dQA/dpX > 0. Therefore

d ln pA
dpX

< 0,
d lnP

dpX
= (1− α)

d ln pA
dpX

< 0.

4. Consequently, the welfare effect decomposes as

d lnU

dpX
= −α

MX

Y
+ (1− α)

1

QA

dQA

dpX︸ ︷︷ ︸
cost-of-living

∈
(
− MX

Y
, 0

)
.

That is, the income contraction is partially cushioned by cheaper nontradables.

If instead RB > RA, the sign of dQA/dpX is ambiguous and so is the direction of dpA;

the cushioning may vanish or become amplification.

Corollary 1 (Both workers can be hurt locally). Under RB < RA and weak substitution, if

(1− α)
(∣∣∣ d lnY

d ln pX

∣∣∣+ ∣∣∣d lnQA

d ln pX

∣∣∣) > max
{∣∣∣d lnwS

d ln pX

∣∣∣, ∣∣∣d lnwU

d ln pX

∣∣∣} ,

then d
dpX

ln
(
wS

P

)
> 0 and d

dpX
ln
(
wU

P

)
> 0, i.e. a local decrease in pX lowers both real wages.

Remark. The two elasticities MX

Y
and 1

QA

dQA

dpX
are sufficient statistics for the sign and size of

d lnU/dpX in (W–pX). Likewise, (1− α)(d lnY − d lnQA) governs whether both real wages

fall in (RW)–(BH).

Equation (16) decomposes levels from autarky to pℓX , while (18) characterizes the local

derivative at pℓX . We use these with Propositions 4–5 to isolate when CPI effects dominate.

Proposition 5 (Local–level divergence with a nontraded good: sufficient-statistic condi-

tions). Suppose p∗X satisfies an intensity reversal (Rev), and let U denote indirect utility

under the Cobb-Douglas closure (W). Fix pℓX near p∗X .

1. If pℓX ↓ p∗X from above (so RB(p
ℓ
X) < RA), and along the autarky → pℓX path the level

CPI dominance condition holds

(1− α)
(
∆ lnY −∆ lnQA

)
> ∆ lnwU ,
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while at pℓX wage effect dominance holds

∣∣d lnwU

dpX

∣∣ > (1− α)
∣∣d ln pA

dpX

∣∣,
then the unskilled real wage satisfies

wU (pℓX)

P (pℓX)
< wU (∞)

P (∞)
and

d

dpX

(
wU

P

)∣∣∣
pℓX

< 0.

2. If pℓX ↑ p∗X from below (so RB(p
ℓ
X) > RA), and the analogous level CPI dominance and

wage effect dominance conditions hold for the skilled group,

(1− α)
(
∆ lnY −∆ lnQA

)
> ∆ lnwS,

∣∣d lnwS

dpX

∣∣ > (1− α)
∣∣d ln pA

dpX

∣∣,
then

wS(p
ℓ
X)

P (pℓX)
< wS(∞)

P (∞)
and

d

dpX

(
wS

P

)∣∣∣
pℓX

< 0.

Moreover, under the primitives in Proposition 4 with RB < RA and weak Hicksian sub-

stitution (so dQA/dpX > 0), the level dominance (17) holds whenever the CPI channel is

sufficiently strong along the autarky→ pℓX path (large α and elastic pA), and the local condi-

tion (19) follows from the one-group specialization of (BH). Thus the conditions are implied

by parameter regions already characterized in this section.

Proof. From (RW) and (NT-P), we have

d ln
(

wi

P

)
= d lnwi − (1− α)

(
d lnY − d lnQA

)
.

Integrating from autarky pX = ∞ to pℓX delivers the level decomposition

∆ ln
(

wU

P

)
= ∆ lnwU − (1− α)

(
∆ lnY −∆ lnQA

)
. (16)

A sufficient condition for the real wage to fall in levels even when the nominal level rises

(∆ lnwU > 0) is

(1− α)
(
∆ lnY −∆ lnQA

)
> ∆ lnwU , (17)

which ties directly to (W–pX) and Proposition 4: along the entry path (dpX < 0) we typically

have ∆ lnY > 0 by the envelope theorem and ∆ lnQA < 0 when RB < RA, so the CPI term

can dominate.

For the local effect at pℓX with RB(p
ℓ
X) < RA, (Signs) implies d lnwU/dpX < 0, and
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Proposition 4 implies d ln pA/dpX < 0. Thus

d

dpX
ln
(

wU

P

)
=

d lnwU

dpX
− (1− α)

d ln pA
dpX

, (18)

which is negative whenever ∣∣d lnwU

dpX

∣∣ > (1− α)
∣∣d ln pA

dpX

∣∣. (19)

Condition (19) is the one-group specialization of the “both types of labor hurt” condition

(BH). The case with RB > RA follows for skilled workers by symmetry.

Lemma 1 (Crossing identities: CES in A, Leontief in B). Assume sector A has CES unit

cost cA(wS, wU) =
[
β w 1−ρ

S + (1− β)w 1−ρ
U

] 1
1−ρ with β ∈ (0, 1), ρ > 0, and sector B (traded)

is Leontief with cB(wS, wU , pX) = aBSwS + aBUwU + aBXpX , (a
B
S , a

B
U , a

B
X) > 0. Let τ :=

aBS
aBU

and

r∗ := 1
τ
. At the unique intensity crossing p∗X where RB = RA, the wage ratio ω∗ := wS/wU

solves
θS(ω)

θU(ω)
= ω τ, θS(ω) =

β ω 1−ρ

β ω 1−ρ + (1− β)
, θU(ω) = 1− θS(ω).

Equivalently,

ω∗ =
[

β
τ(1−β)

]1/ρ
, k :=

θ̄S
θ̄U

= τ 1− 1
ρ

(
β

1− β

)1
ρ

, θ̄S =
k

1 + k
, θ̄U =

1

1 + k
.

Lemma 2 (Thresholds at the crossing). Maintain the definitions and setup from Lemma 1

and let α ∈ (0, 1). The condition

(1− α)
(
θ̄U + θ̄S r

∗) < 1

holds if and only if

k
(1− α

τ
− 1

)
< α, k = τ 1− 1

ρ

(
β

1− β

)1
ρ

.

In particular:

(a) If τ ≥ 1− α, the inequality holds automatically.

(b) If τ < 1− α, it suffices that

β <
αρ τ

αρ τ + (1− α− τ)ρ
.
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Corollary 2 (Both workers hurt locally at the crossing). Assume CES in A and Leontief in

B as in Lemma 1, and RB decreasing in pX with a unique crossing p∗X . Fix any p′X ∈ (0, p∗X)

(approaching from the left, so RB < RA). Let (θ̄S, θ̄U) and r∗ be as in Lemma 1. If

r∗ > max

{
1− (1− α)θ̄U
(1− α)θ̄S

,
(1− α)θ̄U

1− (1− α)θ̄S

}
, (20)

then,
d

dpX
ln
(

wU

P

)∣∣∣
(p′X)−

< 0 and
d

dpX
ln
(

wS

P

)∣∣∣
(p′X)−

< 0.

Moreover, (20) is implied by the primitive thresholds in Lemma 2 together with

r∗ >
(1− α)θ̄U

1− (1− α)θ̄S
⇐⇒ 1 + α

θ̄S
θ̄U

>
1

r∗
(1− α) ⇐⇒ k >

τ(1− α)− 1

α
,

which holds automatically if τ(1− α) ≤ 1, and otherwise is equivalent to

β >

(
τ(1− α)− 1

)ρ
τ 1−ρ

αρ +
(
τ(1− α)− 1

)ρ
τ 1−ρ

.

Proposition 6 (Double harm with a single reversal). Assume the setup of Lemma 1. Let

p∗X be the unique crossing and pick any p′X ∈ (0, p∗X) with

∆ ln
(

wU

P

)∣∣∣
∞→p′X

< 0.

If the following condition from Lemma 2 holds:

(1− α)
(
θ̄U + θ̄S r

∗) < 1, (21)

then
d

dpX
ln
(

wU

P

)∣∣∣
(p′X)−

< 0.

At a point where unskilled are already worse off in levels relative to autarky, a marginal in-

crease in pX (from the left toward the crossing) makes them even worse off locally. Condition

(21) is implied by the primitive thresholds in Lemma 2.

3 Main Model Analysis

This section focuses on the main model outlined in the text, specifically considering the case

of CES demand inside sector B. We derive equilibrium identities and comparative statics.
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Unless otherwise noted, all objects are equilibrium functions of (ϕ, pX) in the AI regime.

Let Z = (α, F, sB, LS, LU) denote primitives. In the AI regime, adoption is discrete and

skilled labor is always required in B:

mB = sB wS + pX , sB > 0. (22)

Domestic nominal income is

Y = wSLS + wULU + FN, (23)

and foreign outflows equal ϕN + pXQB. Sector A is competitive with CRS and pA ≡ 1.

3.1 Primitives, Demand, Markups, and Free Entry

CES in sector B (variety demand and markup). Inside B, preferences are CES with

elasticity σ > 1, so the common markup is constant:

µ =
σ

σ − 1
> 1. (24)

pB = µmB. (25)

With symmetry across active adopters, the sector-B price index is

PB = µmB N
1

1−σ . (26)

Core pricing and expenditure identities Using the pricing first order condition (25)

and the sector-B expenditure identity EB = αY , symmetry implies that if QB ≡
∑N

i=1 qi =

Nq denotes the physical sum of variety quantities (not the CES aggregator), then

mB QB = mB
EB

pB
=

α

µ
Y,

so

QB =
α

µ

Y

mB

. (27)

Notation. Here QB ≡
∑N

i=1 qi = Nq is the physical sum of symmetric variety quantities (it

is not the CES aggregator). The identity follows directly from EB = αY and (25).
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Free entry and variety. Zero profit per firm, (pB−mB)q = F+ϕ, together with symmetry

and EB = αY , gives

N = κ(µ)
Y

F + ϕ
, κ(µ) ≡ µ− 1

µ
α. (28)

Combining (23) and (28) yields

(
1−ϑ(ϕ)

)
dY = LS dwS + LU dwU − Ξ(ϕ, Y ) dϕ, ϑ(ϕ) ≡ F κ(µ)

F + ϕ
, Ξ(ϕ, Y ) ≡ F κ(µ)

(F + ϕ)2
Y.

(29)

Remark. Because N satisfies (28), either a higher usage fee pX (which depresses Y ) or a

higher access fee ϕ (which raises the denominator) reduces the number of active firms and

thus variety.

CES technology in sector A. In order to characterize primitive conditions for compar-

ative statics, we sometimes assume a CES unit-cost function in A. In such cases, we refer to

the following:

cA(wS, wU) =


[
β w 1−ρ

S + (1− β)w 1−ρ
U

] 1
1−ρ , ρ ̸= 1,

w β
S w 1−β

U , ρ = 1 (CD limit),
(30)

with share parameter β ∈ (0, 1) and elasticity of substitution ρ > 0. Hicksian unit demands

are aSA = ∂cA/∂wS and aUA = ∂cA/∂wU , and the corresponding factor-cost shares in A are

θS ≡ wSa
S
A and θU ≡ wUa

U
A, with θS + θU = 1. Standard CES properties imply that the

Hicksian semi-elasticities are given by

∂ ln aSA
∂ lnwS

= − ρ θS,
∂ ln aUA
∂ lnwU

= − ρ θU ,
∂ ln aSA
∂ lnwU

= +ρ θU ,
∂ ln aUA
∂ lnwS

= +ρ θS. (31)

With Cobb–Douglas across sectors, QA = (1− α)Y , so labor usage in A is

aUA(w) (1− α)Y = LU , (32)

aSA(w) (1− α)Y + sB QB = LS, (33)

where QB is given by (27).
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3.2 Welfare Factorization

Under the assumptions that utility is Cobb–Douglas across sectors and pA ≡ 1, indirect

utility satisfies W ∝ Y P−α
B . Using (26),

WAI

W 0
=

(
m 0

B

mAI
B

)α(
NAI

N0

) α
σ−1

(
Y AI

Y 0

)
. (34)

This decomposition isolates the unit-cost channel (mB), the variety channel (N), and

the aggregate-income channel (Y ).

3.3 Comparative Statics

We derive how QB, wS, and Y respond to pX and ϕ by differentiating (27)–(33) together

with the income identity (38).

3.3.1 Preliminaries.

Differentiating (27) and using (22):

dQB =
α

µ

(
dY

mB

− Y

m2
B

(sB dwS + dpX)

)
. (35)

Differentiating (32) gives

(1− α) aUA dY + (1− α)Y daUA = 0 =⇒ dY = −Y
daUA
aUA

. (36)

Differentiating (33) and substituting (35) yields

(1− α)
(
aSA dY + Y daSA

)
+ sB

α

µ

(
dY

mB

− Y

m2
B

(sB dwS + dpX)

)
= 0. (37)

Finally, combining (23) and (28) implies(
1− ϑ(ϕ)

)
dY = LS dwS + LU dwU − Ξ(ϕ, Y ) dϕ, (38)

Equations (36)–(38) form a linear system in (dY, dwS, dwU) in terms of (dpX , dϕ).
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3.3.2 Comparative statics of usage fee

Proposition 7 (Usage-fee incidence). Set dϕ = 0. In the CES environment described above

(with sB > 0 and CES in A with parameters (β, ρ)), the factor-price responses satisfy

∂wU

∂pX
> 0 and

∂wS

∂pX
< 0. (39)

Proof. Let x := d lnwS and y := d lnwU . From (22), dmB = sB dwS + dpX = sBwS x +

dpX . Differentiate the A-sector factor-balance equations (32)–(33) and use the CES Hicksian

semi-elasticities in (31):

For notational compactness, write hSS = −ρθS, hUU = −ρθU , hSU = +ρθU , hUS = +ρθS

(as in (31)).

(1− α) aUA dY + (1− α)Y daUA = 0 ⇐⇒ dY

Y
= −

(
hUSx+ hUUy

)
= −ρ

(
θSx− θUy

)
. (40)

Divide (33) after differentiation by Y , substitute (40) and dmB = sBwSx+ dpX :

0 = (1− α)

(
aSA
Y

dY + daSA

)
+

sBα

µ

(
1

mB

dY

Y
− 1

m2
B

(sBwSx+ dpX)

)
= (1− α)

[
− aSA

(
hUSx+ hUUy

)
+ aSA

(
hSSx+ hSUy

)]
(41)

+
sBα

µmB

(
− hUSx− hUUy

)
− sBα

µm2
B

(sBwSx+ dpX). (42)

Using hSS = −ρθS, hUU = −ρθU , hSU = +ρθU , hUS = +ρθS, the (1 − α) bracket simplifies

to 2(1− α)ρ aSA
(
− θSx+ θUy

)
. .

Collecting coefficients on x and y delivers the linear system(
− 2(1− α)ρ aSAθS − sBα

µmB
ρθS − s2BαwS

µm2
B

)
︸ ︷︷ ︸

:=Γ1

x +
(
2(1− α)ρ aSAθU + sBα

µmB
ρθU

)
︸ ︷︷ ︸

:=Γ2

y = sBα
µm2

B︸︷︷︸
:=Γ3

dpX .

(43)

By construction Γ1 < 0, Γ2 > 0, and Γ3 > 0. Solving (43) together with (40) (Cramer’s

rule) yields the semi-elasticities

∂ lnwS

∂pX
= − sB

D
· sB α

µm 2
B

< 0,
∂ lnwU

∂pX
=

sB
D

· sB α

µm 2
B

· θS
θU

> 0, (44)

where the positive denominator is

D ≡ (1− α) ρ θS +
sB α

µmB

· sB
wS

> 0. (45)
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The strict positivity of the right-hand side of ∂ lnwU/∂pX in (44) establishes (39). □

Intuition. Sector B uses only skilled labor, so it is skill-intensive relative to A. A higher

pX raisesmB, contracts B, and releases skilled labor. General equilibrium reallocation pushes

production toward A, raising relative demand for unskilled labor; hence wU rises while wS

falls.

Corollary 3. From (38) with dϕ = 0 and (44),

∂Y

∂pX
< 0. (46)

Finally, (27) and (22) give

∂mB

∂pX
= 1 + sB

∂wS

∂pX
∈ (0, 1),

∂QB

∂pX
=

α

µ

(
1

mB

∂Y

∂pX
− Y

m2
B

∂mB

∂pX

)
< 0. (47)

Special cases for the A-sector CES parameter ρ

(i) ρ → 0 (Leontief in A) When A has no substitution, the Hicksian responses vanish

and the denominator in (44) simplifies to

DL =
sB α

µmB

· sB
wS

.

Substituting into (44) gives

∂ lnwS

∂pX
= − sB

DL

sBα

µm2
B

= − wS

mB

< 0,

∂ lnwU

∂pX
=

sB
DL

sBα

µm2
B

θS
θU

=
wS

mB

θS
θU

> 0.

d lnY

dpX
=

1

1− ϑ(ϕ)

wS

mB

(
− θYS + θYU

θS
θU

)
=

1

1− ϑ(ϕ)

wS

mB

θS

(
θYU
θU

− θYS
θS

)
.

Substituting in:

d lnY

dpX
=

1

1− ϑ(ϕ)

wS

mB

−wSLS +
aSA
aUA

wS

wU
wULU

Y
=

1

1− ϑ(ϕ)

w2
S

mB Y

(aSA
aUA

LU − LS

)
.

(ii) ρ = 1 (Cobb-Douglas in A) At ρ = 1, the denominator in (44) becomes

DCD = (1− α) θS +
sB α

µmB

· sB
wS

> 0.
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Substituting into (44) yields

∂ lnwS

∂pX
= − s2Bα/(µm

2
B)

(1− α)θS + sBα
µmB

sB
wS

,

∂ lnwU

∂pX
=

s2Bα/(µm
2
B)

(1− α)θS + sBα
µmB

sB
wS

θS
θU

.

d lnY

dpX
=

1

1− ϑ(ϕ)

s2Bα

µm 2
B

−wSLS + β
1−β

wULU

Y
[
(1− α)β + sBα

µmB

sB
wS

] .
(iii) ρ → ∞ (perfect substitutes in A) As ρ → ∞, the first term in D dominates:

D = (1− α) ρ θS +
sB α

µmB

· sB
wS

∼ (1− α) ρ θS → ∞.

Therefore the semi-elasticities shrink to zero:

∂ lnwS

∂pX
≈ − s2Bα

µm2
B

1

(1− α)ρθS
,

∂ lnwU

∂pX
≈ s2Bα

µm2
B

1

(1− α)ρθU
.

Hence both responses approach zero at rate O(1/ρ), and ∂mB

∂pX
→ 1−. Further, substitution

gives:

d lnY

dpX
=

1

1− ϑ(ϕ)

s2Bα

µm 2
B

−wSLS + β
1−β

(
wS

wU

)1−ρ

wULU

Y
[
(1− α)ρ

β w 1−ρ
S

β w 1−ρ
S +(1−β)w 1−ρ

U

+ sBα
µmB

sB
wS

] .
Local incidence of a usage–price increase with discrete adoption We next char-

acterize the CPI and welfare consequences of a marginal increase in pX when adoption is

discrete and unchanged. In this case, there is no substitution back toward unskilled labor in

B.

Lemma 3 (Signs for mB, N, PB). For dpX > 0 at fixed adoption:

0 <
dmB

dpX
< 1,

d lnN

dpX
=

d lnY

dpX
< 0,

d lnPB

dpX
> 0.

Proof. The first inequality follows from (47). The second uses free entry N ∝ Y and

∂Y/∂pX < 0 (see (46)). For the third, using (26), lnPB = lnmB + 1
1−σ

lnN + lnµ. Since

σ > 1, 1
1−σ

< 0 and d lnN/dpX < 0, so that term is positive; and d lnmB/dpX > 0.

Recall that we have normalized pA = 1 so that Sector A dynamics show up through factor

markets and wages. Then, we have
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Proposition 8 (CPI increase and welfare loss). In the CES environment with pA ≡ 1 (sector

A is the numéraire), the CPI is P = P α
B and welfare satisfies W ∝ Y/P . Then (within the

regime that AI is adopted),

d lnP

dpX
= α

(
d lnmB

dpX
− 1

σ − 1

d lnN

dpX

)
= α

(
d lnmB

dpX
− 1

σ − 1

d lnY

dpX

)
> 0,

and hence
d lnW

dpX
=

d lnY

dpX
− d lnP

dpX
< 0.

Proof. Within the regime where AI is adopted, 0 < dmB

dpX
< 1 and d lnY

dpX
< 0 (Cor. 3). Since

N ∝ Y by (28), d lnN = d lnY . With σ > 1, − 1
σ−1

d lnY
dpX

> 0, so the bracketed term is

strictly positive, implying d lnP/dpX > 0 and therefore d lnU/dpX < 0.

Corollary 4 (Real wages). (i) Comparative statics for real wages are:

d ln(wS/P )

dpX
=

d lnwS

dpX
−d lnP

dpX
< 0,

d ln(wU/P )

dpX
=

d lnwU

dpX
−α

(
d lnmB

dpX
− 1

σ − 1

d lnY

dpX

)
.

A sufficient condition for d ln(wU/P )
dpX

< 0 is

α

(
d lnmB

dpX
− 1

σ − 1

d lnY

dpX

)
≥ d lnwU

dpX
. (48)

(ii) Using (44) in (48) gives

α

(
d lnmB

dpX
− 1

σ − 1

d lnY

dpX

)
≥ s2Bα

µm 2
BD

· θS
θU

.

A sufficient (conservative) condition, since d lnmB/dpX > 0, is

α

σ − 1

∣∣∣d lnY
dpX

∣∣∣ ≥ s2Bα

µm 2
BD

· θS
θU

.

(iii) Limiting cases with CES production in sector A.

(a) Leontief in A (ρ → 0).
d ln(wU/P )

dpX
=

wS

mB

aSA
aUA

wS

wU︸ ︷︷ ︸
wage

− α︸︷︷︸
unit cost

+ α
sB w2

S

mB︸ ︷︷ ︸
offset in dmB/dpX

+
α

σ − 1

1

1− ϑ(ϕ)

w2
S

mB Y

(
aSA
aUA
LU − LS

)
︸ ︷︷ ︸

variety via Y

.
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(b) Cobb–Douglas in A (ρ = 1). Let

HCD ≡ s2B α

µm2
B

[
(1− α) β +

sB α

µmB

sB
wS

]
.

Then:
d ln(wU/P )

dpX

= −α︸︷︷︸
unit cost

+ HCD

[
β

1− β
+ αsBwS +

α

σ − 1

1

1− ϑ(ϕ)

−wSLS + β
1−β

wULU

Y

]
︸ ︷︷ ︸

wage + offset + variety

.

(c) Perfect substitutes in A (ρ → ∞).

d ln(wU/P )

dpX
=

d lnwU

dpX︸ ︷︷ ︸
=O(1/ρ)

− α

[
1− s3B αwS

µm2
BD

]
+

α

σ − 1

d lnY

dpX︸ ︷︷ ︸
=O(1/ρ)

.

Using the expression for D,

lim
ρ→∞

d ln(wU/P )

dpX
= lim

ρ→∞

d ln(wS/P )

dpX
= −α

1

mB

.

3.3.3 Access fee: Income and Skilled Wage

Throughout this subsection set dpX = 0. Recall

Ξ(ϕ, Y ) =
F κ(µ)Y

(F + ϕ)2
, κ(µ) =

µ− 1

µ
α, ϑ(ϕ) =

F κ(µ)

F + ϕ
∈ (0, 1),

and let x := d lnwS, y := d lnwU .

Step 1: Express (x, y) in terms of dY . From (36) and the CES Hicksian elasticities

(31),
dY

Y
= −ρ θU(x− y) =⇒ y = x+

1

ρ θU

dY

Y
. (49)

With dmB = sB dwS = sBwS x, differentiate (33), divide by Y , and substitute (49):

0 = (1− α)
(

aSA
Y
dY + aSA(−ρθSx+ ρθUy)

)
+

sBα

µ

(
1

mB

dY
Y

− sBwS

m2
B
x
)

= (1− α)aSA

[
2
dY

Y
− ρ(1− 2θU)x

]
+

sBα

µ

(
1

mB

dY

Y
− sBwS

m2
B

x

)
. (50)
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Rearranging gives

x = ΛS
dY

Y
, ΛS :=

2(1− α)aSA + sBα
µ

1
mB

(1− α)aSA ρ(1− 2θU) +
sBα
µ

sBwS

m2
B

. (51)

Step 2: Apply the income identity. Divide (38) by Y and use dwS = wSx, dwU = wUy

with (49)–(51). Writing θYi := wiLi

Y
,

(
1− ϑ(ϕ)

) dY
Y

= θYS x+ θYU y − Ξ(ϕ, Y )

Y
dϕ, (52)

and substituting y = x+ 1
ρθU

dY
Y

and x = ΛS
dY
Y

yields

[
1− ϑ(ϕ) − θYS ΛS − θYU

(
ΛS +

1

ρθU

)]
︸ ︷︷ ︸

:= ∆ϕ

dY

Y
= − Ξ(ϕ, Y )

Y
dϕ. (53)

Hence:
dY

Y
= − Ξ(ϕ, Y )/Y

∆ϕ

dϕ,
d lnwS

dϕ
= ΛS

1

Y

dY

dϕ
. (54)

The determinant. Using θYS + θYU = (wSLS + wULU)/Y = 1 − ϑ(ϕ) (free entry and

rebates), (53) can be written as

∆ϕ = (1− ϑ(ϕ)) (1− ΛS) − θYU
ρ θU

. (55)

Proposition 9 (Income and skilled-wage comparative statics). Suppose ∆ϕ > 0 and ΛS > 0.

Then for dϕ > 0,
∂Y

∂ϕ
< 0 and

∂ lnwS

∂ϕ
< 0.

Proof. From (54), Ξ(ϕ, Y )/Y > 0 and ∆ϕ > 0 imply dY/dϕ < 0. Then d lnwS/dϕ =

ΛS(1/Y )(dY/dϕ) < 0 whenever ΛS > 0.

Primitive sufficient restrictions. A convenient set of primitives ensuring ∆ϕ > 0 and

ΛS > 0 is:

(i) Either θU ≤ 1
2

or
(
θU > 1

2
and ρ < ρmax

)
,

(ii) Determinant bound: ΛS +
1

ρ θU
< 1− ϑ(ϕ),
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where (for θU > 1
2
)

ρmax =
α s2B wS

µm2
B (1− α) aSA (2θU − 1)

. (56)

Condition (i) guarantees the denominator of ΛS in (51) is positive (hence ΛS > 0); (ii) is a

conservative way to ensure ∆ϕ > 0 via (55).

Lower bound. Define

ϵϕY := − 1

Y

∂Y

∂ϕ
=

Ξ(ϕ, Y )/Y

∆ϕ

.

Since the wage–price term in (55) is nonnegative, ∆ϕ ≤ 1− ϑ(ϕ) and

ϵϕY ≥ ϵϕY :=
Ξ(ϕ, Y )/Y

1− ϑ(ϕ)
=

F κ(µ)

(F + ϕ)
[
(F + ϕ)− F κ(µ)

] . (57)

Hence ϵϕY is strictly decreasing in ϕ, strictly increasing in κ(µ), and single–peaked in F with

maximizer F ∗ = ϕ/
√

1− κ(µ) .

Upper bound. If there exists Λ < 1 with ΛS ≤ Λ and (1−ϑ(ϕ))(1−Λ) > 1
ρ θU

(positivity

of the denominator), then (55) implies

ϵϕY ≤ ϵϕY :=

Fκ(µ)
(F+ϕ)2

(1− ϑ(ϕ))(1− Λ)− 1
ρ θU

. (58)

When θU ≤ 1
2
, we can use the bound

Λ =
2(1− α)aSA + sBα

µ
1

mB

sBα
µ

sBwS

m2
B

=
mB

sBwS

+
2(1− α)µm2

B

α s2B wS

aSA,

and in the Cobb–Douglas case (ρ = 1), aSA = β/wS gives ΛCD = mB

sBwS
+

2(1−α)β µm2
B

α s2B w2
S

.

Conditions for dY/dϕ < 0 and d lnwS/dϕ < 0 in special cases of ρ.

• Leontief in A (ρ → 0). The denominator of ΛS is dominated by the Sector B term;

ΛS > 0 and (55) reduces to (1 − ϑ)(1 − ΛS) minus a large positive term 1/(ρθU),

so the sign of ∆ϕ is ambiguous. However, whenever ∆ϕ > 0 holds, dY/dϕ < 0 and

d lnwS/dϕ < 0 follow immediately by Proposition 9.

• Cobb-Douglas in A (ρ = 1). Then θU = 1− β, aSA = β/wS, and ρmax simplifies to

ρmax

∣∣∣
ρ=1

=
α s2B w2

S

µm2
B (1− α) β (1− 2β)

.
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If β ≥ 1
2
, the Primitive Sufficient Condition (i) holds automatically; if β < 1

2
, it suffices

that 1 < ρmax.

• Perfect substitutes in A (ρ → ∞). As ρ → ∞, ΛS → 0 and ∆ϕ → 1 − ϑ(ϕ) > 0.

Thus dY/dϕ < 0 and d lnwS/dϕ < 0 unconditionally for sufficiently large ρ.

3.3.4 Access fees: Incidence on the Unskilled Wage

Throughout this subsection set dpX = 0. From (51)–(53)

ΛS =
2(1− α)aSA + sBα

µ
1

mB

(1− α)aSA ρ(1− 2θU) +
sBα
µ

sBwS

m2
B

, ∆ϕ = 1− ϑ(ϕ)− θYS ΛS − θYU

(
ΛS +

1

ρθU

)
.

Define the income semi-elasticity and the skilled-technology threshold:

ϵϕY := − 1

Y

∂Y

∂ϕ
=

Ξ(ϕ, Y )/Y

∆ϕ

, T :=
α

µmB

· sB
wS

· θS
θU

.

Proposition 10 (Unskilled wage response to access fees). Assume sB > 0, σ > 1 (so

µ = σ/(σ − 1) > 1), CES in A with (β, ρ) and ρ > 0, and interior factor shares. Then

∂wU

∂ϕ
> 0 ⇐⇒ ϵϕY < T. (59)

Proof. Differentiate theA-sector factor-balance equations and the income identity (cf. (36)–(38))

with dmB = sB dwS (since dpX = 0). Solving the linear system yields the semi-elasticity (as

in the derivation recorded previously):

∂ lnwU

∂ϕ
=

sB
D

· sB α

µm 2
B

· θS
θU︸ ︷︷ ︸

(i) substitution in B

− ρ

D
· θU · ϵϕY︸ ︷︷ ︸

(ii) income

, D = (1− α) ρ θS +
sB α

µmB

· sB
wS

> 0. (60)

Since wU > 0, sign(∂wU/∂ϕ) = sign(∂ lnwU/∂ϕ). Setting (60) to zero and solving for ϵϕY
gives ϵϕY = α

µmB

sB
wS

θS
θU

= T , establishing (59).

Interpretation. Term (i) in (60) captures the reallocation toward A when higher ϕ tightens

entry and contracts B; this pushes up wU . Term (ii) reflects the reduction in domestic

rebates FN ; a larger ϵϕY pulls wU down. The sign turns on which effect dominates.
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Bounds and one-sided conclusions. Since the GE wage–price effect in (53) is nonneg-

ative, ∆ϕ ≤ 1− ϑ(ϕ), yielding the lower bound

ϵϕY ≥ ϵϕY :=
Ξ(ϕ, Y )/Y

1− ϑ(ϕ)
=

F κ(µ)

(F + ϕ)
[
(F + ϕ)− F κ(µ)

] . (61)

Hence a conservative exclusion condition is ϵϕY ≥ T ⇒ ∂wU/∂ϕ ≤ 0. Moreover, ϵϕY is

strictly decreasing in ϕ, strictly increasing in κ(µ), and single-peaked in F (max at F ∗ =

ϕ/
√

1− κ(µ) ).

An upper bound arises if we impose the positivity restriction

(1− ϑ(ϕ))(1− Λ) >
1

ρ θU
for some ΛS ≤ Λ < 1. (62)

Using ∆ϕ = (1− ϑ)(1− ΛS)−
θYU
ρθU

and θYU ≤ 1,

ϵϕY ≤ ϵϕY :=

Fκ(µ)
(F+ϕ)2

(1− ϑ(ϕ))(1− Λ)− 1
ρθU

. (63)

Then ϵϕY ≤ T is sufficient for ∂wU/∂ϕ > 0.

Remark 1 (Primitive bound for Λ). When θU ≤ 1
2
the denominator of ΛS is greater than

the B-sector term, so

Λ =
2(1− α)aSA + sBα

µ
1

mB

sBα
µ

sBwS

m2
B

=
mB

sBwS

+
2(1− α)µm2

B

α s2B wS

aSA

is a convenient primitive upper bound. In the Cobb–Douglas case (ρ = 1), using aSA = β/wS

yields ΛCD = mB

sBwS
+

2(1−α)β µm2
B

α s2B w2
S

.

Corollary 5 (Access-fee incidence on wU : special cases by ρ). Let T = α
µmB

sB
wS

θS
θU

and ϵϕY as

above.

(a) Leontief in A (ρ → 0). D → DL = sBα
µmB

sB
wS

and the income term in (60) vanishes, so

∂ lnwU

∂ϕ
=

sB
DL

· sBα

µm2
B

· θS
θU

> 0 ⇒ ∂wU

∂ϕ
> 0 for any sB > 0.

(b) Cobb-Douglas in A (ρ = 1). With θS = β, θU = 1− β,

TCD =
α

µmB

· sB
wS

· β

1− β
.
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A conservative sufficient condition for ∂wU/∂ϕ ≤ 0 is

ϵϕY ≥ TCD ⇐⇒ Fκ(µ)

(F + ϕ)
[
(F + ϕ)− Fκ(µ)

] ≥ α

µmB

· sB
wS

· β

1− β
.

Under (62) with Λ = ΛCD above, a sufficient condition for ∂wU/∂ϕ > 0 is

ϵϕY =

Fκ(µ)
(F+ϕ)2

(1− ϑ(ϕ))(1− ΛCD)− 1
1−β

≤ TCD.

(c) Perfect substitutes in A (ρ → ∞). D = (1− α)ρ θS +O(1), hence

∂ lnwU

∂ϕ
= − θU

(1− α)θS
ϵϕY +O

(1
ρ

)
.

From (53), ∆ϕ → 1− ϑ(ϕ) > 0, so

ϵϕY →

Fκ(µ)

(F + ϕ)2

1− Fκ(µ)

F + ϕ

=
F κ(µ)

(F + ϕ)
[
(F + ϕ)− Fκ(µ)

] > 0.

Therefore, for large ρ, ∂ lnwU/∂ϕ < 0 and ∂wU/∂ϕ < 0 unconditionally.

Proof of Corollary 5. (a) Take the limit ρ → 0 in (60); since D → DL and ρ/D → 0, the

income term vanishes and the substitution term is strictly positive.

(b) Substitute θS = β, θU = 1 − β in (59) to obtain the CD threshold TCD. The lower-

bound exclusion follows by comparing ϵϕY in (61) to TCD. Under (62) with the primitive ΛCD,

(63) gives ϵϕY , and the sufficiency claim is immediate.

(c) As stated, D = (1−α)ρθS +O(1) makes the substitution term O(1/ρ) in (60). Since

∆ϕ → 1 − ϑ(ϕ) > 0, the limit of ϵϕY is strictly positive, and the leading term − θU
(1−α)θS

ϵϕY
determines the negative sign for large ρ.

3.3.5 Sector B Output and Number of Firms

Decomposition. Using QB = α
µ

Y
mB

and mB = sBwS + pX ,

∂QB

∂ϕ
=

α

µ

∂Y

∂ϕ

[
1

mB

− sBwS

m2
B

ΛS

]
.
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Assuming ∆ϕ > 0 so that ∂Y
∂ϕ

< 0, we have

∂QB

∂ϕ


< 0, if ΛS <

mB

sBwS

(income contraction dominates),

> 0, if ΛS >
mB

sBwS

(unit-cost decrease dominates).

Note. The unit-cost decrease referred to above arises indirectly via the skilled wage: dmB

dϕ
=

sB
dwS

dϕ
= − sBwSΛS

∆ϕ

Fκ(µ)

(F + ϕ)2
< 0 whenever ∆ϕ > 0 and ΛS > 0.

Number of firms. From N = κ(µ)
Y

F + ϕ
,

∂N

∂ϕ
= κ(µ)

(
1

F + ϕ

∂Y

∂ϕ
− Y

(F + ϕ)2

)
< 0 (since ∆ϕ > 0 ⇒ ∂Y/∂ϕ < 0).

Per-firm quantity (always rises under ∆ϕ > 0). With symmetry,

q :=
QB

N
=

α
µ

Y
mB

κ(µ) Y
F+ϕ

=
F + ϕ

(µ− 1)mB

,

so
∂q

∂ϕ
=

1

(µ− 1)mB

− F + ϕ

(µ− 1)m2
B

∂mB

∂ϕ
with

∂mB

∂ϕ
= sB

∂wS

∂ϕ
< 0.

Hence ∂q/∂ϕ > 0: the direct (F + ϕ) effect is positive, and ∂mB/∂ϕ < 0 (via ∂wS/∂ϕ < 0

under ∆ϕ > 0,ΛS > 0) amplifies it. Thus QB = Nq can rise even though N falls, if q rises

enough— exactly the case ΛS > mB

sBwS
.

Special cases.

Leontief in A (ρ → 0) : ΛS >
mB

sBwS

⇒ ∂QB

∂ϕ
> 0,

Cobb-Douglas in A (ρ = 1) :
∂QB

∂ϕ
< 0 ⇐⇒ 2 < (2β − 1)

mB

sBwS

(requires β > 1
2
),

Perfect substitutes in A (ρ → ∞) : ΛS → 0 ⇒ ∂QB

∂ϕ
< 0 (unconditionally).

3.4 Adoption Frontier

Consider an AI equilibrium (Z, ϕ, pX) (using (25) and (22)). A single deviator (no adoption,

hence no access fee) uses the baseline technology that employs both factors. Let (s0, u0)

denote the baseline (non-AI) unit inputs; the deviator’s marginal cost is

mdev = s0wS + u0wU , (64)
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with (wS, wU) evaluated at the AI equilibrium. Under CES, the “no-deviation” condition

πdev ≤ 0 reduces to the adoption cap

pX ≤ mdev

(
F

F + ϕ

) 1
σ−1

− sB wS, (65)

which defines a downward-sloping frontier pX,max(ϕ).

Monotonicity of the cap in ϕ Differentiating (65) holding the AI-equilibrium wage vector

fixed for the local comparison gives

dpX,max

dϕ
= − 1

σ − 1
mdev

(
F

F + ϕ

) 1
σ−1 1

F + ϕ
< 0, (66)

so the adoption cap is strictly decreasing in ϕ.

3.4.1 Joint optimality on the adoption frontier (CES): theorem and primitives

We study the constrained profit maximization problem

max
ϕ≥0, pX≤pX,max(ϕ)

Π(ϕ, pX) with Π(ϕ, pX) = ϕN(ϕ, pX) + pX QB(ϕ, pX),

where pX,max(ϕ) is the adoption cap from (65) and, under CES, µ = σ/(σ − 1) is constant,

κ(µ) = µ−1
µ
α.

Standing assumptions.

(A1) (CES, interior) Inside B: CES with elasticity σ > 1; in A: CES unit cost (30) with

ρ > 0 and 0 < β < 1; adoption requires sB > 0 (cf. (22)). Factor endowments (LS, LU)

and primitives (α, F ) are strictly positive.

(A2) (Regularity) The equilibrium correspondences (Y,N,QB,mB, wS, wU) are single-valued

and C1 in (ϕ, pX) on the feasible set F = {(ϕ, pX) : ϕ ≥ 0, 0 ≤ pX ≤ pX,max(ϕ)}.

(A3) (Cap monotonicity) The adoption cap is C1 and strictly decreasing: p′X,max(ϕ) ≡
dpX,max

dϕ
< 0 (cf. (66)).

(A4) (Compactness) For any ϕ̄ < ∞, the truncated feasible set {(ϕ, pX) : 0 ≤ ϕ ≤ ϕ̄, 0 ≤
pX ≤ pX,max(ϕ)} is compact.
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Lemma 4 (Profit derivatives under CES). Fix ϕ ≥ 0. With ϵXY ≡ − 1
Y

dY
dpX

≥ 0 and 0 <
dmB

dpX
< 1, the derivative of Π in pX is

dΠ

dpX
= Y

[
− ϵXY

(ϕκ(µ)
F + ϕ

+
α

µ

pX
mB

)
︸ ︷︷ ︸

=: CY (ϕ,pX)

+
α

µ

( 1

mB

− pX
m2

B

dmB

dpX

)
︸ ︷︷ ︸

=: CM (pX)

]
, (67)

and
α

µ

sBwS

m2
B

≤ CM(pX) ≤ α

µ

1

mB

. (68)

Proof. Differentiate Π(ϕ, pX) = ϕN(ϕ, pX)+pXQB(ϕ, pX):
dΠ
dpX

= ϕ dN
dpX

+QB+pX
dQB

dpX
. Using

(28) and (27), we have dN
dpX

= κ(µ)
F+ϕ

dY
dpX

and

dQB

dpX
=

α

µ

(
1

mB

dY

dpX
− Y

m2
B

dmB

dpX

)
.

Collecting terms yields (67). Since (22) and 0 < dmB

dpX
< 1 (cf. (47)), we have

1

mB

− pX
m2

B

dmB

dpX
∈
[ 1

mB

− pX
m2

B

,
1

mB

]
=

[sBwS

m2
B

,
1

mB

]
,

which implies (68).

Theorem 1 (Boundary optimality at the joint optimum (CES)). Under (A1)–(A4), the

constrained problem admits a maximizer (ϕ⋆, p⋆X). Define the boundary objective Π̂(ϕ) ≡
Π
(
ϕ, pX,max(ϕ)

)
and the reduced objective Π̃(ϕ) ≡ max0≤pX≤pX,max(ϕ) Π(ϕ, pX). Then:

(i) (KKT at a maximizer) Any maximizer (ϕ⋆, p⋆X) admits a multiplier λ⋆ ≥ 0 s.t.

∂Π

∂pX
(ϕ⋆, p⋆X)− λ⋆ = 0, (69)

∂Π

∂ϕ
(ϕ⋆, p⋆X) + λ⋆ p′X,max(ϕ

⋆) = 0, (70)

p⋆X ≤ pX,max(ϕ
⋆), λ⋆ ≥ 0, λ⋆

(
pX,max(ϕ

⋆)− p⋆X
)
= 0. (71)

(ii) (Boundary iff condition) (ϕ⋆, p⋆X) is binding (p⋆X = pX,max(ϕ
⋆)) if and only if

∂Π

∂pX

∣∣∣∣
(ϕ⋆, pX,max(ϕ⋆))

≥ 0 ⇐⇒ ∂Π

∂ϕ

∣∣∣∣
(ϕ⋆, pX,max(ϕ⋆))

≥ 0, (72)

where the equivalence uses p′X,max(ϕ
⋆) < 0 from (A3).
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(iii) (Boundary selection via the inner problem) Fix ϕ. If p 7→ Π(ϕ, p) is nondecreasing on

[0, pX,max(ϕ)], then the inner maximizer is pinX(ϕ) = pX,max(ϕ) and Π̃(ϕ) = Π̂(ϕ).

(iv) (Boundary optimality at the joint optimum) If ϕ⋆ ∈ argmaxϕ≥0 Π̂(ϕ) and, in addition,

p 7→ Π(ϕ⋆, p) is nondecreasing on [0, pX,max(ϕ
⋆)], then (ϕ⋆, pX,max(ϕ

⋆)) solves the joint

problem.

Outline. Existence follows from (A2)–(A4) and Weierstrass on truncated compact sets. By

standard KKT for a smooth inequality constraint, there is λ⋆ ≥ 0 satisfying (69)–(71). If the

constraint binds (p⋆X = pX,max(ϕ
⋆)), then (69) implies λ⋆ = ∂Π/∂pX

∣∣
frontier

≥ 0; if interior,

λ⋆ = 0 and ∂Π/∂pX(ϕ
⋆, p⋆X) = 0. Combining (70) with p′X,max(ϕ

⋆) < 0 yields the boundary

condition (72). If, for fixed ϕ, the inner map p 7→ Π(ϕ, p) is nondecreasing on [0, pX,max(ϕ)],

the inner maximizer is the boundary pX,max(ϕ); maximizing Π̂(ϕ) over ϕ then delivers the

joint optimum at (ϕ⋆, pX,max(ϕ
⋆)).

Remark 2 (On part (ii)). At a boundary optimum, λ⋆ = ∂Π/∂pX
∣∣
frontier

and (72) is the

boundary FOC using p′X,max(ϕ
⋆) < 0.

We next provide primitive sufficient conditions that guarantee the monotonicity required

in Theorem 1(iii)–(iv), expressed solely in terms of CES parameters and cost-share objects.

Corollary 6 (Primitive sufficient conditions for boundary optimality). Maintain (A1)–(A4).

For a given ϕ ≥ 0, define the worst-case income semi-elasticity bound

ϵXY (ϕ) := sup
p∈[0, pX,max(ϕ)]

ϵXY (ϕ, p). (73)

R(ϕ) :=

sB wS

mB

pX + (µ− 1)mB
ϕ

F + ϕ

∣∣∣∣∣∣∣∣
pX=pX,max(ϕ)

. (74)

If

ϵXY (ϕ) ≤ R(ϕ), (75)

then p 7→ Π(ϕ, p) is nondecreasing on [0, pX,max(ϕ)], hence the inner maximizer is pX,max(ϕ)

and Π̃(ϕ) = Π̂(ϕ). In particular, if ϕ⋆ ∈ argmaxϕ Π̂(ϕ) and (75) holds at ϕ⋆, then (ϕ⋆, pX,max(ϕ
⋆))

solves the joint problem.

Proof. By Lemma 4,

1

Y

dΠ

dpX
= − ϵXY (ϕ, pX) CY (ϕ, pX) + CM(pX) ≥ − ϵXY (ϕ) CY (ϕ, pX) +

α

µ

sBwS

m2
B

.
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For the usage–price shock we have 0 < dmB

dpX
< 1 and dwS

dpX
< 0, hence d

dpX
(pX/mB) > 0 and

d
dpX

(sBwS/m
2
B) ≤ 0. Therefore the right–hand side is minimized at pX = pX,max(ϕ), and we

obtain

1

Y

dΠ

dpX
≥ − ϵXY (ϕ) CY

(
ϕ, pX

)
+

α

µ

sBwS

m2
B

≥ − ϵXY (ϕ) CY
(
ϕ, pX,max(ϕ)

)
+

α

µ

sBwS

m2
B

∣∣∣∣
pX=pX,max(ϕ)

≥ 0,

where the last inequality is exactly (75). Hence dΠ
dpX

≥ 0 on [0, pX,max(ϕ)], so the inner

maximizer is pX,max(ϕ) and Π̃(ϕ) = Π̂(ϕ).

Special cases for substitutability in A (ρ). The boundary condition (75) compares a

worst–case income feedback ϵXY (ϕ) to the technological/market ratio R(ϕ) in (74).

• Leontief in A (ρ → 0). With limited factor substitution in A, the usage–price income

feedback ϵXY is typically larger; thus (75) is harder to satisfy. Boundary optimality can

still hold if R(ϕ) is large (e.g., high sB/wS, low mB, high σ).

• Cobb–Douglas in A (ρ = 1). The criterion (75) applies directly by computing ϵXY (ϕ)

over [0, pX,max(ϕ)] and comparing it to R(ϕ).

• Perfect substitutes in A (ρ → ∞). In the CES A-sector, wage semi-elasticities and

the usage–price income feedback scale as O(1/ρ), hence ϵXY (ϕ, p) → 0 uniformly on

compact feasible sets. Therefore, for sufficiently large ρ, (75) is automatically satisfied

and the inner problem selects the boundary pX,max(ϕ).

Proposition 11 (High–ρ boundary optimality). Fix σ > 1 and ϕ ≥ 0. There exists

ρ̄ < ∞ (depending on primitives and ϕ) such that for all ρ ≥ ρ̄ the inner objective p 7→
Π(ϕ, p) is nondecreasing on [0, pX,max(ϕ)]. Consequently, any joint maximizer satisfies p⋆X =

pX,max(ϕ
⋆).

Proof sketch. For the usage–price shock, the CES A-sector linear system yields wage semi-

elasticities and dY/dpX of order O(1/ρ) (the Sector A determinant is proportional to (1 −
α)ρθS). Hence ϵXY (ϕ, p) = −(1/Y ) dY/dpX = O(1/ρ) uniformly in p ∈ [0, pX,max(ϕ)]. Since

the frontier ratio R(ϕ) in (74) does not scale with ρ through the A-sector elasticities, while

ϵXY (ϕ, p) = O(1/ρ) uniformly in p, choose ρ̄ large enough that supp ϵ
X
Y (ϕ, p) ≤ 1

2
R(ϕ). Then

(75) holds and Corollary 6 implies monotonicity of p 7→ Π(ϕ, p) and boundary selection at

the joint optimum.

Interpretation. Boundary optimality is guaranteed for sufficiently high ρ; at moderate ρ (e.g.,

Cobb-Douglas), it holds whenever the inequality (75) (condition on primitives) is satisfied;
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at very low ρ (Leontief), income feedback can overturn monotonicity unless primitives make

R(ϕ) large.

Comparative statics intuition (all else equal). Boundary optimality is more likely with large

sB/wS (strong cost-share transfer), low mB, high σ (low µ), and smaller ϕ relative to F

(since ϕ/(F + ϕ) increases in ϕ and raises the denominator of R(ϕ)). It is less likely with

large α and high markups (both amplify CY ), or with especially strong income feedback

(large ϵXY ).

3.4.2 Mixed partial inside the frontier (CES): sign and primitives

We show that raising ϕ reduces the marginal profitability of pX under primitive conditions,

so the instruments are local substitutes.

In this subsection, we work in the feasible interior.

Notation. Let ϵXY ≡ − 1
Y

dY
dpX

≥ 0, and write (cf. Lemma 4)

dΠ

dpX
= Y

[
− ϵXY CY (ϕ, pX) + CM(pX)

]
, (76)

CY (ϕ, pX) :=
ϕκ(µ)

F + ϕ
+

α

µ

pX
mB

, CM(pX) :=
α

µ

(
1

mB

− pX
m2

B

dmB

dpX

)
. (77)

Lemma 5 (Markup derivative). With CM(pX) =
α
µ

(
1

mB
− pX

m2
B

dmB

dpX

)
, define

τ :=
dmB

dpX
∈ (0, 1), s :=

∂mB

∂ϕ
< 0 (under ∆ϕ > 0, ΛS > 0).

Then
∂CM
∂ϕ

=
α

µ

{
− s

m2
B

− pX
m2

B

∂τ

∂ϕ
+

2pX
m3

B

s τ

}
,

and
∂CM
∂ϕ

≤ 0 ⇐⇒ ∂τ

∂ϕ
≥ − s

pX mB

(
1− 2pX

mB

τ

)
. (78)

Corollary 7 (Primitive sufficient condition for ∂ϕCM ≤ 0). Let τ = dmB

dpX
∈ (0, 1), s = ∂mB

∂ϕ
<

0, and mB = sBwS + pX . A primitive sufficient condition for ∂CM
∂ϕ

≤ 0 is

∂τ

∂ϕ
≥ 0 and 2pX τ ≥ mB .
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Two facts we use repeatedly:

∂CY
∂ϕ

=
κ(µ)F

(F + ϕ)2
+

α

µ

pX
m2

B

(
−∂mB

∂ϕ

)
> 0, (79)

since κ(µ), F > 0 and, by (80), ∂mB

∂ϕ
< 0.

Finally, with dpX = 0, mB = sBwS + pX and Prop. 9 yield:

∂mB

∂ϕ
= sB

∂wS

∂ϕ
< 0 (whenever ∆ϕ > 0, ΛS > 0), (80)

i.e. the unit cost in B falls as ϕ rises via the GE effect on wS.

Monotonicity of the income feedback. We now give primitive sufficient conditions

under which ϕ makes the usage–price income contraction weakly larger:

∂ϵXY
∂ϕ

(ϕ, pX) ≥ 0.

Lemma 6 (Monotonicity checks). In the CES environment with sB > 0, σ > 1:

(a) Leontief in A (ρ → 0). With fixed proportions in A, higher ϕ raises ϑ(ϕ) and lowers

mB; the usage–price income feedback is nondecreasing in ϕ:
∂ϵXY
∂ϕ

≥ 0 without additional

restrictions.

(b) Cobb–Douglas in A (ρ = 1). A primitive sufficient condition is either β ≥ 1
2
or

s2B α

µ
· w

2
S

m2
B

≥ (1− α) (1− 2β) β. (81)

Under either inequality,
∂ϵXY
∂ϕ

≥ 0.

(c) Perfect substitutes in A (ρ → ∞). As ρ → ∞, the usage–price income feedback

is O(1/ρ) and nondecreasing in ϕ due to the entry term ϑ(ϕ); for sufficiently large ρ,
∂ϵXY
∂ϕ

≥ 0 holds without further restrictions.

Proposition 12 (Mixed partial at an interior usage–price optimizer). Fix ϕ ≥ 0 and sup-

pose p̂X ∈ (0,∞) is an unconstrained interior maximizer of p 7→ Π(ϕ, p). Using (76) and

Lemma 4,
dΠ

dpX
= Y

[
− ϵXY CY + CM

]
,
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and the mixed partial satisfies

∂2Π

∂pX ∂ϕ
(ϕ, p̂X) = Y

{
− ∂ϵXY

∂ϕ
(ϕ, p̂X) CY (ϕ, p̂X) − ϵXY (ϕ, p̂X)

∂CY
∂ϕ

(ϕ, p̂X) +
∂CM
∂ϕ

(ϕ, p̂X)
}
.

(82)

In particular, if

∂ϵXY
∂ϕ

(ϕ, p̂X) ≥ 0 and
(∂τ
∂ϕ

(ϕ, p̂X) ≥ 0 and 2pX τ(ϕ, p̂X) ≥ mB

)
, (83)

then

∂2Π

∂pX ∂ϕ
(ϕ, p̂X) ≤ 0, with strict < 0 if at least one inequality in (83) is strict. (84)

Moreover, ∂CY
∂ϕ

> 0 always holds by (79).

Corollary 8 (Primitive special cases by ρ). Let µ = σ/(σ − 1) > 1, mB = sBwS + pX .

(a) Leontief in A (ρ → 0). If the condition in Corollary 7 holds (i.e. ∂ϕτ ≥ 0 and

2pXτ ≥ mB), then
∂2Π

∂pX ∂ϕ
< 0.

(b) Cobb–Douglas in A (ρ = 1). If either β ≥ 1
2
or the inequality (81) holds, and, in

addition, the primitive condition in Corollary 7 holds (i.e. ∂ϕτ ≥ 0 and 2pX τ ≥ mB

with τ := dmB/dpX ∈ (0, 1)), then
∂2Π

∂pX ∂ϕ
< 0.

(c) Perfect substitutes in A (ρ → ∞). For sufficiently large ρ, the usage–price income

feedback is O(1/ρ) and ∂ϕϵ
X
Y ≥ 0 due to the entry term. If, in addition, the primitive con-

dition in Corollary 7 holds (i.e. ∂ϕτ ≥ 0 and 2pX τ ≥ mB), then
∂2Π

∂pX ∂ϕ
< 0. Moreover,

even if that condition fails, there exists ρ̄ < ∞ (depending on (α, µ, sB, wS,mB, pX , F, ϕ))

such that for all ρ ≥ ρ̄ the mixed partial remains negative.

Interpretation. At an interior pX optimum, the cross-partial in (82) is the sum of: (i) a

negative income-feedback term (Lemma 6), (ii) a negative demand/entry term since ∂ϕCY >

0 (79), and (iii) a markup term. The primitive condition in Corollary 7 (i.e. ∂ϕτ ≥ 0

and 2pX τ ≥ mB) makes the markup term nonpositive, so raising ϕ reduces the marginal

profitability of pX : the instruments behave as local substitutes.
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3.5 Summary: Case of High Sector A Factor Substitutability

For ease of reference, here we summarize the results about the case with high Sector A

substitutability between skilled and unskilled labor. When ρ → ∞, the Sector A determinant

is proportional (1 − α)ρθS, so wage semi-elasticities with respect to usage price fees are,

from (44)–(45), ∂ lnwS/∂pX , ∂ lnwU/∂pX = O(1/ρ) and ∂mB/∂pX → 1. With N ∝ Y we

have ∂ lnY/∂pX < 0 (Corollary 3), and within the regime where AI is adopted, P = Pα
B

implies ∂ lnP/∂pX > 0 and hence ∂ lnU/∂pX < 0 (Proposition 8); moreover the real-wage

derivatives converge to the same constant:

lim
ρ→∞

∂ ln(wS/P )

∂pX
= lim

ρ→∞

∂ ln(wU/P )

∂pX
= − α

mB

.

For changes in access fees, ΛS → 0 and ∆ϕ → 1−ϑ(ϕ) > 0, so ∂Y/∂ϕ < 0 and ∂ lnwS/∂ϕ <

0 unconditionally (Proposition 9); the unskilled-wage incidence reduces to ∂ lnwU/∂ϕ =

− θU
(1−α)θS

ϵϕY + O(1/ρ), and since ϵϕY > 0 for large ρ, also ∂ lnwU/∂ϕ < 0 (Corollary 5).

On quantities, the bracket in ∂QB/∂ϕ = α
µ
∂Y/∂ϕ [ 1

mB
− sBwS

m2
B
ΛS ] converges to 1/mB > 0,

so with ∂Y/∂ϕ < 0 we get ∂QB/∂ϕ < 0 unconditionally. N = κ(µ)Y/(F + ϕ) falls and

q = QB/N = (F + ϕ)/[(µ − 1)mB] rises. On the adoption frontier, p′X,max(ϕ) < 0 holds

for any σ > 1 ((66)), and for sufficiently large ρ the inner usage-price problem is monotone

so the joint optimum lies on the frontier, p⋆X = pX,max(ϕ
⋆) (Proposition 11). Finally, inside

the frontier the mixed partial is negative for large ρ—the first two terms in (82) dominate

and, together with the primitive markup condition of Corollary 7, imply ∂2Π/(∂pX ∂ϕ) < 0

(Corollary 8).

34


	Benchmark: Open Economy, Two Traded Goods
	Setup, accounting, and objects
	Comparative statics
	The introduction of AI and divergence near a reversal
	Output responses in the general comparative statics of usage fees

	Benchmark Model with One Nontraded Good
	Setup and market closure
	Equilibrium
	Comparative statics: entry, reversals, and incidence

	Main Model Analysis
	Primitives, Demand, Markups, and Free Entry
	Welfare Factorization
	Comparative Statics
	Preliminaries.
	Comparative statics of usage fee
	Access fee: Income and Skilled Wage
	Access fees: Incidence on the Unskilled Wage
	Sector B Output and Number of Firms

	Adoption Frontier
	Joint optimality on the adoption frontier (CES): theorem and primitives
	Mixed partial inside the frontier (CES): sign and primitives

	Summary: Case of High Sector A Factor Substitutability


