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Abstract

The object of this paper is to assess the role of supply shocks, labour market

tightness and expectation formation in explaining bouts of inflation. We begin by

showing that a quasi-flat Phillips curve, which was popular prior to the pandemic, still

fits the post-2020 US data well and that changes in short term inflation expectations

likely played an important role in propagating supply shocks in the recent inflation

episode. We then document features of the joint dynamics of inflation and inflation

expectations to form a baseline for what needs to be explained. Given the difficulty

of reproducing these dynamics under rational expectations, we propose and evaluate a

model with imperfect information and bounded rationality. In our model, agents see

sectoral inflations as being driven by a component common to all the sectors of the

economy and by sector-specific shocks. When supply shocks affect many sectors–what

we refer to as a broad-based supply shock– agents infer that the common component of

inflation has increased, which drive persistent inflation dynamics through their effect

of expectations in a quasi-self-fulfilling way.
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Introduction

While inflation in many countries has been coming down quickly from the heights of 2022,

core inflation has been coming down at a slower pace and this can be challenging for central

banks who aim for a timely return to a pre-pandemic level of near 2%. For the US, this

pattern for core inflation can be seen in Figure 1.

Figure 1: US Core CPI Inflation, 2008m1-2023m12
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Notes: The observed series is Consumer Price Index for All Urban Consumers: All Items Less Food and
Energy in U.S. City Average. We plot monthly observations of the percent change from one year ago to
obtain a slightly smoother picture. In the rest of the paper, we will use quarter-to-quarter changes.

One of the main tools used by central bankers to understand inflation is the expectations-

augmented Phillips curve which links inflation to expectations of future inflation and overall

market tightness, either measured by an output gap, an unemployment gap or vacancy-to-

unemployment ratio.1 When viewed through the lens of the Phillips curve, the persistent

period of high inflation that is not explained by supply shocks can be attributed to either an

overly-hot labour market or by elevated expectations of inflation. A third possibility is that

the Phillips curve is a rather unstable object and should be considered of limited value for

thinking about current inflation. The later more unorthodox view is sometimes motivated

by perceived repeated failures of the Phillips curve. For example, in the decade between

the “Great Financial Crisis” and the pandemic –instead of under-predicting inflation as has

recently been common– the Phillips curve often leads to a “missing deflation puzzle”.

This paper begins by examining what a pre-2020 view of the Phillips curve tells us about

the recent determinants of inflation and whether such a Phillips curve actually remains a

good tool for understanding inflation. We complement our Phillips curve analysis with a

VAR analysis of the joint dynamics of inflation, inflation expectations and labour market

1The later has been advocated as a better proxy for labour market tightness by, among others, Ball,
Leigh, and Mishra [2022], Michaillat and Saez [2022] and Benigno and Eggertsson [2023].
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tightness, where inflation expectations used in both cases are taken from the Michigan Survey

of Consumers. The VAR analysis is especially relevant as it will become the target for our

later structural analysis of how inflation and inflation expectations interact to create a rich

joint dynamics following different supply shocks. Both our Phillips curve exploration and

our VAR analysis come to similar conclusions. First, the recent episode does not suggest

any important break from past behaviour. Second, both analyses suggest that inflation is

mainly driven by expectations and quasi-i.i.d. supply shocks, with labour market tightness

playing a very secondary role. In other words, the data maintain support for a close-to-

flat Phillips curve view with short term inflation expectations being an important driver of

inflation. In particular, the VAR analysis highlights how inflation expectations formed at t

almost perfectly match realized inflation at t + 1, while inflation and inflation expectations

are almost unrelated to labour market outcomes. We finish this section by showing why

a Philips curve model with rational expectations does poorly in accounting for the joint

dynamics of inflation and inflation expectations.

We then turn to examining some of the empirical determinants of household inflation ex-

pectations. In particular, we show that these inflation expectations react to sectoral inflation

measures in a way that deviates markedly from their importance in the overall CPI basket.

Instead, inflation expectations seem to be influenced by the common component of sectoral

data, where the main common component places very different weights than the CPI across

items/sectors. So agents appear to update their expectations very differently if inflation is

driven by a broad-based increase in prices (as measured by the common component) than if

the same level of inflation is driven by only one or two items. This observation will be a key

element in our model of inflation expectations.

In the fourth section of the paper we propose a model of the joint determination of infla-

tion and inflation expectations that builds on the previously mentioned empirical patterns

with the aim of explaining the VAR patterns. For the determinants of inflation, our model

simply imports the New Keynesian Philips Curve specification we discuss and evaluate in

Section 1. For the determinant of inflation expectations, we make two departures relative

to a full information rational expectations benchmark. First, we endow agents with two in-

flation realizations; a realization of headline inflation and a realization of an inflation signal

that can be interpreted as reflecting broad-based shocks. Second, we model the agents as

quite sophisticated but not fully informed of the data generating process. They extract a

common component from their sectoral inflation signals using a Kalman filter and use this

common component to predict future inflation. In this filtering process, agents treat the re-

alization of the common component in inflation as uncorrelated with the noise in their signal

even though the two may not be independent in equilibrium due to the role of expectations
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themselves driving inflation. In doing so, agents depart from a fully rational benchmark. We

show that such a model of inflation expectations can capture very well the joint dynamics of

inflation and inflation expectations, as described by the VAR presented in Section 2, while

simultaneously being consistent with easily observable moments of the inflation process, so

that agent’s beliefs are almost self-confirming.

While the narrative behind our model is most easily expressed in reference to the role of

broad-based inflation shocks in driving inflation expectations, we do not actually use the dis-

aggregated data in the estimation of our model. Instead, the “broad-based” inflation signal

is treated as a latent variable and we complete our analysis by showing that our estimate of

this latent variable correlates closely with the common component directly estimated from

the disaggregated data.

The narrative that arises from our model of inflation and inflation expectations can be

expressed as follows. Inflation can be seen as mainly driven by two different types of shocks:2

first by narrow supply shocks that create very little dynamics since such shocks are not readily

transmitted to expectations as they do not create a perceived generalized increase in prices;

second by a broad-based supply shock that transmits to inflation expectations and thereby

creates something close to a self-fulling inflation episode, albeit ignited by exogenous forces.

In our setup, the persistent movements of inflation expectations do not come from perceived

current and future marginal costs as implied by the standard New Keynesian Phillips Curve

with Full Information Rational Expectation, as the slope of the Phillips Curve is estimated

to be quite small. Instead, positive temporary broad-base supply shocks trigger large initial

responses of inflation expectations, which affect the prices the agents observe in the future.

As the agents fail to recognize that inflation expectations are driving the inflation they

observe, these future price changes make them believe that there is generalizable inflation.

Their inflation expectations will remain high for a long time. As a result, temporary broad-

base shocks trigger persistent responses of inflation and inflation expectations. In this setup,

the presence of even a very weak persistent fundamental factor – such as labour market

tightness– is enough for the inflation expectation formation process to be fooled by temporary

supply shocks in creating persistent inflation.3 Such a model explains why inflation can

remain stable during long periods in the presence of narrow and unsynchronized supply

shocks. But, in contrast, inflation tends to be amplified and made persistent when the

economy is hit simultaneously by supply shocks across different sectors, even if the latter are

2Demand shocks also affect inflation in our setup, but this effect is very week because of the flat Phillips
curve.

3Moreover, as the agents are not fully informed about the actual data generating process, they will use
some perceived law of motion to help them form expectations. We will restrict this perceived law of motion
to generate inflation moments that are close to the actual ones.
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temporary in nature.

Related literature Our paper contributes to the recent literature on the persistence of

high inflation after the global supply chain disruptions caused by the COVID-19 pandemic.

Ball, Leigh, and Mishra [2022] and Benigno and Eggertsson [2023] explain the recent episode

through an overly heated labor market and argue for a non-linear Phillips Curve. Blanchard

and Bernanke [2023] finds instead that most of the inflation surge that began in 2021 was

driven by shocks to prices given wages. Our paper finds that inflation expectations play a

crucial role in explaining the persistent responses of inflation to these price shocks. Similar to

us, Acharya, Crosignani, Eisert, and Eufinger [2023] document high and persistent inflation

expectations of the European households and show how high inflation expectations can lead

to broad-based inflation. Our paper provides a theoretical explanation for why households

inflation expectations respond to supply shocks; and more specifically why transitory sup-

ply shocks can have a persistent effect on inflation expectations and inflation. Our results

are also related to the empirical findings in Carrière-Swallow, Deb, Furceri, Jiménez, and

Ostry [2023], where the authors show that supply chain shocks have smaller pass-through in

countries with inflation targeting or better-anchored inflation expectations.

Our empirical analysis is a small contribution to the vast literature on the estimation of

expectation augmented Phillips Curve. Our baseline estimates builds on Hazell, Herreño,

Nakamura, and Steinsson [2022] and Beaudry, Hou, and Portier [2023]. Our findings suggest

that the use of real-time survey data on expectations helps to identify a stable slope of the

Phillips Curve, as proposed in Coibion, Gorodnichenko, and Kamdar [2018]. Our finding that

households’ inflation expectations are particularly important to explain inflation dynamics

are in the same spirit as Coibion and Gorodnichenko [2015b], although the key mechanism

we propose focuses more on the role of broad-based supply shocks rather than narrowed ones

like energy price shocks.

Finally, our model setting on household’s expectation is motivated by both the theoret-

ical and empirical literature on the formation of inflation expectation. Our agents solve a

signal extraction problem like in Sims [2003], Woodford [2001], Coibion and Gorodnichenko

[2015a] and Carvalho, Eusepi, Moench, and Preston [2023]. However, similar to D’Acunto,

Malmendier, Ospina, and Weber [2020], the signals our agents use to form expectations are

sectorial price changes, rather than noisy observations of the realized aggregate inflation. As

a result, agents treat idiosyncratic sectoral shocks mainly as noise in our framework with

boundedly rational expectation formation. Bounded rationality and learning have been in-

troduced in New Keynesian models by (among others) Hommes and Zhu [2014], Gelain,

Iskrev, J. Lansing, and Mendicino [2019] and Hommes, Mavromatis, Özden, and Zhu [2023].
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Our modelling is close in spirit to Lansing [2009] but we focus on the short run and not on

the low frequency properties of inflation.

1 Should We Maintain or Throw out the Flat Phillips

Curve View?

Prior to the COVID-19 pandemic, many studies of the Phillips curve suggested that its

slope was quite flat. Although the identification of the slope of the Phillips curve can be

difficult, the work by Hazell, Herreño, Nakamura, and Steinsson [2022] advanced on this

point by exploiting cross-state variation. Their finding was that the slope of the Phillips

curve was significantly positive, but nevertheless quite small. Furthermore, they found that

this flatness property did not arise post 90’s, but appears to be a feature of the data going

back into the 1960s. They concluded that inflation expectations likely played a dominant

role in the inflation episode on the 1970s and early 1980s. In related work (Beaudry, Hou,

and Portier [2023]), we found similar results with the inflation expectations drawn from the

Michigan Survey of Consumers helping to explain much of the variation in inflation since

late 1960.

In this section, we aim to examine whether the recent inflation episode should lead one

to revise/reject/update the flat Phillips curve view. To this end, we start with the following

very parsimonious view of the (quarterly) Phillips curve:4

πt = βπe
t+1 + γg gapt + et, (1)

πt is quarter-to-quarter Headline CPI inflation, π
e
t+1 is the mean of the one-year-ahead expec-

tation of CPI inflation drawn from the Michigan Survey of Consumers.5 The gap represents

labour market tightness and is initially measured by the minus unemployment gap.6. Later

we discuss the implications of using the vacancy to unemployment rate instead.

4To derive such a Phillips curve, one generally needs to assume that agents’ expectations satisfy the law
of iterative expectations (see Gaĺı [2015]). In the later part of the paper, we will propose a model for the
formation of inflation expectations where agents do not have a full understanding of the data generating
process. However, these agents will nonetheless be statistically sophisticated and their expectations will
satisfy the law of iterative expectations.

5Our preference would be to use quarter-to-quarter expected inflation. However, the Michigan Survey
of Consumers reports expectations for CPI inflation for the next year. To extract a quarter estimate from
this data we rescale the one-year-ahead expected inflation assuming survey respondents believe that quarter-
to-quarter inflation follows an AR(1) process with persistence ρ̃, that needs not to be equal to the actual
persistence of inflation. The estimated ρ̃ = 0.89. This adjustment only affects the point estimate of β. For
more details, we refer to Beaudry, Hou, and Portier [2023].

6The unemployment gap is computed as the unemployment rate minus the noncyclical rate of unemploy-
ment from FRED (series name NROU ).
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One important issue in our analysis relates to the most appropriate measure to use for

inflation expectations. In Figure 2 we plot different measure for one-year-ahead expectation

of CPI inflation. As prices are set by firms, using a measure of business expectations would

be our preferred approach. However, such measures are not readily available over a long time

span. For example, the Cleveland Fed Survey of Firms’ Inflation Expectations (SoFIE) is

available only since 2018Q2. Over the sample 2018Q2-2023Q1, it is interesting to note that

the correlation between the Michigan Survey of Consumers’ inflation expectations and the

Cleveland Fed Survey of Firms’ is 0.9330. For this reason, we choose to exploit the Michigan

survey of consumers measure for CPI inflation expectations as our main measure of inflation

expectations as it both goes back all the way to the 1960s and because it is highly correlated

with firm measures of inflation expectations.7 This contrasts with professional forecasts

or market based forecasts, which are much less correlated with the SoFIE firms’ inflation

expectations than that obtained from consumers.

Figure 2: Different measures of one-year inflation expectations
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Notes: “Cleveland Fed” is the inflation expectations series published by the Federal Reserve Bank of Cleve-
land, “SPF” is the Survey of Professional Forecasters published by the Federal Reserve Bank of Philadelphia,
“Livingston” is the Livingston Survey series published by the Federal Reserve Bank of Philadelphia, “MSC”
is the Michigan Survey of Consumers published by the University of Michigan, “SCE” is the Survey of Con-
sumer Expectations series published by the Federal Reserve Bank of New York, “SoFIE” is the Survey of
Firms’ Inflation Expectations series published by the Federal Reserve Bank of Cleveland. All series have been
demeaned.

We initially do not estimate this Phillips curve, but choose commonly accepted parame-

ters values. In particular, γg is set to 0.0138 according to what estimated in Hazell, Herreño,

7Reis [2021] analyzes the business-cycle dynamics of the discrepancy between market and survey measures,
but focusing on long-run inflation expectations
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Nakamura, and Steinsson [2022] 8 and β is set to 0.99, which is a common value in the

literature. We refer to this as our baseline Phillips curve. Note that given the low value of

γg, that Phillips curve is pretty flat.

From this baseline Phillips curve, we construct residuals êt = πt − 0.99πe
t+1 − 0.0138 gapt

over the period 2008q1-2023q1 and plot them against our measure of the gap. This is the

plot in Panel (a) of Figure 3.9 The dark dots are Phillips curve residuals for the post-

2020 period, while the grey dots cover the period from 2008q1 to 2019q4. We overlayed

on these figures two estimated relations between the Phillips curve residuals and labour

market tightness over 2008q1 to 2019q4; one in linear form and one in cubic form. The

coefficient for this regression are presented in Columns 1 and 2 of Table 1. We also calculate

the standard deviation σϵ of the Phillips curve residuals for this sample as well as that

from the prior sample running from 1968q1 to 2007q4. The first thing to note is that the

standard deviation of the Phillips curve residuals are only slightly higher over the period

2008q1-2023q1 than over the period 1968q1-2007q4, although we are considering Headline

inflation and not controlling for supply shocks. More interestingly, we detect no significant

link between these residuals and the unemployment gap.10 If the residuals were strongly

and positively associated with the labour market tightness measure, including possibly in a

non-linear fashion, this would put in question the validity of a flat Phillips curve view in the

more recent data. However, these forecast errors do not suggest that a steeper Phillips curve

would better explain the more recent data episode. The same exercise is repeated using Core

CPI inflation as a measure of inflation. As it can be seen in Columns 3 and 4 of Table 1

and on Panel (b) of Figure 3, there is again no sign of a steepening of the Phillips curve.

Furthermore, the standard deviation of the Phillips curve residuals is now smaller post 2008

as compared to previously. If anything, this flat Phillips curve fits better post 2008 data

than over the period 1968-2007.

8In Hazell, Herreño, Nakamura, and Steinsson [2022], the authors provide an implied aggregate slope of
the Phillips curve, with R-CPI as the measure of inflation and negative unemployment gap as the measure
of market slackness. From footnote 24 in Hazell, Herreño, Nakamura, and Steinsson [2022], this aggregate
slope of the Phillips curve is = 0.58× 0.0062 + 0.42× 0.0243 = 0.0138.

9In our analysis for post-2008 data, we exclude the 2020q2 observation given that measuring labour
market tightness at a time of massive lock downs is very controversial.

10Endogeneity issues can complicate inference from this figure. Under the null hypothesis that our Phillips
curve is well specified, forecast errors should reflect supply or markup shocks. In contrast, if the slope is
mis-specified, then the forecast errors would also include a term directly related to labour market tightness.
In this later case, such mis-specification should show up as a systematic relationship between forecast errors
and labour market tightness. However, a strong endogenous relation between supply shocks and labour
market tightness could hide this effect. Although we see this as a possibility, we believe it is likely of second
order importance over this sample. We have explored the potential relevance of this issue by using high
frequency identified monetary shocks to instrument labour market tightness when regressing forecast errors
on labour market tightness. We have not found evidence of endogeneity bias.
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Figure 3: Out-of-Sample Residuals from Phillips Curves
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(c) Estimated, Headline (d) Estimated, Core
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Notes: Panels (a) and (b) of this figure plots the out-of-sample residuals of the baseline Phillips curve (1)
against a measure of labor market tightness (minus) the U.S. Congressional Budget Office unemployment
gap), for two measures of inflation (Headline and Core CPI). The gray lines show the estimated linear or
cubic relation between residuals and labor market tightness (see Table 1 for the estimated coefficients). Light
dots correspond to pre-2020 observations and dark ones to post-2020. We exclude 2020q2 from this graph.
Panels (c) and (d) of this figure repeat the analysis with the augmented estimated Phillips curve (2).
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Table 1: Projection of the Philips Curve Residuals ê on the Gap, 2008-2023

Headline Core Headline Core
Baseline Baseline Estimated Estimated

linear nonlinear linear nonlinear linear nonlinear linear nonlinear
(1) (2) (3) (4) (5) (6) (7) (8)

gap 0.02 0.11 0.03 0.04 -0.04 -0.03 -0.01 -0.02
(0.035) (0.113) (0.016) (0.056) (0.022) (0.072) (0.016) (0.055)

gap2 -0.05 -0.00 -0.04 -0.01
(0.087) (0.043) (0.056) (0.042)

gap3 -0.02 -0.00 -0.01 -0.00
(0.015) (0.007) (0.009) (0.007)

N 60 60 60 60 60 60 60 60
σê,60−07 .324 .315 .276 .291
σê,08−23 .528 .256 .338 .245

Notes: in columns (1) to (4), the Phillips curve residuals are obtained from the baseline Phillips curve
(1). In columns (5) to (8), they are obtained from the augmented Phillips curve (2) estimated over the
sample 1969Q1-2007Q4. σê is the standard deviation of the Phillips curve residuals. The standard errors of
estimated coefficients are between parentheses.

In addition to this baseline Phillips curve, we also directly estimate a Phillips curve over

the sample 1969q1 to 2007q4, and look at the implied out of sample forecast errors for the

period 2008q1-2023q1. Details of this estimation is provided in the appendix and follow

Beaudry, Hou, and Portier [2023]. Since the determinants of inflation in Phillips Curve are

endogenous, we follow Barnichon and Mesters [2020] and estimate our Phillips curve by

Instrumental Variables using estimated monetary shocks as instruments.11 To reduce the

risk of biases, we estimated the Phillips curve using Core inflation, and as argued in Beaudry,

Hou, and Portier [2023], we include the real interest rate as an additional explanatory variable

to capture a potential cost channel of monetary policy.12 The estimated Phillips curve is

therefore

πt = βπe
t+1 + γg gapt + γr(it − πe

t+1) + et. (2)

Table 2 displays the results from estimation. The coefficients we obtain for γg is quite close

to that our of baseline Phillips curve, with the exception that we obtain a slightly steeper

Phillips curve than that reported in Hazell, Herreño, Nakamura, and Steinsson [2022]. Our

estimate our γg is .04 and significant at standard levels, which is more than twice that of

11To be specific, we use twelve lags of the Romer and Romer’s [2004] shocks (extended by Wieland and
Yang [2020]) and their square as instruments.

12Also note that the presence of direct cost channel matters in the context of asking which expectations
are more relevant when estimating Phillips curve. See a comprehensive discussion in Reis [2023].
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.0138 from Hazell, Herreño, Nakamura, and Steinsson [2022], but not significantly different

from it. Our estimate for β is also .99.

In Panel (d) of Figure 3, we report the out of sample Phillips curve residuals from our

estimated model for the period 2008q1-2023q1 plotted against our measure of labour market

tightness, with again a linear and cubic fit superimposed. We see a very similar pattern

to that observed in Panels (a) and (b), with very little link between the forecast errors

and labour market tightness, even though these are out of sample forecast. The estimated

coefficients for these linear and cubic fits are displayed in Columns (7) and (8) of Table 1

So again, these observations do not suggest that a stepper Phillips curve is helpful/needed

to explain the 2008q1-2023q1 period. Note that the fit of this estimated Phillips curve,

as measured by the standard deviation of the residuals σê is better out-of-sample than in-

sample. In appendix A, we confirm similar finding using the vacancy to unemployment rate

as an alternative measure of labour market tightness, as well as exploring the effect of the use

market base measures of expectations. For completeness, panel (c) of Figure 3 and Columns

(5) and (6) of Table 1 repeat the analysis when using the Headline CPI to estimate the

Phillips curve. Results are similar.

The overall out-of-sample fit of the baseline Phillips curve can also be seen in Panel (a)

and (b) (for Headline) and (c) and (d) (for Core) of Figure 4. As can be seen, the forecasted

inflation tracks actual inflation reasonably well, with exceptions such as 2021q2, where actual

inflation was well above predicted, as is consistent with a strong supply shock in that quarter

associated with transport bottlenecks. In Panels (a) and (c), we also plot a counterfactual

path of inflation over the period assuming that the unemployment gap had been equal to

its sample mean over the forecast horizon. Here we see that this counterfactual inflation

series is very similar to the predicted inflation path using the full model. This reflects

the very weak direct role that labour market tightness is playing in our estimated Phillips

curve given that the slope is quite small. The second counterfactual we examine imposes

that inflation expectations are constant over the forecast period and set at their average.

This counterfactual path is reported together with our forecasted rates of inflation in Panel

(b). and (d). Here we see clearly that it is expected inflation that mainly drives the fit of

the predicted inflation, as when we omit the role of inflation expectations, the fit greatly

deteriorates.

In summary, Figures 3 and 4 illustrate how a very simple three-variable Phillips curve,

either estimated prior to the recent periods of missing deflation and high inflation, or based

on the work of Hazell, Herreño, Nakamura, and Steinsson [2022], fits the post-2007 data and

post-2020 quite well. The lack of a relationship between forecast errors and labour market

tightness indicates that the Phillips curve is likely still quite flat. The forecast error are also
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close to i.i.d., which is consistent with them being interpreted as supply shocks. The ongoing

flatness of the Phillips curve implies that persistently high levels of core inflation in 2022 and

early 2023 are unlikely explained by labour market tightness. Instead, it appears primarily

driven by elevated levels of inflation expectations. Such observations can be both reassur-

ing and uncomfortable. On the one hand, they support the view that the Phillips curve

framework likely remains a relevant framework for thinking about inflation developments.

However, they also suggest that the main driver of inflation is expected inflation itself. The

latter observations can be uncomfortable as it questions/downplays the traditional role of

pure demand management as key to controlling inflation and instead pushes forward the

central importance of expectations management– and the more amorphous role of inflation

psychology– in controlling inflation.

Table 2: Estimated Phillips Curves, 1969-2007

Headline Core
β 1.15⋆ 0.99⋆

(0.031) (0.048)
γg 0.07⋆ 0.04⋆

(0.020) (0.015)
γr 0.13⋆ 0.25⋆

(0.031) (0.042)
Observations 144 144
J Test 15.201 10.684
(jp) (0.887) (0.986)
Weak ID Test 7.825 12.245

Notes: All results are using IV-GMM procedure, Newey-West HAC standard errors with six lags are reported
in parentheses. The constant term is omitted from the table. Real oil price and its lag are also omitted
for the regression with Headline CPI. All regressors are instrumented using six lags of Romer and Romer’s
[2004] shocks (as extended by Wieland and Yang [2020]) and their squares as instruments. A ⋆ indicates
significance at 5%. Sample is 1969Q1-2007Q4.
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Figure 4: Counterfactual Simulations from the Baseline Phillips Curve
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2 The Joint Dynamics of Inflation, Inflation Expecta-

tions and Labour Market Tightness

In this section we first provide VAR based evidence to give further support to the view that

inflation dynamics appears to be largely explained by inflation expectations, with labour

market tightness playing a very secondary role. We then show that our baseline Phillips

curve model with rational expectations and full or incomplete information is unlikely to

account for the observed joint dynamics.

2.1 VAR Evidence

To this end, Figure 5 plots impulse response generated from a bi-variate VAR using infla-

tion and the inflation expectations estimated over the period 1969q1-2023q2. The data for

inflation remains headline inflation and that for expectations is again drawn from the Michi-

gan Survey of Expectations. The figure corresponds to impulse response associated with a

Choleski orthogonalization of the VAR residuals, where the shock ε2 does not have impact

effect on inflation expectations while ε1 is unrestricted but to be orthogonal to ε2. We do

not claim that these impulses responses capture the effects of structural shocks. Instead, we

simply view them as a means of summarizing properties of the data. In particular, these two

shocks will eventually be interpreted as combinations of the structural shock in our modelling

of section 4. In Figure 5, together with the response of inflation to the two shocks {πt}20t=1, we

also represent (dashed line) the expected inflation response {πe
t+1}19t=1 shifted by one period.

Two properties of this joint dynamics can be observed. First, inflation expectations formed

at time t match very closely realized inflation at t + 1. This is true for both shocks, and

therefore for any linear combination of these shocks. Accordingly, it suggests that either

agents are very good at predicting inflation or instead that expected inflation may be an

important driver of inflation. Second, these impulse responses suggest that there is some

combination of shocks (that forms ε2) that don’t transmit to expected inflation and this

leads to very temporary rise in inflation. While on the other had, there is some combination

of shocks (that forms ε1) that have a large effect of inflation, transmit to expected inflation,

and this is associated with persistent inflation. Indeed, in the response to ε1, the first and

second serial correlation of inflation response are 0.45 and 0.44, while for ε2 they are 0.19 and

0.06. It should also be noted that the short run variance of inflation accounted for ε2 is close

to 50%, implying that a substantial fraction of the variance of inflation does not transmit to

expectations. So one needs at least to quite distinctive types of shocks to explain the join

behaviour of inflation and inflation expectations.
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Figure 5: Impulse Responses in the 2-VAR (πt, π
e
t+1)

Notes: this Figure plots the impulse responses to a one standard deviation shocks ε1 and ε2. These shocks
are obtained from a Choleski orthogonalization. The estimated VAR features two lags of Headline CPI
inflation and of the Michigan Survey of Consumers inflation expectations. The dashed line is the expected
inflation response {πe

t+1}19t=1 shifted by one period. Sample is 1969Q1-2023Q1. Shaded area represents the
95% confidence band.

In Appendix C, we show that these impulse responses are essentially unchanged if we

change the number of lags or if we drop post-2008 data from the estimation. It also holds

if the VAR is estimated on 2008-2023.13 This suggests that the recent inflation dynamics

continue to obey the dynamics that was observed earlier, suggesting no substantial break in

the process.

In Figure 6, we present the impulse responses from a trivariate VAR that builds on our

bi-variate VAR by including (minus) the unemployment gap as the third variable, again

using a Choleski indentification; ε3 affects only the gap on impact, ε2 affects only the gap

and inflation on impact and ε1 is unrestricted but to be orthogonal to the two other shocks.

13In that case, we keep only one lag in the VAR as the sample is small.
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Figure 6: Impulse Responses in the 3-VAR (πt, π
e
t+1, gapt)
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Notes: this Figure plots the impulse responses to a one standard deviation shocks ε1, ε2 and ε3. These
shocks are obtained from a Choleski orthogonalization. The estimated VAR features two lags of Headline
CPI inflation, the Michigan Survey of Consumers inflation expectations and of (minus) the employment
gap. Sample is 1969Q1-2023Q1. Shaded area represents the 95% confidence band.
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The main feature we want to highlight from this figure is the quasi complete separation

between inflation and inflation expectations on the one hand and labour market tightness on

the other hand. This can seen examining how the sub-block of impulse response to ε1 and

ε2 for inflation and inflation expectations generated by this three variable VAR is almost

identical to that generated by our two-variable VAR. Furthermore, we can see that the shock

to unemployment ε3 has essentially no impact on inflation or inflation expectations, while

the two other shocks that drive almost all the variance of inflation and expected inflation

have very effect on unemployment. In summary, these two (non-structural) VARs appear

consistent with the view that the Phillips curve is likely very flat and that the persistent

component of inflation may well be driven by expected inflation.

2.2 The Challenge in Explaining the Joint Dynamics of Inflation

and Inflation Expectations under Rational Expectations

As we have argued above, inflation expectations appear to potentially be an important driver

of inflation. However, this may only be a proximate cause. It may well be the case that

both inflation and inflation expectations are driven by a third variable, and expectations

are simply good at capturing this force. Accordingly, we ask in this subsection whether the

joint dynamics of inflation and inflation expectations reflected in our bi-variate VAR could

be produced by our baseline Phillips curve model under rational expectations, where the

dynamics of the labour market tightness and supply shocks would be the more fundamental

factor. To that end, first assume that inflation is generated from the baseline Phillips curve

πt = βπe
t+1 + γg gapt + et, (3)

with et ∼ N(0, σ2
e), β = .99, γg = 4 × 0.013814 and where we use quarterly (annualized)

Headline inflation, the Michigan Survey of Expectations and (minus) the unemployment gap.

As discussed in the previous section, the fit of the baseline Phillips curve hasn’t worsened in

the recent period, as illustrated on Figure 7.

We also assume that the gap follows an exogenous AR(1) process:

gapt = ρ gapt−1 + vt, (4)

with vt ∼ N(0, σ2
v). We estimate an AR(1) process for gapt.

15 The estimated parameters

14We multiply the Hazell, Herreño, Nakamura, and Steinsson’s [2022] estimate by four because we use
here anualized quarterly inflation and expected inflation.

15When we estimate an AR process with more lags, only the estimate on the first lag is significant.
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Figure 7: The Fit of the Baseline Phillips Curve, 1969-2023
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Notes: this Figure plots Headline CPI inflation together with inflation predicted by the baseline Phillips curve
(1)

are ρ = 0.89 (s.e. 0.03) and σ2
v = 9.05 (s.e. 0.33). We obtain an estimate of σ2

e = 5.00 from

the residual of (3).

Now let’s solve that Phillips curve and gap process model under Rational Expectations

and with or without full information, and show that data generated by such models cannot

replicate our VAR findings.

Full Information Rational Expectations (FIRE): When economic agents form ratio-

nal expectations, they use the correct model (3)-(4) and form expectations πe
t+1 = EFIRE

t [πt+1].

Under full information, gapt−1, vt and et are observed. The solution to the model is given

by:

πt =
γg

1− βρ
gapt + et, (5)

EFIRE
t [πt+1] =

γgρ

1− βρ
gapt. (6)

Full Information Rational Expectations (FIRE) with persistent supply shock:

Looking at the properties of the Phillips curve residual ê, it is significantly autocorrelated,

although the autocorrelation coefficient is small. When we estimate an AR(1) process, we

find low autocorrelation, with an estimated ρe = 0.165 (standard deviation = 0.05). Could

this admittedly low persistence reverse the results we obtain with the i.i.d. supply shocks

FIRE model? To answer that question, we also consider an extension of the FIRE model

where we allow et to be persistent. The solution to such a FIRE model with persistent et is
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given by:

πt =
γg

1− βρ
gapt +

1

1− βρe
et, (7)

EFIREp
t [πt+1] =

γgρ

1− βρ
gapt +

ρe
1− βρe

et. (8)

Incomplete Information Rational Expectations (IIRE): Here we look at a counter-

part of our Section 4 main model but with rational expectations. We assume that agents

correctly understand the model (3)-(4), but that they do not observe the gap and the aggre-

gate supply shock et. Instead, we assume that the economy is composed of N sectors with

sector-specific supply shocks. In sector j, sectoral inflation is generated by:

πj,t = βπe
t+1 + γg gapt + ej,t, (9)

where ej,t ∼ N(0, σ2
j ). We assume that agents observe a signal that adds-up demand infla-

tionary pressures γg gapt and a subset S of the sector-specific supply shocks ejt:

st = γg gapt +
∑
j∈S

ej,t (10)

and we will use the notation

ϵt =
∑
j∈S

ej,t. (11)

with ϵt ∼ N(0, σ2
ϵ ). Economic agents have rational expectations and know that inflation is

generated by

πt = βπe
t+1 + γg gapt + ϵt + wt, (12)

where wt = et−ϵt is the residual supply shock. The agents use Bayes Rule and the knowledge

of the model to form beliefs of et and gapt, and to compute πe
t+1 = EIIRE

t [πt+1]. Denoting

K the Kalman gain in this computation, the solution to the model is:16

EIIRE
t [πt+1] =(1−Kγg)ρE

IIRE
t−1 [πt] +

γgρK
1− βρ

(γg gapt + ϵt), (13)

πt =β(1−Kγg)ρE
IIRE
t−1 [πt] +

γ2
gKρβ + (1− βρ)γg

1− βρ
gapt

+
Kρβγg + (1− βρ)γ

1− βρ
ϵt + wt. (14)

16The detailed derivations are left to Appendix F.
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We estimate σϵ by Simulated Method of Moments. The model is simulated 200 times,

the (πt, π
e
t+1) VAR is estimated in each simulation and σϵ is set to minimise the distance

between the average Impulse Response Functions obtained from the model with their em-

pirical couterpart, when the same Choleski decomposition is used for model and data. The

resulting estimate is σϵ = 1.08, and this implies σw = 1.96.

Results: For each of the three models considered, using the estimated parameters, we

simulate 200 random samples with the same length as the data. With these generated data,

we estimate the bi-variate VAR and see how well it can match the impulse responses derived

from our empirical bi-variate VAR. The result can be seen in Figure 8. The impulse responses

from the generated data do not match that derived from actual data neither in shape nor

level, even if in the case of IIRE model we estimate σϵ to deliberately match these IRFs.

We can also illustrate the performances of these models in matching the joint dynamics

of inflation and inflation expectations by looking at the set of moments presented in Table

3. We see that none of the rational expectations models can create inflation as volatile as

the data. The simulated data have much lower persistence and variances in both realized

and expected inflation, as compared to the actual data.

Table 3: Moments of π and πe
t+1 in the Data and in Models with Rational Expectations

var(πt) cov(πt, πt−1) cov(πt, πt−2) var(πe
t+1) corr(πe

t+1, π
e
t )

Data 12.52 7.70 6.99 3.92 0.90
FIRE 5.49 0.45 0.39 0.42 0.87
IIRE 5.10 0.05 0.04 0.00 0.87
FIRE,
persistent wt

7.59 1.61 0.57 0.61 0.64

Notes: For the three models, the moments are computed as the average across 200 random samples of same
length than the data.

In part, this should not be too surprising. Given the rather small slope of the Phillips

curve implied by the work of Hazell, Herreño, Nakamura, and Steinsson [2022] and the low

persistence of the supply shocks, it is hard to see how shocks to labor market tightness or

supply shocks could generate important volatility in inflation expectations. In particular,

the difficulty for the rational expectations models to match the VAR observations reflects the

difficulty to generate both large and persistent responses of inflation expectations. Rational

agents understand that the underlying persistent factor moving inflation plays only a limited

role. As a result, they shouldn’t expect future inflation to have persistent movement as well.
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Figure 8: The Joint Process of π and πe
t+1 in the Data and in Models with Rational Expec-

tations

Notes: on this Figure, the solid grey line plots the impulse responses to a one standard deviation shocks ε1
and ε2 estimated with data from Michigan Survey of Consumers inlfation expectations and Headline CPI.
Sample is 1969Q1-2023Q1. Shaded area represents the 95% confidence band. The other lines plot the average
impulse responses (over 200 simulations of length 216) obtained from the same VAR estimated on simulated
data, when the Data Generating Process is either the FIRE model (5)-(6) assuming wt is i.i.d, the IIRE
model (13)-(14) or the FIRE model assuming wt is persistent.
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Moreover, limited information does not help with the situation. In fact, the IIRE case has

the most muted response among all the three models and generates the least volatile as well

as the least persistent inflation. This is not only because the rational agent understands the

persistent labor market condition plays little role. They also realize that their signals are

not informative because of the large noise-to-signal ratio due to low γg. As a result, their

expectations do not respond much to the movements in labor market conditions.

Our take away from this this section is that the VAR dynamics for inflation and inflation

expectations are unlikely to be explained by a Rational Expectations New Keynesian Phillips

curve model. In the next section, we explore what may drive inflation expectations.

3 The Information Encoded in Inflation Expectations

In this section we provide some preliminary evidence for our conjecture that inflation expec-

tations may be driven by a perceived common component across sector-specific inflations.

Our narrative is quite simple. Inflation is defined as a generalized increase in prices. So

when agents (both firms and households) see prices increase in many sectors (although not

necessarily in all sectors), they take this to be sign that inflation is taking hold. This affects

their expectations and this incite firms to increase prices.

To provide support to this conjecture, we take the set of sectoral inflation data for the

24 expenditure categories used by the BLS to construct the CPI (see Table D.1 in Appendix

D for a description) and extract the common component of these sectoral inflations. To do

so, we estimate a Dynamic Factor Model17 in which sectoral inflations are driven by one

common persistent factor Ct which follows an AR(1) process. The model takes the following

form:18

πj,t = αj Ct + ej,t, (15)

Ct = ρC Ct−1 + vt, (16)

where j stands for the sector/category and πj,t is the month-to-month inflation of each

sector/category j. How the common component Ct affects different πj,t may be different,

and is captured by αj. Data are monthly over the sample 1978m1-2023-m5 for seventeen

sectoral inflations and shorter for the remaining seven (see Table D.1). We estimate that

model with Kalman Filter Smoothing using a Maximum Likelihood Estimator that accounts

for the missing observations. Estimated parameters are ρC and {αj, σ
2
j}24j=1. Note that σ2

v is

17See Stock and Watson [2011] for a thorough review.
18There are no constants in the model because we use standardized sectoral inflations πj,t.
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not separately identifiable from αj’s, so that we normalize it to 1. The parameters estimates

we obtained are presented in Table D.2 in Appendix D. The important element to note

is that all the αj’s are positive, so that Ct is indeed capturing a common component in

inflation. In Figure 9, we plot expected inflation and the common component Ct. As can

be seen, the common component of sectoral inflations tracks the expected inflation quite

well. It is interesting to compare the (normalized) weights of each category in the common

Figure 9: Michigan Survey of Consumers Inflation Expectations πe
t+1 and the Common

Component Ct.
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Notes: this Figure plots inflation expectations (as measured by the Michigan Survey of Consumers) together
with the common component Ct. Ct is obtained from the estimation of (15) and (16) on the 24 expenditure
categories used by the BLS to construct the CPI.

components to the expenditure share of that category, as used by the BLS to compute CPI.

The weights in the common component are computed as the relative Kalman gain associated

to each sectoral inflation in updating the common component. Those two sets of weights

are represented in Figure 10. It is evident that are very different. The correlation between

these two sets of weight is 0.15, with a 95% confidence set [-0.01, 0.32]. This shows that

the common component encodes some information about broad-based shock, as the weights

significantly differ from the CPI ones.

It is also interesting to note which sector are most disproportionally impacting the com-

mon component. One sector that is particular important is full service meals. This is a

sector that combines aspects of both food and services inflation and in that sense it is quite

broad based by construction. Similarly, limited service meals and other foods away from

home are also important components. Shelter, in contrast, has an important weight in the

common component but it’s weight is significantly below its weights in the CPI. Cereals and
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bakery products are also disproportionally important contributors. Overall, this common

component appear especially affects by components that combine food and service costs, in

addition to more traditional categories like energy and shelter.

Figure 10: Comparing the Weights in the Common Component and in the CPI Basket

(a) BLS weights (b) Common Component weights
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Notes: Panel (a) plots the weight of each category in the CPI basket, while panel (b) plots the (normalized)
weights in the common component Ct.

We then regress our measure of expected inflation (from the Michigan Survey of Con-

sumers) on the common component of the disaggregated inflation data and annualized

month-to-month CPI (headline) inflation. The resulting regression is (with standard errors

between parenthesis):

πe
t+1 = 0.66 + 0.78 Ct + 0.09 πHL

t + ut,

(0.09) (0.02) (0.01)
(17)

where the data are at a monthly frequency with 545 observations and an adjusted R-Squared

of 0.82. The common component enters significantly in the regression on top of Headline

CPI, which indicates that economic agents (here the households) may be using it to forecast

inflation. The adjusted R-Squared of regressing inflation expectations from the Michigan

Survey of Consumers on only common component is 0.80 and the adjusted R-Squared of

regressing inflation expectations on only Headline CPI is merely 0.45.

It is also interesting to compare the behaviour of the common component extracted from

disaggregated data to the behaviour of oil prices. To this end, on Figure 11 we superimpose
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the behaviour of the year-to-year oil price changes19 to that of expected inflation in order to

parallel Figure 9. As can be seen, over the recent bout of inflation (post-2020), expectations

moved closely with oil price inflation. If one only focused on this type of period, it could

suggest that the price of oil is the dominant force behind inflation expectations. However,

as can also be seen in the figure, there have been many extended periods where oil price

inflation and inflation expectations have diverged considerably. Over the whole sample from

1978 to 2023, the correlation between expected inflation and oil price inflation is only 0.35.

In contrast, the extracted common component follows closely inflation expectations over the

entire sample with a correlation of 0.90, thereby offering a better basis to build a theory of

inflation expectations. In particular, Figure 11 and Figure 9 suggest that agents are likely

downplaying the role of oil prices in forming inflation expectations when only oil prices are

moving, but when oil prices and many other goods are increasing in tandem, then inflation

expectations react strongly.

Figure 11: Michigan Survey of Consumers Inflation Expectations πe
t+1 and the Change of

Oil Prices.
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Notes: this Figure plots inflation expectations (as measured by the Michigan Survey of Consumers) together
with the year-to-year change of oil prices.

19We use Spot Crude Oil Price: West Texas Intermediate (WTI) as our proxy for oil prices.
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4 A Bounded Rational Model of Inflation and Infla-

tion Expectations Dynamics with Broad-Based Sup-

ply Shocks

In this section our aim is to take up the following challenge. We want to combine our baseline

Phillips curve with a particular bounded rationality theory of inflation expectations to see

whether it can match the bi-variate VAR for inflation and expected inflation. Our theory

of expectations will build on the idea that agents may form expectations by extracting

a common component from disaggregated data. However, agent’s perception of the data

generating process will be slightly simpler than the actual data generating process. In

particular, we will assume that they don’t conceptualize the data generating in its structural

form. Instead they view persistent inflation as driven by a common component that they

need to infer from the data.

4.1 The Model

The model has two main departures from the Full Information Rational Expectations case.

First, agents observe only a subset of the sectoral inflations when forming their inflation

expectations. This is the source of imperfect information. Second, they believe that sectoral

inflations depend on a common persistent component and a transitory sector-specific com-

ponent, but fail to fully understand the relations between these two components. The later

is the source of bounded rationality.

Sectors: The model directly adopts the baseline aggregate Phillips Curve discussed in the

previous sections as part of the data generating process:

πt = βπe
t+1 + γg gapt + et. (18)

The headline aggregate inflation πt is a weighted average of sector-specific inflations. Con-

sider that each sectoral inflation obeys a sectoral Phillips Curve similar to the aggregate
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one:20

πj,t = βπe
t+1 + γg gapt + ej,t, (19)

where j stands for a specific sector and ej,t is the i.i.d sector-specific shock with distribution

N(0, σ2
j ). We will describe the expectations formation process after we have introduced the

agents perceived laws of motion. As in Section 2.2, the gap follows an AR(1) process:21

gapt = ρ gapt−1 + vt. (20)

Assuming there are N categories in the CPI, headline inflation is the weighted average of

the sectoral series:

πt =
N∑
j=1

ωjπj,t, (21)

where the ωjs are the sectoral weights, and
∑

j ωj = 1. We can therefore rewrite the Phillips

curve as

πt = βπe
t+1 + γg gapt +

N∑
j=1

ωjej,t. (22)

Imperfect Information: We assume that economic agents observe only a subset or the

sectoral inflations.22 This subset of sector indexes j is denoted S ⊆ {1, 2, ..., N}, and its

cardinality is m ≤ N . Agents will use these sectoral inflations as signals sj,t = πj,t to

form expectations. In our framework, it is mathematically equivalent to replace the set of

signals {sj,t}j∈S by one aggregate signal st. Indeed, for independent signals j = 1, ...,m with

different precisions 1
σ2
j
, observing m different signals is equivalent to observing a signal with

precision:
∑m

j=1
1
σ2
j
.23

20Note that we could allow for different responses of disaggregate inflations to expectations (βj) and labor
market conditions (γg,j). This would give some extra degrees of freedom to the model in our quantitative
analysis later. At this stage, we abstract for this extra layer of heterogeneity between sectors and assume
βj = β and γg,j = γg for all j. We could also introduce both aggregate expected inflation expectations and
sector j specific expected inflation. Again, we keep minimal the deviations from the standard model, and
only introduce aggregate expected inflation.

21In our model specification, we are not explicitly discussing monetary policy. However, our framework is
implicitly assuming that monetary policy is such that (1) it is ensures that the gap is centred at zero and
(2) than inflation in the long run is well anchored.

22We do not take a stand on what are the causes for the agents not being fully attentive to all the sectoral
inflations. Many frameworks such as rational inattention (Sims [2003]) or sparsity (Gabaix [2014]) can create
such a partial information environment.

23See Appendix E for the derivation.
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Perceived Law of Motion and Bounded Rationality: We have shown in Section 2

that neither the FIRE nor the IIRE models could easily match the joint dynamics if infla-

tion and inflation expectations, as obtained from a simple VAR. Accordingly, in this section

we build on our analysis in Section 3 by assuming that agents form their inflation expec-

tations by extracting a common component from their observations of sectoral inflations.

In particular, the agents are assumed to observe {πj,t}j∈S , and to form expectations us-

ing this information.24 The element of bounded rationality is that they perceive the law

of motion for sectoral inflations as being composed of a common persistent component z̃t

and sector-specific transitory components ẽj,t, instead of the sectoral Phillips curves (22).

Their estimate of the persistent component will be used to form expectations about future

aggregate inflation.25

Formally, agents have the following perceived law of motion of the economy:

πj,t = z̃t + ẽj,t = sj,t, (23)

πt = z̃t +
∑
j∈S

ωj ẽj,t +
∑
j /∈S

ωj ẽj,t, (24)

z̃t = ρ̃z z̃t−1 + ε̃z,t, (25)

with ẽj,t ∼ N
(
0, σ̃2

j

)
∀j and ε̃z,t ∼ N(0, σ̃2

z). The parameters ρ̃z, σ̃
2
j and σ̃2

z denote the per-

ceived persistence and variances for the law of motion. Here also, the perceived independent

ẽj,t with different precisions 1
σ̃2
j
can be collapsed into a single ε̃t with precision: 1

σ̃2
ϵ
=
∑m

j=1
1
σ̃2
j
.

The agents endowed with this Perceived Law of Motion will be quite sophisticated. They

will use the observed sectoral inflation series to infer the state z̃t – the perceived common com-

ponent affecting inflation – and take these beliefs about z̃t to form expectations of aggregate

inflation. However, they are bounded rational in the sense that they treat the state-space

system (23)-(25) as a standard signal-extraction problem in which the noise generated by not

observing all the sectors is treated as uncorrelated with the state z̃t. Because the sectoral

inflations are common to all the agents, when the aggregate expectation responds to the

signals, these signals will affect the state variable, which will feedback to the signals via the

Phillips curve (22). As agents fail to recognise that the hidden state may be correlated with

the noise in their signals, this has the potential to create a positive feedback loop from noise

to inflation.26 This mis-interpretation of the data is the key to creating an amplification

24For example, D’Acunto, Malmendier, Ospina, and Weber [2020] documents prevalent evidence that
consumers use prices they are exposed to in their daily shopping experience to form inflation expectations.

25Such a signal-extraction formulation is widely used in the literature about inflation expectations. Ex-
amples are among others Coibion and Gorodnichenko [2015a] and Bordalo, Gennaioli, Ma, and Shleifer
[2020].

26In the Perceived Law of Motion, the information relevant for forming expectation is the common com-
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mechanism in our expectations formation model.27

Solving the Model: Using equation (23) together with the aggregate inflation (24), we

obtain the observational equations from the agent’s perspective:{
st = z̃t + ϵ̃t

πt = z̃t + η̃t
(26)

whereas the actual signal and aggregate inflation are generated by:{
st = βπe

t+1 + γg gapt + ϵt

πt = βπe
t+1 + γg gapt + ηt

(27)

In these equations, st is an average signal from the m independent sectoral signals, with

precision 1/σ̃2
ϵ . Using (22) and (24), we denote ηt =

∑N
j=1 ωjej,t and η̃t =

∑N
j=1 ωj ẽj,t, with

ηt ∼ N(0, σ2
η) and η̃t ∼ N(0, σ̃2

η). ϵt stands for the broad-based shock. The information

encoded in st is also reflected in πt, so that ϵt and ηt are correlated with correlation ϱ. For

the same reason, ϵ̃t and η̃t are correlated with correlation ϱ̃. It is possible that ϱ ̸= ϱ̃ and

both are non-zero.28

The agents face the state-space model described by (25) and (26). They solve a signal-

extraction problem to form belief about the perceived common component, z̃t, and use it

to form expectations about inflation. Because expectations formed in the current period

will also affect current inflation and signals the agents see, we need to be specific about

the timing of expectations formation and when expectations affect inflation. In the baseline

version of the model, we will allow information extracted from the disaggregated data to

be simultaneously determined with inflation, while we will assume that aggregate inflation

(CPI) is released to households with a lag. This implies that any residual information in

aggregate inflation does not feedback contemporaneously to itself.29 Accordingly, we solve

ponent. As a result, the agent will treat the transitory sectoral supply shock ẽj,t as a noise. However, ẽj,t
is different from a pure “noise shock” as in Lorenzoni [2009], which is typically interpreted as a demand
shock. The crucial difference is that ẽj,t will have direct impact on actual inflation even if it doesn’t pass
into expectation.

27Another feature of the above observational equation is that the signals are weighted by their precisions
that do not depend on their actual weights ωj in the aggregate price index. In other words, a category that
has a very low weight in the aggregate price index can be more informative as a category that has significant
weight but with a lower signal-to-noise ratio. This feature is in line with our finding in section 3 that the
weights of disaggregate price indices in the CPI basket are not highly correlated with the estimated weights
from Kalman Filter Smoothing.

28See Appendix E for a complete derivations of (27) and (26).
29In Appendix I, we reestimate the model under the assumption that inflation expectations are reported

after observing current inflation. Differences in the results are minor.
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the model adopting the following steps, which is easiest to present as having each period t

being composed of two sub-periods:30

Step 1: In the first sub-period of t, the gapt realizes. Economic agents form expectations

using the signal st. We denote the expected inflation formed in this sub-period as πt+1|t,0.

This is the expectation πe
t+1 that enters in the Phillips curves (18) and (19). Consistent with

the treatment in section 1 and section 2, we take these expectations as those observed in the

Michigan Survey of Consumers.

Step 2: In the second sub-period of t, agents also observe aggregate inflation πt. They use

this extra information to update their belief about future inflation, denoted as πt+1|t,1. This

will be the prior on inflation that will be carried over to the next period t+ 1.

Step 3: Both expectations πt+1|t,0 and πt+1|t,1 are formed from beliefs on the common

component z̃t. We denote these beliefs as z̃t|t,0 and z̃t|t,1. From equations (25) and (26), we

see that the links between expected inflation and the common component are:

πt+1|t,k = z̃t+1|t,k = ρ̃z z̃t|t,k ∀k = 1, 2. (28)

Step 4: Denote the innovations in agents’ perceived information (signal and aggregate

inflation)-generating process (26) as:(
ϵ̃t

η̃t

)
∼ N(000, R̃), R̃ ≡

(
σ̃2
ϵ ϱ̃σ̃ϵσ̃η

ϱ̃σ̃ϵσ̃η σ̃2
η

)
. (29)

The agents form weights on ϵ̃t and η̃t, according to the Kalman filter, using their beliefs that

st and πt are correlated. Denoting ιn a n× 1 vector of ones, the stationary Kalman filter is

given by:

K̂ = σ̃2ι′2(ι2σ̃
2ι′2 + R̃)−1, (30)

σ̃2 = ρ̃2z(σ̃
2 − K̂ι2σ̃

2) + σ̃2
z , (31)

where σ̃2 is the stationary posterior variance of belief on z̃t. Now note the K̂ is an 1 × 2

vector, with first element being the weight on the signal coming from the observed sectoral

inflations, and the second being the weight on aggregate inflation πt: K̂ ≡ (K k).

Step 5: In the first sub-period of t, agents observe st and form a nowcast of z̃t:

z̃t|t,0 = (1−K)z̃t|t−1,1 +Kst. (32)

30An alternative formulation would be thinking of the belief on zt is formed conditional on information
set It = {πt−1, st} in each period t. The two will give equivalent representation of the model.
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Step 6: In the second sub-period of t, agents observe πt and update belief on z̃t:

z̃t|t,1 = ((1−K − k)z̃t|t−1,1 +Kst + kπt). (33)

Following these six steps, the solution of the model will be given by:

πe
t+1 = πt+1|t,0 =

ρ̃z(1−K)

1−Kβρ̃z
z̃t|t−1,1 +

ρ̃zKγg
1−Kβρ̃z

gapt +
ρ̃zK

1−Kβρ̃z
ϵt, (34)

πt = βπt+1|t,0 + γggapt + ηt (35)

z̃t+1|t,1 = ρ̃z

(
1− (K + k)

1− βρ̃z
1−Kβρ̃z

)
z̃t|t−1,1 + ρ̃z

(K + k)γg
1−Kβρ̃z

gapt

+ ρ̃z

(
K + ρ̃zKkβ

1−Kβρ̃z

)
ϵt + kρ̃zηt. (36)

gapt = ρgapt−1 + vt (37)

Note that signal st and aggregate inflation πt are realized according to (27), so expectations

πe
t+1 = πt+1|t,0 and signal st will be simultaneously determined.

The above expectations formation process has the potential to create persistent bouts of

inflation in a quasi self-confirming way. When an adverse (positive) broad-base supply shock

ϵt hits the economy, economic agents observe an inflation hike in many disaggregate inflation

series. This causes them to update their view of the common component z̃t. If agents believe

that their signal is quite informative, this will increase their expected inflation. Because

the disaggregated inflations are public signals, the average expectation will increase which

drives up the disaggregate prices they observe. This feedback channel can thereby amplify

the response of expected inflation to broad-base shocks on impact.31 Moreover, in the second

sub-period, agents observe πt which is also pushed up by expectations. This further supports

their belief of positive realization in the common component. As a result, economic agents

enter next period with a prior of high inflation. This then creates very persistent responses

of both actual and expected inflation to broad-base price shocks. Furthermore, after the

initial period of the shock, actual inflation will react almost one-to-one with expectations,

which corresponds to the observation we made in the empirical VAR.

31Note that this amplification comes from the fact that the agents fail to understand expectations πt+1|t,0
is part of the perceived common component z̃t. More precisely, they fail to understand the hidden state is
correlated with the noise of their signal. This arises because the signals the agents observe are endogenous.
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4.2 Illustrating the Respective Roles of Imperfect Information

and Bounded Rationality using a Static Version of the Model

It may be useful to first consider a static model that conveys most of the intuitions for the

mechanism at play in the dynamic one. In that static model, equilibrium inflation π depends

on expected inflation (within the period) πe and a shock that is i.i.d normal e ∼ N(0, σ2
e):

π = βπe + e, (38)

with β ∈ [0, 1[. Economic agents do not observe inflation, but a noisy signal S:

S = π + ϵ. (39)

with ϵ ∼ N(0, σ2
ϵ ).

Consider first the Rational Expectation solution in which πe = E[π|S]. Agents filter

the signal S to infer a conditional expectation of e, understanding that their conditional

expectation of π influences inflation via equation (38). The equilibrium inflation is then

given by:

πRE =
1− (1− κ)β

1− β
e+

κβ

1− β
ϵ, with κ =

σ2
e

σ2
e + σ2

ϵ

. (40)

Both the noise ϵ and the shock e contribute the variability of π.

It is convenient to look at the case where the variance of fundamental shock e goes to

zero (σ2
e → 0). In that case, κ = 0 so that equilibrium inflation πRE = 0, even if the signal

S is noisy (σ2
ϵ ̸= 0). It is the same solution with full information (σ2

ϵ = 0) or with imperfect

information (σ2
ϵ ̸= 0).

Consider now a model with Bounded Rationality in which, instead of knowing (38),

agents believe that inflation is i.i.d:

π = ẽ (41)

where ẽ ∼ N(0, σ̃2
e). Observing the signal S, agents reads it as S = ẽ + ε, and believe that

ẽ and ε are orthogonal. Doing that signal extraction, one can obtain expected inflation and

replace it in (38) to obtain equilibrium inflation:

πBR =
1

1− κ̃β
e+

κ̃β

1− κ̃β
ϵ (42)
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with κ̃ = σ̃2
e

σ̃2
e+σ2

ϵ
. It is useful to look again at the limit case σ2

e → 0. We obtain in that case

πBR =
κ̃β

1− κ̃β
ϵ. (43)

Here the noise accounts for all the variability of inflation, whereas it was totally eliminated

with rational expectations. The reason is that because of their beliefs (41), the agents fail to

see that inflation is orthogonal to the noise. Because ẽ is a latent variable, there is no way they

can detect that this correlation is not zero. Therefore, noise shocks ϵ impact expectations,

therefore inflation, therefore expectations, etc..., which explains the “multiplier” term 1
1−κ̃β

in the equilibrium inflation equation.

One should nevertheless note that generically the variance of the signal S will not be

equal to the agents belief σ̃2
e + σ2

ϵ . It is reasonable to believe that agents would eventually

notice that discrepancy and will change their belief to reach a “self-confirming” situation

in which σ̃2
e + σ2

ϵ equals to the variance of the signal S. Would that kill the current “noise

multiplier” we have previously highlighted? There are potentially multiple self-confirming

equilibrium in this setup.32 If β > 1
2
, the self-confirming equilibrium most likely to arise

under learning is σ̃2
e = 2β−1

(1−β)2
σ2
ϵ . In that case, noise shocks are magnified in a quasi-self-

fulfilling way, all the volatility of inflation comes from the noise ϵ, and the model equilibrium

is qualitatively different from the case of Rational Expectations. Futhermore, the agents’

belief that inflation is volatile cannot be contradicted by the observation given (41), that

is under their model of the economy. As we will see, a similar mechanism is at play in our

dynamic model.

4.3 Quantitative Analysis

Our aim not is to estimate the model’s parameters by matching the impulse responses of

the (πe
t+1, πt) VAR while simultaneously imposing that the parameters governing the agents’

perceived law of motion be supported by the data. In particular, we want the parameters

of the perceived law of motion to be consistent with that implied by the observed variance

as well as the first and second auto-covariances of aggregate inflation. In that sense, the

model is disciplined in two ways: first it aims at reproducing the VAR impulse responses

and second it ensures that there are no large discrepancies between what agents believe and

what they observe.

32An obvious self-confirming equilibrium is one in which σ̃2
e = 0. If the agents believe that inflation is a

constant, they will attribute all the variations in the signal to the noise (κ̃ = 0), and we will have indeed
σ2
πBR = 0. We are back to Rational Expectations and inflation is not reacting to the noise. But under simple

learning schemes, it can be shown that the agents will not converge to this equilibrium.
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We fix the values of β, ρ, γg, ση, and σv at the values discussed in Section 1 when we

use the baseline Phillips curve. We estimate the other parameters ρ̃z, σ̃ϵ, ϱ̃, ϱ, σ̃z, σ̃η and σϵ

by minimum distance as in Gourieroux, Monfort, and Renault [1993]. Denote the vector of

parameters to be estimated as Θ, the estimates are given by:

Θ̂ = argmin
Θ

 M̂ − 1
N

∑N
n M̂n

T (Θ)

Mbeliefs(Θ)−Mmodel(Θ)


′

W

 M̂ − 1
N

∑N
n M̂n

T (Θ)

Mbeliefs(Θ)−Mmodel(Θ)

 . (44)

In this minimization problem, we minimize the weighted norm of a vector composed

of two sets of elements. The first set corresponds to fitting the data. M̂ is the vector

of moments to match –i.e. the 20 periods impulse response functions estimated from the

bivariate VAR in section 2.1. M̂n
T (Θ) is computed as the average estimated IRF from N

simulated random sample of the model with parameter Θ. T is the length for the simulated

random sample, which is set to be the same as our actual sample 1969-2023. The second set

corresponds to the requirement for consistency of beliefs. Mbeliefs(Θ) gathers the variance,

first and second order auto-covariances of inflation as computed from the perceived law of

motion, while Mmodel(Θ) gathers the same moments as generated by the model. In our

baseline estimation, we use the identity matrix as the weighting matrix W . The parameters

obtained from the New Keynesian Phillips Curve and the minimum distance estimation are

reported in Table 4:

Table 4: Parameters

Phillips Curve Parameters
β 0.99 ρ 0.89
σv 3.02 γg 0.0138
ση 2.24
Estimated Parameters
(Minimum Distance)

σ̃z 0.73 σϵ 5.88
ρ̃z 0.96 σ̃η 2.22
ϱ 0.43 σ̃ϵ 2.24
ϱ̃ 0.96

Notes: The Phillips curve estimates use the baseline estimation with Hazell, Herreño, Nakamura, and Steins-
son’s [2022] estimate of γg. ση is implied by the variance of the residual e from the Phillips curve.

Figure 12 shows how the estimated model matches well the empirical impulse responses we
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obtained in section 2.33 In the signal-extraction problem, economic agents form expectations

using the perceived law of motion and their subjective parameters. The large σ̃z and ρ̃z

make the agents believe the disaggregated inflation series are very informative about the

common component, z̃t. However, in reality, most of the variations in the disaggregate

signals they observe are actually coming from the broad-base supply shock ϵt, as σϵ point

estimate is relatively large. As a result, they respond to the broad-base supply shock more

aggressively. For this reason, this model with imperfect information and bounded rationality

can trigger larger movements of expectations than those with rational expectations, and full

or imperfect information. Meanwhile, their beliefs of such high σ̃z and ρ̃z are supported by

the realized aggregate inflation that they observe, as we have imposed that consistency of

beliefs restriction in our estimation.

Figure 12: Impulse Responses from Data and Estimated Model

Notes: The thick gray line is the IRF from the 2-VAR with actual data; the black line is the average IRF from
simulated data across 200 random samples. The estimated VAR is a VAR(2) with Cholesky decomposition,
ordering πe

t+1 first. The shaded area represents 95% confidence interval.

33In Appendix G, we also include the IRFs using actual and simulated data from our baseline model with
an alternative orders of variables for the Choleski decomposition. Because the Choleski VAR is here used
as a way to summarize the joint dynamics of inflation and inflation expectations, we would expect the data
generated by a correct model to give similar results as the actual data when summarized with a different
ordering of the variables. Appendix G shows that this is indeed the case.
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From the perspective of the model, the VAR shock ε1 corresponds to combination of

demand (v) and broad-base (ϵ) shocks. Because the actual variation in vt is quite small,

the shape of the IRF mainly reflects the impact of the broad-based shock. The other VAR

shock, ε2, corresponds to the residual supply shocks η, that is orthogonal to the broad-based

shock ϵ. To better illustrate this point, we can construct an orthogonalized normal random

variable wt:

wt = ηt −
cov(ϵt, ηt)

σ2
ϵ

ϵt = ηt −
ϱση

σϵ

ϵt. (45)

By construction, wt is uncorrelated to ϵt. This constructed “shock” represents the supply

shock that is not used to form the within period expectations. Since agents observe aggre-

gate inflation only after having formed the expectations that they report, this shock affects

measured inflation on impact but reported inflation expectations only with a lag. The VAR

shock ε2 then corresponds to the residual supply shock wt.

In light of this, Figure 13 shows the implied model impulse responses to the three struc-

tural shocks: the broad-based supply shock ϵt, the demand shock vt, and the residual supply

shock wt. We see why the broad-based supply shock ϵt plays a dominant role in shaping

the response to ε1 in Figure 12. This is because the variation in inflation created by vt is

minimal due to the flatness of Phillips Curve. Meanwhile, the response to ε2 corresponds to

a residual supply shock wt. Moreover, the broad-based shock ϵt itself only increases inflation

on impact by a factor ϱ. But the broad-based shock triggers a large increase of inflation

expectations, which push up aggregate inflation. In comparison, the residual supply shock

wt increases aggregate inflation substantially on impact, but does not affect expectations

right away. As a result, the response of aggregate inflation is more transitory.

It is worth noting that the three main parameters of the perceived law of motion, ρ̃z,

σ̃v, and σ̃ϵ, will be directly reflected in the process for inflation. For example, given the

perceived law of motion, cov(πt,πt−2)
cov(πt,πt−1)

gives an estimate of ρ̃z. Similarly, σ̃v could then be

inferred using ρ̃z and cov(πt, πt−1). Accordingly, if these moments for actual inflation were

far from those implied by the agent’s subjective model and if agents were learning, they

would realize the discrepancy between their subjective model and reality, and will adjust

their beliefs accordingly. Table 5 therefore reports the first three moments of the inflation

auto-covariance function generated by the model and those implied by the beliefs of agents.

As we can see, they are very close implying that agents would have little reason to change

their beliefs had we have allowed them to learn.

Finally, in our estimation procedure we did not directly use the gap as one observable

and did not try to match the empirical tri-variate VAR (πt, π
e
t+1, gapt) that we estimated in
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Figure 13: Impulse Responses to Structural Shocks in the Estimated Model
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Notes: These impulse responses to structural shocks are computed from the model solution (34) to (37) with
estimated parameters.

Table 5: Variance and Auto-covariance of Inflation

Data PLM Model
var(πt) 12.52 11.34 11.34
cov(πt, πt−1) 7.70 6.18 6.28
cov(πt, πt−2) 6.99 5.92 5.82

Notes: PLM stands for “Perceived Law of Motion”. ”The PLM and “Model” moments are the average
moment across 200 random samples. In the estimations, we penalize distance between data and model 2-
VAR responses as well as distance between these three moments in the Perceived Law of Motion and in the
model.
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Section 2. In figure 14 we compare these estimated impulse responses with those obtained

from the same tri-variate VAR estimated with 200 random samples of our estimated model.

The match is indeed very good. Note that the model responses of gapt to the first two shocks

ε1 and ε2 are zero by construction as gapt is modelled as an exogenous shock.

Figure 14: Trivariate VAR IRF from data and model simulation

Notes: thick gray line is IRF from 3-VAR with actual data; black line is average IRF from simulated data
across 200 random samples. The shaded area represents the 95% confidence interval.

4.4 Filtered Shocks and Counterfactuals

Using the state-space representation of our estimated model, we can use Kalman filter

smoothing to form projections of the latent states and the shocks implied by the model.

The latent variable z̃t+1|t,1 corresponds to the common component Ct the agents perceived

using the disaggregate signals. The three shocks to the economy are the demand shock vt,

the broad-based supply shock ϵt and the residual supply shock wt. Shocks are displayed

in Figure 15. Because the Phillips Curve is quite flat, the data on inflation and expected
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inflation do not depend much on the gap, and therefore contain little information on it. As

a result, the recovered series on vt is imprecise but mainly irrelevant. This can be partly

seen from the fact that the variance of recovered vt is merely 0.04 whereas the true variance

of vt should be 3.01.

On the contrary, the recovered series for ϵt and wt are quite trustworthy because the

observables contain lots of information on these two shocks. We illustrate these points using

simulated data in Appendix H.

Figure 15: Filtered shocks from the estimated model

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

-20

0

20

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

-5

0

5

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

-0.4

-0.2

0

0.2

Notes: The demand shock vt, the broad-based supply shock ϵt and the residual supply shock wt are recovered
by Kalman filter smoothing using the estimated model.

In our model, the system of inflation and expected inflation is driven by a latent variable

z̃t+1|t,1, which is the common component the agents perceived using the disaggregate signals.

This variable can be obtained using the Kalman Filter Smoothing approach mentioned above.

In figure 16, we scatter the backed-out z̃t+1|t,1 against the common component Ct we extracted
using the actual CPI disaggregated inflation series in Section 3. The correlation between
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these two series is 0.91, suggesting that the perceived common component in our model

contents similar information to the common component directly extracted from disaggregated

data, although only aggregate data are used in the model.

Figure 16: Filtered shocks from the estimated model
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Notes: On this Figure, the latent variable z̃t+1|t,1 is the “common component” the agents perceived using
the disaggregate signals, as obtained from Kalman filter smoothing using the estimated model. It is plotted
agains the common component Ct extracted from the CPI components in Section 3.

We then perform a counterfactual simulation starting in 2020. We simulate the economy

with the broad-based shock ϵt. The resulting paths for Headline inflation and inflation

expectations gives the contribution of that shock to realized Headline inflation and inflation

expectations . Figure 17 shows these counterfactual paths. Inflation is much more volatile

than expectations, because in the model it is a filtered version of the broad-based shock that

determines expectations. For example, in 2022Q1, the broad-based shock puts Headline

inflation at 8.2%, whereas it would have been 4.1% absent of shocks and was actually 10.6%.

More than half of the deviation of Headline inflation from its unconditional mean is therefore

attributable to the broad-based shock. In the same quarter, inflation expectations are 7.5%

with the broad-based shock, instead of 4.7% unconditionally and 7.9% in the data. Virtually

all the deviation of expectations from their unconditional mean is explained by the broad-

based supply shock.
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Figure 17: Counterfactual Simulations with Broad-Based Shock Only
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Notes: the plain lines correspond to counterfactual simulations of the estimated model, when the economy is

hit only by the broad-based shock ϵt for both expected inflation and actual inflation. Note that in the model

the unconditional mean of inflation is 4.1%.

5 Conclusion

This paper began by presenting evidence in support of the pre-pandemic view that the

Phillips curve is quasi-flat and that supply shock are mainly temporary. We also presented

VAR evidence indicating that inflation expectations and one-step ahead inflation move very

closely together, suggesting that either agents are very good at predicting inflation or that

inflation expectations are potentially an important driver of inflation. After failing to explain

the VAR patterns under rational expectations, we proposed an explanation to the observed

inflation dynamics based on bounded rationality whereby agent have an incomplete under-

standing the data generating process driving inflation.

In our bounded rational framework, persistent inflation arises when the economy is si-

multaneously hit by supply shocks across many sectors, even if the shocks themselves are

not persistent. When agents see prices rise in many sectors, they revise their view about the

common force that drives inflation. This revision leads to higher expected inflation, which

makes the initially temporary disturbances propagate through time in a quasi-self-fulfilling

way. In contrast, when agents see prices rises in only a small set of sectors, they recognize

that this is not an aggregate phenomena and therefore do not revise their expectations much.

This results in sector specific shocks causing only minor movements in inflation. Both these

features are needed to match the joint dynamics of inflation and inflation expectations as
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captured by a bivariate VAR. In support of our model’s main assumption, we showed that

the common component extracted from a large set of disaggregate data correlates closely

with measured inflation expectations. We also showed that the this common component

extracted from disaggregated data correlates closely with the model counterpart inferred

only from aggregate data. Together, we believe these elements support a theory of persis-

tent bouts of inflation driven primary by temporary but broad based supply shocks that get

transmitted to expectations. The sectors that seem to disproportionally affect the common

component of inflation, and therefore drive potential bouts of inflation, are full service meals,

limited service meals and other foods away from home. Keeping watch of inflation in these

sectors, in addition to shelter and energy, may help identify mounting inflation pressure early

on.
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The Dominant Role of Expectations and Broad-Based

Supply Shocks in Driving Inflation

Paul Beaudry, Chenyu Hou and Franck Portier

April 2024
version 2.2

A Relation to Benigno and Eggertsson [2023]

In this appendix, we repeat the analysis of section 1 when we use log(V/U) as a measure

of labour market tightness and either the Survey of Professional Forecasters (SPF) or the

Michigan Survey of Consumers (MSC) as a measure of inflation expectations. We first

stay with our baseline sample 1969-2007 where we use the expected GDP Deflator from the

Professional Forecaster as our measure of expected inflation. We then move to the sample

used in Benigno and Eggertsson [2023] (but stopping in 2007 to perform our out-of-sample

analysis).

A.1 Sample 1969-2007

1



Table A.1: Estimated Phillips Curves using log(V/U) as a Measure of the Gap, 1969-2007

Using SPF Using MSC
β 1.26⋆ 0.99⋆

(0.047) (0.048)
γg 0.28⋆ 0.10

(0.062) (0.069)
γr -0.42⋆ 0.23⋆

(0.098) (0.040)
Observations 144 144
J Test 10.538 10.700
(jp) (0.987) (0.986)
Weak ID Test 29.469 10.201

Notes: this table reports estimates of the augmented Phillips curve (2). All results are using IV-GMM
procedure, Newey-West HAC standard errors with six lags are reported in parentheses. The constant term is
omitted from the table. The measure of inflation is Core CPI and the gap is measured with log(V/U) . All
regressors are instrumented using six lags of Romer and Romer’s [2004] shocks (as extended by Wieland and
Yang [2020]) and their squares as instruments. A ⋆ indicates significance at 5%. Sample is 1969Q1-2007Q4.

Table A.2: Projection of the Philips Curve Residuals ϵ on the Gap log(V/U), 2008-2023

Using SPF Using MSC
linear nonlinear linear nonlinear

log(V/U) -0.14⋆ -0.04 0.05 0.07
(0.038) (0.076) (0.042) (0.083)

log(V/U)2 -0.02 -0.25
(0.149) (0.162)

log(V/U)3 -0.06 -0.15*
(0.082) (0.089)

N 60 60 60 60
σϵ 60-07 .302 .291
σϵ 08-23 .232 .232

Notes: the Phillips curve residuals are obtained from the augmented Phillips curve (2) estimated over the
sample 1969Q1-2007Q4, using log(V/U) as a measure of the gap and either Survey of Professional Forecasters
or Michigan Survey of Consumers as a measure of expectations. The standard errors of estimated coefficients
are between parentheses.
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Figure A.1: Out-of-Sample Residuals from Phillips Curve, using log(V/U) as a Measure of
the Gap

(a) Using Survey of Professional Forecasters (b) Using Michigan Survey of Consumers
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Notes: Panels (a) and (b) of this figure plots the out-of-sample residuals of the estimated Phillips curve
(2) against log(V/U) as the measure of labor market tightness, for two measures of inflation expectations.
The gray lines show the estimated linear or cubic relation between residuals and labor market tightness (see
Table A.2 for the estimated coefficients). Light dots correspond to pre-2020 observations and dark ones to
post-2020. We exclude 2020q2 from this graph.
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Figure A.2: Counterfactual Simulations from the Estimated Phillips Curve
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Notes: These counterfactual simulations are done using the estimated Phillips curve (2), using log(V/U) as
the measure of labor market tightness.
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A.2 Sample 1981-2007

We then move to use the expected CPI series from the Survey of Professional Forecasters.

Because that series starts only after 1981 quarter 3, we use the sample 1981q3-2007q4 for

our analysis. In Table A.3 we present the estimation results of our Phillips Curve. For

comparison, we also include the estimates using minus unemployment gap as measure of

labor market tightness in this shorter sample.

Table A.3: Estimated Phillips Curves using log(V/U) as a Measure of the Gap, 1981-2007

Expectations: Using MSC Using SPF
Labor Market Tightness: (1) -ugap (2) lnV/U (3) -ugap (4) lnV/U
β 0.90* 0.90* 0.97* 0.95*

(0.033) (0.033) (0.048) (0.045)
γg 0.07* 0.17* 0.10* 0.29*

(0.019) (0.071) (0.017) (0.070)
γr 0.35* 0.29* 0.33* 0.26*

(0.052) (0.049) (0.065) (0.067)
Observations 106 106 106 106
J Test 10.687 10.763 10.952 10.872
(jp) (0.986) (0.985) (0.984) (0.984)
Weak ID Test 163.460 60.640 121.279 89.040

Notes: this table reports estimates of the augmented Phillips curve (2). All results are using IV-GMM
procedure, Newey-West HAC standard errors with six lags are reported in parentheses. The constant term is
omitted from the table. The measure of inflation is Core CPI and the gap is measured with log(V/U) . All
regressors are instrumented using six lags of Romer and Romer’s [2004] shocks (as extended by Wieland and
Yang [2020]) and their squares as instruments. A ⋆ indicates significance at 5%. Sample is 1981Q3-2007Q4.
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Figure A.3: Out-of-Sample Residuals from Phillips Curve, 1981-2007

Notes: Panels (a) and (c) of this figure plots the out-of-sample residuals of the estimated Phillips curve (2)
against minus unemployment gap as the measure of labor market tightness, for two measures of inflation
expectations. Panels (b) and (d) of this figure plots the out-of-sample residuals against log(V/U) as the
measure of labor market tightness, for two measures of inflation expectations. The gray lines show the
estimated linear or cubic relation between residuals and labor market tightness (see Table A.4 for the estimated
coefficients). Light dots correspond to pre-2020 observations and dark ones to post-2020. We exclude 2020q2
from this graph.
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Table A.4: Projection of the Philips Curve Residuals ϵ on measures of gap, 2008-2023

Expectations: MSC SPF
Gap: -ugap lnV/U -ugap lnV/U

(1) (2) (3) (4) (5) (6) (7) (8)
gapt -0.04* -0.05 -0.00 0.07 -0.08* -0.10 -0.14* 0.04

(0.017) (0.057) (0.042) (0.084) (0.019) (0.065) (0.048) (0.091)
gap2

t -0.00 -0.02 0.01 0.50*
(0.044) (0.165) (0.050) (0.179)

gap3
t 0.00 -0.05 0.00 0.21*

(0.007) (0.090) (0.008) (0.098)
Observations 60 60 60 60 60 60 60 60

Notes: the Phillips curve residuals are obtained from the augmented Phillips curve (2) estimated over the
sample 1981Q3-2007Q4, using −ugap or log(V/U) as a measure of the gap and either Survey of Professional
Forecasters or Michigan Survey of Consumers as a measure of expectations. The standard errors of estimated
coefficients are between parentheses.

From the above analysis, we see only one specification suggests the Phillips Curve appears

to become steeper in recent years. That is when using lnV/U as a measure of labor market

tightness, SPF as the measure of expected inflation and sample 1981Q3-2007Q4. Once we

use the Michigan Survey of Consumers as the measure of expected inflation, such a pattern

disappears. This is not surprising given the differences between the expected inflations from

the survey of professionals and central banks, and those from the households and firms. In

Appendix B we show the differences between various surveys of expectations and repeat our

analysis with them.

B Baseline Phillips Curve with Various Measures of

Inflation Expectations

We first show the differences between various surveys of expectations. Figure B.1 depicts

the demeaned series of expected inflation from different surveys. A stark pattern is that

households and firms have similar expectations of inflation that are drastically different from
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those of professional and central banks. In particular, the households and firms expect much

higher inflation after 2020.

Figure B.1: Different measures of inflation expectations
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Notes: Demeaned average expected inflation from various surveys. Solid lines are from the surveys of pro-
fessionals and central banks. The dashed lines are from surveys of households and firms.

Here we repeat the exercise of Section 1 with various measures of expectations. Key

result is that the run-up of inflation expectations can account for inflation increase post-

COVID-19 when households or firms survey are used (Survey of Consumer Expectations

(New York Fed) or Survey of Firms’ Inflation Expectations (Cleveland Fed) or Michigan

Survey of Consumers in the main text). The professional forecasts (Cleveland Fed Inflation

Expectations, Survey of Professional Forecasters (Philadelphia Fed) or Livingston Survey

(Philadelphia Fed)) increase less post-COVID-19, and fail to contribute fully to the increase

in actual headline inflation. Note the the baseline Phillips curve (1) is used to do the

counterfactual simulations.
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Figure B.2: Counterfactual Simulations from the Estimated Phillips Curve, Using Various
Measure of Inflation Expectations (a) With inflation expectations at their mean, (b) With
gap at its mean
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Notes: These counterfactual simulations are done using the baseline Phillips curve (1), using either Cleveland
Fed Inflation Expectations or the Survey of Professional Forecasters (Philadelphia Fed) as a measure of
expectations.
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Figure B.3: Counterfactual Simulations from the Estimated Phillips Curve, Using Various
Measure of Inflation Expectations (a) With inflation expectations at their mean, (b) With
gap at its mean
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Notes: These counterfactual simulations are done using the baseline Phillips curve (1), using either Liv-
ingston Survey (Philadelphia Fed), Survey of Consumer Expectations (New York Fed) or Survey of Firms’
Inflation Expectations (Cleveland Fed) as a measure of expectations.
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Finally, we do a “horse-race” regression to estimate our augmented Phillips curve (2)

including both Survey of Professional Forecasters and Michigan Survey of Consumers as

potential measures of expected inflation. The results are reported in Table B.1. In column

(1) we use minus unemployment gap as the measure of the gap and freely estimate it. In

column (2) we fix the slope of the negative unemployment gap at the estimate of Hazell,

Herreño, Nakamura, and Steinsson [2022] and in column (3) we use the lnV/U as the measure

of the gap. The results suggest that the Michigan Survey of Consumers is the more relevant

measure for expected inflation in the Phillips Curve.34

Table B.1: Horse Race using SPF and MSC

Gap -ugap or lnV/U
π Sample 1981q3-2007q4

(1) -ugap free slope (2) -ugap fixed slope (3) lnV/U
MSC 0.40* 0.62* 0.47*

(0.177) (0.161) (0.173)
SPF 0.29 -0.02 0.25

(0.272) (0.233) (0.267)
γg 0.08* 0.0138 0.19*

(0.019) (-) (0.071)
γr 0.30* 0.28* 0.24*

(0.082) (0.054) (0.080)
Observations 106 106 106
J Test 10.655 11.939 10.636
(jp) (0.979) (0.971) (0.980)
Weak ID Test 135.594 121.041 39.712

Notes: this table reports estimates of the augmented Phillips curve (2). All results are using IV-GMM
procedure, Newey-West HAC standard errors with six lags are reported in parentheses. The constant term
is omitted from the table. The measure of inflation is Core CPI and the gap is measured with minus
unemployment gap or log(V/U) . All regressors are instrumented using six lags of Romer and Romer’s
[2004] shocks (as extended by Wieland and Yang [2020]) and their squares as instruments. A ⋆ indicates
significance at 5%. Sample is 1981Q3-2007Q4.

34These findings are in line with the results from Coibion, Gorodnichenko, and Kamdar [2018]. In Coibion
and Gorodnichenko [2015b] the authors find that households’ expectations from the Michigan Survey help
to explain the missing disinflation puzzle around the 2008 Financial Crisis.
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C Robustness of the 2-VAR to Lags and Sample

Figure C.1: Impulse Responses in the 2-VAR (πt, π
e
t+1), with 2 to 8 Lags
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Notes: this Figure plots the impulse responses to a one standard deviation shocks ε1 and ε2. These shocks are
obtained from a Choleski orthogonalization. The estimated VAR with two lags of Headline CPI inflations and
the Michigan Survey of Consumers inflation expectations are in gray. Sample is 1969Q1-2023Q1. Shaded
area represents the 95% confidence band. The black lines corresponds to an estimation with 3 to 8 lags.
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Figure C.2: Impulse Responses in the 2-VAR (πt, π
e
t+1), Starting with First 20 Years and

Adding Years One by One
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Notes: this Figure plots the impulse responses to a one standard deviation shocks ε1 and ε2. These shocks are
obtained from a Choleski orthogonalization. The estimated VAR with two lags of Headline CPI inflations and
the Michigan Survey of Consumers inflation expectations are in gray. Sample is 1969Q1-2023Q1. Shaded
area represents the 95% confidence band. The black lines corresponds to an estimation samples 1969Q1-
1989Q1, 1969Q1-1990Q1, 1969Q1-1991Q1,... etc.
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Figure C.3: Impulse Responses in the 2-VAR (πt, π
e
t+1) estimated over 2008–2023
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Notes: this Figure plots the impulse responses to a one standard deviation shocks ε1 and ε2. These shocks are
obtained from a Choleski orthogonalization. The estimated VAR with two lags of Headline CPI inflations and
the Michigan Survey of Consumers inflation expectations are in gray. Sample is 2008Q1-2023Q1. Shaded
area represents the 95% confidence band. The VAR is etsimated with one lag.
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D Using Disaggregated Prices

Table D.1 display the 25 expenditures categories we use, as obtained from BLS and used to

compute the CPI. Figure D.1 plots sectoral inflations and Table D.2 displays the estimated

parameters αi, σi and ρ when we estimate the model

πi,t = αi Ct + ei,t,

Ct = ρC Ct−1 + vt.
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Figure D.1: Inflation for the Components in the CPI Basket
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Notes: this Figure displays the time series of the 25 expenditures categories we use, as obtained from BLS
and used to compute the CPI.
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Table D.2: Estimated parameters

Parameter Estimate Parameter Estimate

ρ 0.98

αi σi αi σi
fullservmeal 0.19 0.73 limitservmeal 0.15 0.84
employermeal 0.05 0.99 vending 0.09 0.94
otherfoodawy 0.06 0.98 meategg 0.04 0.98
fruitvege 0.02 0.99 nonalcohol 0.05 0.97
otherfoodhome 0.10 0.86 fuel 0.03 0.99
gasoline 0.02 1.00 electricity 0.08 0.93
utility gas 0.03 0.99 apparel 0.06 0.96
new vehicle 0.09 0.89 used car 0.03 0.99
medical good 0.09 0.90 alcoholbev 0.08 0.92
shelter 0.13 0.75 medical service 0.11 0.85
transportation 0.08 0.92 cereal bakery 0.16 0.83
dairy product 0.08 0.96 tobacco 0.01 1.00

Notes: we normalize σv = 1, and we input series that are normalized (demeaned and standard deviations
normalized to 1) because the price series have different volatilities. But the normalization doesn’t qualitatively
change the results.

E Average Signal from Disaggregate Price Indices

We show that the signal-extraction problem with multiple disaggregate price indices is equiv-

alent to one with an average signal across these disaggregate indices. The disaggregate signals

the agent faces are given by (23). Without loss of generality, consider the m disaggregate

signals the agent uses to form expectations:

Xt ≡


π1,t

π2,t

· · ·
πm,t

 = ℓmz̃t +


ẽ1,t

ẽ2,t

· · ·
ẽm,t

 , (E.1)

with ẽj,t ∼ N(0, σ̃2
j ), and where we denote the vector of signals as Xt and ℓm is an m × 1

vector of ones. Denote the prior of z̃t in t− 1 as:

z̃priort ∼ N(z̃t|t−1, σ
2), (E.2)
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where z̃t|t−1 denotes the prior mean and σ2 the stationary prior variances. The posterior

mean of the nowcast is:

z̃t|t = z̃t|t−1 + κz(Xt − ℓmz̃t|t−1), (E.3)

where κz is the Kalman Gain:

κz = σ2ℓ′m(σ
2ℓmℓm + V )−1, (E.4)

where V is a diagonal matrix with entries σ̃2
j on the main diagonal. The Kalman Gain can

then be explicitly written as a function of σ2 and σ̃2
j ’s:

κz = σ2ℓ′m

(
V −1 − V −1σ2ℓmℓ′mV −1

1 + σ2ℓ′mV ℓm

)

= σ2

( 1
σ̃2
1

1
σ̃2
2

· · · 1
σ̃2
m

)
−
(

1
σ̃2
1

∑m
j=1

1
σ̃2
j

1
σ̃2
2

∑m
j=1

1
σ̃2
j

· · · 1
σ̃2
m

∑m
j=1

1
σ̃2
j

) 1
1
σ2 +

∑m
j=1

1
σ̃2
j


=
(

1
σ̃2
1

1
σ̃2
2

· · · 1
σ̃2
m

) 1
1
σ2 +

∑m
j=1

1
σ̃2
j

. (E.5)

Now consider an average signal:

xt = z̃t +

∑m
j=1

1
σ̃2
j
ẽj,t∑m

j=1
1
σ̃2
j︸ ︷︷ ︸

≡ϵt

, (E.6)

ϵt ∼ N(0,
1∑m

j=1
1
σ̃2
j︸ ︷︷ ︸

≡σ2
ϵ

). (E.7)

With the same prior, the Kalman Gain is given by:

κ̂z =

1
σ2
ϵ

1
σ2 +

1
σ2
ϵ

. (E.8)

Using (E.5) and (E.8), it is then straightforward to show that the posterior mean z̃t|t is

the same when the agent uses disaggregate signals (E.1) with the aggregate signal (E.6).
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Moreover, the stationary posterior variances are the same as well. As a result, the stationary

posterior belief formed by observing multiple signals (E.1) is equivalent to one formed using

an average signal (E.6).

Now consider the actual disaggregate signals from (19) and the perceived disaggregate

signals from (23). Apply our results above, the average signals are given by:

st =
∑
j∈S

1/σ̃2
j∑

j∈S 1/σ̃
2
j︸ ︷︷ ︸

≡χj

πj,t = βπe
t+1 + γggapt +

∑
j∈S

χjej,t︸ ︷︷ ︸
≡ϵt

(Average Signal ALM)

st =
∑
j∈S

1/σ̃2
j∑

j∈S 1/σ̃
2
j︸ ︷︷ ︸

≡χj

πj,t = z̃t +
∑
j∈S

χj ẽj,t︸ ︷︷ ︸
≡ϵ̃t

(Average Signal PLM)

These give the first equations in (27) and (26), where

σ2
ϵ =

∑
j∈S

χ2
jσ

2
j , σ̃2

ϵ =
∑
j∈S

χ2
j σ̃

2
j =

1∑
j∈S

1
σ̃2
j

(E.9)

Given the actual and perceived aggregate supply shocks ηt =
∑N

j=1 ωjej,t and η̃t =
∑N

j=1 ωj ẽj,t,

we can also derive the actual and perceived correlation between ϵt and ηt (ϵ̃t and η̃t):

ϱ ≡ corr(ϵt, ηt) =

∑
j∈S χjωjσ

2
j

σϵση

, ϱ̃ ≡ corr(ϵ̃t, η̃t) =

∑
j∈S χjωjσ̃

2
j

σ̃ϵσ̃η

(E.10)
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F Models with Rational Expectations

F.1 Incomplete Information Rational Expectations

Take the IIRE model described by (9)-(12). The agent forms expectations about gapt.

Denoting the nowcasts of which as gapt|t, expectations er given by:

Et[πt+1] = Et[βEt+1πt+2 + γggapt+1 + et+1]

=
γgρ

1− βρ
gapt|t. (F.1)

The nowcast gapt|t is given by:35

gapt|t = gapt|t−1 + ki(st − γggapt|t−1), (F.2)

K = σ2
kγg(γ

2
gσ

2
k + σ2

ϵ )
−1, (F.3)

σ2
k = ρ2(σ2

k −Kγgσ
2
k) + σ2

v , (F.4)

where K is the stationary Kalman Gain and σ2
k is the stationary posterior variance. This

leads to equations (13) and (14) in the main text. Note that as σϵ → 0, K → 1/γg and

wt → et. The IIRE case converges to the FIRE case.

F.2 Hybrid Phillips Curve or Adaptive Expectations

One related question is whether a hybrid Phillips Curve or adaptive expectations can help

to explain the joint dynamics between expected and actual inflation. We consider a Phillips

35Note in (F.3) the agent uses correct σϵ because when the agent is rational, she can easily back-out the
correct ρ, γgσv and σϵ with the variance-covariance structure of st. As a result, the agent’s information will
not support any subjective σ̃ϵ ̸= σϵ.
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Curve taking the following hybrid form:

πt = β

(
τπt−1 + (1− τ)EFIRE

t πt+1

)
︸ ︷︷ ︸

observed in MSC

+γggapt + et, (F.5)

gapt = ρgapt−1 + vt, (F.6)

where τ can represents the indexation, the fraction of people using adaptive expectations,

or motivated by k-level thinking as in Beaudry, Carter, and Lahiri [2023]. The expecta-

tions formed under FIRE takes into account that there are backward looking component

in inflation. It is easy to show that inflation takes the following form using undetermined

coefficients:

πt = aπt−1 + bgapt + cet, (F.7)

with 
a = βτ

1−aβ(1−τ)
,

b = β(1−τ)bρ+γg
1−aβ(1−τ)

,

c = 1
1−aβ(1−τ)

.

Following our approach in section 2.2, we set β, ρ, σv and γg at values consistent with our

Phillips Curve, and we estimate the free parameter τ to match the IRFs from the bivariate

VAR(2). Our estimate is τ̂ = 0.05, and the above model cannot match the empirical IRFs

well:
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Figure F.1: The Joint Process of π and πe
t+1 in the Data and Under Models with Rational

Expectations

Notes: on this Figure, the grey line plots the impulse responses to a one standard deviation shocks ε1 and ε2
estimated with data from the Michigan Survey of Consumers and Headline CPI. Sample is 1969Q1-2023Q1.
Shaded area represents the 95% confidence band. The black line plot the average impulse responses (over
200 simulations of length 216) obtained from the same VAR estimated on simulated data, when the Data
Generating Process is the estimated hybrid model (F.5).
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G Alternative Order of Cholesky VAR

We present the IRFs from Cholesky VAR(2) where we order headline inflation first and

expected inflation the second. This change of ordering reflects an alternative identification

assumption that the first underlying shock affects πt and πe
t+1 simultaneously and the second

shock affects πe
t+1 on impact then πt with a lag. Note our Cholesky VAR is just method to

summarize joint dynamics of inflation and expectations. If our model is close to the true data

generating process for inflation and expected inflation, we would expect IRF from this VAR

with alternative (but possibly incorrect) ordering to have similar result. Figure G.1 shows

the results from this exercise. Our model matches very well with the VAR using alternative

ordering.

Figure G.1: IRF from data and model simulation

Notes: thick gray line is IRF from bi-VAR with actual data; marked black line is average IRF from simulated
data across 200 random samples. The estimated VAR is VAR(2) with Cholesky Decomposition ordering πt

- πe
t+1. The shaded area represents 95% CI.
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H State-space Representation of Model

H.1 Model

For easy exposition, we derive the state-space representation of our model with the orthog-

onalized residual supply shock wt defined in section 4.3. To save notations, we define

ω = ϱ
ση

σϵ

(H.1)

According to (45), wt is given by:

wt = ηt − ωϵt (H.2)

The two observables πt+1|t,0 and πt can be written as system of equations of latent states

z̃t|t−1,1 and gapt.

πt+1|t,0 = ρ̃z z̃t|t,0 = ρ̃z((1−K)z̃t|t−1,1 +Kst)

= ρ̃z((1−K)z̃t|t−1,1 +K(βπt+1|t,0 + γggapt + ϵt))

=
ρ̃z(1−K)

1−Kβρ̃z
z̃t|t−1,1 +

ρ̃zKγg
1−Kβρ̃z

gapt +
ρ̃zK

1−Kβρ̃z
ϵt. (H.3)

From (27):

st = πt+1|t,0 + γggapt + ϵt

=
βρ̃z(1−K)

1−Kβρ̃z
z̃t|t−1,1 +

γg
1−Kβρ̃z

gapt +
1

1−Kβρ̃z
ϵt. (H.4)

Inflation is given by:

πt = βπt+1|t,0 + γggapt + ωϵt + wt

=
βρ̃z(1−K)

1−Kβρ̃z
z̃t|t−1,1 +

γg
1−Kβρ̃z

gapt +

(
Kβρ̃z

1−Kβρ̃z
+ ω

)
ϵt + wt. (H.5)
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From (33) and expression of st, we get recursion of z̃t|t−1,1:

z̃t+1|t,1 = ρ̃z z̃t|t,1 = ρ̃z(1−K − k)z̃t|t−1,1 + ρ̃zKst + ρ̃zkπt

= ρ̃z

(
1− (K + k)

1− βρ̃z
1−Kβρ̃z

)
z̃t|t−1,1 + ρ̃z

(K + k)γg
1−Kβρ̃z

gapt

+ ρ̃z

(
K + ρ̃zKkβ

1−Kβρ̃z
+ ωk

)
ϵt + ρ̃zkwt. (H.6)

We could write the state-space representation as:

Xt ≡


πt+1|t,0

πt

z̃t+1|t,1

gapt

 = FXt−1 +B

 ϵt

wt

vt

 , (H.7)

where

F =


0 0 ρ̃z(1−K)

1−Kβρ̃z
ρ ρ̃zKγg
1−Kβρ̃z

0 0 βρ̃z(1−K)
1−Kβρ̃z

ρ γg
1−Kβρ̃z

0 0 ρ̃z

(
1− (K + k) 1−βρ̃z

1−Kβρ̃z

)
ρ̃z

(K+k)γg
1−Kβρ̃z

ρ

0 0 0 ρ

 , (H.8)

B =


ρ̃zK

1−Kβρ̃z
0 ρ̃zKγg

1−Kβρ̃z
Kβρ̃z

1−Kβρ̃z
+ ω 1 γg

1−Kβρ̃z(
K+ρ̃zKkβ
1−Kβρ̃z

+ ωk
)
ρ̃z ρ̃zk ρ̃z

(K+k)γg
1−Kβρ̃z

0 0 1

 . (H.9)

The observational equation is given by:

Ot =

(
I2×2 0002×2

0002×2 0002×2

)
Xt. (H.10)

We can then estimate the hidden states z̃t|t−1,1 and gapt using Kalman Filter Smoothing,

then get the corresponding shocks implied by the state-space representation.

The precision of the estimated states and shocks depend on the parameters in F and B.

To illustrate the performance of this approach in the context of our estimated model, we
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simulate data using parameters from Table 4. We then plot the time series of the estimated

states Etπt+1, πt, z̃t|t−1,1 and gapt in Figure H.1. The blue solid lines are the actual hidden

states from simulated data and the red dash lines are the estimated ones from the above

approach. Not surprisingly, the hidden state z̃t|t−1,1 is very well recovered where the estimated

values are almost identical to the actual ones. Whereas the gapt is very illy recovered. This

is because the observables {Etπt+1, πt} contain a lot more information for z̃t|t−1,1 and almost

no information about gapt due to the fact γg is very small in the actual DGP. As a result, the

Kalman Smoothing algorithm puts low weights on the observables when making predictions

about this hidden state. Figure H.2 depicts the backed-out shocks and compares them with

Figure H.1: Estimated v.s. actual latent states z̃t|t−1,1 and gapt from simulated data
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Notes: the blue solid lines are actual latent states from simulated data. The red dash lines are the recovered
latent states using the Kalman Smoothing.

actual shock series simulated. For the same reason as the latent states, the observations are

quite informative about the broad-based shocks ϵt and the aggregate shock wt, but they are
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not informative about the common shock vt. As a result, the recovered vt series are much

less volatile and not really comparable to the actual shock series.

Figure H.2: Estimated v.s. actual latent states z̃t|t−1,1 and gapt from simulated data
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Model Backed-out

Notes: the dark gray lines are model simulated latent states. The light gray lines are the recovered latent
states using the Kalman Smoothing.

H.2 Backed-out Series from Real Data

The figure H.3 depicts the recovered states {Etπt+1, πt, z̃t|t−1,1, gapt} applying Kalman Smooth-

ing. By construction, the expected inflation and aggregate inflation are observable so they

coincide with each other. Because the actual values for z̃t|t−1,1 and gapt are treated as

unobserved, there are no corresponding actual values plotted for these two variables.
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Figure H.3: Estimated v.s. actual states from actual data
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Notes: the states πt and Etπt+1 are observables. In the two upper panels, the thick grey line plots actual
states and the black dashed line is the recovered latent states using the Kalman Smoothing. The two lines
coincide by construction as these two states are observable. Because the actual values for z̃t|t−1,1 and gapt
are treated as unobserved, there are no corresponding actual values plotted for these two variables.
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I The Baseline Model without the Timing Restriction

In this appendix, we reestimate the model under the assumption that inflation expectations

are reported after observing current inflation, meaning that πe
t+1 = πt+1|t,1. The estimated

parameters become:

Table I.1: Estimated parameters

From the Phillips Curve
β 0.99 ρ 0.89
σv 3.02 γg 0.0138
ση 2.24
From Minimum Distance
σ̃z 0.45 σϵ 2.80
ρ̃z 0.98 σ̃w 2.46
ϱ 0.08 σ̃ϵ 1.58
ϱ̃ 0.00

Notes: The Phillips curve estimates use the baseline estimation with Hazell, Herreño, Nakamura, and Steins-
son’s [2022] estimate of γg. ση is implied by the variance of the residual e from the Phillips curve.

In Figure I.1, we see the model cannot match the IRF of the second shock in the Cholesky

VAR because the shock wt affecting πt on impact will have no impact on expectations at all

in the model without timing restriction. The variance-covariance structure from the model

without timing restriction is:

Table I.2: Variance and Auto-covariance of Inflation

Data PLM Model

var(πt,h) 12.52 11.14 11.14
cov(πt,h, πt−1,h) 7.70 5.11 4.98
cov(πt,h, πt−2,h) 6.99 4.74 4.87

Notes: PLM stands for “Perceived Law of Motion”. ”The PLM and “Model” moments are the average
moment across 200 random samples. In the estimations, we penalize distance between data and model 2-
VAR responses as well as distance between these three moments in the PLM and in the model.
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Figure I.1: IRF from data and simulated data from model without timing restriction

Notes: The thick gray line is the IRF from the 2-VAR with actual data; the black line is the average IRF from
simulated data across 200 random samples. The estimated VAR is a VAR(2) with Cholesky decomposition,
ordering πe

t+1 first. The shaded area represents the 95% confidence interval.
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