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Abstract

In a data-driven world, two prominent research problems are record link-

age and data privacy, among others. Record linkage is essential for improving

decision-making by integrating information of the same entities from different

sources. On the other hand, data privacy research seeks to balance the need to

extract accurate insights from data with the imperative to protect the privacy

of the entities involved. Inevitably, data privacy issues arise in the context

of record linkage. This article identifies two complementary aspects at the

intersection of these two fields: (1) how to ensure privacy during record link-

age and (2) how to mitigate privacy risks when releasing the analysis results

after record linkage. We specifically discuss privacy-preserving record linkage,

differentially private regression, and related topics.

Keywords: record linkage, differential privacy, privacy-preserving data min-

ing, data integration, secure multi-party computation, federated learning

1 Introduction

Research in data privacy seeks to balance the need to extract accurate insights from

data for decision-making with the imperative to protect the privacy of the entities

involved. In today’s digital age, the unprecedented volume of data has heightened
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privacy concerns regarding sensitive information such as health records, genomic

data, and Census surveys. The recent implementation of the EU General Data

Protection Regulation (GDPR) underscores the urgent need to enforce robust privacy

protection.

One traditional approach to addressing data privacy issues is through statistical

disclosure control (SDC) or statistical disclosure limitation (SDL), which originated

in official statistics. In computer science, various other privacy frameworks and tech-

niques have emerged, with differential privacy now recognized as the gold standard.

Both SDC and differential privacy have strong statistical foundations and are consid-

ered among the most dominant statistical data privacy frameworks (Slavković and

Seeman, 2023). Notably, the U.S. Census Bureau has recently adopted differential

privacy for its new disclosure avoidance system (U.S. Census Bureau, 2021).

Record linkage, a task with a long history in surveys and censuses (U.S. Census

Bureau, 2022), has also been extensively studied in both statistics and computer

science (Christen, 2012; Binette and Steorts, 2022). Often, data of the same group

of entities are distributed across multiple sources, with unique identifiers unavailable

for precise linkage due to non-existence, measurement errors, or privacy restrictions.

Record linkage, also known as entity resolution or data matching, aims to find records

that refer to the same entity across different data sources. This statistical task has

become increasingly essential for better decision-making in a data-driven world.

Naturally, various privacy concerns arise when record linkage is involved. In

this article, we explore research questions at the intersection of data privacy and

record linkage. There are at least two key facets to consider when connecting these

two fields: (1) how to perform record linkage privately for data sets contributed

by multiple parties, and (2) how to conduct statistical analysis on linked data in

a privacy-preserving fashion. The first facet involves completing the linkage task

without disclosing excessive sensitive information among the different parties. The

second facet ensures that the downstream analyses on the linked data are conducted

privately, regardless of whether the record linkage itself is performed privately. We

refer to the first facet as the primary perspective on record linkage and the second

as the secondary perspective.
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In Section 2, we review record linkage in a non-private setting. In Section 3, we

provide an overview of privacy-preserving record linkage. In Section 4, we discuss

the key challenges in private analysis following record linkage, featuring the recent

advancements in Lin et al. (2024) using differential privacy for this purpose. Lastly,

in Section 5, we briefly cover related topics in privacy-preserving data integration.

2 Record Linkage Overview

Record linkage refers to the task of linking records that refer to the same entity across

different data sources, with lack of unique identifers. The earliest work to formalize

record linkage as a statistical and computational problem is Newcombe et al. (1959).

A seminal contribution by Fellegi and Sunter (1969) laid the probabilistic foundations

for record linkage. With the rise of big data and modern computing, record linkage

has become increasingly indispensable for big data analytics. In the following, we

define the record linkage problem for two data sets, noting that this concept can be

extended to any number of data sets.

2.1 Problem and Strategy

Given are two data sets, A and B, possibly of different sizes, containing information

about the same group of entities. Instead of unique identifiers, quasi-identifiers (e.g.,

name, gender, date of birth) are used to identify the potential matches between the

two data sets. These quasi-identifiers are referred to as linking variables. Figure 1

provides a toy example where first and last names, along with gender, are available

for linkage. Due to possible measurement errors and the non-uniqueness of these

linking variables, the linkage problem becomes probabilistic.

A traditional strategy for record linkage is given by: (1) compare linking variables

to measure the similarity between records in the two data sets; (2) calculate the

probabilities that two records are a match; (3) follow a decision rule to designate

pairs as links and nonlinks; (4) defer decisions for ambiguous pairs to a further

clerical review. In step (1), the similarity or agreement level between records is
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first name last name gender x
Shuron Lin F 1
Erik K M 2
Elliot P M 3
S Li M 4

data set A

first name last name gender y
Shurong Lyn M 2
Eric K M 4
Eliot P M 6
Sharon Li F 8

data set B

Figure 1: A toy example of record linkage with mismatches (dashed links). (Adapted
from Figure 2 in Lin et al. (2024).)

measured using certain metrics. Classic string metrics include Jaro similarity (Jaro,

1989) and Jaro–Winkler similarity (Winkler, 1990). In step (2), the probability that

two given records refer to the same entity is calculated based on the similarity score.

A seminal work by Fellegi and Sunter (1969) proposed the Fellegi-Sunter model,

where the matching probability is derived from the m- and u-probabilities. The

m-probability is the probability of an observation given the records are a match,

whereas the u-probability is the counterpart for non-matches. Formally:m = Pr(Observation | Records match);

u = Pr(Observation | Records do not match).
(1)

Then, in step (3), a decision rule is applied to categorize pairs as links or non-links by

choosing cutoffs for the matching probabilities. For pairs that fall between the cutoffs

for links and non-links, the records can be forwarded for manual clerical review.

In practice, multiple issues arise when performing record linkage. For instance, it

is computationally expensive to compare every possible pair of records between two

data sets. A common technique to address this is blocking, which significantly re-

duces the number of comparisons by only comparing records within the same blocks.

Other challenges include determining the appropriate m- and u-probabilities and se-

lecting the optimal cutoffs for classifying links. In addition, there are alternatives

to the Fellegi-Sunter model. For example, Steorts et al. (2016) proposed a Bayesian

approach, and machine learning models can also be employed for these tasks (Win-
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kler, 2011). We refer interested readers to a comprehensive survey on record linkage

by Binette and Steorts (2022).

2.2 Implications on Downstream Analysis

In most cases, record linkage serves as a preprocessing step, as the ultimate goal is

to combine information from two data sets to enable better analysis. Due to the

probabilistic nature of record linkage, uncertainties are inevitable in downstream

analysis. A naive approach might treat the linked set as accurate and proceed with

standard analysis. However, studies have shown that ignoring linkage errors can

result in substantial bias, even when linkage accuracy is high (Neter et al., 1965;

Scheuren and Winkler, 1993).

In the toy example in Figure 1, simple linear regression is performed after record

linkage. We aim to regress the variable y in data set B on the variable x in data set

A. Prior to regression, linkage variables are used to match records between the two

data sets. The true data set is Dtrue = {(1, 2), (2, 4), (3, 6), (4, 8)}, yielding a slope

estimate β̂1 = 2, while the linked set is given by Dlinked = {(1, 8), (2, 4), (3, 6), (4, 2)},
yielding β̂1 = −1.6. This discrepancy shows that mismatches in the linked data can

even change the sign of the slope estimate. Therefore, it is crucial to accurately

propagate linkage uncertainties to downstream tasks to ensure reliable estimates and

informed decision-making. Statisticians have addressed uncertainty propagation in

various statistical tasks with linked data, such as regression and small area estimation

(Chambers, 2009; Han and Lahiri, 2019; Chambers et al., 2021).

3 Privacy-Preserving Record Linkage

In this section, we discuss the primary perspective on record linkage where privacy

constraints are a major concern during the process. When two sensitive data sets held

by different parties need to be linked, the field of privacy-preserving record linkage

(PPRL) comes into play. PPRL, which sits at the intersection of record linkage

and privacy-preserving data mining (Hall and Fienberg, 2010), aims to mitigate the
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risk of inadvertently disclosing private information. During the linkage process, it is

crucial that non-linked records, which may contain sensitive data, are not revealed

to the other party.

data set A data set B

Encoding/Encryption Encoding/Encryption

Comparison

Classification Clerical review

Links Non-links To be determined

Figure 2: A simplified process of privacy-preserving linking two databases. The
dashed box presents a typical process of record linkage. (Adapted from Figure 3.6
in Christen et al. (2020).)

Figure 2 presents a simplified version of the general process of PPRL with two

data sets. The diagram can include additional steps such as data preprocessing

before linkage, blocking for more efficient comparison, and linkage evaluations. As

indicated, the primary distinction between PPRL and non-privacy record linkage

is the inclusion of an encoding or encryption step before the comparison. Suitable

encoding methods, based on various approaches such as hashing, Bloom filters, secure

multi-party computation, and differential privacy, offer provable privacy (Christen

et al., 2020). These privacy and security techniques, thus PPRL, are extensively

studied in computer science.
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4 Private Analysis of Linked Data

From the secondary point view on record linkage, we focus on incorporating privacy

protection into the downstream analysis after the linkage has been completed as a

pre-processing step. The linkage process itself may or may not be privacy-preserving.

The primary goal of this facet is to mitigate privacy risks when the results of the

analysis based on the linked data are released to certain audiences for decision-

making.

As mentioned in the introduction, differential privacy is now regarded as the gold

standard for statistical releases. Therefore, in the following, we primarily focus on

differential privacy for ensuring privacy protection in the analysis of linked data.

4.1 Differential Privacy

First proposed by Dwork et al. (2006), differential privacy (DP) is a formal mathe-

matical framework designed to ensure privacy when releasing statistical analyses on

sensitive data. Central to DP is the concept of neighboring data sets or neighbors,

which differ by only a single record. The goal of DP is to ensure that outputs, f and

f ′, from any two such neighboring data sets, D and D′, are similarly distributed,

making it difficult to determine which output corresponds to which data set. This

intuition is illustrated in Figure 3, where the random algorithm A satisfies DP by

generating outputs with similar probabilities for any pair of neighboring data sets.

Because the neighboring data sets are arbitrary, a DP algorithm provides privacy

protection for any individual record in the data set.

The privacy protection level of a DP algorithm is quantified by measuring the

distance between the probability distributions of the outputs from D and D′. A

smaller distance indicates higher distinguishability, thus implying a lower privacy

loss, i.e., stronger privacy protection. Mathematical definitions and properties of DP

are detailed in sources such as Dwork and Roth (2014).

To construct differentially private algorithms, independent randomness is intro-

duced in a calibrated manner to mitigate privacy risks. A typical approach involves

injecting random noise into certain phases of data analysis. The amount of noise is

7



Data set D DP algorithm A Output f

DP algorithm AData set D′ Output f ′

“Neighbors”
“Similar

likelihood”

Figure 3: The intuition of differential privacy (DP).

determined by a designated limit for privacy loss (referred to as the privacy budget

in DP) and the specifics of the analysis (referred to as the sensitivity in DP). For

instance, Gaussian noise is a popular choice.

4.2 Differentially Private Regression on Linked Data

Given two data sets that provide the independent variable x and the dependent

variable y, respectively, they share common linking variables Φx and Φy that are

used to perform linkage. Ideally, if no linkage is needed or perfect linkage is feasible,

one would have the data set Dtrue = (x, y), and standard DP regression could be

performed (see, e.g., Sheffet (2017); Wang (2018); Cai et al. (2021)). In the case of

linked data, instead of havingDtrue, we haveDlinked = (x, z), where z is a permutation

of y that depends on the comparison of Φx and Φy. Consequently, implementing DP

for regression on linked data requires a more complex notion of neighboring data

sets than simply swapping a row in Dtrue or Dlinked. In fact, a pair of neighboring

data sets should be defined as D = (x,Φx, y,Φy) and D′ = (x′,Φx′ , y′,Φy′), where

one entity’s quasi-identifier differs, in addition to the values in variables x and y.

After articulating the neighboring relation for linked data, DP algorithms can

possibly be designed accordingly. To the best of our knowledge, Lin et al. (2024)

is the first work to study DP regression on linked data that accounts for upstream

linkage uncertainties. Specifically, they propose two algorithms to perform linear

regression while providing DP guarantees. The first algorithm, a noisy gradient

descent method, introduces noise into the gradient descent process. The second
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approach, sufficient statistics perturbation, adds noise to the sufficient statistics used

for estimation. These methods propagate the linkage uncertainties under a classical

probabilistic linkage model, which has been employed in non-private settings by

Lahiri and Larsen (2005) and Chambers et al. (2021).

One key challenge in designing DP algorithms for linked data is determining

the appropriate level of injected noise, which depends on the complexities involved

in analyzing linked data. At first glance, the uncertainties from upstream linkage

might appear to offer some privacy protection. Indeed, data swapping, a statistical

disclosure control technique, can be differentially private, as discussed in James Bailie

(2024). However, in the case of record linkage, the randomness introduced by linkage

errors is not independent of the data. Instead, it is the quasi-identifiers, which are

part of the data itself, that give rise to these linkage uncertainties. Therefore, the

randomness due to linkage does not directly provide privacy guarantees.

For linear regression, Lin et al. (2024) determined the scale of noise to be added

for both post-record linkage algorithms and analyzed the finite-sample error bounds

for the private estimators. Their theoretical results show that more injected noise

is needed for regression on linked data compared to non-linked data, due to the

complexity caused by linkage in the neighboring relations. A larger sample size

and smaller intrinsic regression error both help reduce the amount of noise needed

for privacy protection. The finite-sample error can be decomposed into two parts:

linkage-regression errors, which are independent of DP, and DP-specific errors. As

the sample size becomes sufficiently large, the linkage-regression error term domi-

nates. Higher linkage accuracy decreases estimation error. The numerical results

also confirm that treating the linked data (x, z) as the ground truth, ignoring linkage

errors, leads to noticeable bias, even when the linkage accuracy is higher than 90%.

Even though Lin et al. (2024) focus specifically on linear regression, their method-

ology of propagating linkage uncertainties and implementing DP could potentially be

extended to general supervised learning problems. In particular, the noisy gradient

descent method is well-suited for broader applications.
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5 Related Topics

We briefly cover two relevant approaches designed for private computation and anal-

ysis over multiple sensitive databases. Additionally, we provide an overview of data

integration, of which record linkage is a key component.

5.1 Secure Multi-party Computation

Secure multi-party computation (SMC) is a cryptographic technique that allows mul-

tiple parties to jointly perform computations on sensitive data while keeping their

individual data private from one another. SMC involves complex multi-party pro-

tocols that provide strong privacy guarantees. In the context of PPRL, SMC-based

techniques have been devised, as described in Christen et al. (2020). In addition,

SMC can be used to perform linear regression on vertically partitioned data, where

multiple parties share the same set of records but have different sets of features. In

contrast to regression with linked data, a unique identifier is available, and thus no

linkage errors are present.

5.2 Federated Learning

Federated learning (FL) (McMahan et al., 2017) is a distributed machine learn-

ing framework that collaboratively trains a shared model while ensuring that data

from multiple sources remain decentralized. By performing computations locally

and aggregating model updates, federated learning reduces privacy risks. It can offer

enhanced privacy protection when combined with SMC (Mugunthan et al., 2019)

and DP (Ouadrhiri and Abdelhadi, 2022). The most relevant type of FL to record

linkage is vertical federated learning (VFL) where FL is applied to vertically parti-

tioned data. Most works that combine VFL and record linkage train models using

one-to-one deterministic linkage as opposed to probabilistic linkage, while Wu et al.

(2022) integrates one-to-many linkage into the VFL training process. Nonetheless,

the statistical implications and procedures in this area remain unexplored.
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5.3 Privacy for Data Integration

Data integration refers to the process of combining data from multiple sources into

a single, unified format. While it encompasses a broad range of activities, record

linkage is a specific statistical task that plays a critical role within data integration.

The main challenge in data integration is resolving heterogeneity at various levels,

such as differences in data sources, schemas, data types, and semantics.

Privacy concerns in data integration can also be broadly divided into two cat-

egories: (1) privacy and security issues that arise during the integration process

and (2) privacy risks associated with running statistical analyses on the integrated

view. Existing works on privacy-preserving data integration (PPDI) have estab-

lished a wide range of techniques to manage multi-layered heterogeneity (Shelake

and Shekokar, 2017). PPDI primarily addresses the first set of challenges, while the

design of private algorithms on the integrated view that quantify privacy loss and

account for upstream integration uncertainties has not yet been explored.
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Aleksandra Slavković and Jeremy Seeman. Statistical data privacy: A song
of privacy and utility. Annual Review of Statistics and Its Application, 10
(Volume 10, 2023):189–218, 2023. ISSN 2326-831X. doi: https://doi.org/
10.1146/annurev-statistics-033121-112921. URL https://www.annualreviews.

org/content/journals/10.1146/annurev-statistics-033121-112921.
Rebecca C. Steorts, Rob Hall, and Stephen E. Fienberg. A bayesian approach to
graphical record linkage and deduplication. Journal of the American Statistical
Association, 111(516):1660–1672, 2016.

U.S. Census Bureau. Disclosure Avoidance for the 2020 Census: An Introduction,
2021.

U.S. Census Bureau. Annual Report of the Center for Statistical Research and
Methodology, 2022.

Yu-Xiang Wang. Revisiting differentially private linear regression: optimal and adap-
tive prediction & estimation in unbounded domain. Conference on Uncertainty in
Artificial Intelligence (UAI), 49, 2018.

William Winkler. Machine learning and record linkage. In 58th World Statistics
Congress ISI, 2011.

William E. Winkler. String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage. 1990. URL https://api.

semanticscholar.org/CorpusID:54580585.
Zhaomin Wu, Qinbin Li, and Bingsheng He. A coupled design of exploiting record
similarity for practical vertical federated learning. Advances in Neural Information
Processing Systems, 35:21087–21100, 2022.

13

https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-033121-112921
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-033121-112921
https://www2.census.gov/library/publications/decennial/2020/2020-census-disclosure-avoidance-handbook.pdf
https://www.census.gov/content/dam/Census/library/publications/2022/adrm/2022-CSRM-Annual-Report.pdf
https://www.census.gov/content/dam/Census/library/publications/2022/adrm/2022-CSRM-Annual-Report.pdf
https://api.semanticscholar.org/CorpusID:54580585
https://api.semanticscholar.org/CorpusID:54580585

	Introduction
	Record Linkage Overview
	Problem and Strategy
	Implications on Downstream Analysis

	Privacy-Preserving Record Linkage
	Private Analysis of Linked Data
	Differential Privacy
	Differentially Private Regression on Linked Data

	Related Topics
	Secure Multi-party Computation
	Federated Learning
	Privacy for Data Integration


