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Abstract

This paper estimates the exposure of US occupations and industries to emerging digital
technologies and their impact on US commuting zone (CZ) employment. Building upon
the natural language processing approach introduced by Prytkova et al. (2024), we esti-
mate the exposure of O⋆NET-SOC occupations and NAICS industries, thereby extending
the open–access ‘TechXposure’ database to the US context. Using this new data source,
we apply a shift-share design to instrument the CZ exposure to emerging digital technolo-
gies and estimate their employment impact across CZs between 2012 and 2019. We find
that digital technologies have an overall positive net impact on US employment. How-
ever, the impact varies among different worker demographics: while there is a noticeable
decline in employment for core working-age (25–44) and non-college-educated workers
in more exposed CZs, we observe employment increases for younger (16–24) and older
(45–64) workers, as well as for those with a college education.
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1 Introduction
Over the last decades, emergingdigital technologies—includingartificial intelligence (AI), elec-
tric vehicles, drones, the Internet of Things (IoT), and robotics—have transformed the global
economy through widespread digitalization. This profound shift is reshaping the nature of
work, impacting workers in uneven ways. While some workers benefit from enhanced pro-
ductivity and new job opportunities, others face job displacement as their tasks become auto-
mated (Acemoglu and Restrepo 2018). Understanding which occupations and industries are
most susceptible to these changes, and which demographic and skill groups are most vulner-
able is crucial for policymakers to mitigate adverse effects and maximize the benefits of the
ongoing technological change.

In this paper, we estimate the exposure of US industries and occupations to a diverse
array of digital technologies introduced between 2012 and 2021, and evaluate their impact
on employment across commuting zones (CZ). Using the natural language processing (NLP)
methodology developed by Prytkova et al. (2024), we calculate semantic similarities between
patents and the descriptions of industries and occupations from US standard classifications.
This yields exposure scores that quantify the relevance of these 40 digital technologies to in-
dustries and occupations, extending the TechXposure database to the US context. We then
combine this novel data source with US labor market data to estimate the overall effect of dig-
ital technologies on US employment and among different demographic and skill groups.

We start our analysis with a sample of patents identified as core digital inventions that
emerged between 2012 and 2021 in Chaturvedi et al. (2023). These patents are grouped into
40 distinct technologies based on semantic similarities in their titles, following the method-
ology described by Prytkova et al. (2024). This set of technologies captures a diverse array of
digital technologies beyond just AI and robotics, enabling a more precise and interpretable
categorization.¹

We preprocess the textual data frompatents, industries, and occupations to impose a sim-
ilar structure that brings out function-related content. Specifically, we utilize descriptions
from 4-digit NAICS 2007 industries and 8-digit O⋆NET-SOC 2010 occupations. Then, we trans-
form these preprocessed texts into contextual embeddings (i.e., dense vector representations)
using thepre-trainedMPNet v2 sentence transformer (Songet al. 2020). Thismethodof encod-
ing provides a superior capture of semantic meanings compared to traditional bag-of-word

¹Specifically, the set includes technologies such as 3D printing, embedded systems like the Internet of Things
(IoT) and remote monitoring, smart mobility solutions including intelligent logistics and electric vehicles, var-
ious payment systems including mobile payments and e-commerce, digital services such as cloud computing,
workflow management systems, e-learning, and computer vision technologies like neural networks, along with
digital health technologies. Detailed descriptions of these technologies are available in Tables 8 to 10 in the ap-
pendix.
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approaches, which are commonly used in the literature (see Felten et al. 2018, Kogan et al.
2017, Kogan et al. 2019, Webb 2019, Felten et al. 2021, Kelly et al. 2021, Autor et al. 2024).² We
compute the cosine similarity between each patent–industry and patent–occupation pair of
embeddings, while filtering out any irrelevant or mistaken connections (false positives). Fi-
nally, we aggregate these exposure scores from the patent level up to the technology level,
weighting each patent by the number of citations it received relative to the total number of
citations all patents filed in the same year received, and adjusting for the right skewness of the
exposure scores.

Our methodology generates estimates of exposure to 40 digital technologies introduced
between 2012 and 2021 for each of the 1,110 8-digit O⋆NET-SOC 2010 occupations and 324
4-digit NAICS 2007 industries. These exposure scores gauge the relevance of a technology to
an industry or occupation, particularly through its applicability to production processes or
tasks. The identificationof a linkbetweena technologyandan industryoroccupation suggests
potential for adoption, though actual adoptionmaynot yet have occurred. Thus, our exposure
score serves as a proxy for actual adoption.

We present descriptive results regarding exposure scores. For occupations, the highest
exposures are observed in Computer and Mathematics, Office and Administrative Support
(including clerks and salespersons), and Management occupations. We elucidate the reasons
behind their higher exposure by analyzing the most impacted O⋆NET tasks and identifying
the digital technologies most relevant to them. Consistently, the exposure scores of indus-
tries align with those of occupations. Notably, the Information and Cultural Industries; Pro-
fessional, Scientific, and Technical Services; and Administrative and Support Services are the
most exposed 2-digit industries. The first two sectors reflect the significant exposure of IT pro-
fessions, while the latter corresponds to the exposure observed in clerical and sales positions.

Leveraging exposure scores, we estimate the net impact of digital technologies on US em-
ployment across various demographic and skill groups using a long-difference shift-share ap-
proach at the CZ level. We focus on the period from 2012 to 2019, intentionally concluding
before the onset of the COVID-19 pandemic to prevent distortions in our estimates caused
by the pandemic’s economic effects. Accordingly, we recalibrate our exposure scores for this
timeframe.

Our shift-share approach constructs a measure of the digital technology exposure at the
CZ level by combining the share of 2-digit NAICS industries in total employment within each
CZ in 2010, alongside the averaged exposure score of 2-digit NAICS industries to digital tech-

²Contextual embeddings consider the surrounding context of a word, allowing for distinct vector represen-
tations in different texts—a feature not present in bag-of-word methods where each word is consistently repre-
sented by a single vector.
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nologies (i.e., the shock). We posit that our exposure scores are exogenous to local US labor
market dynamics, as they predominantly reflect global innovations not confined to the US—
evidenced by only 36% of our analyzed patents originating from the US. To underscore this
point, we recalculated the shift-share CZ exposure omitting US-origin patents, resulting in
a correlation of approximately 0.99 with the original measure, indicating that these innova-
tions are globally pervasive and unaffected by US-specific local labor market dynamics. Our
methodology aligns with the shift-share approach suggested by Borusyak et al. (2021), which
places the exogeneity condition on the shock rather than the share. We present results using
AKM0 standard errors, following the recommendations of Adão et al. (2019).

The geographical distribution of exposure to digital technologies reveals significant dis-
parities across CZs. Coastal and highly urbanized areas exhibit the highest levels of exposure,
exemplified by cities such as New York City and Boston in the Northeast, and San Francisco
andLosAngeles on theWestCoast. Moderate exposure levels are observed in theMid-Atlantic,
Southeastern, andMidwest regions, representedbycities likeAtlanta, Charlotte, Chicago,Min-
neapolis, and Detroit. These areas balance traditional manufacturing bases with emerging
digital industries. In contrast, the Central and Mountain West regions experience the lowest
exposure, attributed to their rural characteristics and lower population densities.

Our paper presents three main results. First, we identify a positive impact of digital tech-
nologies on the employment-to-population ratio; specifically, a one-standard-deviation in-
crease in CZ exposure results in a 0.67 percentage point (1.1%) increase in this ratio, which
represents our most conservative estimate. This positive effect remains robust when control-
ling for demographic characteristics of the CZ and the inclusion of industry share in the base-
line analysis.

Second, despite the overall positive effect, wefind substantial heterogeneity amongdemo-
graphic groups. Specifically, we observe positive employment effects for young workers (ages
16–24) and senior workers (ages 45–64), while identifying a negative impact for core working-
age individuals (ages 25–44). This suggests that workers in their core working years are most
vulnerable to technological changes, as the obsolescence of existing skills or the automation
of their tasks may diminish their employment opportunities. Moreover, our analysis shows
no significant differences in impact across genders.

Third, we also find evidence of skill-biased technological change attributable to digital
technologies. Examining the variation by educational attainment, we observe a negative im-
pact on workers with a high school education or less, whereas a positive impact is noted for
college graduates. This outcome implies that lower levels of educational attainment may hin-
der workers’ ability to adapt to technological advancements, consequently leading to greater
job displacement.
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This work contributes to the literature on the changing nature of work due to technologi-
cal change. This research advances the understanding of the changing nature of work due to
technological change. A primary contribution of our work is the development of a new open-
access database that quantifies the exposure of industries and occupations to 40 emerging
digital technologies within the US context. These exposure scores are provided at a granular
level, specifically for 4-digit NAICS 2007 industries and 8-digit O*NET-SOC 2010 occupations,
enabling detailed analyses when combined with US labor market data. Previous research
has largely concentrated on computerization (Frey andOsborne 2017), industrial robots (Ace-
moglu and Restrepo 2020), specific applications of AI (Webb 2019, Felten et al. 2021, Felten
et al. 2018), or a broad spectrum of technologies (Autor et al. 2024, Kogan et al. 2017, Kogan
et al. 2017). Our study expands on this existing literature by including awider array of new and
detailed digital technologies, and by providing precise measures of exposure using a state-of-
the-art NLP approach.

Secondly, we contribute to the literature on the impact of digital technologies on employ-
ment, a topic with varied findings in the literature depending on the technology considered.
Acemoglu and Restrepo (2020), focusing on industrial robots, along with Webb (2019) and
Bonfiglioli et al. (2024), who examine AI, report negative impacts on US employment. In con-
trast, Mann and Püttmann (2023) and Autor et al. (2024), who apply broader definitions of
automation technologies, observe overall positive employment effects. Our research, encom-
passing a broad spectrum of digital technologies beyond merely robots or AI, similarly identi-
fies a positive overall impact on employment. Additionally, we note significant heterogeneity
across different age groups and educational levels, indicating the occurrence of skill-biased
technological change consistent with Kogan et al. (2021).

The remainder of the paper is structured as follows. Section 2 outlines the methodology
of Prytkova et al. (2024) and addresses the particularities of the US context, followed by pre-
senting estimates of industry and occupation exposure. Section 3 quantifies the employment
effects of digital technologies across US CZs. Section 4 concludes.

2 Exposure
We replicate the approach developed in Prytkova et al. (2024) to derive the exposure scores for
the US standard classifications of occupations and industries.³

We link technologies to industries and occupations primarily by matching technologies’
functions to industrial processes and occupational tasks respectively using text as data. The

³The original approach was performed on international standard classifications, namely, NACE Rev.2 for in-
dustries and ISCO-08 for occupations.
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underlying idea is to find similarity between useful functions of a technology and functions
performed by capital and labor during production of products and services.

2.1 Data

Digital Technologies. The set of 40 prominent digital technologies is constructed in Pry-
tkova et al. (2024). Eachdigital technology is representedby a semantically-coherent cluster of
patent families. Theoriginal patent sample retrieved from theDerwent Innovation Index (DII)
database comprises documents filed between 2012 and 2021 pertaining to digital automation
of i) process and machine control in physical production sectors like manufacturing, agricul-
ture, mining, and construction, and ii) process and workflow control in services.

In this paper, we estimate the employment impact of the same set of digital technologies
in the United States. Table 1 lists all 40 digital technologies which are further grouped into 9
technology families.

This set of digital technologies covers the entire spectrum from purely intangible, pro-
cess(ing) technologies such as Workflow Management, E-Learning, or Medical Imaging & Im-
age Processing, through hybrid or embedded technologies that comprise both tangible and
intangible components like Internet of Things or Intelligent Logistics, to technologies with
a prominent tangible component, for instance, 3D Printer Hardware, Autonomous Vehicles,
and Industrial Automation.

Alternatively, one can look at these technologies from a generality versus specialization
perspective. Some technologies are rather transversal or application agnostic, for example,
CloudComputing,Machine-Learning&Neural Networks, and Information Processing. Some,
on the contrary, are application- or domain-specific like Online Shopping Platforms, Smart
Agriculture & Water Management, and Health Monitoring.

However, it is crucial to stress that, by construction, the novelty of these technologies re-
sides in their digital automation nature, whether or not digital control is exercised over tangi-
ble capital or intangible processes.

We use patent titles for the calculation of the exposure scores. Each DII patent has a long
title that describes the essence of the invention followed by a concise explanation of its use
and function. We leverage this structure and mirror it in the industrial and occupational de-
scriptions, as detailed in the next paragraphs.

NAICS 2007. We use the North American Industry Classification System (NAICS) 2007 to
represent industries. NAICS underlying construction principle specifically groups industries
based on similarity of their production processes. Given that our task is to measure technol-
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Table 1: List of Digital Technologies

Family Emerging Digital Technology
F1 3D Printing 01 3D Printer Hardware

02 3D Printing
03 Additive Manufacturing

F2 Embedded Systems 04 Smart Agriculture & Water Management
05 Internet of Things (IoT)
06 Predictive Energy Management and Distribution
07 Industrial Automation & Robot Control
08 Remote Monitoring & Control Systems
09 Smart Home & Intelligent Household Control

F3 Smart Mobility 10 Intelligent Logistics
11 Autonomous Vehicles & UAVs
12 Parking and Vehicle Space Management
13 Vehicle Telematics & Electric Vehicle Management
14 Passenger Transportation

F4 Food Services 15 Food Ordering & Vending Systems
F5 E-Commerce 16 Digital Advertising

17 Electronic Trading and Auctions
18 Online Shopping Platforms
19 E-Coupons & Promotion Management

F6 Payment Systems 20 Electronic Payments & Financial Transactions
21 Mobile Payments
22 Gaming & Wagering Systems

F7 Digital Services 23 Digital Authentication
24 E-Learning
25 Location-Based Services & Tracking
26 Voice Communication
27 Electronic Messaging
28 Workflow Management
29 Cloud Storage & Data Security
30 Information Processing
31 Cloud Computing
32 Recommender Systems
33 Social Networking & Media Platforms
34 Digital Media Content

F8 Computer Vision 35 Augmented and Virtual Reality (AR/VR)
36 Machine Learning & Neural Networks
37 Medical Imaging & Image Processing

F9 HealthTech 38 Health Monitoring
39 Medical Information
40 E-Healthcare

Notes: This table lists the 40 digital technologies obtained in Prytkova et al. (2024). For a short description of these
technologies, refer to Tables 8 to 10 in Appendix 4.

ogy’s relevance to production processes and outputs (products or services), this property of
NAICS facilitates matching between digital technologies and industries.
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We select the 4-digit (industry group) as the most disaggregated level for which we esti-
mate exposure scores. The 5-digit level of NAICS represents product and market differentia-
tion, while the 4-digit level focuses on commonalities of production processes across variants
of products or services. For example, wheat, corn, or rice farming all belong to grain farming.
Thus, the functional relevance of digital technologies for industries naturally favors the 4-digit
level.

However, to avoid loosing useful information at the product level, we represent each 4-
digit industry with a composite textual description by combining the 4-digit description with
its nested 5-digit industrial descriptions. Thus, we prioritize functionalmatching of industries
and technologies but account for product and service variety. In sum,weworkwith 324 4-digit
industries represented with composite textual descriptions, replicating Prytkova et al. (2024)
procedure.

O⋆NET-SOC 2010. We use O⋆NET 15.1 taxonomy to obtain detailed task descriptions for
occupations defined in SOC 2010 classification. In general, the SOC system provides a stan-
dardized framework for classifying occupations down to the 6-digit level of disaggregation, i.e.,
Detailed SOC Occupations. In turn, O⋆NET expands SOC occupations by offering in-depth
data on job tasks, skills, and work contexts, adding two more digits of disaggregation down to
the 8-digit level, i.e., O⋆NET-SOC Occupations. In this taxonomy, there are 1110 8-digit occu-
pations mapped to 840 6-digit Detailed SOC occupations.⁴

It is worth noting that, according to the stated classification principles, SOC occupations
are “classified based on work performed and, in some cases, on the skills, education, and/or
training needed to perform the work at a competent level.” (U.S. Bureau of Labor Statistics,
2010, p. xii). This means that the primary grouping principle is the nature of the work per-
formed hence a category can include occupations focused on similar tasks but with different
levels of education and training required. Comparison between European occupational ex-
posure scores obtained in Prytkova et al. (2024) based on ISCO-08 classification and those of
the US based on SOC classification further demonstrates this difference, see Figure 7 in the
appendix.

We estimate the exposure score of 1110 occupations at the 8-digit level. Different bundles
of tasks result in variation between occupations in terms of the functions they perform. Simi-
larly to industries, we measure the relevance of a digital technology to activities and functions
performed by a worker at a given occupation. Given that SOC categories are homogeneous re-
garding the nature of work but not education or skill requirements, we calculate the exposure
scores at the most disaggregated level as it provides greater consistency in education, skill lev-

⁴See O⋆NET-SOC 2010 in https://www.onetcenter.org/taxonomy.html for more details.
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els, andwages within each occupation. Each occupation is represented by textual description
of tasks performed at this occupation, with on average 19.3 tasks per 8-digit occupation.

2.2 Exposure as a Measure of Relevance of a Technology

Construction of Exposure Scores: A Brief Recap. We follow the same method proposed
by Prytkova et al. (2024) to construct the exposure scores. First, we preprocess textual data
of patents, industries, and occupations to impose a similar structure that brings out function-
related content, as detailed in Section 2.1.

Then, we convert the preprocessed texts into contextual embeddings, i.e. dense vector
representations, using the pre-trained MPNet v2 sentence transformer. The advantage of con-
textual or dynamic embeddings lies in encoding the semantic meaning of a word given its
surrounding context; the same word in two different texts has two different vector representa-
tions. Thus, more semantic information is encoded in contextual embeddings than in static
ones. In addition to rich semantic representation of individual documents, the MPNet v2
transformer produces embedding space where distances between document—vectors rep-
resent their semantic (dis)similarity. Thus, documents with similar content are positioned
closely while unrelated documents are distant.

First,wecalculate thecosine similaritybetweeneachpatent–industry andpatent–occupation
pair of embeddings. It represents the cosine of the angle between two vectors, in our case two
embeddings. Therefore, the more similar the description of technology and its function to the
description of production processes or tasks, the higher the cosine similarity. Because each
document—4-digit NAICS industry and 8-digit O⋆NET-SOC occupation—consists of several
sentences, we leverage sentences and produce multiple cosine similarity scores per patent–
industry and patent–occupation pair. This redundancy helps to filter out false links between
invention and industry or occupation (false positives); see Prytkova et al. (2024) for more de-
tails.

Then,weaggregate exposure scores frompatent to technology level. Weweight eachpatent
basedon thenumberof citations it received in a givenyear to reflect variation inpatent impact.
Lastly, weaddupweighted cosine similarity scoresof patents that constitute a technology clus-
ter and correct it for right skewness. Our final exposure score to technology 𝑘 ∀ 𝑘 ∈ [1,40] is
𝑋𝑘

𝑖 for 4-digit NAICS industries and 𝑋𝑘
𝑜 for 8-digit O⋆NET-SOC occupations.

Interpretation. Our exposure scores are the measure of relevance of a technology to an in-
dustry or occupation, primarily via the relevance of its functions to production processes or
tasks. Whenever the link between technology and industry or occupation is detected, it indi-
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cates the potential for adoption, but de facto adoption might not have happened yet. In sum,
our exposure score is a proxy for actual adoption.

Moreover, the exposure score has simultaneously cumulative and dynamic nature. On
theonehand, despite the evolutionof the technology cluster over time, eachpatent’s semantic
content contributes to the aggregate exposure to the technology as awhole. On theotherhand,
any change in functions performed by a technology (expansion or shrinkage), if persists long
enough, will lead to adjustments in technology’s industry or occupation links.

Lastly, the exposure scores are neutral concerning the relationship between technology
and labor, meaning they do not encode whether technology and labor act as complements or
substitutes in the production of products and services.

Weprovide thesedataas anopen–-access resource, the ‘TechXposure’ database. Thedatabase
includes exposuremeasures starting at 8–digit O⋆NET-SOCoccupations and 4–digit NAICS in-
dustries and then at every higher level of aggregation up to the top of its respective taxonomy.
It isworth stressing that aggregation to increasinglybroaderSOCgroupsmaintainshomogene-
ity of task content but entails further dilution of education, skill, and training consistency for
reasons discussed in Section 2.1.

2.3 Descriptives

SOC/O⋆NET Occupations. We examine the exposure of occupations to all digital technolo-
gies by 2-digit SOC group. The overall exposure of an occupation 𝑜 is defined as its average
exposure across all 40 digital technologies: 𝑋𝑜 = 1

40 ∑𝑘 𝑋𝑘
𝑜 .

Figure 1 shows the distribution of exposure of 8-digit occupations grouped by their re-
spective 2-digit SOC major groups. Each boxplot corresponds to a 2-digit SOC group and
comprises overall exposure scores of all 8-digit occupations in a given group. Because 2-digit
SOC groups comprise mixed education and skill levels as discussed in Section 2.1, Figure 1
helps identify domains of work that are exposed to digital technologies rather than skill-based
groups.

To gain additional insights, we combine results from Figure 1 with Table 2 that lists the
top-10 most exposed tasks by 2-digit SOC group. We represent tasks as verbs used in O⋆NET
description of an occupation. The lists of top-exposed tasks include tasks regardless of how
frequently they arementioned in theO⋆NETdescription; only the semantic similarity between
a verb–task and a technology’s function defines the list.

Not surprisingly, we observe that the Computer and Mathematics occupation group (15-
0000) is themost exposed to digital technologies. This group contains occupations that create
new digital technologies as well as themselves can be subject to digital automation due to the
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Figure 1: Distribution of O⋆NET-SOC 2010 Occupation Exposure to Digital Technologies

Notes: This figure presents the distribution of exposure of 8-digit O⋆NET-SOC occupations to all digital technologies. Occupations with
8-digit codes are assigned to their corresponding 2-digit SOC groups, with each group displayed in its own separate boxplot. Vertical bars
indicate themedian exposure among 8-digit occupationswithin the same 2-digit group, and diamond points represent the average exposure
for these 8-digit occupations.

highly-codified, algorithmic nature of work. The tasks performed by this occupation group
can be routine and non-routine which might contribute to high heterogeneity of exposure
within this group. Workers in these occupations are tasked to develop, implement and analyze
an application, solution, technology, measures, policy, process, etc; configure systems, and
equipment; provide technical support, assistance, and training; analyze information, data, or
problem.

The second most exposed occupation groups are Office and Administrative Support oc-
cupations (43-0000) and Sales and Related occupations (41-0000). These groups comprise
various clerks and salespersons working across all sectors. Predominantly, clerks process and
handle information routinelywithin anorganization supporting its operations, while salesper-
sons do sowhile they surveymarkets and liaisonwith a buyer. Themost exposed tasks of each
category corroborate this fact. Clerical exposed tasks are to enter and process various data,
records, and information; receive and record messages, documents, payments, calls, items,
etc.; operate communication and recording equipment and software. Salesperson’s exposed
tasks are to determine sale or contract conditions (amounts, prices, customer’s needs, prod-

10



Table 2: 10 Most Exposed Tasks by 2-digit SOC Occupation Groups

SOC code Title Tasks
11-0000 Management monitor, administer, plan, direct, coordinate, train, de-

velop, execute, position, regulate
13-0000 Business and Financial Operations process, receive, design, arrange, analyze, measure,

implement, develop, maintain, initiate
15-0000 Computer and Mathematical provide, implement, configure, instruct, analyze, spec-

ify, process, develop, evaluate, identify
17-0000 Architecture and Engineering design, document, perform, determine, select, cali-

brate, analyze, modify, maintain, integrate
19-0000 Life, Physical, and Social Science collect, analyze, develop, interpret, program, direct,

maintain, create, merge, adjust
21-0000 Community and Social Service collect, evaluate, identify, provide, collaborate, de-

velop, plan, oversee, instruct, monitor
23-0000 Legal prepare, authorize, issue, use, read, summarize, exam-

ine, retrieve, recommend, enter
25-0000 Education, Training, and Library provide, organize, design, develop, maintain, catalog,

acquire, assess, teach, collaborate
27-0000 Arts, Design, Entertainment, Sports, and Media communicate, edit, plan, set, regulate, control, obtain,

adjust, operate, confer
29-0000 Healthcare Practitioners and Technical operate, enter, position,maintain, develop, plan,mon-

itor, protect, observe, process
31-0000 Healthcare Support deliver, operate, prepare, check, perform, record, ac-

cept, provide, receive, inventory, store
33-0000 Protective Service mark, provide, retrieve, enter, locate, record, check,

identify, monitor, communicate
35-0000 Food Preparation and Serving Related record, take, receive, pack, package, prepare, relay,

cook, place, provide
37-0000 Building and Grounds Cleaning and Maintenance study, cover, lift, push, swing, start, confer, connect,

provide, carry
39-0000 Personal Care and Service plan, operate, select, supervise, compute, start, con-

trol, observe, maintain, establish
41-0000 Sales and Related determine, identify, relay, monitor, obtain, book, gen-

erate, provide, select, explain
43-0000 Office and Administrative Support enter, receive, operate, record, arrange, page, process,

compute, read, inform
45-0000 Farming, Fishing, and Forestry weigh, advise, record, set, operate, monitor, manipu-

late, locate, direct, observe
47-0000 Construction and Extraction install, perform, drive, coordinate, determine, moni-

tor, layout, plan, demonstrate, purchase
49-0000 Installation, Maintenance, and Repair adjust, install, repair, diagnose, maintain, test, in-

struct, set, schedule, mount
51-0000 Production install, set, load, adjust, monitor, operate, select, trans-

fer, implement, apply
53-0000 Transportation and Material Moving communicate, operate, determine, drive, calculate,

park, analyze, regulate, retrieve, report
Notes:

ucts, etc.), identify and monitor new clients, markets, opportunities; relay sale information
back to the firm; monitor sales, performance, equipment, compliance; obtain information,
documentation, permissions, agreements, authorization.

The third most exposed group is Management occupations (11-0000). Managerial roles
involve non-routine cognitive tasks that pertain to direction (administer, direct, develop), over-
sight (monitor, regulate), implementation (plan, execute), andcoordination (coordinate, train)
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Figure 2: Occupation Exposure by Digital Technologies (2-digit SOC 2010)

Notes: Each cell shows the exposure of a 2-digit SOC occupation (row) to a given digital technology (column). Exposure scores below the
80th percentile (0-1.54) are transparent, whereas the four other groups represent respectively the 80th (1.54-2.95), 90th (2.95-3.78), 95th
(3.78-4.72), and 99th (4.72-5.74) percentile of the distribution.

of business operation.
Lastly, we break the overall exposure of 2-digit SOC groups down to the exposure to indi-

vidual digital technologies. Figure 2 plots exposure scores at the intersections of occupation
(rows) and technology (columns) as a heatmap.

Weobserve that themost exposed occupations discussed above—ITworkers, clerks, sales-
persons, and managers—display relevance to a wide range of digital technologies. All other
2-digit SOCgroups showconnections confined to adomain-specific subset of digital technolo-
gies, i.e. transportation occupations to mobility-related technologies, production and main-
tenance workers to tangible manufacturing technologies, healthcare occupations to medical
technologies, art and design professions to social and digital media, etc. Figure 2 provides
further evidence of the domain focus of SOC classification.

NAICS Industries. Analogously to occupations, we analyze the exposure of 2-digit NAICS
industries first to all digital technologies and then proceed to individual technologies break-
down.

Figure 3 shows the distribution of 4-digit industries exposure scores grouped by 2-digit
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Figure 3: Distribution of NAICS Industry Exposure to Digital Technologies

Notes: This figure presents the distribution of exposure to emerging digital technologies across 4-digit NAICS industries, with each 2-digit
industry displayed separately inboxplots. Vertical bars indicate themedian exposure for all 4-digit industrieswithin the same2-digit industry,
and diamond points represent the average exposure for these 4-digit industries.

sector. On average, service sectors are more exposed to digital technologies than manufac-
turing but the most exposed 4-digit industries are located inside the Manufacturing (31-33)
sector. These industries are Computer and Peripheral Equipment Manufacturing (3341) and
Communications Equipment Manufacturing (3342) representing the tangible component of
digital technologies. The software component is represented by the next two most exposed
industries: Data Processing, Hosting, and Related Services (5182) and Computer Systems De-
sign and Related Services (5415).

Unlike occupations, industries show a higher degree of heterogeneity both between and
within 2-digit sectors. This is the result of a single sector encompassing various production
processes along the value chain; digital technologies can be relevant for different processes
and at different stages of the value chain. This contrasts with the SOC taxonomy, which cate-
gorizes occupations into homogeneous groups regarding the nature of work.

However, we can trace similarities with occupation exposure. Information and Cultural
Industries (51) and Professional, Scientific, and Technical Services (54) combinedmirror high
exposure of IT professions. Administrative and Support Services (56) are highly exposed like
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Figure 4: Industry Exposure by Digital Technologies (2-digit NAICS 2007)

Notes: Each cell shows the exposure of a 2-digit NAICS 2007 industry (row) to a given digital technology (column). Exposure scores below
the 80th percentile (0-3.69) are transparent, whereas the four other groups represent respectively the 80th (3.69-4.47), 90th (4.47-5.06), 95th
(5.06-5.99), and 99th (5.99-7.35) percentile of the distribution. Figure ??, in the appendix, presents the same figure at the 2-digit level.

office clerks. Salespersons included in the 2-digit SOC group 41-0000 are scattered across sev-
eral industries: Wholesale Trade (41), Retail Trade (44-45), Finance and Insurance (52), and
Real Estate and Retail and Leasing (53). Management of Companies and Enterprises (55) dis-
plays a similar magnitude of exposure as managerial occupations but a near-zero variation.

Figure 4 shows the decomposition of the overall exposure scores into individual digital
technologies for 2-digit NAICS sectors. We obtain very similar results to Prytkova et al. (2024)
in terms of both pattern and magnitude of industrial exposure because, unlike ISCO and SOC
occupational classifications, NACE and NAICS classifications have similar organization prin-
ciples. Appendix 8 further corroborates this statement.

We observe that the exposure scores follow a diagonal pattern from the top-left to the
bottom-right. Tangible technologies on the left are associated with Agriculture (11), Utilities
(22), Construction (23), and Manufacturing (31-33) sectors. Intangible technologies are rele-
vant for market services like Wholesale (41) and Retail (44-45) Trade, Finance and Insurance
(52), Professional services (54), or Administrative and Support Services (56). Hybrid tangible
and intangible technologies such as Embedded Systems and Smart Mobility are relevant for
industries in between the extremes that operate physical infrastructures such as Transporta-
tion and Warehousing (48-49) and Real Estate, Rental, and Leasing (53). Lastly, public and
social services at the end of the NAICS taxonomy are scarcely exposed to digital technologies.
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3 Empirical Analysis
We estimate the impact of digital technologies on employment in the United States from 2012
to 2019 using a long-difference approach across 741 Commuting Zones (CZ). We start by pre-
senting the CZ labor market data and our empirical strategy. Then, we estimate the baseline
estimate and explore how these impacts vary among different demographic and skill groups.

3.1 Commuting Zone (CZ) Level Data

We use data from the American Community Survey (ACS) to obtain demographics and em-
ployment information at the county level (FIPS). We then aggregate these data to the CZ level
using the crosswalk from FIPS areas to CZs from Dorn (2009).⁵

For demographic data used as control variables, we calculate the following characteristics
for CZs in the baseline year of 2010: population, female population share, elderly population
share (age 65 and above), high school graduate share, and college graduate share. It is impor-
tant to note that the ACS data for educational attainment applies only to individuals aged 25
to 64.

Our main outcome variable is the change in the employment-to-population ratio, com-
puted as the change in the ratio of employed individuals to the total population in each com-
muting zone. Additionally, to assess changes in employment among demographic and skill
groups, we calculate this ratio for specific categories including gender, age groups, and edu-
cational levels ranging from less than high school to bachelor’s degree or higher.

3.2 Empirical Strategy

We estimate the impact of digital technologies that emerged between 2012 and 2019 on the
employment-to-population ratio over the same period using a shift-share approach in long-
difference.

We construct a measure of digital technology exposure for each commuting zone 𝑐 such
that:

𝑋𝑐 = ∑
𝑗

𝑙𝑐𝑗𝑋𝑗, (1)

⁵Instead of using the Quarterly Census of Employment and Wages (QCEW), which provides more granular
3-digit NAICS level data but requires county-level employment imputation, we opt for ACS data. The ACS offers
complete and consistent data across sources, whereas QCEW data often lacks values for key industries, with
missing data distribution across counties (and consequently, CZs) correlating strongly with population size and
digital technology exposure. This non-randomness of missing data is problematic for analysis.
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Table 3: Average Employment Shares in 2010 and Exposure (2012–2019) by Industry

Emp. Share
NAICS Industry Mean SD Shock

11 Agriculture, Forestry, Fishing and Hunting 1.4 4.1 0.3
21 Mining, Quarrying, and Oil and Gas Extraction 0.5 2.1 0.2
22 Utilities 0.9 0.1 1.2
23 Construction 7.1 2.1 1.0
31-33 Manufacturing 11.0 23.1 2.8
41 Wholesale Trade 3.0 0.4 1.9
44-45 Retail Trade 11.5 1.4 2.2
48-49 Transportation and Warehousing 4.2 1.1 2.2
51 Information and Cultural Industries 2.3 0.6 3.7
52 Finance and Insurance 4.9 2.9 1.9
53 Real Estate and Rental and Leasing 2.0 0.4 2.5
54 Professional, Scientific and Technical Services 6.2 6.9 3.2
55 Management of Companies and Enterprises 0.1 0.0 0.7
56 Administrative and Support, Waste Management and Remediation Services 4.0 0.7 3.2
61 Educational Services 9.2 3.6 1.7
62 Health Care and Social Assistance 12.9 4.4 1.2
71 Arts, Entertainment and Recreation 2.0 0.9 0.9
72 Accommodation and Food Services 6.8 2.1 1.7
81 Other Services (except Public Administration) 4.9 0.3 1.9
91 Public Administration 4.9 4.6 0.6
Notes: This table presents the average employment shares in 2010 by 2-digit NAICS industry, which is averaged across all the CZs, and the average
exposure to digital technologies which is the shock in the shift-share. CZs are weighted by population in 2010. The first column indicates the 2-digit
NAICS codes, the second column is the name of the NAICS industry, the third column is the average employment share in 2010, the fourth column gives
the standard deviation (SD), and the fifth column corresponds to the industry exposure to digital technologies.

where 𝑙𝑐𝑗 is the employment share of industry 𝑗 in CZ 𝑐 and 𝑋𝑗 = 1
40 ∑𝑘 𝑋𝑘

𝑗 is the average
exposure score across all digital technologies for the 2-digit NAICS industry.

Table3 shows theaverageemployment sharesby industry in2010across commuting zones,
alongside the shocks, which reflect the average exposure scores. This table highlights the pri-
mary sources of variation in our shift-share instrument. Three industries have an average em-
ployment share above 10%: Manufacturing (31-33) with a notably high exposure score of 2.8
and a standard deviation (SD) of 23, indicating significant employment differences between
CZs; Retail Trade (44-45), which also shows considerable exposure (score of 2.2) but with less
variation acrossCZs (SDof 1.4) due to its proportional relation topopulation andemployment
size; and Health Care and Social Assistance (62), which, despite being more heterogeneous
across CZs (SD of 4.4), has a lower digital technology exposure with an average shock of 1.2.

The three industries most exposed to digital technologies are Information and Cultural
Industries (51) with an average shock of 3.7, Scientific and Technical Services (54) with an av-
erage shock of 3.2, and Manufacturing (31-33) with an average shock of 2.8. Although the first
two industries experience the largest shocks, they have relatively small employment shares.
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Notably, there is greater heterogeneity across CZs in the share of Scientific and Technical Ser-
vices compared to Information and Cultural Industries.

The main sources of variation in the shift-share variable stem from industries that either
have large—sometimesheterogeneous—employment shares acrossCZsor arehighly exposed,
thereby experiencing significant shocks.

We argue that the industry exposure to digital technologies, 𝑋𝑗, representing the shock
in our shift-share design, is quasi-exogenous to employment changes at the US CZ level. Our
exposure scores are based on the semantic similarity between patents and NAICS industry
descriptions. Notably, only 36% of the patents in our sample are US-based, suggesting that
the advancement of these technologies is predominantly a global phenomenon. Furthermore,
although we use US standard classifications for industry descriptions, these are generally not
US-specific, as similar industries exist globally. The uniformity of industry descriptions across
countries implies that global technological trends are not uniquely driven by US local labor
market characteristics.

To reinforce our point, we recalculate the exposure scores after excluding USpatents from
the patent sample, denoted as 𝑋𝑗. We then recalculate our shift-share CZ exposure using
global (non-US) exposure, 𝑋𝑐, according to Equation (1). In our empirical specification be-
low, we use 𝑋𝑐 to instrument the US exposure shift-share 𝑋𝑐.

Since our exogeneity condition is derived from the shock rather than the share, we rely on
the equivalence result of Borusyak et al. (2021) to define our identifying assumptions. First,
we assume that shocks are quasi-randomly assigned to industries, implying that local CZ em-
ployment dynamics in the US do not influence the relevance of technologies to industries as
expressed by 𝑋𝑗.

Second, we assume that CZs more exposed to these technologies are not disproportion-
ately affected by other labormarket shocks or trends, and that the number of observed shocks
is sufficiently large. Concerning this latterpoint, a commonstatistic reported is theHerfindahl–
Hirschman Index (HHI) of average shock exposure, calculated as ∑𝑗 𝑙2𝑗 = 0.077, where 𝑙𝑗 is the
average employment share in industry 𝑗 in 2010 across all CZs, as reported in Table 3.

Figure 5 shows the geographic distribution of CZ exposure to digital technologies (2012–
2019). The figure highlights significant disparities in digital technology exposure, with coastal
andhighly urbanized areas showing thehighest levels. In theNortheast, extending fromWash-
ingtonD.C. toNewYork City and Boston, the darkest red shades indicate the highest exposure.
This region is densely populated and hosts a concentration of finance and technology indus-
tries, a characteristic mirrored by similar high-exposure areas on the West Coast. Urban cen-
ters such as San Francisco, Seattle, and Los Angeles are also marked in dark red, underscoring
their roles as technology hubs, particularly the Silicon Valley near San Francisco.
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Figure 5: Geographic Distribution of CZ Exposure to Digital Technologies (2012–2019)

Notes: This figure illustrates the geographic distribution of exposure to digital technologies for Commuting Zones (CZ). CZ exposure is con-
structed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. CZ are categorized into deciles. CZ are shaded according to their exposure level, with the legend indicating
the range of exposure.

Moderate exposure levels, depicted in mid-range red tones, appear in the Mid-Atlantic
and Southeastern states, encompassing cities like Atlanta and Charlotte, along with parts of
Florida. The Midwest, which includes cities such as Chicago, Minneapolis, and Detroit, also
shows moderate exposure. This is attributed to a mix of traditionally high manufacturing
shares and the increasing influence of digital-intensive industries.

Conversely, CZs in the Central andMountainWest regions, including Wyoming, Montana,
and parts of Nebraska, display the lowest exposure levels due to their rural nature and lower
population densities. Similarly, areas in the Deep South, such as Mississippi, Arkansas, and
Alabama, also exhibit low levels of exposure to digital technologies.

Texas andCalifornia display awide spectrumofCZ exposure, inwhichurban areas such as
Dallas, Houston, and Los Angeles feature high levels of digital technology exposure, whereas
more rural regions like West Texas and California’s Central Valley show significantly lower lev-
els. Transitional zones, where exposure shifts from high in urban centers to moderate or low
in rural outskirts, are also observed around major inland cities like Denver and Phoenix.

These patterns highlight the importance of demographic characteristics, such as popula-
tion density, in CZs as key confounding factors that should be controlled for in the regression
framework outlined below. Additionally, they underscore the necessity of including state fixed
effects when estimating the relationship with employment changes.
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Toaccount for thesepotential confounding factors related todemographic characteristics,
we estimate the following empirical specification:

Δ𝑌𝑐 = 𝛼+𝛽𝑋𝑐 +𝑍𝛿 +𝜙𝑑(𝑐) +𝑢𝑐, (2)

where Δ𝑌𝑐 is the change in the employment to population ratio (in pp.) for CZ 𝑐 between
2012 and 2019, 𝑋𝑐 is the CZ exposure to digital technologies, as defined in Equation (1) and
standardized, 𝑍 is a set of covariates which capture regional characteristics (including the log-
arithm of the population, the proportion of females, the proportion of the population aged
over 65, the share of high school graduates, and the share of college graduates), 𝜙𝑑(𝑐) repre-
sents state fixed effects, and 𝑢𝑐 is the error term.

Our coefficient of interest in this specification is ̂𝛽. Since exposure is standardized across
CZs, we interpret our coefficient as the effect of a one-standard-deviation increase in CZ ex-
posure on the employment-to-population ratio, expressed in percentage points. Following
recent literature on shift-share designs, we report AKM0 shift-share standard errors, which
account for arbitrary cross-regional correlation in the regression residuals Adão et al. (2019).

3.3 Relationship between Exposure and Employment

Figure 6 shows the relationship between the change in the employment-to-population ratio
and exposure to emerging digital technologies across CZs between 2012 and 2019. Each point
on the plot represents a CZ, weighted by its population size in 2010, with the horizontal axis
measuring exposure to digital technologies and the vertical axis showing the change in the
employment-to-population ratio in percentage points.

We observe a positive correlation, as depicted by the solid line, indicating that greater ex-
posure todigital technologies is associatedwith an increase in the employment-to-population
ratio over the period. This positive correlation persists, though at a smaller magnitude when
considering unweighted observations, as shownby the dashed line. The largestUS cities, such
as San Francisco, New York, and Detroit, appear to be among the most exposed commuting
zones, exhibiting, on average, positive changes in the employment-to-population ratio.

We estimate the instrumental variable shift-share approach described in Equation (2) in
which we instrument the CZ exposure to digital technologies 𝑋𝑐, with its world counterpart
which the CZ exposure calculated only with patents from other countries, that is, 𝑋𝑐. Table 4
reports the results.

Column (1), which includes only state fixed effects, shows that exposure to digital tech-
nologies positively impacts the employment-to-population ratio, with an estimate significant
at the 1% level. A one-standard-deviation increase in CZ exposure corresponds to a 0.94 per-
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Figure 6: Change in Employment-to-Population Ratio and Exposure to EmergingDigital Tech-
nologies

Notes: This figure shows the relationship between the change in the employment-to-population ratio and the exposure to emerging digital
technologies in US Commuting Zones (CZ) between 2012 and 2019. Each point represents a CZ. The size of the point is proportional to
the population in 2010. The horizontal axis measures the exposure to emerging technologies calculated by the shift-share method, while
the vertical axis represents the change in the employment-to-population ratio in percentage points (pp.). The solid line indicates a positive
correlation between regional exposure to emerging technologies and employment growth. The dashed line represents the same correlation
when observations are unweighted. The grey shaded area indicates the 95% confidence interval.

centage point (pp.) change in the employment-to-population ratio. This finding indicates a
robust positive relationship between digital technology and employment in a basic specifica-
tion that includes only state fixed effects.

As demographic controls are introduced in column (2), the coefficient decreases to 0.67
yet remains positive and significant. This decrease suggests that part of the initially observed
effect can be attributed to the demographic characteristics of the CZ. This is the most conser-
vative estimate of the impact of digital technologies on the employment-to-population ratio,
indicating that a one-standard-deviation increase in exposure results in a 0.67 pp. change.
Given the average employment-to-population ratio of 0.58 in 2012, this change corresponds
to a 1.1% increase.

In column (3), we introduce the industry share in 2010 as a control to more accurately iso-
late the impact of digital technologies on employment within CZ. This adjustment accounts
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Table 4: Effect of Digital Technologies on US Employment

IV – Dep. var: Δ Emp-to-pop. Ratio (2012-2019) × 100
Weighted Unweighted

(1) (2) (3) (4) (5) (6) (7)
Exposure to Digital Technologies 0.94∗∗∗ 0.67∗∗∗ 0.92∗∗∗ 0.81∗∗ 0.08 0.55∗∗ 0.76∗∗∗

(0.12) (0.11) (0.16) (0.21) (0.16) (0.19) (0.09)
State FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓
Industry share ✓ ✓ ✓ ✓ ✓
Exclude Top 10% Exp. CZ ✓
Exclude Bottom 10% Pop. CZ ✓
Exclude Bottom 20% Pop. CZ ✓
R2 0.57 0.60 0.61 0.49 0.25 0.33 0.41
Adj. R2 0.54 0.57 0.58 0.44 0.18 0.27 0.35
Num. obs. 741 741 741 666 741 666 592
Notes: This table presents the estimates of the effect of exposure to digital technologies on the employment-to-population ratio inUS commuting zones
(CZ) between 2012 and 2019. The exposure to digital technologies is constructed as a shift-share and standardized, while the change in employment-
to-population ratio is expressed in percentage points. Regressions in columns (1) to (4) are weighted by population in 2010 and regressions in columns
(5) to (7) are unweighted. Column (1) includes state fixed effects; Column (2) adds demographics controls in 2010, including the logarithm of the
population, the proportion of females, the proportion of the population aged over 65, the share of high school graduates, and the share of college
graduates; Column (3) adds the share of employment in the industry sector in 2010. Column (4) excludes the top 10% most exposed CZ. Column (5) is
the unweighted regression; Column (6) excludes the bottom 10% most populated CZ in 2010; and Column (7) excludes the bottom 20%. ∗∗∗𝑝 < 0.01;
∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).

for the employment structure andmitigates the influence of sector-specific trends such as rou-
tinization and international trade, which could confound the effect of digital technology ex-
posure. By adding this control, we ensure that our findings capture the direct relationship be-
tween digital technologies and employment outcomes, rather than being artifacts of broader
industrial trends. The coefficient increases slightly to 0.92, suggesting that our estimate re-
mains robust against other labormarket trends predominantly affectingCZswith a significant
industry sector.

In column (4), we exclude the top 10% of commuting zones (CZ) with the highest digital
exposure. This adjustment results in a reduced coefficient of 0.81, which remains positive
and significant, although standard errors have increased. This specification highlights the
substantial influence that highly exposed CZ may have on the overall positive relationship.
Nonetheless, the persistent positive effect, despite the exclusion of these highly exposed ar-
eas including San Francisco, Boston, and Detroit, confirms that the observed relationship is
not exclusively driven by the most digitally advanced CZ.

In column (5), we replicate the specification from column (3) but with unweighted ob-
servations. Thus, we assign equal weight to each CZ regardless of its population size in 2010.
Here, the impact of digital technology exposure on employment becomes statistically insignif-
icant. Columns (6) and (7), which also use unweighted observations but exclude the bottom
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10% and 20% of the least populated CZ, suggest that the insignificance of the unweighted es-
timate arises from CZ with minimal populations. These are effectively outliers, as depicted in
Figure 6. When these outliers are progressively excluded, the coefficients increase, aligning
more closely with those observed in column (3).

3.4 Heterogeneity by Demographic and Skill Groups

Table 5 presents the estimation for the demographic groups, where each column gives the
estimation for a group.

In columns (1) and (2), we find minimal gender differences in the impact of digital tech-
nologies on employment. Both female andmaleworkers show a positive employment impact,
with aone-standard-deviation increase in the employment-to-population ratioby 0.2percent-
age points for females and 0.27 for males, corresponding to increases of 0.75% and 0.94%, re-
spectively. These effects apply to individuals aged 16 to 64, as data on gender breakdown for
older age groups is limited in the ACS data and they constitute a small fraction of employment

Examining age-specific effects, both youth (16–19 years) and young adults (20–24 years)
experience significantpositive impacts,with coefficientsof 0.15and0.12 respectively, as shown
in columns (3) and (4). The youth group shows a notable 7% increase in their employment
ratio—the highest among all age groups—whichmay reflect a rise in part-time and entry-level
job opportunities driven by digital technologies. Similarly, young adults benefit from a 2%
increase in their employment ratio, suggesting that digital technologies likely facilitate labor
market entry after higher education or vocational training by aligning skills with technological
demands.

Conversely, column (5) reveals that the core working-age group (25–44 years) suffers a
significantnegative impact. Aone-standard-deviation increase inCZexposure results ina0.45
percentage point decline (1.7%) in the employment ratio. This indicates that US workers in
this age group are most affected by job displacement, where technological advances demand
higher skill levels, leading to the obsolescence of existing skills or automation of their tasks.

In columns (6) and (7), for older workers aged 45-–54 and 55–-64 years, we see a reversal
of the negative trend observed for the core working-age group. Both age groups show sig-
nificant positive effects from digital technologies, with coefficients of 0.43 and 0.38, respec-
tively. These results suggest that older workers effectively adapt to new technologies, possibly
through skill accumulation and experience that boost employability in a shifting labormarket.
Additionally, their senior positions may shield them from the negative employment impacts
more commonly experienced by non-managerial roles.
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Table 5: Effect of Digital Technologies on US Employment by Demographic Groups

IV – Dep. var: Δ Emp-to-pop. Ratio (2012–2019) × 100
Gender (Y16-64) Age

Female Male Y16-19 Y20-24 Y25-44 Y45-54 Y55-64 Y65-74 Y75+
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Exposure to Digital Technologies 0.20∗∗ 0.27∗∗∗ 0.15∗∗∗ 0.12∗∗ −0.45∗∗∗ 0.43∗∗∗ 0.38∗∗∗ 0.03 0.01∗∗

(0.08) (0.07) (0.02) (0.06) (0.11) (0.11) (0.07) (0.03) (0.01)
Emp-to-pop. Ratio in 2012 0.26 0.28 0.02 0.05 0.25 0.14 0.09 0.02 0.00
Change (in %) 0.75 0.94 7.02 2.02 −1.70 3.01 4.00 1.42 2.64
R2 0.55 0.53 0.41 0.38 0.45 0.75 0.62 0.38 0.20
Adj. R2 0.51 0.49 0.36 0.33 0.41 0.73 0.59 0.33 0.13
Num. obs. 741 741 741 741 741 741 741 741 741
Notes: This table presents the estimates of the effect of exposure to digital technologies on the employment-to-population ratio in US commuting zones (CZ) between 2012 and
2019 by demographic groups. The exposure to digital technologies is constructed as a shift-share and standardized, while the change in employment-to-population ratio is expressed
in percentage points. Columns (1) and (2) correspond to the estimates for female and male workers. Columns (3) to (9) correspond to the estimates for workers by age group.
Regressions are weighted by population in 2010 and include state fixed effects as well as demographic controls (including the logarithm of the population, the proportion of females,
the proportion of the population aged over 65, the share of high school graduates, and the share of college graduates). ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between
parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).
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Table 6: Effect of Digital Technologies on US Employment by Education Groups

IV – Dep. var: Δ Emp-to-pop. Ratio (2012–2019) × 100
Less HS HS Some Coll. Bach.+

(1) (2) (3) (4)
Exposure to Digital Technologies −0.05∗∗ −0.16∗∗ 0.22∗∗ 0.35∗∗

(0.02) (0.06) (0.07) (0.13)
Emp-to-pop. Ratio in 2012 0.04 0.12 0.15 0.17
Change (in %) −1.08 −1.32 1.41 2.05
R2 0.56 0.62 0.47 0.60
Adj. R2 0.52 0.59 0.43 0.57
Num. obs. 741 741 741 741

Notes: This table presents the estimates of the effect of exposure to digital technologies on the employment-to-population ratio
in US commuting zones (CZ) between 2012 and 2019 by education groups (for age group 25–64 years). The exposure to digital
technologies is constructed as a shift-share and standardized, while the change in employment-to-population ratio is expressed
in percentage points. Columns (1) to (4) correspond to the estimates for workers with different levels of education (in order): less
than high school graduate, high school graduate (includes equivalency), some college or associate’s degree, and bachelor’s degree
or higher. Regressions are weighted by population in 2010 and include state fixed effects as well as demographic controls (including
the logarithm of the population, the proportion of females, the proportion of the population aged over 65, the share of high school
graduates, and the share of college graduates). ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived
following the AKM0 inference procedure from Adão et al. (2019).

Lastly, the oldest age groups (65–74 and 75+ years) experience minimal impact from dig-
ital technology on employment, with coefficients of 0.03 and 0.01, respectively, as shown in
columns (8) and (9).

Table 6 presents the estimated impact of digital technologies on employment ratios across
different educational groups, with each column representing a specific education level. Due
to constraints in the ACS data structure, the employment changes reported pertain only to the
core working-age and senior populations, aged 25–64 years.

Digital technologies negatively impact individuals with less than a high school education,
as evidenced by a coefficient of −0.05 in column (1). This finding suggests that lower educa-
tional attainment may limit individuals’ ability to adapt to technological advancements, po-
tentially resulting in job displacement.

The negative impact is more pronounced for those with a high school diploma. A one-
standard-deviation increase indigital technology exposure results in a−0.16percentagepoint
change in their employment ratio, corresponding to a −1.32% change. This significant nega-
tive effect suggests substantial displacement, likely due to the insufficiency of a high school
education to leverage digital skills in the labor market.

Conversely, individualswith somecollege education experiencepositive employment out-
comes from exposure to digital technologies. A one-standard-deviation increase in exposure
results ina0.22 coefficient, corresponding toa1.41% increase in theemployment-to-population
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ratio for this group. This indicates that individuals with some college education possess more
adaptable skills or relevant qualifications that better align with the demands of a technologi-
cally integrated labor market.

Lastly, individuals holding bachelor’s degrees or higher reap the greatest benefits from
digital technologies. A one-standard-deviation increase in CZ exposure leads to a 0.35 per-
centage point rise in the employment-to-population ratio, translating to a 2.05% increase over
the period. This positive impact likely arises from their advanced skill levels and specialized
knowledge, which are highly complementary to digital technologies.

3.5 Timing of the Impact on Employment

A valid concern with using exposure to emerging digital technologies rather than adoption
is the unclear timing of their impact on employment. Consider two sub-periods, 2012–2016
and 2016–2019, during which digital technologies evolve with different vintages. Our current
long-difference specification does not clarify whether the observed employment impacts are
due to the initial vintages in the first sub-period, the later vintages, or a combination of both,
possibly with delays in adopting earlier vintages.

To address this timing issue, we implement an empirical specification that estimates the
impact of digital technologies on the employment-to-population ratio over both sub-periods.
Specifically, we recalibrate the shift-share exposure of CZs for each period 𝑡 = {1,2} as follows:

𝑋𝑡
𝑐 = ∑

𝑗
𝑙𝑐𝑗𝑋𝑡

𝑗,

where 𝑋𝑡
𝑗 is the average exposure score of each 2-digit NAICS industry to all digital technolo-

gies during the period 𝑡.
As expected, 𝑋1

𝑐 and 𝑋2
𝑐 are highly correlated since CZs most exposed between 2012 and

2016 tend to remain highly exposed between 2016 and 2019, reflecting the cumulative devel-
opment of digital technologies. Including both exposure measures in the same specification
would lead to multicollinearity issues. To address this, we calculate the change in exposure
across the periods as Δ𝑋𝑐 ≡ 𝑋2

𝑐 /𝑋1
𝑐 , which reflects the intensification of digital technology

exposure in the second period relative to the first.⁶
Table 7 presents the estimates by sub-periods. Column (1) shows that exposure to digital

technology positively affects the employment-to-population ratio during the first sub-period
from 2012 to 2016. In column (2), we introduce the relative change in exposure between the

⁶Figure 6 in the Appendix shows the correlation between CZ exposures in both periods and the change in
exposure between them.
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Table 7: Effect of Digital Technologies on US Employment by Periods

IV – Dep. var: Δ Emp-to-pop. Ratio × 100
2012–2016 2016–2019 2012–2019

(1) (2) (3) (4) (5)
Exposure P1 (2012–2016) 0.36∗∗ 0.37∗∗ 0.45∗∗∗ 0.82∗∗∗

(0.09) (0.13) (0.19) (0.21)
Exposure P2 (2016–2019) 0.30∗∗∗

(0.08)
Exposure P2/P1 0.01 0.23∗ 0.24

(0.21) (0.16) (0.24)
R2 0.44 0.44 0.56 0.56 0.61
Adj. R2 0.40 0.40 0.52 0.52 0.57
Num. obs. 741 741 741 741 741
Notes: This table presents the estimates of the effect of exposure to digital technologies on the employment-to-population ratio in
US commuting zones (CZ) between 2012 and 2019 by periods. The exposure to digital technologies is constructed as a shift-share
and then standardized, the ratio between exposure over both sub-periods is also standardized, while the change in employment-
to-population ratio is expressed in percentage points. All regressions are weighted by population in 2010 and include state fixed
effects and demographics controls in 2010 (including the logarithm of the population, the proportion of females, the proportion of
the population aged over 65, the share of high school graduates, and the share of college graduates). Columns (1) and (2) focus on the
change in the employment-to-population ratio between 2012 and 2016; Columns (3) and (4) between 2016 and 2019; and Column
(5) between 2012 and 2019. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0
inference procedure from Adão et al. (2019).

first and second sub-periods as a control variable. The associated coefficient is negligible and
statistically insignificant, indicating that the relative changes in exposure during the second
sub-period do not influence employment changes in the first sub-period.

In columns (3) and (4), we examine changes in the employment-to-population ratio over
the second sub-period (2016–2019). Column (3) shows a positive and significant impact of
digital technologies on employment during this period. In column (4), when we include the
lagged exposure from the first sub-period and the relative change in exposure, the lag coeffi-
cient remains positive and significant. Additionally, the coefficient for the intensification of
exposure in the second period (relative to the first) is positive and significant at the 10% level.
This suggests that, on the one hand, CZs with greater relative exposure in the second period
experience employment gains, which indicates CZs catching up; on the other, the impact of
digital technologies persists across periods, as new vintages build upon earlier ones, reinforc-
ing the technological advances of initially highly exposed CZs.

Lastly, column (5) examines the change in the employment-to-population ratio over the
entire period. The coefficient for the change in exposure is positive but not statistically signifi-
cant, suggesting that CZs that became more exposed in the second period did not necessarily
benefit from it. Consequently, the primary impact appears attributable to the first-period ex-
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posure. However, it remains unclear whether the employment effects are due to the initial
period alone or if the second period’s developments in digital technologies also contribute,
building upon the advancements from the earlier period.

4 Conclusion
This paper shows that digital technologies have an overall positive impact onUS employment,
witha1.1% increase in theemployment-to-population ratio followingaone-standard-deviation
rise in digital technology exposure across commuting zones. However, this overall benefit
masks significant heterogeneity among demographic groups. Younger workers (ages 16–24)
andolderworkers (ages45–64) experiencepositive employmentoutcomes,whereas coreworking-
age individuals (ages 25–44) face adverse effects, likely due to the obsolescence of skills and
task automation. Additionally, our results reveal a skill-biased technological change, nega-
tively impacting workers with lower educational levels while benefiting those with college de-
grees. This research highlights the importance of reskilling and upskilling policies for vulner-
able workers, particularly those in core working-age groups and with lower education levels,
who are negatively impacted by digital technologies.

Another significant contributionofourpaper is theexpansionof theTechXposuredatabase
to incorporate U.S. standard classifications, thereby adapting it to the US context. Using the
advanced NLP approach developed in Prytkova et al. (2024), we estimate the exposure of in-
dustries and occupations to digital technologies that have emerged over the past decade at
a very granular level (i.e., up to 4-digit level for industries and 8-digit level for occupations).
These exposure scores capture the relevance of a digital technology to specific occupations or
industries. We believe this enriched dataset offers valuable new avenues for future research,
particularly in exploring the impact of specific digital technologies on US employment and
wages, extending beyond the traditional focus areas like AI and robotics.
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Appendix

Table 8: Description of the Digital Technologies (1/3)

Technology Description

1 3D Printer Hardware Three-dimensional printers and their components, such as printing heads, pens,
nozzles, platforms, and devices for printing, extruding, cleaning, recycling, heat-
ing, and cooling.

2 3D Printing Printing systems for creating three-dimensional objects using a variety of mate-
rials and techniques, like photocuring and powder spreading.

3 Additive Manufacturing Technologies and processes for additive manufacturing, with applications such
as prostheses and building materials.

4 Smart Agriculture & Water
Management

Various Internet of Things (IoT) technologies for intelligent and remote manage-
ment in agriculture, and water and sewage systems.

5 Internet of Things (IoT) Systems and devices interconnected via IoT for data collection, remote control,
and real-timemonitoring indiverse applications, including agriculture, homeau-
tomation, and environmental monitoring.

6 Predictive Energy Manage-
ment and Distribution

A combination of network, data management, and AI technologies for monitor-
ing, distribution, and efficient use of electrical power and energy, including re-
newable energy sources, and for consumption prediction in intelligent power
management.

7 Industrial Automation & Robot
Control

Industrial process automation, including robots, programmable logic controllers,
and related control apparatuses such as remote control and fault diagnosis.

8 Remote Monitoring & Control
Systems

Real-time remote monitoring and management technologies for factories, build-
ingmanagement, warehouses, intelligent homes, disastermanagement, and net-
work security.

9 Smart Home & Intelligent
Household Control

Various IoT technologies for the intelligent control of homes and buildings, in-
cluding household appliances, home environments, and smart home integra-
tions, often utilizing wireless communication and monitoring.

10 Intelligent Logistics A combination ofmonitoring, remote control technologies, data acquisition, and
mobile robot technologies for logistics and delivery applications, including sup-
ply chainmanagement, warehouse operations, package tracking, and courier ser-
vices.

11 Autonomous Vehicles & UAVs Developments in unmanned aerial vehicles (UAVs), drones, and autonomous
driving technologies, with an emphasis on vehicle control, navigation, and sen-
sor integration.

12 Parking & Vehicle Space Man-
agement

Networking technologies for parking management, including systems for moni-
toring available spaces and intelligent parking solutions.

13 Vehicle Telematics & Electric
Vehicle Management

Technologies for intra-vehicle informationmanagement, especially in electric ve-
hicles, including aspects of real-timemonitoring, traffic information, and vehicle
diagnostics.

14 Passenger Transportation Technologies for ride-sharing, taxi hailing, and public transportation reserva-
tions using real-time information, electronic ticketing, and route optimization.

Notes: This table provides descriptions of digital technologies ranging from 1 to 14.
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Table 9: Description of the Digital Technologies (2/3)

Technology Description

15 Food Ordering & Vending Sys-
tems

Wireless infrastructures, encryption, monitoring, and remote control technolo-
gies for food order management, such as automatic vending, self-service order-
ing, meal preparation, and delivery.

16 Digital Advertising Automated tracing and tagging, and AI technologies for digital advertisements,
including targeted delivery on mobile devices.

17 Electronic Trading and Auc-
tions

Online trading platforms, financial instrument exchanges, and auction mecha-
nisms, focusing on real-time bidding, trading, and market data.

18 Online Shopping Platforms Wireless technologies (e.g., RFID and mobile terminals), encryption (e.g.,
blockchain), and AI technologies for e-commerce transactions, and digital tools
related to the purchase, sale, and display of product information, including rec-
ommendation systems.

19 E-Coupons & Promotion Man-
agement

Data management platforms for electronic coupon distribution, management,
redemption, and associated loyalty programs.

20 Electronic Payments & Finan-
cial Transactions

A combination of wireless (e.g., mobile) and encryption (e.g., blockchain) tech-
nologies for processing electronic payments (e.g., credit card transactions) and
interfacing with financial institutions.

21 Mobile Payments A combination of mobile technologies for processing electronic payments.
22 Gaming & Wagering Systems A combination of user interface and data management technologies for gaming,

both online and physical, including gambling and gaming machines.
23 Digital Authentication Encryption and robotic processing technologies for verifying user identities, se-

curing transactions, and safeguardingdata throughvarious authenticationmech-
anisms, such as biometrics and cryptographic methods.

24 E-Learning A combinationof AI anddatamanagement technologies for digital platforms and
systems in education, including teaching, learning, and classroommanagement.

25 Location-Based Services &
Tracking

Technologies that provide location-based content and services, often relying on
global positioning and navigation systems and related communication technol-
ogy.

26 Voice Communication Technologies focusing on voice communication, including communication pro-
tocols and user interfaces.

27 Electronic Messaging Digital communication methods, infrastructure, and user interfaces for services
such as email and conferences.

28 Workflow Management A combination of AI and network technologies for management applications, in-
cluding workflow automation, recruitment, event scheduling, and building and
property management.

Notes: This table provides descriptions of digital technologies ranging from 15 to 28.
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Table 10: Description of the Digital Technologies (3/3)

Technology Description

29 Cloud Storage & Data Security Cloud-based data storage, distributed data management, encryption, and
backup, often integrated with blockchain technology.

30 Information Processing Systems for managing, processing, and delivering data and information across
various domains, potentially including content generation, transmission, and
verification.

31 Cloud Computing Cloud computing and virtual machines, focusing on cloud platforms and re-
source allocation in cloud environments.

32 Recommender Systems Algorithms and systems for providing recommendations and personalized con-
tent delivery based on user behavior, search queries, and similarity metrics.

33 Social Networking & Media
Platforms

User interfaces for online social networking services, content sharing, and rec-
ommendation systems.

34 Digital Media Content Tools and platforms for digital media content creation, management, distribu-
tion, and access.

35 Augmented and Virtual Reality
(AR/VR)

Augmented reality (AR) and virtual reality (VR) models, devices, interfaces, and
experiences, including head-mounted displays and interactions in virtual envi-
ronments.

36 Machine Learning & Neural
Networks

Machine learning training techniques, model architectures, and data processing
for computer vision applications.

37 Medical Imaging & Image Pro-
cessing

Diverse applications for acquiring and analyzing medical images from various
modalities, such as computed tomography (CT), ultrasound, magnetic reso-
nance imaging (MRI), and virtual reality (VR), for purposes including diagnosis,
surgical planning, and the design of prostheses.

38 Health Monitoring Wearable and implantable devices and systems for real-time health monitoring
that track vital signs such as bloodpressure, heart rate, and temperature, coupled
with comprehensive medical data management.

39 Medical Information A combination of data sharing, encryption, and Natural Language Processing
(NLP) technologies for the storage, retrieval, andmanagement ofmedical andpa-
tient information, encompassing electronic medical records, prescription man-
agement, and remote healthcare services.

40 E-Healthcare An integration of data sharing, wireless communication, monitoring, and user
interface technologies for healthcare andhealthmanagement systems, including
those used in hospitals and cloud-based platforms.

Notes: This table provides descriptions of digital technologies ranging from 29 to 40.
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Figure 7: Correlation of Exposure Scores between 2-digit SOC and ISCO Occupational Classi-
fications

Notes: This figure presents the correlation of exposure scores derived using the 2-digit SOC 2010 occupation classification and derived using
the 2-digit ISCO-08 classification.
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Figure 8: Correlation of Exposure Scores between 1-digit NAICS and NACE Industrial Classifi-
cations

Notes: This figure presents the correlation of exposure scores derived using the 2-digit NAICS 2007 industry classification and derived using
the 1-digit NACE Rev.2 classification.
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Figure 9: Correlation of Commuting Zone Exposure Scores Between Periods

Notes: The left-hand side figure illustrates the correlation between the exposure to digital technologies for Commuting Zones (CZ) over the
period 2012–2016 and 2016–2019, and the right-hand side figure shows the correlation between the CZ exposure over the period 2012–2016
and the change inCZexposurebetweenbothperiods, expressed inpercent. CZexposure is constructedas a shift-share variableby interacting
the sectoral employment shares in the baseline year 2010 and sectoral exposure to these technologies from 2012 to 2016 and 2016 to 2019.
Observations are weighted by their population in 2010.
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