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Òscar Jordà†
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Impulse response analysis permeates much empirical macroeconomics research. In 2024 alone,

over 5,000 papers listed in scholar.google.com contain the phrase ”impulse responses” along with

the word ”economics.1” Sims (1980) originally proposed to fit vector autoregressions (VARs) to data

and then to derive the implied impulse response representation. Later, Jordà (2005) proposed using

local projections (LPs) to directly estimate impulse responses instead. In the contribution to this

volume, Montiel Olea, Plagborg-Møller, Qian, and Wolf (2025) clarify the pros and cons of each

approach. They offer practical advice for practitioners in an accessible, yet rigorous manner.

I pretty much agree with nearly all the recommendations and will therefore focus my discussion

on four broader themes: (1) the two contrasting ways to think about impulse responses and their

meaning; (2) whether we should be reporting cumulative response ratios instead of impulse responses;

(3) the implications of choosing the lag length in a VAR versus an LP; and (4) the variance-bias

trade-off between VARs and LPs. However, it is important to be upfront about some main topics left

behind, largely a deeper dive into identification, and more broadly nonlinearities and applications

with panel data. These are meaty topics on their own right, with a large literature dedicated to

each.2

1. What are impulse responses for?

Although Sims (1980) is rightly credited with popularizing impulse response analysis using VARs,

economists have long viewed economies as dynamic systems. For example, Frisch (1933) writes,
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”The majority of the economic oscillations which we encounter seem to be explained most plausibly

as free oscillations. In many cases they seem to be produced by the fact that certain exterior impulses

hit the economic mechanism and thereby initiate more or less regular oscillations.” This language

is clearly reminiscent of the literature on signal processing and understanding this background

clarifies the logic of what Sims (1980) had in mind.

Sims’s work appeared at a time when real business cycle theory (see, e.g. Kydland and Prescott,

1982; Long Jr and Plosser, 1983) and the rational expectations revolution (Lucas, 1976) were taking

hold, planting the seeds for a new generation of models. These models characterized the economic

environment where agents made decisions by taking into account, not just the present but also the

future, while recognizing that the future is uncertain, and that their actions would affect those of

others. This is the essence of dynamic, stochastic, general equilibrium (DSGE) models, arguably the

prevalent paradigm in macroeconomics, and whose particular structure will have a critical influence

on how we estimate VARs, as I discuss below.

A natural approach to evaluate such models presented itself: ”The best descriptive device

appears to be the analysis of the system’s response to typical random shocks.” (Sims, 1980, p. 21). In

other words, impulse responses can be used to trace the propagation of a shock over time generated

by the model. Moreover, to the extent that the approximate linearized solutions of DSGE models

came in the form of systems of stochastic difference (or in continuous time, differential) equations,

further cemented the instinctive approach of using VARs to summarize the stochastic properties of

the data.

Sims, of course, recognized two limitations of this approach: (1) ”The common econometric

practice of summarizing distributed lag relations in terms of their implied long run equilibrium

behavior is quite misleading in these systems” (Sims, 1980, p.20); and (2) that the residuals across

equations where correlated, which hindered causal interpretation of a VAR’s estimates and its

impulse responses. Initially this lead to the practice of ”triangularization,” an early example of

which consists of proposing a Cholesky ordering for the variables in the system. Since then,

several identification approaches have been proposed but the core idea remains: VARs are primarily

estimated to compare the dynamic properties of macroeconomic models against those implied by the

data. Since models have relatively restrictive dynamics compared to the richer dynamics of VARs,

the exercise is best understood as a model-validation approach, rather than a policy evaluation

exercise.

In contrast, LPs where initially conceived as a way to characterize impulse responses without

resorting to a reference model.3 In fact, to understand the logic behind LPs, it is helpful to rely on

another development that was taking hold around the same time as Sims (1980): the introduction of

the potential outcomes paradigm (Rubin, 1974, 1977) and the program evaluation revolution that followed.

The main thrust of this agenda is best encapsulated by (Angrist, 2001): ”...causal relationships

answer counterfactual questions and are therefore more likely to be of value predicting the effects of

3The original title of Jordà (2005) was ”Model-free impulse responses.”
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changing policies or changing circumstances or understanding the past.”

A simple way to motivate the main ideas is as follows. Using capital letters for random variables

and lowercase letters for their realizations, consider a binary policy variable, St ∈ {0, 1}, assigned

at random (these two assumptions are made to simplify the exposition). We are interested in

evaluating the effect of this policy intervention on some outcome, say Yt ∈ R. Denote Y1t as the

potential outcome when St = 1, and similarly, Y0t when St = 0. That is, the data that we observe,

{yt, st}T
t=1, come from a latent mixture given by Yt = Y1tSt +Y0t(1 − St) = Y0t + (Y1t −Y0t)St, where

Y1t and Y0t are not directly observable random variables.

A natural calculation involves comparing the means of the outcome under the following two

scenarios: when there is an intervention (St = 1), versus when there isn’t (St = 0), more specifically:

E[Yt|St = 1]− E[Yt|St = 0] = E[Y1t|St = 1]− E[Y0t|St = 0]

= E[Y1t|St = 1]− E[Y0t|St = 1]︸ ︷︷ ︸
average treatment on the treated

+ {E[Y0t|St = 1]− E[Y0t|St = 0]} ,︸ ︷︷ ︸
bias

(1)

Consider the second line of this expression. The main difficulty in measuring the average treatment
effect on the treated or ATT (as the first term of the decomposition is known) stems from the

fact that the counterfactual average response given by E[Y0t|St = 1] is not directly observable

since Yt = Y1t whenever St = 1 (and similarly when St = 0). When St is randomly assigned,

E[Y0t|St = 1] = E[Y0t|St = 0] and the bias term is therefore eliminated but in practice, identification

will have to be achieved in some manner, whose discussion I leave for another time since Montiel Olea

et al. (2025) also do not discuss identification in much detail either.

Instead of Yt, we could think of comparing Yt+h so that the ATT in my example could be simply

calculated by taking the difference in the sample averages of {yt+h}T−h
t=1 for h = 0, 1, . . . , H depending

on whether st = 0 or 1, say y1(h)− y0(h). And of course, this difference could be articulated as a

regression:

yt+h = αh + βhst + ϵt+h, for h = 0, 1, . . . , H (2)

where α̂h = y0(h) and β̂h = y1(h)− y0(h). Once written in regression form, three natural extensions

immediately come to mind. One is relaxing the assumption that St is binary. Another is the inclusion

of exogenous and predetermined variables, such as lags of the outcome, the intervention, and other

variables, which I collect in the vector Xt. Under the assumption that St is randomly assigned, the

inclusion of these variables does not affect the estimate of the ATT but makes it more efficient. In

more general settings, they play an role in dampening selection concerns and obtaining correct

inference. The final extension, which I will not explore here, is that the regression could be estimated

using instrumental variable methods to allow for a causal interpretation, for example.
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This discussion suggest extending Equation 2 as:

yt+h = αh + βhst + γhxt + ϵt+h. (3)

This is just a linear LP, as originally proposed in Jordà (2005). It suggests that an interesting statistic

of interest is the answer to the question: What is the counterfactual average effect of a policy

intervention on an outcome for the subpopulation of treated observations? Thus, when thinking

about the question in this manner, the natural generalization of Equation 3 is to think more generally

on ways to characterize E[Yi,t+h|St = j,Xt] for i, j ∈ {0, 1}. I will provide a simple example below.

For now, the fact that the particular specification of the LP in Equation 3 coincides with the

impulse response from a VAR is, to some extent, a happy (though not unexpected) ”coincidence.”

This coincidence facilitates deriving many useful statistical properties for this important case, but

it should not be understood to constrain how one should think about LPs and the questions the

researcher wants to answer. Rather, it clarifies the connection between the time series tradition and

the ideas from the program evaluation literature.

In fact, once one realizes that connection, it becomes clear that the goal of the analyst should be

to characterize the conditional mean functions in Equation 1. In particular, Cloyne, Jordà, and Taylor

(2023) make the simplest assumption possible and specify a linear conditional mean function for

the potential outcomes, specifically, E[Yi,t+h|St = j,Xt] = αi
h + γ i

hE[Xt|St = j] for i, j ∈ {0, 1}. It is

clear that Y1,t+h and Y0,t+h are not directly observable so the analyst will typically write down the

difference in conditional means E[Yt+h|St = 1,Xt]− E[Yt+h|St = 0, ,Xt] which from Equation 1 we

know delivers an estimate of the ATT under random assignment. However, given our assumptions,

note that:

E[Yt+h|St = 1,Xt]− E[Yt+h|St = 0, ,Xt] =

E[Y1,t+h|St = 1,Xt]− E[Y0,t+h|St = 0, ,Xt].

Adding and subtracting the counterfactual E[Y0,t+h|St = 1, ,Xt] this expression can be written as:

E[Y1,t+h|St = 1,Xt]− E[Y0,t+h|St = 1, ,Xt] +

E[Y0,t+h|St = 1,Xt]− E[Y0,t+h|St = 0, ,Xt].

Further, since E[Yi,t+h|St = j,Xt] = αi
h + γ i

hE[Xt|St = j] for i, j ∈ {0, 1}, it is easy to see that the
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previous expression becomes:

α1
h + γ1

h E[Xt|St = 1]− (α0
h + γ0

h E[Xt|St = 1]) +

α0
h + γ0

h E[Xt|St = 1]− (α0
h + γ0

h E[Xt|St = 0]) =

(α1
h − α0

h)︸ ︷︷ ︸
βh

+ (γ1
h − γ0

h)︸ ︷︷ ︸
θh

E[Xt|St = 1] + γ0
h(E[Xt|St = 1]− E[Xt|St = 0])︸ ︷︷ ︸

balance

. (4)

The term βh becomes the ATT of interest. A test of the null H0 : γ1
h = γ0

h , or equivalently H0 : θh = 0

becomes a test of symmetry, that is, a test that the controls affect the outcome in the same way

regardless of whether an intervention takes place. A test of the null H0 : E[Xt|St = 1] = E[Xt|St = 0]

becomes a test of balance, that is, a check for potential selection issues that would induce bias in the

causal interpretation of βh. Whenever there is symmetry and balance, the ATT can be obtained with

a usual LP of Equation 3, but otherwise, this will not be the case.

In practice, Equation 4 can be simply estimated by extending the LP in Equation 3 with an

additional interaction term:

yt+h = αh + βhst + γhxt + θhstxt + ϵt+h, (5)

with αh = α0
h, βh = (α1

h − α0
h), γh = γ0

h , and θh = (γ1
h − γ0

h). Several results are worth remarking.

First, note that Equation 5 is linear in parameters and thus can be estimated using least-squares

or instrumental variable (IV) methods. Second, tests of symmetry and balance can be easily

performed using standard asymptotic approximations. Third, even though we have assumed that

the conditional mean function is linear, the impulse response is no longer linear as long as θh ̸= 0.

For any value Xt = x, the impulse response is Rs→y(h) = βh + θhx. Thus, depending on the value

of x, it will attenuate or accentuate the average response measured by βh.

This is just an example of how quickly the departure between LPs and VARs takes place

since, to my knowledge, there is no obvious equivalent way to specify a VAR that would deliver

the counterfactual interpretation of LPs in general. Moreover, note that nothing restricts the

researcher from specifying a more general conditional mean function, i.e., E[Yi,t+h|St = j,Xt] =

m(Yi,t+h, St,Xt;ϕ) for some function m(.) only limited by the practitioner’s imagination and needs.

Here though, it is useful to cite the recent work of Kolesár and Plagborg-Møller (2025), which shows

conditions under which linear methods can nevertheless deliver appropriate estimates of an average

ATT.

Relative to traditional cross-sectional results, there are several details to be ironed out since

the data are a time series. For example, Rambachan and Shephard (2019) rely on an assumption

of no anticipation or non-interference (Cox, 1958; Rubin, 1980). This assumption basically states that

potential outcomes do not depend on future treatment paths. And we usually want to conduct the

analysis by conditioning on past information. A detailed list of these and other assumptions can be
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found in Bojinov and Shephard (2019); Rambachan and Shephard (2019).

I conclude this section by making clear that the previous discussion is not meant to be an

indictment of VARs. Rather, it is meant to highlight that each approach, VARs and LPs, is meant to

address a different type of question. Moreover, the extent to which we are willing to entertain a

data generating process (or DGP) as we do with a VAR, it facilitates the derivation of its statistical

properties. Unlike VARs however, LPs do not propose a time series model meant to approximate the

spectral density of the underlying time series process. They are not generative models but rather

a polyvalent strategy to estimate key statistics of interest. A big swath of the literature, including

to a lesser extent Montiel Olea et al. (2025), juxtaposes VARs and LPs as if in direct conflict, but I

think this is unfortunate as both methods are useful depending on the application. The problems in

economics are too complex and too important to be leaving behind any useful tool.

2. Should we be reporting impulse responses anyway?

Unlike many applied microeconomic studies where interventions or treatments are often (though

not exclusively) one-offs, macroeconomics data is quite different. For example, a monetary shock

generally results, not just in a shift of interest rates on impact, but also in their subsequent evolution.

The implication being that the impulse response reflects how the outcome variable responds to

the shock on impact as well as the subsequent trajectory of interest rates. Or consider the fiscal

multiplier. Ideally we want to measure total dollars gained relative to total dollars spent whenever

the government decides to increase spending. A simple example helps illustrate these observations.

Suppose that data are generated from the following model:St = ρSt−1 + ϵs,t

Yt = βSt + ψYt−1 + ϵy,t

, (6)

where as before, St is an intervention and Yt is the outcome. Note that St is an exogenously

determined, though autocorrelated treatment variable. Yt responds to St with a parameter β but it

also has internal propagation dynamics given by ψ. Though simple, this setup encompasses a wider

class of settings once one views the process for Yt as representing the companion form of a system.

Figure 1 displays the response of Yt to a shock St in panel (a) as well as the response of St to

itself in panel (b). Panel (a) then breaks down the impulse response Rs→y(h) into the response

due to the internal propagation dynamics of Yt, shown as a dashed red line; and the additional

component coming from the persistence in St as subsequent changes in St propagate through the

internal dynamics of Yt. The sum of the two is the usual response, shown as a solid blue line. The

response of St to its own shock is shown in panel (b).

What is the researcher interested in? If the goal is to evaluate the effectiveness of modifications

to the policy variable St, such as when one calculates a fiscal multiplier, it is clear that the usual

representation of the impulse response presented in the solid blue line in panel (a) will overstate
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Figure 1: Decomposing an impulse response

(a) Response of Yt to St
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Notes: The parameter choices of the model are: β = 1, ρ = 0.5, and ψ = 0.75. Panel (a), blue line is the usual
impulse response Rs→y(h) of Yt in response to a shock in St. The dashed dotted line is the response that
results from shutting down the subsequent response of St to its own shock. The shaded blue area represent
the additional response generated by the persistence in St itself. Panel (b) is the response of St to itself,
Rs→s(h). See text.

the effect, an observation made, among others, by Mountford and Uhlig (2009) and Ramey (2011,

2016). Instead one can consider displaying cumulative response ratios, (Nath, Ramey, and Klenow,

2024), which I will denote Ch.

Using Figure 1 as an illustration, the idea is to compare the area under the impulse response in

panel (a) to the area under the impulse response in panel (b) to calculate the overall contribution of
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the shock to the response in Yt relative to the overall change in St. That is:

Ch =
1
h ∑h

j=0 Rs→y(j)
1
h ∑h

j=0 Rs→s(j)
. (7)

Equation 7 can be seen as a ratio of two averages, the average effect of the shock on the outcome up

to period h relative to the average effect of the shock to itself.

How can we estimate Ch? Ramey (2016) and Jordà and Taylor (2025) suggest the following

strategy. First, construct the following auxiliary variables:

yt(h) =
h

∑
j=0

yt+j; st(h) =
h

∑
j=0

st+j.

Next, let zt denote a vector of instrumental variables for st which could simply be st if it is exogenous

itself. Then note the moment condition:

E[zt(yt(h)− Chst(h))] = 0,

which can be estimated by the generalized method of moments (GMM) or by simple ordinary

least-squares (OLS) when st is exogenous and hence zt = st. The advantage of estimating Ch in this

manner rather than estimating the responses first, cumulating them, and then taking the ratio is

that it is much easier to obtain standard errors for Ch. Finally note that if yt and st are expressed in

logs, then Ch can be interpreted similarly to an elasticity.

Like the previous section, it is important to focus on the question that the practitioner is

interested in answering. Here, I show that in some instances, cumulative response ratios may be

a more appropriate statistic than typical impulse responses. Again, local projections make this

transition simpler than deriving the same ratios using a VAR. Thus, to a great extent, presenting

impulse responses to characterize the dynamic properties of the data is heavily influenced by force

of the VAR habit when perhaps other alternatives would, at times, be preferable.

3. DSGE models and lag length choices

Let me return to the idea of comparing DSGE dynamics with those generated by a VAR. In this

section I discuss the tension that exists when choosing the lag length. The discussion will help

readers understand the prescriptions proposed by Montiel Olea et al. (2025) regarding this issue.

I begin by noting that the log-linearized solution to many DSGE models can be cast as a state-

space model (see, e.g. Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson, 2007). In turn,

the VAR representation from this state-space representation is, in most cases, a VAR(∞). For the

purposes of the discussion, assume that this VAR(∞) is invertible so that one can derive the MA(∞)

representation, itself the impulse response representation. Of course, invertibility is not always
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Figure 2: The cumulative response ratio

(a) Response of Yt to St
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Notes: Panel (a) replicates panel (a) in Figure 1. The red area under the dashed response is used in panel (b).
Panel (b) plots the true cumulative contribution of St with a red dashed line and compares it to Ch. See text.

guaranteed as Fernández-Villaverde et al. (2007) and others have argued, but this issue can be tabled

for now.

In finite samples, one cannot estimate a VAR(∞), it has to be truncated at some lag p, which

opens the question, to what extent is a VAR(p) a reasonable approximation to a VAR(∞)? Lewis and

Reinsel (1985) provide a useful result in this respect. Write the VAR(∞) as Yt = A1Yt−1 + . . . + ϵt

where I omit the constant for simplicity. Then, as long as p → ∞ at a rate p3/T → 0 as the sample

size, T, goes to infinity (and other more technical conditions), they show that:

√
T[vec(Â′

1), . . . , vec(Â′
p)− vec(A′

1), . . . , vec(A′
p)] → N (0, Σ∗

a), (8)

where Σ∗
a is the adjusted covariance matrix of the VAR coefficients that takes into account the
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truncation (the formula can be found, for example, in Lütkepohl, 2005).

Next, note that the impulse response (or MA) coefficients are a continuous transformation of the

VAR coefficients and hence, by a version of Slutzky’s theorem (and additional technical conditions),

we have that:

√
T[vec(B̂′

h)− vec(Bh)] → N (0, Σb,h) for h ≤ p,

where again the formula for Σb,h can be found in Lütkepohl (2005). The key takeaways here are

that the truncation lag p has to be chosen at a rate p3/T → 0 and that consistency of the impulse

response coefficients is only guaranteed for horizons smaller than p. This is the key tension. On one

hand, asymptotic normality requires p not to grow too quickly, on the other hand, consistency of

the impulse response coefficients is only guaranteed up to a horizon p.

A simple example clarifies these issues. In a sample of 100 observations and p = 4, the ratio

p3/T is 0.64, indicating that 4 lags may be too many as this ratio is close to 1 and not 0. On the other

hand, restricting the lag length generates bias in the impulse response as the following example

illustrates. Suppose the data are generated by a VAR(∞) but that we truncate at 1 lag (to make the

calculations easier to grasp), then

VAR(∞) VAR(1)
B1 = A1 B∗

1 = A1

B2 = A2
1 + A2 B∗

2 = A2
1

B3 = A3
1 + 2A1A2 + A3 B∗

3 = A3
1

B4 = A4
1 + 3A2

1A2 + 2A1A3 + A4︸ ︷︷ ︸
potential bias from

omitted terms

B∗
4 = A4

1

. . . . . .

(9)

Equation 9 reveals in stark contrast that truncating too soon can generate considerable bias in the

estimation of impulse responses. In settings when more data is available, the previous discussion

suggests that consistency of the impulse response will benefit from specifying longer rather than

shorter lag lengths. Information criteria, a tool often used to determine the lag length in VARs

and specially the Schwartz information criterion (SIC sometimes also referred as the Bayesian

information criterion or BIC), put a strong premium on prediction accuracy, but this is not quite the

right metric to reduce bias.

Thus, specifying VARs with longer lag lengths (if the sample size permits) will reduce bias.

However, the efficiency gains from using a VAR relative to LPs are gradually eroded when specifying

longer lags, as Montiel Olea et al. (2025) show, to the point that either method delivers the same

response and error bands.
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4. The bias-variance trade-off

When it comes to bias, one of the interesting features of LPs is their robustness to lag length

misspecification. The intuition is easy to grasp. Each coefficient estimate is obtained from a different

projection. The extent to which one specifies enough controls to make the residuals more or less

white noise will ensure a low bias estimate. Of course, as Montiel Olea et al. (2025) discuss, one

cannot be entirely careless as adding enough lags is still important.

Under similar conditions as discussed by Lewis and Reinsel (1985) for a VAR(∞), Jordà, Singh,

and Taylor (2024) show that LPs provide consistent estimates of the impulse response at horizons

beyond p, the lag truncation value, as long as hmax (the maximum horizon of the impulse response

being considered) is not too large relative to the sample size.

Figure 3: Example of bias-variance tradeoff between VARs and LPs
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Notes: DGP is an AR(4) with lagged coefficients: ρ1 = 0.3; ρ2 = −0.45; ρ3 = −0.059; ρ4 = 0.042. Thus, the
brown, solid line displays the true impulse response. The blue dashed line and the associated shaded area is
the impulse response from an estimated AR(1) along with the 95% confidence region. The purple, dashed
line and associated purple shaded region show the response calculated with LPs using one lag and their
associated 95% confidence region. See text

Figure 3 provides a visual example of this dichotomy using a simple setup to more easily

visualize the main issue. I simulated an AR(4) model with coefficients: ρ1 = 0.3; ρ2 = −0.45; ρ3 =

−0.059; ρ4 = 0.042. using 1,000 burn-in observations and an estimation sample of 100 observations.
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The figure shows the response estimates from an AR model with one lag versus LPs specified with

one lag. The shaded areas are 95% confidence regions.

Figure 3 makes the point starkly. The AR(1) model is smooth, captures the first horizon almost

perfectly, and has narrow error bands. The LPs capture the first 4 horizons quite precisely, albeit

with wider error bands that get wider at longer horizons. I have generally seen this as a feature, not

a bug. We should be more uncertain about the effect of an intervention in the more distant future,

not less.

Figure 4: The bias-variance tradeoff: OLS vs. IV
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Notes: Solid blue line shows the bias as a function of γ, the dashed red line shows the relative ratio of MSEs
between IV and OLS. See text

This discussion presents practitioners with a choice not altogether unfamiliar. VARs will

generally generate possibly biased responses but with a lower mean-squared error (MSE) than LPs,

which tend to have lower bias, but are less efficient. And this issue is particularly problematic at

horizons larger than the order of the VAR, p. VARs can badly miss features at medium and longer

horizons if the lag length is short, as Figure 3 shows.

These trade-offs are similar to those facing researchers when estimating a regression by OLS

versus IV. Generally, IV results are preferred because we value low bias over efficiency when we are

after causal relations. I am thus left to wonder whether the same philosophy should be applied when

considering whether to estimate impulse responses with a VAR or with LPs. Figure 3 shows that
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the response estimated with the AR(1) returns to zero after about two periods and the uncertainty

vanishes at longer horizons. However, the true response is quite different, after the initial boost from

the intervention, there is a negative response that last about 2-3 periods. The degree of certainty and

the shape of the response of the AR(1) now appear to be quite deceiving.

A simple example illustrates the trade-offs in the OLS vs. IV case as a reminder of the general

standards in applied practice. Suppose the DGP is Y = ψX + ϵ with X = γZ + ϵ. Further assume

that V(Z) = V(ϵ) = 1. In this simple set-up, it is clear that as γ → 0 we have both a weak instrument

problem and higher bias when estimating by OLS. Going the other way, the larger γ is, the stronger

the instrument and the lower the efficiency loss.

Figure 4 showcases these trade-offs by plotting the bias from OLS and the relative MSE of the

IV estimator vs. the MSE of the OLS estimator. Take, for example, γ = 1. The bias is 1/2 but the

OLS estimator is twice as efficient as the IV estimator. For γ = 0.75, the bias is also 0.75 but now

the IV MSE is about 5 times larger than the OLS MSE even though the signal to noise ratio has not

deteriorated that much. In practice, however, this scenario would likely fall into the category of a

”weak” instrument.

5. Conclusion

Montiel Olea et al. (2025) offer 12 lessons summarized into 8 recommendations. First, identification

is separate from the choice of impulse response estimator. I would add, also subject to the object

of interest as Sections 1 and 2 highlight. Not surprisingly, this continues to be an area of active

research.

The next 5-6 recommendations share the same flavor, namely, they are about the tradeoffs

between bias and variance of VARs and LPs. These are valuable and well sourced results that

summarize findings from several well-known papers by the authors. In Sections 3 and 4 I tried

to provide a different angle to put their recommendations in a different context for greater clarity,

rather than to voice disagreement. Along the way, several important topics did not make the cut

such as identification, applications to panel data, nonlinearities and other active areas of research.

For this reason, I look forward to the second installment of the authors’ review of this literature.
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