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Synthetic microdata — data retaining the structure of original microdata while replacing original
values with modeled values for the sake of privacy — presents an opportunity to increase access to
useful microdata for data users while meeting the privacy and confidentiality requirements for data
providers. Synthetic data could be sufficient for many purposes, but lingering accuracy concerns
could be addressed with a validation system through which the data providers run the external
researcher’s code on the internal data and share cleared output with the researcher. The U.S.
Census Bureau has experience running such systems. In this chapter, we first describe the role of
synthetic data within a tiered data access system and the importance of synthetic data accuracy in
achieving a viable synthetic data product. Next, we review results from a recent set of empirical
analyses we conducted to assess accuracy in the Survey of Income & Program Participation (SIPP)
Synthetic Beta (SSB), a Census Bureau product that made linked survey-administrative data
publicly available. Given this analysis and our experience working on the SSB project, we
conclude with thoughts and questions regarding future implementations of synthetic data with
validation.

* This chapter is based in part on our presentation and paper from the 2023 NBER conference on Data Privacy
Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences. We thank the
organizers and attendees for their feedback and discussion. We would also like to thank Gary Benedetto and Caleb
Floyd for their comments on this chapter. Any opinions and conclusions expressed herein are those of the authors and
do not represent the views of the Census Bureau or other organizations. The Census Bureau has reviewed this data
product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to
produce this product. This research was performed under Census project P-6000562. Data from the SIPP Gold
Standard File are confidential. (Disclosure clearance numbers: CBDRB-FY19-CED001-B0014, CBDRB-FY19-
CEDO001-B0025, CBDRB-FY20-CED001-B0003, CBDRB-FY21-CED002-B0003, CBDRB-FY21-195, CBDRB-
FY21-285, and CBDRB-FY23-CED009-0001).



L INTRODUCTION

Researchers and statistical agencies are currently facing challenges related to data dissemination
within the modern data landscape. The age of “big data” has provided new opportunities and
potential benefits while raising concerns and potential costs. For researchers, administrative data
is used for a growing share of empirical work (Currie et al., 2020; Einav and Levin, 2014a; Nagaraj
and Tranchero, 2023) and is generally seen as higher quality than traditional survey data (e.g.,
Figlio et al., 2016; Jarmin, 2019; Meyer et al., 2022). However, access to administrative data is
often restricted, which has raised concerns related to equitable data access and scientific progress
(Card et al., 2010; Cole et al., 2020; Equitable Data Working Group, 2022; Nagaraj and Tranchero,
2023). For statistical agencies and other data providers, administrative data provide opportunities
for new and improved data products based on combining administrative and survey data (National
Academies of Sciences, Engineering, and Medicine, 2023a; 2023b). At the same time, increases
in the breadth and depth of data combined with advancements in computing resources have
presented new challenges for protecting the privacy and confidentiality of data subjects as required
by law (National Academies of Sciences, Engineering, and Medicine, 2024b).!

Tiered data access can help address these hurdles. A tiered approach could provide new
intermediate microdata access mechanisms falling between publicly available survey microdata
and restricted-access administrative microdata (Abraham, 2019; National Academies of Sciences,
Engineering, and Medicine, 2024a; 2024b). Restricted access microdata is only available in data
enclaves such as the Federal Statistical Research Data Centers (FSRDCs). FSRDCs provide access
to restricted data but come with non-trivial barriers to access as well as limits to what research
output can be released publicly. Publicly available microdata comes with the fewest barriers but
provides relatively low-quality data due to the substantial privacy protections necessary to protect
the confidentiality of data subjects.?

One intermediate data access mechanism that could exist within a tiered system is synthesis
with validation and/or verification (Benedetto et al., 2024). Synthesis replaces observed microdata

values with modeled values based on models that are trained on the original microdata (Dreschler

! See Keller et al. (2016) and National Academies of Sciences, Engineering, and Medicine (2017) for discussion of
the privacy laws impacting statistical agencies.

2 Publicly available microdata is intentionally perturbed in numerous ways to protect the confidentiality of respondents
so that the data can be made public. Examples include top- and bottom-coding, coarsening, rounding, suppression,
sub-sampling, swapping, synthesis, and noise injection.
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and Haensch, 2024). The synthetic microdata is made publicly available, and researchers can then
have their code “validated” on the original data by the data provider. The validation involves
running the user’s code on the internal confidential data and sending the cleared results to the user.
Synthetic microdata has stronger privacy protection than traditional publicly available microdata
and users do not interact directly with the internal microdata. Because of this, the data provider
may be able to provide more detail on the synthetic file and the internal file used for validation
than on a traditional publicly available file. Therefore, while synthetic data with
validation/verification carries more barriers to access than traditional publicly available files (e.g.,
the user must apply for access to the validation system, meet coding standards required for
validation, await validation results, etc.), the validation/verification mechanism indirectly provides
access to higher-quality data (e.g., the internal file used for validation can avoid many or all of the
intentional perturbations applied to non-synthetic publicly available microdata files).

There are many open questions regarding the use of synthetic data and validation for social
science research. Among them are (1) to what extent synthetic data and validation impact the
development and execution of research ideas and (2) whether data providers can expand synthetic
data and validation to data products with a large user base. The answer to both questions likely
depends in part on the accuracy of the synthetic data. Greater similarity between statistical results
generated on the original versus synthetic data would mitigate the impact of such a system on the
development of research ideas by allowing more exploratory analysis and iterative methodology
development based on the synthetic data alone. Greater similarity could also lower the demand for
validations, which would further reduce the hurdles associated with adopting synthetic data for
scientific research (e.g., by avoiding coding standards, validation queues, disclosure reviews, etc.
for researchers) and would mitigate challenges of expanding such a system to data products with
a large user base (e.g., by reducing the resources and staff needed for the data provider to perform
validation analyses and reviewing output).?

There are few implementations of such a tiered access system, but the Census Bureau has

experience in this area. The Survey of Income and Program Participation (SIPP) Synthetic Beta

3 Note that there is a tradeoff between accuracy and privacy even with synthetic data: too much similarity in statistical
results between the original and synthetic data could mean that the synthetic data are simply reproducing many of the
original records and/or that inference attacks could still be successful. Balancing this tradeoff is a choice and requires
careful evaluation. However, in our experience, synthetic data that is “too accurate” for surveys with hundreds of
variables and countless use cases is not yet a binding constraint.
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(SSB) is a publicly available synthetic dataset modeled on the SIPP Gold Standard File — an
internal data product that links panels of the SIPP to data from the Internal Revenue Service and
the Social Security Administration. External users could apply for access, develop and run their
analysis on the SSB, and then submit their code as part of validation requests. Internal Census staff
would run the validation, conduct a disclosure review of the statistical output, and, if appropriate,
release the cleared output to the external researcher.

Given our experience using the SIPP Gold Standard File for empirical research and our
past role as support staff for SSB validations, we recently undertook a series of analyses to assess
accuracy in the SSB by comparing estimates derived from the GSF to those derived from the SSB
(Stanley and Totty, 2024). We performed assorted econometric analyses and generated various
sets of descriptive statistics to examine how the SSB performed under different empirical requests.
In this chapter, we first summarize the results from our tests of SSB accuracy relative to the GSF.
We then discuss the implications of the results for the feasibility of synthetic data with validation
from the perspective of its impact on the scientific research process and its applicability to data
products with a large user base. We also provide some additional practical considerations of
developing, managing, and using such a system.

Overall, we found that the SSB performs quite well at replicating statistical results from
the GSF. In the cases we tested, the SSB either appeared capable of standing alone without the
need for validation or had shortcomings that were sensible given the SSB design and modeling.
We believe the SSB shows the potential for synthetic data to achieve a level of accuracy that could
ease its impact on the development and execution of research ideas and help reduce the challenge
of expanding the system to a large user base. However, the specific design and management of the
SSB would be difficult to expand to a much larger user base. We discuss some of the reasons why
and possible solutions later in this chapter.

We will proceed with a brief description of the SSB data and validation system followed
by an overview of our empirical results. We conclude with a discussion of the implications of
synthetic data with validation for scientific research and considerations for future synthetic data

applications.

II. DATA AND METHODOLOGY



The main datasets we use are the SSB and the SIPP GSF (the internal reference file for the SSB).*
The GSF consists of multiple panels of the SIPP (in the most recent version of the data, the panels
were 1984, 1990 — 1993, 1996, 2004, and 2008). Additional variables from Internal Revenue
Service (IRS) and Social Security Administration (SSA) data were added for SIPP respondents
who could be linked to the administrative data sources. The SSB was created from the GSF using
sequential regression multivariate imputation (SRMI). This methodology uses regression analysis
to replace observed data values with modeled values.

The first version of the SSB was created in 2003. The most recent version of the SSB is
version 7, which was released in 2018. We used version 7 for our analyses in Stanley and Totty
(2024). Version 7 of the SSB is fully synthetic, meaning all data values were modeled. Note that
only a subset of SIPP variables was included in the SSB. For full background on the SSB, see
Benedetto, Stanley, and Totty (2018).

In Stanley and Totty (2024) we produced a series of estimates typical in empirical
economics research. Each of the analyses was focused to some degree on earnings — a traditionally
important outcome of interest in economics. We generated descriptive statistics, figures, and
regression results. As the SSB was intended to support a wide range of unknown use cases, we
also tried to cover an array of research topics and empirical methodologies.> In each case, we ran
the same analysis on the SSB and on the GSF, thus mimicking how the process would work for
external data users. We then compared the similarity of the SSB results to the GSF results.

The exact analytical samples for a given set of estimates depend on the analysis being run,
but our main sample consists of person-year observations with annual measures of earnings from
both the Detailed Earnings Record (DER) and the SIPP. The GSF and SSB have roughly 783,000
persons, and our person-year sample contains roughly 492,000 person-year observations when we
restrict to individual-year observations with annual measures of earnings from both the DER and
the SIPP. The main subsample of interest consists of positive earners — individuals from our full
sample who have both DER earnings and annual SIPP earnings greater than zero for at least one

calendar year. In many of our regression models, the natural logarithm of earnings is the outcome

4 External researchers can request access to the SSB via a nominal application process, after which the SSB data files
are made available for download. Researchers can then build their analysis using the SSB and, if desired, submit their
code for validation on the GSF. See https://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-
data-product.html for more details.

5 In a similar paper to ours, Carr et al. (2023) provide a detailed analysis of the accuracy of the SSB for single topic
(earnings dynamics).
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of interest, meaning most of the subsamples are derived from this positive earner sample.
Additional subsamples are created when accounting for missing data as well as age ranges of

interest for the assorted analyses. See Stanley and Totty (2024) for more details.

I1I. SIMILARITY BETWEEN SYNTHETIC AND INTERNAL RESULTS

The full set of results is included in Stanley and Totty (2024); here, we will reproduce some of the
statistical summaries from our analysis to aid the discussion. Note that these same summary tables
and figures appear in Stanley and Totty (2024).

Figure 1 is a scatter plot of all the GSF versus SSB results separated by descriptive versus
model-based results. The SSB does not perfectly replicate all the results from the GSF, but the
bunching around the 45-degree line signifies a high correlation between results derived from the
GSF and those derived from the SSB — especially for descriptive estimates. The descriptive and
model-based results can be further divided by type of estimate. In Figure 1, we see that the
descriptive results show a steeper slope of association relative to the 45-degree line. When we
group the descriptive results by type of statistic, medians showed the strongest performance by the
SSB in replicating the GSF estimates, while the other sorts of descriptive estimates still showed a
strong positive association.®

The model-based results shown in Figure 1, on the other hand, illustrate a flattening of the
slope of association between the GSF and SSB results relative to the 45-degree line. This suggests
that model-based results tend to exhibit some attenuation bias, which would be consistent with
thinking of the data synthesis process as introducing some “noise” and weakening some covariate
relationships. To investigate this further, Figure 2 groups the model-based results by different types
of models. The worst-performing types of models in our exercises were (1) the models
incorporating merged external data that were not part of the synthesis process and (2) so-called
“within-person” models that include individual-level fixed effects, interactive individual- and
time-level fixed effects, or individual-level hazard models. The first type illustrated virtually no
association between the SSB and GSF results, while the second type illustrated a significantly

weakened association. The remaining regression results based on other models illustrate a very

¢ See Figure 2 in Stanley and Totty (2024) for the scatterplot of descriptive results broken out by type of descriptive
statistic.
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strong association between the SSB and GSF results (see the right-most panel of Figure 2). These
other types of models include ordinary least squares regressions, two-stage least squares
regressions, and regression discontinuity designs.

We further assessed the differences in estimate magnitudes by computing the absolute
relative error in estimates derived from the SSB compared to their counterparts in the GSF (see
Figure 3). As seen qualitatively in Figure 1, the SSB is more similar to the GSF for our descriptive
analyses than for our model-based analyses. This is supported quantitatively in Figure 3 as the
median absolute relative error is 0.08 for our descriptive results and 0.24 for our model-based
results. More than half of our descriptive results derived from the SSB are within 10% of their
GSF counterparts. For the model-based SSB results, the majority are within 25% of their GSF
counterparts.’

Finally, Table 1 summarizes differences in the inferences drawn from the GSF results
versus those based on the SSB results. We consider multiple inference benchmarks. First, we
compare confidence intervals between the two datasets. As shown in Panel A of Table 1, 95%
confidence intervals in the SSB were approximately twice as wide as the GSF confidence intervals
on average. The wider confidence intervals are due in part to the confidence interval construction
methodology from Reiter (2004) that accounts for the additional uncertainty introduced by the
synthesis process. The SSB confidence interval overlaps with some part of the GSF confidence
interval 52% of the time and it covers the GSF coefficient estimate 35% of the time. Overall, the
SSB confidence interval overlaps with 33% of the GSF confidence interval on average. An
alternative benchmark is to compare sign and statistical significance between the GSF and SSB.
Replicating sign and statistical significance can be useful in multiple ways. For certain analyses,
the sign and statistical significance (relative to a null hypothesis of zero effect) of a particular
estimate is the key statistical conclusion. Further, with the validation option, accuracy of sign and
statistical significance may be sufficient for research goals until a validation is performed to
acquire results from the internal reference file. Panel B reports the differences in sign and statistical
significance between the GSF and SSB. The SSB coefficient estimates have the same sign as the

GSF estimates 79% of the time. Panel C summarizes the sign and significance differences in terms

7 Much of the difference in accuracy between the descriptive and model-based results is driven by one particular
model-based use case: The Social Security Disability Insurance event study from Section 2.2.6 and Figure A16 of the
Appendix in Stanley and Totty (2024). Excluding those results reduces the median absolute relative error for our
model-based results from 0.24 to 0.12.
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of statistical conclusions based on hypothesis testing. Relative to the corresponding GSF results,
the SSB results produce the same statistical conclusion for approximately 63% of the coefficient
estimates, fail to replicate a statistically significant relationship for approximately 33% of
estimates, imply a spurious relationship for approximately 2% of estimates, and imply a significant
relationship in the opposite direction for approximately 2% of estimates. It is reassuring that
spurious and opposite-sign statistical relationships in the SSB (relative to the GSF findings) are
exceedingly rare (4% of the time in our models).

In looking across all the estimates in Stanley and Totty (2024), differences between the
SSB and GSF are often consistent with interpretable and expected patterns. Statistics that are
sensitive to outliers (e.g., means) may be less likely to be replicated in synthetic data than statistics
that are not sensitive to outliers (e.g., medians) because synthetic data inherently attempt to mask
sensitive values such as outliers. This is observable in Figure 2 from Stanley and Totty (2024) as
discussed earlier in this section. The findings from regressions that rely solely on variables already
in the data (i.e., variables used in the synthetic data models) could be more replicable than
regressions involving variables merged onto synthetic data after synthesis because the latter are
not used in the synthetic data modeling process which can thus obfuscate relationships with the
synthetic variables. This scenario is seen in our results and observable in Figure 2 for this chapter.
Synthetic data modeling decisions may also explain some of the differences we saw comparing
GSF results to SSB results. For example, results relying on within-person earnings dynamics
tended to yield poorer replications in our analysis. This pattern may be due to a modeling decision
— the synthetic data models for the SSB were primarily based on modeling variable levels rather
than year-over-year changes. It is possible that the SSB could have performed better replicating
such results if the SSB explicitly modeled within-person changes in earnings over time.

Our results also point to some inherent challenges of synthetic data. The relatively poor
performance for the accuracy of modeled statistics compared to descriptive statistics (see Figure
1) and for confidence interval coverage (see Table 1) demonstrate the challenge of generating
unbiased synthetic data for covariate relationships. This is especially challenging for data products
with many variables and a large number of possible (and unknown) use cases. While synthetic data
confidence interval methods such as those from Reiter (2004) can account for the additional
uncertainty introduced by the modeling process, they cannot account for bias that arises due to

synthetic data models that fail to account for all possible covariate relationships.



IV.  IMPLICATIONS FOR SCIENTIFIC RESEARCH AND SCALING VALIDATION

Our results demonstrate that the SSB provided a high level of accuracy for descriptive statistics
(such as means and medians) and for modeled relationships that are congenial with the synthetic
data models.® This shows the potential for synthetic data to stand alone for some applications,
which would ease the integration of synthetic data with validation into the scientific research
process and help agencies expand such systems to large user bases.

Despite this potential, there are several remaining challenges. One challenge is the amount
of manual labor that went into validations for the SSB. Code was manually vetted and run by
internal staff. Code would often break due to missing dependencies in the researcher’s code and/or
conflicting software versions. Disclosure avoidance and output review was also done manually by
internal staff. Several of these steps are capable of being automated to some degree, particularly
given recent advances in artificial intelligence. Examples include using static and dynamic analysis
for vetting of code, using containers for packaging and executing all code and data dependencies,
and implementing automated disclosure avoidance application and/or review. See Benedetto et al.
(2024) for additional discussion related to the practical challenges associated with developing and
managing a validation service, including opportunities for automation.

Another challenge is that researchers may be unlikely to trust that the synthetic data are
sufficient for their purposes, even when the synthetic data can be expected to provide a high level
of'accuracy (e.g., for descriptive statistics or relatively simple modeled statistics). Researchers and
data providers could therefore benefit from ways to assess the “trustworthiness” of a statistic
generated from the synthetic data before requesting a validation. This could be achieved with a
verification option, which provides a summary measure of the similarity between the synthetic and
internal statistic without releasing the internal statistic. However, verification is still costly with
respect to coding standards and validation queue for the researchers as well as resources and
privacy leakage for the data provider. Another option would be a theoretical and/or empirical
assessment by the researcher that attempts to gauge the trustworthiness of a synthetic statistic

without access to the internal data. More research is needed on whether such an option could exist.

8 Synthetic data models and data user models are said to be “congenial” if they are based on the same assumptions.
Congeniality is required for valid statistical inference (Abowd and Schmutte, 2015; Dreschler and Haensch, 2024;
Meng, 1994).
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At the very least, releasing information about the synthetic data models would allow researchers
to assess the congeniality of their planned empirical models with what was done in the synthetic
data models.

Finally, there are several interesting opportunities for synthetic data with validation to
impact scientific progress besides providing easier access to high quality microdata. To begin with,
there are opportunities for indirect effects of such a system on researcher behavior. Such a system
could improve reproducibility/replicability, increase the usage of pre-analysis plans, and reduce p-
hacking — scientific ideals that have received heightened attention in economics (Brodeur et al.,
2016; Brodeur et al., 2020; Brodeur et al., 2023; Coffman and Niederle, 2015; Olken, 2015;
Vilhuber et al., 2023; Whited, 2023). Expanding access to administrative data via synthesis and
validation would allow for easier reproducibility/replicability by data editors and other researchers.
Additionally, developing an analysis plan on synthetic data without yet knowing what results the
validation will show is akin in some ways to the use of pre-analysis plans. Furthermore, this
uncertainty regarding validation results combined with a limit on the number and/or size of
validation requests could also make it difficult for researchers to engage in p-hacking.

There are also opportunities for the research profession (e.g., journals, conferences, etc.)
to adjust their processes to better accommodate tiered access projects. For example, conference
presentations and even initial journal submissions could allow for synthetic results with the
knowledge that validated results will follow. This would be similar to how some journals now
allow initial review and in-principle acceptance based solely on pre-analysis plans before the

analysis is actually conducted (Arpinon and Espinosa, 2023).°

V. CONCLUSION

Data providers and researchers must contend with many modern challenges. Threats to privacy
and confidentiality are increasing in prevalence and complexity. Current dissemination methods
may be insufficient, and data providers need to determine new and improved ways to provide

useful data and statistics while protecting privacy. Researchers have valid concerns about the

% Such submissions are referred to as “registered reports.” The first economics journal to incorporate registered reports
was the Journal of Development Economics in 2018.
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appropriate balance of data privacy and data accuracy (and how that is determined), ramifications
for empirical research, and equitable data access.

A tiered access approach such as synthetic data with validation/verification offers one
potential solution to these concerns. Synthetic data can offer sufficient privacy protections and
democratize data access by making previously restricted data publicly available. A standalone
synthetic data product could be sufficiently accurate for many purposes, and lingering accuracy
concerns could be addressed through validation and/or verification. As such, this sort of setup
could be beneficial to both researchers and data providers.

Pareto improvements of course sound great on paper, but there are several open questions
and practical considerations for producing synthetic data and offering a validation and/or
verification option. Developing research ideas and analysis plans with synthetic data would be a
substantial change for researchers who are accustomed to adjusting their analyses and research
questions based on what they discover in the data. Meeting the requirements for coding standards
and disclosure avoidance review in order to receive a validation could also prove to be a challenge
for some users. Furthermore, user demand for validations could impact how exactly
validation/verification services can be offered and how quickly results could be provided if the
validation process requires an abundance of manual labor.

Our research endeavor discussed in this chapter focused on the accuracy of empirical
results comparing one synthetic product (the SIPP Synthetic Beta) to its corresponding internal
reference file (the SIPP GSF). Greater similarity between statistics generated on the synthetic and
internal data can provide benefits for agencies providing the product and for researchers using the
product. Our overall findings point to an imperfect but strong association between the GSF and
SSB results. Specifically, we found that the SSB did a good job replicating many “basic” analyses
(e.g., descriptive statistics and simple regression analysis) while struggling with other applications.

Our test cases attempted to cover numerous statistical methods and research topics but
obviously only represent a tiny subset of the possible analyses. Furthermore, the GSF is only one
dataset and the SSB was created using one particular method for generating synthetic data (SRMI).
Finally, our analysis treated all differences between the original and synthetic data as reductions
in accuracy, which is an imperfect assumption when the original data already contain errors (Totty
and Watson, 2024). For many reasons discussed here and in our companion paper [see Stanley and

Totty (2024)], we view our results for accuracy of the SSB to be a floor for what synthetic data
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can accomplish. For example, modern synthesis methods like non-parametric CART and machine
learning are easier to implement and can generate more accurate synthetic data (Drechsler and
Reiter, 2011; Reiter, 2005; Reiter and Kinney, 2012). Recent developments in deep learning, such
as Generative Adversarial Networks and Large Language Models, also show promise for
delivering high quality synthetic data while requiring minimal human input, although to-date
neither clearly surpasses CART performance for moderately-sized sample surveys (Akiya,
Ishihara, and Yamamoto, 2024; Lautrup et al., 2024; Miletic and Sariyar, 2025). Nonetheless, the
SSB in its original form provides important insights into the opportunities and challenges of

synthetic data with validation as a data access tier.
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Figure 1. Scatter Plot of GSF and SSB Results
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The right figure plots the GSF versus SSB results for the regression-based results shown in the Appendix. The left
figure plots the remaining statistics in the paper (e.g., means, medians, ratios, and counts). In each, the X axis is the
estimate using the internal GSF, the Y axis is the estimate using the SSB, and the red line is the 45-degree line. See
Stanley and Totty (2024) for additional details.

Source: U.S. Census Bureau Gold Standard File (GSF) and SIPP Synthetic Beta (SSB). U.S. Census Bureau
Disclosure Review Board approval number: CBDRB-FY19-CED001-B0014, CBDRB-FY 19-CED001-B0025,
CBDRB-FY20-CED001-B0003, CBDRB-FY21-CED002-B0003, CBDRB-FY21-195, CBDRB-FY21-285, and
CBDRB-FY23-CED009-0001. Figure also appears in Stanley and Totty (2024).

15



Figure 2. Scatter Plot of Model-Based Results by Type of Model

This figure groups the Model-Based Results in Figure 1 by the type of model. See Figure 1 for additional details about
the construction of the figure. Some model-based results qualify as both models with merged external data and within-
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person models. See Stanley and Totty (2024) for additional details.

Source: U.S. Census Bureau Gold Standard File (GSF) and SIPP Synthetic Beta (SSB). U.S. Census Bureau
Disclosure Review Board approval number: CBDRB-FY19-CEDO001-B0014, CBDRB-FY19-CED001-B0025,
CBDRB-FY20-CED001-B0003, CBDRB-FY21-CED002-B0003, CBDRB-FY21-195, CBDRB-FY21-285, and

S5B Coefficient Estimate

CBDRB-FY23-CED009-0001. Figure also appears in Stanley and Totty (2024).
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Figure 3. Distribution of Absolute Relative Errors
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The right figure plots the GSF versus SSB results for the regression-based results. The left figure plots the remaining
statistics in the paper (e.g., means, medians, ratios, and counts). The X axis is the absolute relative error comparing
the estimate from the SSB to the corresponding estimate from the GSF. The absolute relative error is computed as
the absolute value of the difference between the SSB estimate and GSF estimate divided by the GSF estimate. The
median absolute relative error is indicated by the dotted vertical line and corresponding value. The figures are
truncated at 2 for presentation clarity. See Stanley and Totty (2024) for additional details.

Source: U.S. Census Bureau Gold Standard File (GSF) and SIPP Synthetic Beta (SSB). U.S. Census Bureau
Disclosure Review Board approval number: CBDRB-FY19-CED001-B0014, CBDRB-FY 19-CED001-B0025,
CBDRB-FY20-CED001-B0003, CBDRB-FY21-CED002-B0003, CBDRB-FY21-195, CBDRB-FY21-285, and
CBDRB-FY23-CED009-0001. Figure also appears in Stanley and Totty (2024).
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Table 1. SSB versus GSF Inference Comparison

&) 2
Panel A: Confidence Interval Comparison
GSF CI average width 0.069
SSB CI average width 0.129
Proportion of models with any CI overlap 0.521
Proportion of models with GSF coefficient inside SSB CI 0.351
Average fraction of GSF CI overlapped by SSB CI 0.331
Panel B: Sign and Significance Comparison Count Percent
(1) Same sign and significance 56 59.57%
(2) Same sign, change significance
(2a) GSF significant, SSB not 18 19.15%
(2b) SSB significant, GSF not 0 0.0%
(3) Change sign, neither significant 3 3.19%
(4) Change sign and significance
(4a) GSF significant, SSB not 13 13.83%
(4b) SSB significant, GSF not 2 2.13%
(5) Change sign, both significant 2 2.13%
Total 94 100%
Panel C: Statistical Conclusion Comparison Count Percent
Same statistical conclusion [(1) + (3)]: 59 62.67%
Failed to replicate relationship due to synthesis [(2a) + (4a)] 31 32.99%
Spurious relationship due to synthesis [(2b) + (4b)] 2 2.13%
Opposite relationship due to synthesis (5) 2 2.13%

The comparison includes all regression-based results except for those that do not report a standard error or
confidence interval. See Stanley and Totty (2024) for additional details.

Source: U.S. Census Bureau Gold Standard File (GSF) and SIPP Synthetic Beta (SSB). U.S. Census Bureau
Disclosure Review Board approval number: CBDRB-FY19-CED001-B0014, CBDRB-FY 19-CED001-B0025,
CBDRB-FY20-CED001-B0003, CBDRB-FY21-CED002-B0003, CBDRB-FY21-195, CBDRB-FY21-285, and
CBDRB-FY23-CED009-0001. Table also appears in Stanley and Totty (2024).
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