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Abstract

Measuring average differences in an outcome across racial or ethnic groups is a crucial first
step for equity assessments, but researchers often lack access to data on individuals’ races and
ethnicities to calculate them. A common solution is to impute the missing race or ethnic-
ity labels using proxies, then use those imputations to estimate the disparity. Conventional
standard errors mischaracterize the resulting estimate’s uncertainty because they treat the im-
putation model as given and fixed, instead of as an unknown object that must be estimated
with uncertainty. We propose a dual-bootstrap approach that explicitly accounts for measure-
ment uncertainty and thus enables more accurate statistical inference, which we demonstrate
via simulation. In addition, we adapt our approach to the commonly used Bayesian Improved
Surname Geocoding (BISG) imputation algorithm, where direct bootstrapping is infeasible be-
cause the underlying Census Bureau data are unavailable. In simulations, we find evidence that
measurement uncertainty is generally insignificant for BISG except in particular circumstances;
bias, not variance, is likely the predominant source of error. We apply our method to quantify
the uncertainty of prevalence estimates of common health conditions by race using data from
the American Family Cohort.

1 Introduction

Racial and ethnic disparities are a common focus of academic study, policymaking, and advocacy
efforts across many domains, including criminal justice (Gelman et al., 2007; Berdejó, 2018), health
care (Azin et al., 2020; Mackey et al., 2021), technology (Buolamwini and Gebru, 2018; Koenecke
et al., 2020), and taxation (Brown, 2022; Avenancio-León and Howard, 2022).1

Such disparities are straightforward to compute—if individual-level demographic and outcome
data are available. In many settings where the measurement of racial disparities is of interest,
however, race data are missing or otherwise inaccessible. For example, Regulation B of the Equal
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Credit Opportunity Act prohibits creditors from discriminating against an applicant on the basis of
race. But monitoring and enforcing this prohibition is complicated by the fact that the very same
laws also prohibit creditors from inquiring about an applicant’s race at all.

Some researchers work around this problem by imputing individuals’ races based on observable
proxy features, then using those imputations to estimate the racial disparity. One of the most
common imputation methods is Bayesian Improved Surname Geocoding (BISG), which imputes an
individual’s race based on their surname and geolocation (Elliott et al., 2009). Recent work has also
investigated the potential power of machine learning for this task (Cheng et al., 2023; Xue et al.,
2019; Kim et al., 2018).

But imputations are estimates, not oracles. Like any other statistic, each imputation is the
output of an estimator fit on data, with its own bias and variance. This statistical uncertainty
could affect the quality of the downstream racial disparity estimate. Many studies that use im-
putations ignore this potential error propagation, instead treating the imputation model as known
with certainty (e.g., Brown et al., 2016; Zhang, 2018; Yee et al., 2022). Doing so can imperil the
reliability of the final estimate in different ways (e.g., Labgold et al., 2021, adjusting for imputation
bias).

This paper examines one aspect of the problem: the effect of measurement uncertainty on
statistical inference. It is standard practice in academic research to report the confidence interval
or standard error associated with a racial disparity estimate. But typical confidence intervals and
standard errors reflect only classical sampling uncertainty—i.e., uncertainty arising from the fact
that the disparity estimate is based on only a sample of the broader population of interest. They
do not reflect the measurement uncertainty that arises from estimating the race probability model
and thus risk mischaracterizing the degree of confidence in the disparity estimate.

We make three contributions to the study of this issue. First, we offer a “dual-bootstrap”
procedure that incorporates both sampling and measurement uncertainty and thus offers more
accurate statistical inference. We prove that our procedure is consistent for some race probability
models under standard regularity conditions.

Second, we adapt our procedure to the special case of BISG, where Census Bureau-imposed
constraints on data availability raise particular challenges. The Census Bureau does not disclose the
individual-level survey responses on which its popularly used American Community Survey race-by-
geolocation estimates are based. This prevents researchers from directly applying the general dual-
bootstrap algorithm. We propose one way to nonetheless approximate the measurement uncertainty
of BISG race probability estimates using other information provided by the Census Bureau.

Third, we apply our approach to simulated and real data to investigate how much measurement
uncertainty contributes to the final disparity estimate’s standard error. Our findings suggest that, in
many cases, the uncertainty of BISG imputations only negligibly increases standard errors because
BISG is a relatively inflexible model based on large-scale data (i.e., full-scale census records); bias,
not variance, is likely the predominant type of error in BISG. But we do find some exceptions:
BISG measurement uncertainty, and the way it is estimated, can substantially affect the final
inference when studying particular demographic or geographic groups. We also show that when
race probability models more flexible than BISG are employed, properly accounting for measurement
uncertainty can substantially affect the widths of resulting confidence intervals. We illustrate these
findings through an analysis of racial disparities in common health outcomes in the American
Family Cohort, a dataset containing the electronic health records of primary care visits by patients
in the United States. Our method has also been applied in a recent working paper studying racial
disparities in tax audit rates (Elzayn et al., 2023).
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2 Related Work

To our knowledge, the role of measurement uncertainty in the specific context of race imputation
has not been thoroughly studied. As mentioned in Section 1, many studies where race is imputed
simply ignore it. One exception is a concurrent working paper by Derby et al. (2024), who propose a
fully Bayesian approach where a prior distribution for the conditional race probabilities is assumed,
then updated based on reported Census Bureau estimates to obtain a posterior distribution from
which conditional race probabilities are sampled.2 Our proposal for BISG is similar in spirit. It can
be viewed as the frequentist analog—but with the distinct advantage of constructing a sampling
distribution of the conditional race probability estimates based on the uncertainty that the Census
Bureau actually reports for those estimates, instead of a purely assumed prior model. This fidelity
comes at some cost to flexibility; see Section 5 for discussion.

This paper draws from a rich body of research on missing data, survey design, data combination,
and causal inference. Especially relevant are two strands of work, on inverse propensity weighting
(IPW) and Z-estimation. The disparity estimator we consider, analyzed by Chen et al. (2019) and
described in Section 3 below, weights individuals by their estimated probability of being of a given
race. It is thus very similar in form to Hájek IPW estimators, which have been extensively studied
by, for example, Miratrix et al. (2018) and Matsouaka et al. (2024). And, following some prior
work on the properties of IPW estimators in the context of causal inference (Reifeis and Hudgens,
2022; Shu et al., 2021), we rely on Z-estimator theory to establish the asymptotic properties of our
proposed method (Kosorok, 2008; Stefanski and Boos, 2002).

We distinguish our subject of investigation from several other important but distinct areas of
study. First, we focus solely on the variability of the imputed disparity estimator, as typically
reflected in metrics like the standard error or confidence intervals. Prior work has examined iden-
tification, bias, and consistency properties of the specific imputed disparity estimator on which we
focus (Chen et al., 2019; Kallus et al., 2022; Elzayn et al., 2023). Others have examined the accu-
racy and bias of specific race imputation models that often underlie imputed disparity estimators.
For example, as mentioned above, Imai et al. (2022) propose ways of improving the accuracy of
BISG by accounting for the possible migration of racial minorities to geographic areas where none
resided prior to the latest census count. These issues are largely orthogonal to the challenge of ac-
curately characterizing an imputation-based estimator’s variability. In our theory and simulations,
we assume that these issues have been favorably resolved.

Second, our work is distinct from multiple imputation, at least in its classical formulation. In
the typical setting amenable to multiple imputation, race is observed as a categorical variable for a
subset of the data to be analyzed, and the researcher seeks to impute the categorical race variable for
the remaining subset of the data where it is missing; Fong and Tyler (2021) discuss some challenges
of proper statistical inference in that setting that are similar to the ones we address here. But
the setting we consider (described in Section 3) is one where race is completely unobserved for
the data to be analyzed, and the researcher seeks to estimate each unit’s real-valued probability
of being a given race, not the unit’s actually realized race. Our problem setting is thus more
closely related to that of measurement error models (e.g., Fuller, 2009) and two- or split-sample
instrumental variables (e.g., Angrist and Krueger, 1992, 1995), with particular focus on uncertainty
quantification for general, nonlinear measurement models. Nonetheless, some conceptual similarities
to multiple imputation can be drawn. Perhaps the most salient connection is to the concept of

2Imai et al. (2022) similarly impose a prior, but they focus on how doing so improves the accuracy of race
predictions, not on how it can more accurately quantify the uncertainty of downstream estimates.
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“proper” multiple imputation, defined by Rubin (1987). As Murray (2018) summarizes it, multiple
imputation generally yields valid inference only if, among other conditions, the uncertainty of the
imputation model itself is accounted for. This same concept underpins our work.

3 Setup and Notation

Consider two datasets: a training dataset T ≡ {Zi, Ai}nT
i=1 and a primary dataset P ≡ {Zj , Yj}nP

j=1,
where Y denotes the outcome, A is a binary indicator of race, Z denotes observable proxies of race,
and nT and nP are the number of units in the training and primary datasets, respectively. The
training dataset is drawn i.i.d. from some population T, and the primary dataset is drawn i.i.d.
from a potentially different population P. Our estimand is the racial disparity in outcomes in the
primary population P:

δ ≡ EP [Y | A = 1]− EP [Y | A = 0] .

If A were observed in the primary dataset, estimation and inference of δ would be straightfor-
ward. But it is not—so we impute A using Z based on some model class FA instead. Specifically,
we fit a model f ∈ FA of A on Z using the training dataset, where (Z,A) is jointly observed.
We then use that model to estimate the race probability of each unit in the primary dataset:
P̂rP (A = 1 | Z = Zj) ≡ f(Zj). Finally, we estimate the racial disparity by the probabilistic weight-
ing estimator that Chen et al. (2019) propose:

δ̂ ≡
∑nP

j=1 P̂rP (A = 1 | Z = Zj)Yj∑nP
j=1 P̂rP (A = 1 | Z = Zj)

−
∑nP

j=1 P̂rP (A = 0 | Z = Zj)Yj∑nP
j=1 P̂rP (A = 0 | Z = Zj)

.

Other imputation-based disparity estimators have been used or analyzed in past work. For
example, Chen et al. (2019) discuss a thresholding estimator that estimates the mean outcome in
each race by classifying individuals’ races instead of using soft probabilities. And Elzayn et al.
(2023) consider the slope coefficient in a linear regression of the outcomes on the estimated race

probabilities, which they show can in conjunction with δ̂ bound the true disparity. But we focus on
δ̂ because it is a commonly used estimator with favorable statistical properties (Chen et al., 2019;
McCaffrey and Elliott, 2008). We briefly outline how our framework might extend to the linear
disparity estimator of Elzayn et al. (2023) in Appendix C.2, but we defer a detailed examination of
this and other extensions to future work.

We invoke standard assumptions so that the estimator δ̂ is consistent for δ. First, we assume
that the probability model P̂rP (A = 1 | Z) is correctly specified. Since the model is fit on the
training dataset T but used to characterize the primary population P, this assumption typically
also implies that the conditional distribution of A given Z is the same in T and P everywhere Z
has positive density in P. Second, we assume that EP [CovP (A, Y | Z)] = 0. Chen et al. (2019)

show that this condition is sufficient for δ̂ to be consistent when the true probabilities are given.
Informally, this assumption can be analogized to requiring that the “unexplained” portion of a
Kitagawa-Oaxaca-Blinder decomposition be zero (Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973):
The difference in average outcomes between the two races can be entirely decomposed into (1)
differences in the distribution of the observed proxies between the two races and (2) the association
between the observed proxies and the outcome, with no need to account for the possibility that the
latter might interact with or otherwise vary by race.3 Since our focus is inference, not estimation,

3Thanks to Jonathan Roth for suggesting this analogy.
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we take these assumptions for granted and refer interested readers to past work on the consistency
of δ̂ (Chen et al., 2019; Kallus et al., 2022; Elzayn et al., 2023).

4 The Dual-Bootstrap

We propose a “dual-bootstrap” procedure to enable proper inference of δ̂ that accounts for both
sampling and measurement uncertainty, as Figure 1 illustrates. We first state the procedure in
general terms, then investigate via simulation the effects of measurement uncertainty and the dual-
bootstrap’s ability to account for it.

4.1 General Procedure

Algorithm 1 states the dual-bootstrap procedure. It frames the desired output as a confidence
interval estimated via the percentile bootstrap, but other uncertainty metrics can be estimated too.
As Algorithm 1 shows, the dual-bootstrap is straightforward: We simply resample with replacement
both the training and the primary datasets, then refit the race probability model on the resampled
training dataset and apply it to estimate the racial disparity in the resampled primary dataset.
The algorithm here calls for simple resampling with replacement, but other, more complex forms of
resampling may be appropriate—for example, if the data are clustered (Owen, 2007; Derby et al.,
2024).

The key contribution of the dual-bootstrap stems from its resampling of the training dataset and
refitting of the race probability model. Doing so accounts for the uncertainty of the race probability
estimates themselves. This uncertainty is then propagated downstream to the bootstrap statistic
δ̂∗b. As discussed above, some prior work has ignored this measurement uncertainty entirely, instead
treating P̂rP (A = 1 | Z = Zj) as true. This corresponds to skipping the first two lines of the for-loop
in Algorithm 1.

Extreme cases can conceptually illuminate when measurement uncertainty likely is or is not
substantial. When nT is fixed and nP → ∞, sampling uncertainty becomes negligible; only mea-
surement uncertainty remains, so the dual-bootstrap is crucial for proper statistical inference. Con-
versely, when nP is fixed and nT → ∞, measurement uncertainty becomes negligible; only sampling
uncertainty remains, so the single-bootstrap suffices. Taken together, these two extremes suggest
that, in general, the greater measurement uncertainty is relative to sampling uncertainty, the more
important the dual-bootstrap is for proper statistical inference. The concept of uncertainty am-
plification offers another lens through which to view this same principle: The larger the primary
dataset, the more measurement uncertainty is amplified, so the more important the dual-bootstrap
is for proper statistical inference. Our simulations in Section 4.2 offer empirical evidence of this
phenomenon.

We prove in Appendix C.1 that δ̂ and its dual-bootstrap analogs δ̂∗b are asymptotically nor-
mal when the race probabilities are estimated via logistic regression and general regularity con-
ditions hold. We limit the proof to logistic regression because doing so allows us to frame δ̂ as
a Z-estimator—broadly, any estimator that can be expressed as the approximate zero of a data-
dependent function—to which standard theoretical results can apply. The proof strategy likely
applies readily to other race probability models that fall within the Z-estimation framework, albeit
possibly with slight modifications to the regularity conditions. We leave such extensions to future
work. It is less clear what theoretical properties the dual-bootstrap of δ̂ has when the race prob-
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Figure 1: Illustration of the uncertainties captured by the dual-bootstrap, compared to those cap-
tured by the single-bootstrap.

ability model does not fall within the Z-estimation framework. A closer examination of this issue
might prove fruitful.

The Z-estimation theory that we apply to prove asymptotic normality also provides a closed-
form expression for the variance of the limiting distribution, but this is mostly of theoretical interest.
In practice, deriving the closed-form expression usually has little utility. Statistical software like
the geex package in R can compute the empirical variance estimator using numerical routines,
without requiring analytic derivations (Saul and Hudgens, 2020). When the race probability model
falls within the Z-estimation framework, using such numerical solvers can often require much less
computational power than the dual-bootstrap.

4.2 Simulations

We demonstrate empirically that the dual-bootstrap more accurately accounts for the overall un-
certainty of imputed disparity estimates. We do so through a simple simulation in which both the
training and primary populations follow the same data-generating process:

• A single proxy is drawn i.i.d. from a standard normal: Z ∼ N (0, 1).

• Race is drawn i.i.d. from a Bernoulli distribution with probability logistic in Z: A | Z ∼
Bern [exp(Z)/{exp(Z) + 1}].

• The outcome Y is i.i.d. normal and linear in Z: Y | Z ∼ N (5Z, 9).

In each simulation repetition, we draw (Z,A) tuples as the training dataset T and (Z, Y ) tuples
as the primary dataset P. We fit a logistic regression of A on Z with T , then apply it to P to
obtain our point estimate δ̂. We then apply the dual-bootstrap with 2,000 bootstrap iterations
to estimate a 95% confidence interval for δ. For comparison, we also estimate what we call the
“single-bootstrap” standard 95% confidence interval, in which the race probability estimates are
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Algorithm 1: Dual-Bootstrap

Data: Training Dataset T = {Zi, Ai}nT
i=1, Primary Dataset P = {Zj , Yj}nP

j=1, Model Class
FA, Number of Bootstrap Draws B ∈ N, Level α ∈ [0, 1]

Result: Confidence interval for the demographic disparity estimate δ̂
for b in range B do

Resample T ∗b by sampling with replacement from T
Fit P̂r

∗b
P (A = 1 | Z) ∈ FA on T ∗b

Resample P∗b by sampling with replacement from P
Compute

δ̂∗b ≡
∑nP

j=1 P̂r
∗b
P
(
A = 1 | Z = Z∗b

j

)
Y ∗b
j∑nP

j=1 P̂r
∗b
P
(
A = 1 | Z = Z∗b

j

) −
∑nP

j=1 P̂r
∗b
P
(
A = 0 | Z = Z∗b

j

)
Y ∗b
j∑nP

j=1 P̂r
∗b
P
(
A = 0 | Z = Z∗b

j

)
Output (1− α)-level percentile bootstrap confidence interval(

δ̂
(α/2)
B , δ̂

(1−α/2)
B

)
where δ̂

(α)
B is the empirical α-percentile of the δ̂∗b

treated as given and only P is resampled. We also estimate a 95% confidence interval based on the
empirical variance estimator implied by Z-estimation theory using the geex package.

Table 1 reports the resulting coverage rates of the three types of confidence intervals over
500 simulation repetitions for various sample sizes of T and P. We note four trends. First, the
coverage rate of the single-bootstrap is worst when T is small and best, though still inadequate,
when it is large. This reflects the effect of measurement uncertainty on the variance of the ultimate
disparity estimator in this specific simulation setup; as T increases, the variability of the imputations
decreases and becomes less influential. Second, for any size of T , the single-bootstrap’s coverage
rate decreases as P increases. This suggests that the importance of measurement uncertainty can
amplify with the number of imputations required. One interesting consequence of this phenomenon,
discussed earlier in Section 4.1, is that the coverage rate of the single-bootstrap is lower when
nT = 1000 and nP = 5000 than when they are both 100, even though the absolute sample sizes of
both the training and the primary datasets are larger in the former than in the latter. Third, the
dual-bootstrap provides better coverage than the single-bootstrap, but it requires sufficiently large
sample sizes to achieve the desired 95% rate. This reflects the fact that the theoretical properties
of the bootstrap take effect asymptotically, as we discuss in Appendix C.1. Finally, the empirical
variance estimator and the dual-bootstrap behave nearly identically; this is consistent with the
theoretical results of Appendix C.1.

5 Special Case: BISG

In this section, we adapt the dual-bootstrap to the BISG algorithm, which is commonly used in
empirical applications as the race probability model. The key challenge to applying our dual-
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Coverage Rate Interval Width

nT nP Dual-Bootstrap Single-Bootstrap Empirical Dual-Bootstrap Single-Bootstrap Empirical

100 100 0.91 0.81 0.92 3.8 2.2 3.7
100 1000 0.94 0.66 0.95 3.1 0.7 3.0
100 5000 0.94 0.54 0.94 3.0 0.3 3.0
1000 100 0.89 0.87 0.90 2.4 2.2 2.4
1000 1000 0.93 0.80 0.93 1.2 0.7 1.2
1000 5000 0.97 0.67 0.97 1.0 0.3 1.0
5000 100 0.87 0.86 0.87 2.2 2.2 2.2
5000 1000 0.88 0.84 0.88 0.8 0.7 0.8
5000 5000 0.94 0.83 0.94 0.5 0.3 0.5

Table 1: Coverage rates and widths of 95% confidence intervals estimated using the dual-bootstrap,
the single-bootstrap, and the empirical variance estimator for varying sample sizes of T and P.

bootstrap approach in this setting is that the Census Bureau does not generally make publicly
available the training dataset T on which the BISG prior probabilities are based. We suggest
one way to overcome this constraint while still upholding the fundamental principle animating
the generic dual-bootstrap procedure of Section 4.1. We then apply our method to assess how
prominent the uncertainty of BISG imputations are in practice. We conclude that, with some
notable exceptions, the variability of BISG imputations is generally negligible in practice; bias, not
variance, is likely the primary source of error in BISG.

5.1 BISG-Specific Procedure

BISG imputes race by naively applying Bayes’ Theorem to Census Bureau estimates of the racial
composition of people by surname and geolocation. In this context, A is typically categorical instead
of binary, containing all race categories defined by the Census Bureau; Z = (S,G), where S is a
categorical variable denoting the individual’s surname and G is a categorical variable denoting the
individual’s geolocation; and the race probability model is

P̂rP (A = a′ | S = s,G = g) ≡ P̂rP (A = a′ | G = g) P̂rP (S = s | A = a′)∑
a P̂rP (A = a | G = g) P̂rP (S = s | A = a)

,

where the prior probabilities on the right are parameter estimates based on Census Bureau surveys.
Specifically, researchers commonly use as P̂rP (A | G) the Census Bureau’s American Community
Survey (ACS) estimates of the number of people of each race residing in each geolocation. And they

compute P̂rP (S | A) based on the Census Bureau’s 2010 table of frequently occurring surnames. For
BISG, then, the training dataset T is the microdata—i.e., individual-level survey responses—that
the Census Bureau collects to generate the ACS and surname estimates. The standard dual-
bootstrap procedure outlined in Algorithm 1 thus calls for the analyst to resample the microdata
with replacement and recompute the racial composition of each geolocation and surname.4

4The surname table is a raw tabulation of data from the decennial census, which covers the entire population
of the United States. Thus, depending on the population for which race-specific outcomes are to be estimated,
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The challenge, however, is that T is inaccessible. The Census Bureau generally does not publish
microdata for privacy reasons. This is not an issue for the microdata on which the surname-race
probabilities are based: Since the surname table is just a raw tabulation, we can still essentially
reconstruct the microdata that produced it and resample from it.5 But the same is not true of the
microdata on which the ACS race-by-geolocation estimates are based. The ACS estimates of the
racial composition of geographic areas are not raw tabulations of survey microdata; rather, they
are produced by re-weighting the microdata to adjust for factors like probability of selection in an
unknown and presumably complex way.6 Thus, a solution for the race-by-geolocation probabilities
is required.

The key intuition behind the solution we propose is that we seek to resample the microdata T
and recompute the prior P̂rP (A | G) only as a means of, essentially, drawing from the approximate

sampling distribution of P̂rP (A | G). If we can approximate the sampling distribution of P̂rP (A | G)
in some other way, then we can just draw from it directly—no resampling or model-refitting needed.
Fortunately, the Census Bureau suggests and endorses a way of estimating key parameters of the
sampling distribution even without microdata. We outline the approach below, with further details
available in Appendix A.

As an initial matter, we center the sampling distribution of P̂rP (A | G) at the published ACS
estimate, which we denote by µ̂G. Then, to estimate the covariance of this sampling distribu-
tion, which we denote by Σ̂G, we use the publicly available ACS variance replicates. These are
80 “pseudo-estimates” of the racial composition of each geolocation, which we denote by µ̂†r

G for
r = 1, . . . , 80. The Census Bureau uses them to estimate variances via the successive differences
replication (SDR) method. The variance replicates are not bootstrap statistics; they have “no other
use [beyond calculating SDR variances] and no independent meaning” (Census Bureau, 2022). So we
cannot directly apply the dual-bootstrap algorithm to them. Instead, we use the variance replicates
to estimate the covariance of the race-by-geolocation probability estimates based on the formula
prescribed by the Census Bureau:

Σ̂G ≡ 4

80

80∑
r=1

(
µ̂†r
G − µ̂G

)(
µ̂†r
G − µ̂G

)⊺
.

When ACS estimates that there are zero people of a given race in a geographic area, all associated
variance replicates are zero. In such “zero-count” cases, we follow the Census Bureau’s recommen-
dation not to use the above formula; instead, we assume the estimate has zero covariance with the
other estimates and essentially derive the variance from the Census Bureau’s estimated margin of
error (Census Bureau, 2022). Appendix A.1 describes the procedure in more detail. As we discuss
in Section 5.2, the choice to account for uncertainty in zero-count geolocations can be influential in
specific circumstances.

resampling the data that produced the surname table might be unnecessary. Nonetheless, we outline our procedure
to include resampling for two reasons. First, it could be appropriate to do so, depending on the estimand. Second,
race-by-name probabilities are sometimes sourced from data that are properly characterized as a sample, rather than
the entire population. For example, Imai et al. (2022) use voting records from a handful of states to estimate the
race-by-name probabilities. In such cases, resampling would likely be appropriate.

5Such a reconstruction is necessarily imprecise since the surname table aggregates all surnames held by fewer
than 100 individuals into a single “Other” category. Our reconstruction of the microdata can never recover these
surnames. We leave a detailed examination of the significance of this issue to future work.

6Some ACS microdata are available, but only at levels of geographic granularity that are too low to be useful in
most applications. Such microdata are also incomplete—they consist of only about two-thirds of the records used to
produce the ACS estimates—and thus might not be any more amenable to direct resampling.
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Finally, we assume that the sampling distribution of P̂rP (A | G) is normal, so the parameter
estimates (µ̂G, Σ̂G) fully specify the sampling distribution as N (µ̂G, Σ̂G). We leave generalizations
of the form of the sampling distribution to future work. See Appendix A.2 for more discussion.

With the sampling distribution of P̂rP (A | G) in hand, our modified dual-bootstrap routine can
be executed. Algorithm 2 states the modified implementation. The key distinction from Algorithm

1 is that the bootstrap race-by-geolocation probability estimate P̂r
∗b
P (A | G) is computed by drawing

directly from the sampling distribution N (µ̂G, Σ̂G) instead of by refitting on resampled microdata.
As with Algorithm 1, the resampling steps in this algorithm use simple resampling with replacement,
but more complex forms of resampling may be appropriate (Owen, 2007; Derby et al., 2024).

As mentioned in Section 2, recent work has proposed an alternative approach: setting the
sampling distribution to the posterior distribution obtained by updating an assumed prior with the
ACS race-by-geolocation estimates (Derby et al., 2024). We do not adopt this approach because, as
discussed above, the Census Bureau offers its own account of the uncertainty of its estimates. This
uncertainty is multifaceted—it includes considerations like the Census Bureau’s sampling scheme
and survey nonresponse, as well as adjustments the Census Bureau has made to account for them—
and inscrutable to the general public. So, rather than impose our own model for this uncertainty by
specifying an ultimately arbitrary prior, we prefer to use the model offered by the Census Bureau,
which is best-positioned to develop one.

One potential advantage to assuming a prior distribution instead of using the Census Bureau’s
uncertainty model is that it can accommodate a superpopulation framework for the race proba-
bility model. For example, a researcher can assume an abstract superpopulation of which each
year’s demographic composition is a sample. The prior distribution characterizes the superpopu-
lation of race probabilities and is updated by a given year’s observed demographic composition.
To our knowledge, the Census Bureau’s uncertainty model cannot accommodate such a superpop-
ulation framework because it only models uncertainty arising from its survey sampling procedure.
In our view, however, this limitation is significant only if the superpopulation parameters of the
race probability model are of independent interest. In most applications—like the study of racial
disparities—the race probability model is merely nuisance.

Consider, for example, the task of estimating racial disparities in tax audit rates.It is true
that researchers might be interested in the racial disparity at the superpopulation level (e.g., as
a parameter of an abstract data-generating process that produces the observed tax audit rates by
race each year). But, to estimate such a disparity, they necessarily use observed tax audit data
from certain, well-defined years. Suppose that the race of the taxpayer in each audit decision
is unavailable, so the researchers impute it using BISG with ACS data from the relevant years.
Quantifying the uncertainty of any individual race imputation and how it affects the uncertainty
of the final disparity estimate requires only an understanding of the error of the year-specific BISG
model used for that imputation; it does not require reference to any BISG (or other race probability)
model at the superpopulation level.

5.2 BISG Simulations

We show via simulation that the uncertainty of BISG imputations generally has little effect on the
variance of the resulting racial disparity estimate. For this simulation, we use the 2017-2021 ACS
5-year estimates of the racial composition of each census block group and the 2010 Census Bureau
surname table. We use the following data-generating process for both the training and primary
populations:
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Algorithm 2: BISG Dual-Bootstrap

Data: ACS Estimate µ̂, ACS Covariance Matrix Estimate Σ̂, Surname Table S, Primary
Dataset P = {Sj , Gj , Yj}nP

j=1, Number of Bootstrap Draws B ∈ N, Level α ∈ [0, 1],
Race Groups a′ and a′′

Result: Confidence interval for the demographic disparity estimate δ̂
for b in range B do

Resample S∗b by sampling with replacement from S // optional; see Footnote 3

for s in {Sj}nP
j=1, a in supp(A) do

Compute P̂r
∗b
P (S = s | A = a) from S∗b // optional; see Footnote 3

for g in {Gj}nP
j=1 do

Sample P̂r
∗b
P (A | G = g) ∼ N

(
µ̂g, Σ̂g

)
Resample P∗b by sampling with replacement from P
for j in range nP do

Compute

P̂r
∗b
P
(
A = a′ | S = S∗b

j , G = G∗b
j

)
≡

P̂r
∗b
P
(
A = a′ | G = G∗b

j

)
P̂r

∗b
P
(
S = S∗b

j | A = a′
)

∑
a P̂r

∗b
P
(
A = a | G = G∗b

j

)
P̂r

∗b
P
(
S = S∗b

j | A = a
) ,

P̂r
∗b
P
(
A = a′′ | S = S∗b

j , G = G∗b
j

)
≡

P̂r
∗b
P
(
A = a′′ | G = G∗b

j

)
P̂r

∗b
P
(
S = S∗b

j | A = a′′
)

∑
a P̂r

∗b
P
(
A = a | G = G∗b

j

)
P̂r

∗b
P
(
S = S∗b

j | A = a
)

Compute

δ̂∗b ≡
∑nP

j=1 P̂r
∗b
P
(
A = a′ | S = S∗b

j , G = G∗b
j

)
Y ∗b
j∑nP

j=1 P̂r
∗b
P
(
A = a′ | S = S∗b

j , G = G∗b
j

) −
∑nP

j=1 P̂r
∗b
P
(
A = a′′ | S = S∗b

j , G = G∗b
j

)
Y ∗b
j∑nP

j=1 P̂r
∗b
P
(
A = a′′ | S = S∗b

j , G = G∗b
j

)
Output (1− α)-level percentile bootstrap confidence interval(

δ̂
(α/2)
B , δ̂

(1−α/2)
B

)
where δ̂

(α)
B is the empirical α-percentile of the δ̂∗b

• The proxy tuple (G,S) is sampled i.i.d. from the marginal census block group and surname
frequencies given by the ACS estimates and the Census Bureau surname table, excluding
tuples where the racial composition of the surname is withheld by the Census Bureau and
tuples where the surname and census block group have mutually exclusive racial compositions.

• The outcome Y is i.i.d. standard normal, independent of G, S, and A: Y ∼ N (0, 1).

Because the race probability model is estimated using BISG and the outcome is independent of
race, no concrete race indicators need to be generated for this simulation. In each of 100 simulation
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Average Standard Error

Race Group Dual-Bootstrap Single-Bootstrap

American Indian and Alaska Native 0.11 (0.02) 0.18 (0.06)
Asian and Pacific Islander 0.11 (0.01) 0.11 (0.01)
Black 0.07 (0.00) 0.07 (0.00)
Hispanic 0.06 (0.00) 0.06 (0.00)
Multiracial 0.07 (0.01) 0.06 (0.01)
White 0.04 (0.00) 0.04 (0.00)

Table 2: Average standard error of the estimated average outcome of each race, as estimated by the
dual-bootstrap and the single-bootstrap when BISG is used for imputation. Standard deviations
over the simulation repetitions are in parentheses. The dual-bootstrap’s average estimate of the
standard error is the same as that of the single-bootstrap except for the American Indian and
Alaska Native group, for which it is lower. We offer one explanation for this in Figures 3-4 and the
associated discussion below.

repetitions, we draw 1,000 (G,S, Y ) tuples as the primary dataset P. On this dataset, we estimate

the average outcome δ̂ for each race using BISG-estimated probabilities. We then estimate the
standard error using both the dual-bootstrap and the single-bootstrap.

Table 2 reports the results. Overall, accounting for measurement uncertainty in this setting
barely affects the resulting standard errors. Our simulation results from Section 4.2 suggest that
measurement uncertainty might have a more substantial effect on the bottom line if our primary
dataset P were larger, since it would amplify over more individuals whose races must be imputed.
Future work might systematically investigate how much larger P must be for measurement uncer-
tainty to have a substantial effect. For now, we note that Elzayn et al. (2023) also obtain only
slightly larger standard errors (in absolute terms) when they apply our method to estimate the
uncertainty of their BISG-based estimates of tax audit disparities by race using a primary dataset
of over 100 million individual income tax returns. Figure 2 offers one explanation for the rela-
tive durability of this phenomenon: For most units, the bootstrap standard error of the posterior
race probability is low, close to 0.05 on average. For comparison, the bootstrap standard errors of
the race probabilities in the machine learning simulation of Section 4.2 are about 0.23, nearly five
times larger. The standard errors are much smaller here likely because the BISG model is fairly
rigid, and the ACS and surname prior probabilities that parameterize it are based on millions of
individual-level training points.

The notable exception in Table 2 is the American Indian and Alaska Native group, for which
the dual-bootstrap standard error is substantially less than the single-bootstrap standard error. As
a theoretical matter, it might generally be possible for standard errors to decrease after properly
accounting for measurement error; we do not prove so in our specific setting, but Reifeis and
Hudgens (2022) show that this can occur in the closely related setting of IPW estimation of the
average treatment effect on the treated. However, we believe that the specific reduction observed
here is due to our handling of zero counts and our specific data-generating process, as described in
more detail below.

Although measurement uncertainty appears to be of nominal significance marginally over the
entire population of the United States, we find evidence that it, and the way it is modeled, can
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Figure 2: Bootstrap standard error of the BISG-estimated probability of being a given race plotted
against the BISG-estimated probability in one simulation repetition. The horizontal red line indi-
cates the average bootstrap standard error. “AIAN” is the abbreviation for American Indian and
Alaska Native, and “API” is the abbreviation for Asian and Pacific Islander.

be influential in certain situations. To illustrate, we rerun the above simulations for each state—
that is, we sample census block groups from the marginal frequencies given by the ACS estimates
within each state. Figure 3 shows the state-by-state results for three racial groups that we highlight
here because of their particularly prominent trends; Appendix B.1 contains corresponding figures for
other racial groups. In most states, accounting for measurement uncertainty has essentially no effect
on the uncertainty of the average outcome estimate for White people; it increases the uncertainty of
the average outcome estimate for multiracial people; and it decreases the uncertainty of the average
outcome estimate for American Indians and Alaska Natives.

We believe that the key to understanding these seemingly incompatible phenomena lies primar-
ily in (1) the prevalence of each race group overall, (2) the geographic concentration of certain race
groups, and (3) the distribution of the outcome among race groups. White people are much more
prevalent than multiracial people overall: The 2017-2021 ACS data we use estimates that 59%
of the population is White, while 3% are multiracial. Thus, ACS estimates of the proportion of
White people in each census block group are more precise—in other words, have less measurement
uncertainty—than estimates of the proportion of multiracial people. This explains why measure-
ment uncertainty increases the uncertainty of the average outcome estimate for multiracial people
more than it does for White people.

American Indians and Alaska Natives are even less prevalent than multiracial people overall:
The 2017-2021 ACS data we use estimates that about 0.6% of the population is American Indian or
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Figure 3: Dual-bootstrap and single-bootstrap standard errors of the estimated average outcome
for the White, Multiracial, and American Indian and Alaska Native (AIAN) race groups in each
state. The states are ordered by the proportion of census block groups in which the American
Community Survey estimates there are zero people of the given race.
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Alaska Native. But accounting for measurement uncertainty generally decreases the uncertainty of
the average outcome estimate in these simulations because they are a geographically concentrated
minority: As Figure 3 shows, the ACS estimates that there are zero American Indians and Alaska
Natives in most census block groups in most states. As discussed in Section 5.1, we use the ACS
estimated margin of error instead of the ACS variance replicates to approximate the sampling
distribution of such estimates since it is possible that American Indians and Alaska Natives in fact
reside in those block groups and were simply not sampled by ACS. Accounting for measurement
uncertainty in this way gives nonzero weight to people who otherwise would have none. When the
outcomes of these people are informative of the average outcome of American Indians and Alaska
Natives—as they are in this simulation, since all units have outcomes drawn from a standard normal
distribution—giving them nonzero weight increases the effective sample size and thus decreases the
standard error of the average outcome estimate. This phenomenon likely explains the overall
decrease in the standard error for American Indians and Alaska Natives reported in Table 2.

We illustrate some of these dynamics through an additional simulation focused on the American
Indian and Alaska Native population in New Mexico. In this simulation, we generate synthetic
states by taking ACS estimates from New Mexico and altering (1) the total prevalence of American
Indian and Alaska Native people in the state and (2) the percentage of census block groups in the
state in which zero American Indian and Alaska Native people are estimated to reside. Appendix
B.2 describes this process in detail. We then rerun the previous simulation on each synthetic
state. As Figure 4 shows, accounting for measurement uncertainty decreases standard errors the
less prevalent and the more concentrated the race group is.
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Figure 4: Dual-bootstrap and single-bootstrap standard errors of the estimated average outcome
for the American Indian and Alaska Native (AIAN) race group in New Mexico when American
Community Survey estimates of the total counts and geographic concentrations of AIAN people in
the state are artificially altered.

These results for the American Indian and Alaska Native group demonstrate that a proper ac-
counting of uncertainty in zero-count geolocations can, in specific circumstances, be influential. Our
choice to take at face value the Census Bureau’s margins of error when quantifying the uncertainty
of the estimated average outcomes of a race group gives influence to people in geolocations where
ACS estimates no people of that race group reside. This motivation to properly leverage data from

15



zero-count geolocations also underlies some of the work of Imai et al. (2022)—though they focus on
how accounting for the migration of racial minorities since the last decennial census can improve
imputation accuracy, whereas we focus on how accounting for the possible nonselection of racial
minorities in ACS sampling can improve uncertainty quantification of downstream estimates. We
emphasize that in practice, however, properly accounting for uncertainty in zero-count geolocations
might not have as drastic or counterintuitive an effect as shown here, where the outcomes of all
simulated units are equally informative for all race groups. On the contrary, it might in some
cases increase standard errors if the outcomes of people in zero-count geolocations are substantially
different from those of the target race group. In other cases, it might have no effect on balance.

Taken together, the phenomena identified in the simulations above highlight that, although the
uncertainty of BISG imputations might not be substantial in studies of the general U.S. population,
properly accounting for it in studies of particular geographic areas or demographic groups can be im-
portant to ensuring that the resulting inference is neither conservative nor anti-conservative. More
generally, our finding is consistent with a broader literature on the challenges of race imputation
for certain demographic groups (e.g., Imai et al., 2022).

6 Application

We apply the dual-bootstrap to study racial disparities in health outcomes using the American
Family Cohort (AFC) dataset (Vala et al., 2023). The dataset contains electronic health records
from the primary care visits of patients in the United States. Relevant features for our purposes
include patient geolocation; first name; surname; self-reported race, which are provided as mapped
to White, Black, Hispanic, Asian and Pacific Islander, American Indian and Alaska Native, Mul-
tiracial, and Other; and indicators for the diagnosis of asthma, obesity, and diabetes at any point
during the time period covered by the dataset. We downsample the data due to computational con-
straints by taking a stratified random sample of 100,000 patients with the same race proportions
as the full dataset. Although we do not adopt them here, general steps can be taken in practice to
improve the computational efficiency of the bootstrap (e.g., Kleiner et al., 2014).

We preprocess the dataset as follows. First, we produce race proxies by converting categorical
geolocation, first name, and surname data into numerical race probability estimates. Specifically,
we convert the surnames into “prior probability” features by computing the probability of each of
the six race categories (excluding Other) given surname based on the Census Bureau’s 2010 surname
table. And we convert the first names and geolocations into “update” features by computing the
probability of the first name or geolocation given each of the six race categories. We use mean
imputation for any missing geolocation, first name, or surname probabilities and include a binary
missingness indicator for each as a separate feature. Second, we randomly split the data into a
primary dataset of size 20,000 and a training dataset of size 80,000. We mask self-reported race in
the primary dataset and health outcomes in the training dataset.

On the training dataset, we fit a random forest of patients’ races on the processed features de-
fined above. Although these same features could be run through BISG to output race probabilities,
we choose to use a random forest because Cheng et al. (2023) find that it produces more accu-
rate estimates in this dataset. We allow for slight tuning of the random forest hyperparameters.
Specifically, we perform a grid search of the following hyperparameters using 5-fold cross-validation.

Number of Trees: 100.

Maximum Tree Splits: 20, 50, 100.
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Figure 5: Widths of dual-bootstrap vs. single-bootstrap confidence intervals of the estimated
prevalence of certain health conditions by race. This analysis was conducted on a 100,000-unit
subsample of the American Family Cohort population with the same racial composition as the full
population. Points are sized by the proportion of units in the subsample that are of the given
race group. “AIAN” is the abbreviation for American Indian and Alaska Native, and “API” is the
abbreviation for Asian and Pacific Islander.

Proportion of Features Per Split (p = 21):
√
p, 0.5p, 0.75p.

Minimum Number of Units to Initiate Split: 10, 25, 100.

We then apply the random forest to the primary dataset to estimate patients’ race probabilities.
With those estimates in hand, we estimate the incidence rates of asthma, obesity, and diabetes
for each race in the primary dataset. To compute confidence intervals for each estimate, we use
both the single-bootstrap, which retains the original random forest model, and the dual-bootstrap,
which refits a new random forest model on bootstrapped draws of the training dataset. We run 100
bootstrap iterations.

Figure 5 shows the results. In general, the single-bootstrap understates the uncertainties of
the prevalence estimates compared to the dual-bootstrap. But this trend is not uniform across
races. For Asian and Pacific Islander, Black, Hispanic, and White patients, the widths of the dual-
bootstrap and single-bootstrap confidence intervals are essentially the same. On the other hand,
the dual-bootstrap confidence intervals are substantially wider than the single-bootstrap confidence
intervals for American Indian and Alaska Native, Multiracial, and Other patients—in some cases
doubly so. This appears largely to be because those patients appear infrequently in the data on
which the random forest model was trained, so their race probability estimates are more variable.
As Figure 6 shows, the dual-bootstrap confidence interval widths are nearly identical to the single-
bootstrap ones when we alter our downsample so that all races are equally represented in the
training dataset.
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Figure 6: Widths of dual-bootstrap vs. single-bootstrap confidence intervals of the estimated
prevalence of certain health conditions by race. This analysis was conducted on a 100,000-unit
subsample of the American Family Cohort population where each race was equally represented in
the training dataset. “AIAN” is the abbreviation for American Indian and Alaska Native, and
“API” is the abbreviation for Asian and Pacific Islander.

7 Discussion

We propose a dual-bootstrap procedure to more accurately account for the uncertainty of race im-
putations that are subsequently used to estimate racial disparities and other race-specific outcomes.
Our method is straightforward to implement, although complications can arise when the underly-
ing data used to train the race probability model are unavailable. We offer one way of overcoming
such difficulties in the specific case of BISG, an imputation model that is often parameterized by
ACS race-by-geolocation estimates that are based on undisclosed microdata. Our simulation results
suggest that the measurement uncertainty of BISG generally does not impact the uncertainty of
downstream estimates, likely because it is a fairly rigid model with a relatively large sample size
underpinning its parameter estimates. But it can be significant for specific race groups in specific
geographies, with the potential to increase or decrease the standard error of downstream estimates,
as our state-by-state results show. And we emphasize that despite its overall low variability—or
perhaps because of it—BISG still suffers from bias, as others have shown and sought to improve
(e.g., Imai et al., 2022).

We see several opportunities for future work in this direction. Most immediately, an investigation
of the theoretical properties of the dual-bootstrap when the race probability model falls outside
the Z-estimator framework could be informative. On the practical side, a closer examination and
improvement of some of the design choices made in our adaptation of the dual-bootstrap to BISG—
such as our choice to use a normal distribution and other choices outlined in Appendix A—could
produce more accurate inference. Any changes or additions by the Census Bureau to the data
products it publishes could help or hinder these efforts. We also see broader opportunities in this
space. For example, the development of prospective heuristics for study design akin to a power
analysis might prove useful to applied researchers. In some settings, researchers have a choice
between analyzing a small dataset where race is observed and analyzing a larger dataset where
race must be imputed. The need to account for measurement uncertainty—which, as shown in
this paper, can be substantial or not—only complicates this choice. A set of heuristics that allows
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researchers to prospectively approximate the standard error that would result from each choice
given certain parameters like the sample sizes of the datasets, the accuracy of the imputations, and
the variability of the outcome might help with the decision.
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A Implementation Details for the BISG Adaptation of the
Dual-Bootstrap

We outline our approach to a few issues that can arise when implementing our dual-bootstrap
adaptation to BISG.

A.1 Zero Counts

In the ACS dataset, some geographic areas are estimated to have zero people of certain races.
Intuitively, such “zero counts” are more common at the census block group level than at the ZIP
code tabulation area level. In such cases, all 80 variance replicates also estimate zero people of that
race, even though a full count may have revealed people of that race in that area. To nonetheless
reflect this uncertainty, the Census Bureau reports a margin of error based on a different method
from the successive differences replication method.

Whenever we encounter such instances of zero counts, we impute possible observed values for
the 80 variance replicates from a discrete uniform distribution with minimum value 0 and maximum
value determined by the margin of error. In particular, we derive the estimated variance from the
reported margin of error using a formula prescribed by the Census Bureau. The variance, combined
with the fact that observed counts can never be less than 0, allows us to derive the maximum possible
value of the discrete uniform distribution. We sample from this distribution 80 times independently
and replace the zero counts in the variance replicates with these values (and update the estimated
total counts across all races in the variance replicates) for purposes of estimating the covariance
matrix Σ̂.

Our choice of parametric distribution here has little downstream impact since it is used only
to recover the variance, which maps directly to the margin of error given by the Census Bureau.
But our estimates for zero-count races in a geolocation have approximately zero covariance with the
estimates for other races even though this might not be the case in reality. We leave an examination
of the significance of this choice and possible improvements to it to future work.

A.2 Impermissible Sampled Probabilities

In some cases, the draws of vectors P̂r
∗b
P (A | G = g) ∼ N

(
µ̂g, Σ̂g

)
will include elements that are

less than 0 or greater than 1. This arises because we assume that the sampling distribution of
the conditional race-by-geolocation probability estimates is multivariate normal. In such instances,
we simply round the elements to 0 or 1 accordingly. The rounding to 1 is not strictly necessary,
since the normalization that occurs in Bayes’ Theorem implicitly handles it; but the rounding to 0
appears to be necessary.

This problem likely can be avoided by imposing an alternative form on the sampling distribution.
For example, there might exist a unique set of parameters that best fit µ̂g and Σ̂g as a Dirichlet
distribution. If so, then modeling the sampling distribution as a Dirichlet with those parameters
instead would sidestep this issue. We also note here that the densities of the Dirichlet distribution
and the multivariate normal distribution with the same means and covariances converge asymptot-
ically (Ouimet, 2022). This might suggest that this problem is less significant in relatively large
sample sizes like the ACS, but more research is needed to be sure.

23



A.3 Mutually Exclusive Conditional Probabilities

In some cases, the conditional surname-by-race probabilities and the conditional race-by-geolocation
probabilities are incompatible. For example, an individual might have a surname that, according
to the 2010 surname table, only White people have. But he or she might live in a census block
group that, according to ACS estimates, has no White people. This problem is not unique to the
dual-bootstrap; it can occur in any application of BISG. But it is more likely to occur when applying
the dual-bootstrap, which calls for repeated computation of BISG probabilities on resamples of the
training data.

Because this problem extends beyond the dual-bootstrap, we do not propose any particular
solution. For purposes of the simulations in Section 5, however, our stopgap approach is to give
primacy to the surname probabilities: If the conditional surname-by-race probabilities and the
conditional race-by-geolocation probabilities are incompatible, we simply do not update the former
with the latter.
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B Additional Details on BISG Simulations

B.1 Additional State-by-State Results

Figure 7 shows the results of the state-by-state simulation in Section 5.2 for the remaining race
categories that we study. Although the trends shown here are less pronounced, we believe they can
be interpreted within the framework described in Section 5.2.

0.00

0.05

0.10

0.15

0.20

H
I

C
A

N
V

W
A

A
K N
J

D
C

M
A

O
R

M
D

M
N

U
T

N
Y

C
T

V
A

C
O A
Z

D
E R
I IL

N
H W
I

F
L

N
E

T
X PA V
T

K
S

O
K

G
A M
I

N
C IA N
D ID

M
O

M
E

T
N

N
M S
D

O
H

S
C

M
T IN

W
Y

A
R

K
Y A
L

LA W
V

M
S

State

A
ve

ra
ge

S
ta

nd
ar

d 
E

rr
or

Proportion of Zero Block Groups 0.2 0.4 0.6 Bootstrap Type Dual−Bootstrap Single−Bootstrap

API

0.00

0.05

0.10

0.15

D
C

S
C

M
D

M
S

G
A

D
E

V
A

N
C A
L

LA N
V F
L

T
N N
J

C
T

O
K

A
R

N
Y

T
X IL M
I

O
H

C
A PA M
O

M
A R
I

A
K

K
S

A
Z

M
N

K
Y IN N
E

W
A W
I

IA C
O

N
D

W
V

N
M

O
R H
I

V
T

S
D

N
H

U
T

M
E

W
Y

M
T ID

State

A
ve

ra
ge

S
ta

nd
ar

d 
E

rr
or

Proportion of Zero Block Groups 0.2 0.4 0.6 Bootstrap Type Dual−Bootstrap Single−Bootstrap

Black

0.00

0.04

0.08

0.12

C
A

N
M N
V

T
X

C
O A
Z

U
T F
L

W
A N
J

O
R

W
Y

C
T

N
E

A
K

O
K H
I

K
S ID N
Y R
I

D
C IL W
I

D
E

M
A

N
C

M
D V
A IA

M
N

M
T M
I

G
A

S
D IN PA N
D

A
R

T
N

S
C

N
H

M
O V
T

O
H LA K
Y

M
E A
L

M
S

W
V

State

A
ve

ra
ge

S
ta

nd
ar

d 
E

rr
or

Proportion of Zero Block Groups 0.2 0.4 0.6 Bootstrap Type Dual−Bootstrap Single−Bootstrap

Hispanic

Figure 7: Dual-bootstrap and single-bootstrap standard errors of the estimated average outcome
for the Asian and Pacific Islander (API), Black, and Hispanic race groups in each state. The states
are ordered by the proportion of census block groups in which the American Community Survey
estimates there are zero people of the given race.
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B.2 Additional Details on New Mexico Simulation

In this section, we describe in more detail the New Mexico simulation reported in Section 5.2. We
select New Mexico for illustrative purposes and focus on the effect of varying total size and census
block group concentration of the American Indian and Alaska Native (AIAN) population in the
state on the standard error of the average group outcome estimate. The following simulation can
be conducted for any state and any race group.

The simulation follows the same general procedure as the state-by-state simulation in Section
5.2 for just New Mexico, except we modify the 2017-2021 ACS 5-year estimates of the AIAN
composition of each census block group in the state. The actual estimated total population of
AIAN in New Mexico is 181,021, and about 49% of census block groups are estimated to have zero
AIAN people. We vary the proportion of census block groups with zero-count AIAN from 30% to
80%, and also vary the total population of AIAN among the values 50,000, 100,000, 200,000, and
400,000.

When modifying the proportion of census block groups with zero-count AIAN, we start with
the existing distribution of AIAN counts in census block groups. We decrease the proportion of
zero-count AIAN census block groups by randomly selecting zero-count AIAN census block groups
(without replacement) and assigning them all the AIAN information (including ACS margins of
error and variance replicate estimates) of randomly selected non-zero-count AIAN census block
groups (with replacement). Similarly, we increase the proportion of zero-count AIAN census block
groups by randomly selecting non-zero-count AIAN census block groups (without replacement) and
assigning them the AIAN information of zero-count AIAN census block groups (with replacement).
To then achieve the desired total population of AIAN, we scale all non-zero counts (and margins
of error) of AIAN proportionally up or down. The result is that each synthetically generated New
Mexico has different total sizes and census block group concentrations of AIAN, but a similarly
shaped distribution of AIAN among non-zero-count AIAN census block groups.

Having modified the records of the ACS table that report AIAN information, we simply follow
through with the rest of the procedure described in Section 5 and Appendix A, including estimating
the covariance matrix with zero-count adjustments, implementing Algorithm 2, and conducting the
standard error estimation simulation with 1,000 tuples in our synthetically generated New Mexico.
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C Asymptotic Normality of the Dual-Bootstrap

C.1 Proof of Asymptotic Normality for Logistic Regression

We prove that the dual-bootstrap produces asymptotically normal bootstrap statistics with properly
calibrated variance under the simplifying assumption that the race probabilities obey the logistic
regression model

Pr(A = 1 | Z) = exp(α⊺Z)

1 + exp(α⊺Z)
. (1)

The proof can be readily extended to other race probability models that fall within the Z-estimation
framework. The theorem may also hold for other race probability models as well, but we leave a
proof of such results to future work.

For ease of notation, let µa ≡ E [Y | A = a] for a ∈ {0, 1}.
Let

ψθ(z, a, y) ≡


ψα(z, a, y)

ψ1(z, a, y)

ψ0(z, a, y)

 ≡


z

{
a− exp(θ⊺

αz)

1+exp(θ⊺
αz)

}
exp(θ⊺

αz)

1+exp(θ⊺
αz)

y − exp(θ⊺
αz)

1+exp(θ⊺
αz)

θ1

1

1+exp(θ⊺
αz)

y − 1

1+exp(θ⊺
αz)

θ0,


(2)

and assume that θ ≡
[
θα θ1 θ0

]⊺ ∈ Θ ⊂ Rp where Θ is open and p <∞ is fixed.

Then, defining the map θ 7→ Ψ(θ) ≡ Pψθ, note that θ0 ≡
[
α µ1 µ0

]⊺
satisfies Ψ(θ0) = 0. We

show this coordinate by coordinate. First,

E

[
Z

{
A−

exp(α⊺Z)

1 + exp(α⊺Z)

}]
= E [ZA]− E [Z Pr(A = 1 | Z)] (3)

= E [Z Pr(A = 1 | Z)]− E [Z Pr(A = 1 | Z)] (4)

= 0, (5)

where (4) follows from the tower property conditioning on Z and the fact that A is binary. Second,

E

[
exp(α⊺Z)

1 + exp(α⊺Z)
Y −

exp(α⊺Z)

1 + exp(α⊺Z)
µ1

]
= E [Pr(A = 1 | Z)Y ]− E [Pr(A = 1 | Z)]µ1 (6)

= E [Pr(A = 1 | Z)Y ]− E [Pr(A = 1 | Z)] E (AY )

Pr(A = 1)
(7)

= E [Pr(A = 1 | Z)Y ]− E (AY ) (8)

= E [Pr(A = 1 | Z)E (Y | Z)]− E {E (AY | Z)} (9)

= E [E(A | Z)E (Y | Z)− E (AY | Z)] (10)

= 0, (11)

where (7), (8), and (9) follow from the law of total expectation, and (11) follows from our identifying
assumption of zero covariance. The proof of the third coordinate is analogous.
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Let θ̂n be an approximate zero of the estimating equation θ 7→ Ψn(θ) ≡ Pnψθ, and let θ̂∗n be an
approximate zero of the bootstrapped estimating equation θ 7→ Ψ∗

n(θ) ≡ P∗
nψθ. By Theorem 10.16

of Kosorok (2008),

√
n
(
θ̂n − θ0

)
d→ Z ∼ N

(
0, V −1

θ0
P
[
ψθ0ψ

⊺
θ0

] (
V −1
θ0

)⊺)
(12)

and √
n
(
θ̂∗n − θ̂n

)
P
⇝
∗
k0Z (13)

if five conditions hold. We verify each condition in turn. As a preliminary matter, note that Exercise
10.5.5 of Kosorok (2008) already verifies each of the five conditions for the first coordinate of ψθ.
So we verify them for the remaining two coordinates, focusing without loss of generality on the first
of the two.

(A) For any sequence {θn} ∈ Θ, Ψ(θn) → 0 implies ∥θn − θ0∥→ 0.

Proof. By assumption,

E
[

exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)
Y − exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)
θ1n

]
→ 0. (14)

Distributing the expectation and dividing by both sides yields

E
[

exp(θ⊺
αnZ)

1+exp(θ⊺
αnZ)

Y

]
E
[

exp(θ⊺
αnZ)

1+exp(θ⊺
αnZ)

] − θ1n → 0, (15)

so it suffices to show that

E
[

exp(θ⊺
αnZ)

1+exp(θ⊺
αnZ)

Y

]
E
[

exp(θ⊺
αnZ)

1+exp(θ⊺
αnZ)

] → µ1. (16)

Since we know from (1) and (6) that

µ1 =

E
[

exp(α⊺Z)

1+exp(α⊺Z)
Y

]
E
[

exp(α⊺Z)

1+exp(α⊺Z)

] , (17)

it suffices to prove that the numerator and denominator of (16) each converge to their cor-
responding limit. We prove the denominator first. From Example 10.5.5 of Kosorok (2008),

we can take as given that θαn → α. Since these are constants, this implies that θαn
p→ α.

Moreover, it is trivially true that an i.i.d. sequence Z1, Z2, . . . where each Zi is distributed as

Z satisfies Zn
d→ Z. Then Slutsky’s theorem implies that θαn ◦· Z d→ α ◦· Z. The continuous
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mapping theorem then implies that θ⊺αnZ
d→ α⊺Z. Since the logistic function is bounded and

continuous, convergence in distribution implies that

E

[
exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)

]
→ E

[
exp(α⊺Z)

1 + exp(α⊺Z)

]
. (18)

The proof for the numerator is similar but slightly more delicate. Again from Example 10.5.5
of Kosorok (2008), we can take as given that θαn → α. Since these are constants, this implies

that θαn
p→ α. Moreover, it is trivially true that an i.i.d. sequence (Z1, Y1), (Z2, Y2), . . . where

each (Zi, Yi) is distributed as (Z, Y ) satisfies (Zn, Yn)
d→ (Z, Y ). Since α is a constant, the

portmanteau lemma implies that (Zn, Yn, θαn)
d→ (Z, Y, α). Then the continuous mapping

theorem implies that
exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)
Y

d→
exp(α⊺Z)

1 + exp(α⊺Z)
Y. (19)

If Y has a finite second moment, then

E

∣∣∣∣∣ exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)
Y

∣∣∣∣∣
2
 < E

[
|Y |2

]
<∞ (20)

for all n ∈ N, so
exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)
Y (21)

is uniformly integrable.7 This, combined with convergence in distribution, implies that

E

[
exp(θ⊺αnZ)

1 + exp(θ⊺αnZ)
Y

]
→ E

[
exp(α⊺Z)

1 + exp(α⊺Z)
Y

]
. (22)

Thus, the proof is complete.

(B) The class {ψθ : θ ∈ Θ} is strong Glivenko-Cantelli.

Proof. As indicated by Van der Vaart (2000), it suffices to show separately that each coor-
dinate class is strong Glivenko-Cantelli. This can be done under several different regularity
conditions. We assume two regularity conditions. First, we assume that each coordinate of
(Z,A, Y ) is bounded almost surely—i.e., that (Z,A, Y ) ∼ P where P has measure zero out-
side a bounded subset of Rp+2. Second, we assume that Θ is bounded. Then let Rp+2 = ∪jIj
be a partition in cubes of volume 1. Since each ψ1 in the class has partial derivatives up to
order α > (p+2)/2 that are bounded by constants Mj on each of the cubes Ij , Example 19.9
of Van der Vaart (2000) guarantees that, for any V ≥ (p+ 2)/α,

logN[] (ϵ, {ψθ : θ ∈ Θ}, L2(P )) ≤ K

(
1

ϵ

)V
 ∞∑

j=1

(
M2

j P (Ij)
) V

V +2


V +2

2

. (23)

7https://www.randomservices.org/random/expect/Uniform.html
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Since P has measure zero outside a bounded subset of Rp+2, the series converges for any
V ≥ (p + 2)/α. Then, setting V ∈ [(p + 2)/α, 2), we see that the function class has finite
bracketing integral:

J[] (1, {ψθ : θ ∈ Θ}, L2(P )) ≡
∫ 1

0

√
logN[] (ϵ, {ψθ : θ ∈ Θ}, L2(P )) dϵ (24)

≤
∫ 1

0

√√√√√K

(
1

ϵ

)V
 ∞∑

j=1

(
M2

j P (Ij)
) V

V +2


V +2

2

dϵ (25)

=

√√√√√K

 ∞∑
j=1

(
M2

j P (Ij)
) V

V +2


V +2

2 ∫ 1

0

√(
1

ϵ

)V

dϵ (26)

≤ C

∫ 1

0

(
1

ϵ

)V
2

dϵ (27)

<∞, (28)

where C is a constant. Thus, by Theorem 19.5 of Van der Vaart (2000), the function class
is Donsker. Hence, it is strong Glivenko-Cantelli (Kosorok, 2008). Note that we can prob-
ably relax the assumption that P has measure zero if we instead assume it has a certain
concentration.

(C) For some η > 0, the class F ≡ {ψθ : θ ∈ Θ, ∥θ − θ0∥ ≤ η} is Donsker and P (ψθ−ψθ0)
2 →

0 as ∥θ − θ0∥→ 0.

Proof. The first statement follows immediately from our proof of (B). The second statement

follows from similar logic to the proof of (A), assuming that E
[
|Y |4

]
<∞. Observe that

P (ψθ − ψθ0)
2 = E

[{
exp(θ⊺αZ)

1 + exp(θ⊺αZ)
(Y − θ1)−

exp(α⊺Z)

1 + exp(α⊺Z)
(Y − µ1)

}2
]
. (29)

Consider the first outer term obtained by squaring the inside:

E

[{
exp(θ⊺αZ)

1 + exp(θ⊺αZ)
(Y − θ1)

}2
]

(30)

= E

[{
exp(θ⊺αZ)

1 + exp(θ⊺αZ)

}2

Y 2

]
− 2θ1E

[{
exp(θ⊺αZ)

1 + exp(θ⊺αZ)

}2

Y

]
+ θ21E

[{
exp(θ⊺αZ)

1 + exp(θ⊺αZ)

}2
]
(31)

→ E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2

Y 2

]
− 2µ1E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2

Y

]
+ µ2

1E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2
]
,

(32)
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where convergence occurs by application of the continuous mapping theorem and uniform
integrability (again, assuming that the fourth moment of Y is finite) to the fact that (θα, θ1) →
(α, µ1). Since this just is the second outer term obtained by squaring the inside, it suffices to
show that the inner term converges to twice it. Observe that

E
[{

exp(θ⊺αZ)

1 + exp(θ⊺αZ)
(Y − θ1)

}{
exp(α⊺Z)

1 + exp(α⊺Z)
(Y − µ1)

}]
(33)

= E
[

exp(θ⊺αZ)

1 + exp(θ⊺αZ)

exp(α⊺Z)

1 + exp(α⊺Z)

{
Y 2 − θ1Y − µ1Y + θ1µ1

}]
. (34)

Distributing and taking each term in turn, we have, by repeated application of the continuous
mapping theorem,

E
[

exp(θ⊺αZ)

1 + exp(θ⊺αZ)

exp(α⊺Z)

1 + exp(α⊺Z)
Y 2

]
→ E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2

Y 2

]
(35)

θ1E
[

exp(θ⊺αZ)

1 + exp(θ⊺αZ)

exp(α⊺Z)

1 + exp(α⊺Z)
Y

]
→ µ1E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2

Y

]
(36)

µ1E
[

exp(θ⊺αZ)

1 + exp(θ⊺αZ)

exp(α⊺Z)

1 + exp(α⊺Z)
Y

]
→ µ1E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2

Y

]
(37)

θ1µ1E
[

exp(θ⊺αZ)

1 + exp(θ⊺αZ)

exp(α⊺Z)

1 + exp(α⊺Z)

]
→ µ2

1E

[{
exp(α⊺Z)

1 + exp(α⊺Z)

}2
]
. (38)

Combining terms completes the proof.

(D) P∥ψθ0∥2<∞ and Ψ(θ) is differentiable at θ0 with nonsingular derivative matrix Vθ0 .

Proof. The first part holds for ψ1 and ψ0 if Y has finite second moment. To verify the second
part, observe that

∂

∂θα
ψ1 =

exp(θ⊺αz)

(1 + exp(θ⊺αz))
2 (y − θ1) z, (39)

∂

∂θ1
ψ1 =

exp(θ⊺αz)

1 + exp(θ⊺αz)
. (40)

These continuous partial derivatives are uniformly bounded within a neighborhood of θ0:∣∣∣∣ ∂

∂θα
ψ1

∣∣∣∣ ≤ (|y|+ |µ1|+ ϵ) |z| , (41)∣∣∣∣ ∂∂θ1ψ1

∣∣∣∣ ≤ 1. (42)

Moreover, these upper bounds are integrable if we assume that E [|Y |] < ∞, E [|Z|] < ∞,
and Z and Y have finite variances. Thus, the Leibniz integral rule (applying the dominated
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convergence theorem and mean value theorem) implies that

∂

∂θα
E [ψ1]

∣∣∣
θ=θ0

= E
[
∂

∂θα
ψ1

]∣∣∣
θ=θ0

= E

[
exp(α⊺Z)

(1 + exp(α⊺Z))
2 (Y − µ1)Z

]
, (43)

∂

∂θ1
E [ψ1]

∣∣∣
θ=θ0

= E
[
∂

∂θ1
ψ1

]∣∣∣
θ=θ0

= E
[

exp(α⊺Z)

1 + exp(α⊺Z)

]
. (44)

A similar argument holds for the partial derivatives of ψ0. Notably, one regularity condition
for the derivative matrix to be nonsingular is that the expected value of the race probabilities
must be bounded away from 0 and 1.

(E) Ψn(θ̂n) = oP (n
−1/2) and Ψ◦

n(θ̂
◦
n) = oP (n

−1/2).

Proof. This follows for the last two coordinates of Ψn(θ̂n) because θ̂1n and θ̂0n are exact zeros

of the estimating equation. The same is true of the last two coordinates of Ψ◦
n(θ̂

◦
n).

C.2 Extending the Z-Estimator Framework to Other Models

In this section, we briefly describe how the linear disparity estimator that Elzayn et al. (2023)
consider might fit into the Z-estimator framework used to prove asymptotic normality of the dual-
bootstrap in Appendix C.1. The linear disparity estimator δ̂l is given by the estimated slope
coefficient in the linear regression of Y on the estimated probability P̂r(A = 1|Z) plus an intercept
term.

We can formulate δ̂l as a Z-estimator. Specifically, let

ψθ(z, a, y) ≡

ψα(z, a, y)

ψl(z, a, y)

 ≡


z

{
a− exp(θ⊺

αz)

1+exp(θ⊺
αz)

}
exp(θ⊺

αz)

1+exp(θ⊺
αz)

(
y − exp(θ⊺

αz)

1+exp(θ⊺
αz)

θl

)
 (45)

and assume that θ ≡
[
θα θl

]⊺ ∈ Θ ⊂ Rp where Θ is open and p < ∞ is fixed. Then, defining

the map θ 7→ Ψ(θ) ≡ Pψθ, we can show that θ0 ≡
[
α δl

]⊺
satisfies Ψ(θ0) = 0, where δl is the

true disparity. If the same five conditions discussed in Appendix C.1 also hold here, then the dual-
bootstrap is asymptotically normal for the linear disparity estimator as well. We leave verification
of these conditions to future work.
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