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Health Data Platforms 

Sendhil Mullainathan and Ziad Obermeyer 

3.1 Introduction 

Clinical medicine is ripe for transformation by artificial intelligence. The 
field draws a wide range of highly intelligent people, motivated both by 
social impact and by the chance to profit from an industry that accounts for 
20 percent of US gross domestic product. The health care system also has 
myriad known inefficiencies in human decision making , the correction of 
which could create enormous social value. And it produces exabytes of data 
every year that could easily be used to train useful algorithms. 

What then accounts for the conspicuous lack of AI deployed in clinics 
and hospitals today? Commonly cited factors for this- and many other 
problems in the health care system- are misaligned financial incentives , 
regulatory barriers, and behavioral factors. While we are not blind to the 
challenges these factors present , here we argue for another: the lack of acces­
sible clinical data. We begin by discussing a concrete use case for clinical AI: 
a tool to help physicians test for heart attack (acute coronary syndromes) in 
the emergency setting. We then discuss the major barrier to implementing 
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this tool: data. Finally, we make the case for new mechanisms that connect 
researchers and clinical product developers to health data . 

3.2 Testing for Heart Attack in the Emergency Department (ED) 

In recent work , we study how physicians arrive at an important diag­
nostic decision: whether to test a patient for heart attack , new blockages in 
the coronary arteries supplying the heart (Mullainathan and Obermeyer 
2022a). Patients with heart attack need urgent treatment: untreated block­
ages can cause heart failure and chronic pain (angina) , or arrythmia and 
sudden death. Blockages cannot be diagnosed from symptoms alone. For 
example, the most common symptom, chest pain , could also be the result 
of a pinched nerve or acid reflux, for example. And while the laboratory 
tests and electrocardiograms (ECGs) done in the ED can be suggestive of 
blockage , they are not conclusive. As such, physicians rely on an invasive 
procedure , cardiac catheterization , which can be performed either directly 
or after a lower-cost stress test. Since these tests are costly, they are applied 
only when the probability of a heart attack is judged to be sufficiently high. 

Central to our approach is a set of tools from the field of machine learn­
ing. Because the value of a test depends on the likelihood it will come back 
positive, the testing decision can be cast as a prediction problem, where 
machine learning techniques can be profitably applied (Agrawal , Gans , and 
Goldfarb 2018; Kleinberg et al. 2015). In deciding whom to test , the physi­
cian must in effect form a prediction. A test sure to come back negative is a 
waste; except at the extreme, the value of a test increases with the probability 
it will come back positive. As such, efficient testing is grounded in effective 
predicting. By providing explicit predictions , algorithms provide a natural 
benchmark against which actual decisions can be contrasted. We thus view 
testing for heart attack as both an important problem in its own right and 
as a model system for applying machine learning to study diagnostic judg­
ments more generally. 

We implement our approach on electronic health record (EHR) data 
from a large academic medical center. A subset of these is used to train an 
ensemble machine learning model that uses thousands of variables to predict 
whether a given test will reveal a coronary blockage . In addition , we build a 
cost effectiveness model that , for a set of patients at a given predicted risk, 
calculates the implied cost of a life year for testing that set, based on known 
benefits and costs of treatment. To check the generality of our results , we 
replicate them in a 20 percent nationwide sample of ED visits by Medicare 
beneficiaries. These data, based on insurance claims, are less detailed. But 
because they are nationally representative, they allow us to explore the rel­
evance of our results for health policy. 

We first examine those patients whom physicians choose to test. Our strat-
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egy is to use the algorithm's risk predictions to identify potentially low-risk 
patients , in whom testing might not be useful. We then look at realized test 
results to see who was right - the algorithm or the physician. This allows 
us to calculate the actual value of testing ex post, as a function of predicted 
risk ex ante, and identify predictably low-value testing. The value of testing 
is typically adjudicated on the basis of its average yield, and in our setting , 
the average test has an implied cost effectiveness of $89,714 per life year. At 
typical US life-year valuations of $100- 150,000 (Neumann , Cohen , and 
Weinstein 2014), this would be considered cost effective. But this aggregate 
statistic hides a great deal of highly inefficient testing: binning patients by 
predicted risk reveals that , at a threshold of $150,000 per life year, 62 percent 
of tests should be cut based on predicted risk. The bottom bin of tests is 
extremely cost ineffective: $1,352,466 per life year. For comparison , biolog­
ics for rare diseases (some of the least cost-effective technologies that health 
systems sometimes pay for) are typically estimated at around $300,000 per 
quality adjusted life year. 

Even the second-lowest bin is very cost ineffective at $318,603 dollars per 
life year. By contrast , in the highest-risk quintile bins, tests cost only $46,017 
per life year, comparable with cost-effective interventions like dialysis. 

The existence of overtesting is not surprising. But as an emerging eco­
nomics literature suggests, it often coexists with undertesting. In particular , 
doctors both overtreat low-risk patients and undertreat high-risk patients in 
a way that suggests errors in diagnostic judgment , and underuse may be at 
least as consequential as overuse, as has been previously suggested (Currie 
and MacLeod 2017). In our data , we find that among patients in the highest 
decile of predicted risk , where testing would appear to be very cost effec­
tive, only 38.3 percent are actually tested . This fact raises the possibility of 
undertesting - but does not fully establish it. The key econometric problem 
is that we do not know what would have happened if we tested these patients. 

To answer this question , we look to new data, on major adverse cardiac 
events in the 30 days after the patient's ED visit that suggest undiagnosed 
and untreated heart attack. We find that in the highest-risk bin , untested 
patients go on to have an adverse cardiac event rate of 15.6 percent , high 
enough for clinical guidelines to conclude they should have been tested. We 
also leverage exogenous variation in who is tested - some ED shifts test 
patients more than others - to simulate an experiment, in which a patient is 
more or less likely to be tested for reasons unrelated to their actual risk. This 
shows that the highest-risk patients - and only the highest-risk patients ­
who arrive during the highest-testing shifts have significantly lower mortality 
(2.5 percentage points , or 32 percent) . In contrast , when we look on average, 
across all patients , without the benefit of machine learning predictions , there 
is no effect: increasing testing has no statistically significant effect on health 
outcomes , matching what is often called "flat of the curve" health care. 
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3.3 Barriers to Implementation of AI Tools 

By identifying ex ante which patients ought not to be tested , algorithmic 
predictions pave the way for targeted interventions to increase the efficiency 
of testing prospectively. Our current efforts to implement this algorithm as 
a clinical decision aid have given us insights into why such algorithms are 
not more widespread. 

It is first important to note which barriers are unlikely to pose important 
barriers. As our results on over- and undertesting above illustrate , such 
an algorithm would be of great interest to health systems irrespective of 
their financial incentives. Consider the case of a purely profit-motivated 
health system that placed no weight on improved patient outcomes. If such 
a system were paid under a traditional fee-for-service plan , they would be 
highly incentivized to implement the algorithm to increase testing of high­
risk patients: these patients are highly profitable , because they are the most 
likely to generate the complex procedures and intensive care needs that are 
major contributors to hospitals' bottom lines (Abelson and Creswell 2012); 
they are certainly more profitable than a negative test. If by contrast such a 
system were paid under a risk-based (capitated) model , they too would be 
highly incentivized to implement the algorithm to reduce testing of low-risk 
patients: under widely accepted cost-effectiveness rules, about two-thirds of 
all tests could be cut using information available at the time of the physi­
cian's decision. 

Regulatory factors are another commonly cited reason that clinical AI 
is not more widely deployed. But , as recent scholarship demonstrates , the 
Food and Drug Administration 's regulatory approach cannot be a bind­
ing constraint: it has approved hundreds of software and AI devices over 
the past decade (Stern 2022). Finally, behavioral barriers to adoption are 
widely believed to be common. But in our ongoing experience designing the 
rollout of the tool in a large hospital system in the setting of a large-scale 
randomized trial , physicians are eager to adopt tools that improve their own 
performance . The important caveat is that they must first be convinced, in a 
data-driven way, that the tools will help. We are addressing these very reason­
able concerns by performing in-depth review of individual cases, particularly 
those with poor patient outcomes, where the algorithm's predictions might 
have helped. 

Rather , we believe the most significant barrier to development and imple­
mentation of such algorithms is data . It is instructive to consider how we 
gained access to the data we needed to build the original algorithm described 
above. Building up the dataset took years of effort: to identify where the 
data were housed , clean it, and extract it. Creating the data frame itself­
establishing the sample and exclusion criteria , creating the key study out­
comes, developing a data-driven definition for missed heart attack , etc.­
demanded both deep medical knowledge and careful applied microeconomic 
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data work. Merging in the ECG waveforms was particularly challenging: 
after identifying the source system and securing access, we discovered the 
waveforms were stored only as a PDF image file. So we had to write the code 
to extract the numeric time series from the image. 

Even this painstaking work depended on solving a host of logistical issues 
regarding data access, which are difficult for many researchers to overcome. 
The EHR data was accessible only because one of us was, at the time, an 
employee of the academic hospital from which the data were sourced. This 
arrangement is the norm : data are completely inaccessible to those who 
do not have the good fortune to be administratively based within a given 
hospital - even faculty members at universities affiliated with the hospital 
are typically ineligible, meaning that economists or computer scientists wish­
ing to access data at their university's hospital must first identify a collabora­
tor employed by that hospital. For example, at the time we began the work 
for the project described above, we were both faculty members at the same 
university, but only one of us had access to the data - an idiosyncratic result 
of being on paper an employee of one of the university's affiliated hospitals. 
Any analyst we wished to use to assist on the project needed to be hired as 
an employee of the hospital system, meaning that grant funding needed to 
be obtained and housed at the hospital in question . Taken together, these 
restrictions provide a major obstacle to cross-disciplinary work , and were 
a major reason that the work underlying the paper took over eight years to 
complete. 6 

3.4 The Need for Health Data Platforms 

Scientific fields need data to grow and thrive. In economics, the availability 
of stock market data created the field of quantitative finance; the Medicare 
claims data hosted at the National Bureau of Economic Research are the 
foundation of our current understanding of the healthcare system. In com­
puter science, datasets like DARPA's early efforts with Canadian Hansards 
data , to the recent examples of the Netflix Prize, MNIST , ImageNet , LFW, 
One Billion Words, and others underlie unprecedented recent progress in 
translation, sentiment analysis , object and facial recognition , and other 
tasks (Donoho 2017). 

In medicine, by contrast , well-connected researchers are lucky enough to 
have access to health data by virtue of their employment status or personal 
connections. Access for everyone else is laborious , costly, time consuming, or 
just impossible. But it is clearly inefficient for only a small group of in-house 
researchers to have access to data . In addition to a simple numbers game, 
where discoveries are more likely to be made if more researchers are taking 

6. An hone st accounting of the project timeline would place a still larger share of the blame 
on both author s. 
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shots on goal , there is also misallocation : in machine learning in particular , 
hospitals are unlikely to win the war for talent when competing with the 
deep resources of technology companies. And researchers based at well­
resourced academic hospitals are likely to work on problems that concern 
them and their patient populations , while the needs of other populations 
may be ignored (Kaushal , Altman , and Langlotz 2020). 

A commonly cited concern is the protection of patient privacy. But given 
the many technical solution s to this problem , from sophi sticated deidenti­
fication methods to highly secure cloud environments , this cannot be the 
only barrier. Rather , we believe the problem is incentives. Open data are a 
classic public good: market forces do not favor their creation. While they 
have enormous benefit to everyone in the long run - patients , health systems, 
industry - no single actor has a strong incentive to act (Hill, Stein , and Wil­
liams 2020; Price and Cohen 2019). 

3.5 Emerging Solutions: A Data Platform for Academic Research 

We close by highlighting two health data platforms on which we have 
worked. The first , Nightingale Open Science, is a nonprofit platform to 
catalyze research (Mullainathan and Obermeyer 2022b ). Thanks to phil­
anthropic funding , Nightingale supports the creation of previously unseen 
datasets , in collaboration with health systems around the world. It then 
makes the deidentified datasets available to a diverse, global community of 
researchers on a secure cloud platform . By focusing on data that link medi­
cal images with real patient outcomes , the platform aims to foster ground­
breaking research into common tasks at the intersection of computation 
and medicine. 

Nightingale 's datasets focus on medical imaging data: ECGs , x-rays and 
CT scans, digital pathology images, etc. Medical images are rich sources of 
signal about patient health - so rich that doctors are unlikely to make full 
use of all the information. By contrast , most EHR data (e.g., diagnoses , 
procedures , text-based notes) are actually produced by doctors and thus 
more likely to be used effectively. Standardization of imaging protocols 
across time and place means that a chest x-ray in India looks much like an 
x-ray in San Francisco. While there is of course some variation across sites 
and equipment manufacturers , this is small compared to the practice- and 
system-level variation that affects how diagnoses and other data are cap­
tured . Technical tools and legal frameworks for deidentification of medi­
cal images exist (e.g., HIPAA in the US, and many other countries' legal 
frameworks permit sharing). Different types of imaging present different 
challenges - an ECG is a simple numeric time series, while a head MRI 
could allow facial reconstruction - but these challenges are increasingly 
tractable with a robust set of tools. 

These datasets were built collaboratively with a range of health systems 
from around the world. Diversity of data is a key consideration , given the 
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nonrepresentative nature of many current datasets used to build algorithms. 
In the San Francisco Bay Area, for example, Nightingale partners with a 
leading academic medical center, and also a far less well-resourced county 
hospital system. Abroad, partners include the largest hospital in Taiwan , 
and will soon expand to partnerships in Cameroon and Tamil Nadu. 

3.6 Emerging Solutions: A Data Platform for AI Product Development 

The second platform , Dandelion Health , is a for-profit platform to cata­
lyze AI product development. It is perhaps surprising that market forces 
have not solved the problem of data access in the private sector, given the 
large financial incentives to build AI products . While there are several differ­
ent types of efforts underway to apply AI to medical datasets, these efforts 
are limited in several ways. First , several consortia have formed to pool EHR 
data across large hospital systems. But the center of gravity of those efforts 
is providing insights and analytics to life sciences companies , in the hopes 
of capturing a share of the large budgets associated with drug development , 
rather than AI product development. As a result , high-dimensional imag­
ing and waveform data are typically absent , and complex questions about 
ownership of intellectual property derived from the data remain unresolved . 
Second , academic medical centers are beginning to partner with companies , 
or in some cases spinning off new ventures themselves. But these ventures 
are in practice limited by the complex , laborious approach to contracting , 
intellectual property , and data access. In addition , the unusual and nonrep­
resentative nature of both the populations served by tertiary and quaternary 
centers, and the care practices in those centers , hampers generalizability. 
Third , technology companies are beginning to invest heavily in medical data , 
but of course their goal is to monopolize it for their own purposes, rather 
than to let market forces accelerate broad product development. 

We do not mean to argue that such efforts are doomed to failure: many 
of them have the potential to produce exciting, innovative tools to improve 
clinical care. But they are unlikely to unlock the market forces that typically 
drive innovation in other sectors at scale, either because their focus is not on 
AI or because data access remains limited by design. 

The goal of Dandelion Health is to create the largest and highest-quality 
AI-ready training dataset in the world , and to become the first end-to-end 
product development platform for clinical AI. Dandelion has agreements 
with up to five massive US health systems that allow for access to the uni­
verse of clinically generated data: structured EHR data (including labs, vital 
signs, insurance claims data , etc.) but also notes , radiology and pathology 
images, neurology and cardiology waveforms, and so on. 

A key challenge in building up these datasets is the complexity of stor­
age and retrieval of high-dimensional data at health systems. While tabular 
EHR data have been largely standardized thanks to large vendors , imaging 
and waveform data are another story entirely. The data are scattered across 
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multiple different vendor storage systems, and hospitals are often restricted 
by contracts with vendors that impose high per-image costs to retrieve the 
hospitals' own data. More frustrating still, many hospitals continue to delete 
or overwrite data because of perceived storage space constraints. If data is 
the new oil, health systems are actively lighting one of their most precious 
resources on fire. Solving these problems has given us new insights into why 
efforts to build up datasets for clinical AI are not more widespread. 

After creating the datasets within the partner health systems' environ­
ments , Dandelion deidentifies and tokenizes these data , then aggregates and 
curates data to support the development of new products by third parties. 
The goal is to securely and ethically realize the value locked in health data ­
rather than letting them sit unused on health systems' servers- and use them 
to drive better health for patients. 

Naturally , the use of patient data for product development raises legal 
as well as ethical issues. We have found it useful to start with the Belmont 
principles , which are the foundation of the ethical practice of research, 
while considering the complex tradeoffs in this area. The Belmont prin­
ciples mandate protection of patient privacy, beneficence ( doing more good 
than harm) , and justice. These broad principles provided a clear basis for 
articulating the upside of data sharing for patients , while ensuring respect 
for their privacy and equity considerations. We feel that a similar cost­
benefit tradeoff should be constantly weighed with respect to product devel­
opment. 

To maximize benefits, Dandelion's focus is to improve patient outcomes. 
As a result, the platform exists exclusively for AI innovators to create solu­
tions that will improve patient care. Another key principle is that products 
made using Dandelion data should strive to reduce inequities - not exag­
gerate them. Dandelion conducts its own internal review to ensure that any 
use cases conform to this high standard , and health system partners review 
every client request to ensure that the products in question will actually help 
patients and providers. To minimize costs and risks, Dandelion protects 
patients' identities and privacy by deidentifying and tokenizing data before 
it leaves the health systems' environment. Where possible, it goes beyond 
existing laws to uphold the highest privacy standards. Dandelion does not 
own the data collected by its health system partners - nor does it sell this 
data to customers. Dandelion leases access to deidentified data within an 
encrypted SOC2-certified cloud environment. 

3. 7 Conclusions 

Access to health data is a major bottleneck to progress in clinical AI. By 
investing in health data platforms to catalyze both research and develop­
ment , society can realize the huge gains from AI in health that have been 
long promised but , to date , not delivered. 
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Comment Tyna Eloundou and Pamela Mishkin 

Machine learning tools like large language models (LLMs) have shown 
remarkable improvements in capabilities in various natural language pro­
cessing tasks , such as text generation , summarization , and dialogue , over the 
last few years. However, developing and deploying these models in a respon­
sible and beneficial manner requires access to high-quality and diverse data­
sets that reflect the domains and contexts of interest. In the field of language 
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