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Economic models provide little insight into when the next big idea and its associated 
productivity dividend will come along. Once a general purpose technology (GPT) is identified, 
the economist’s toolkit does provide an understanding when firms will adopt a new technology 
and for what purpose. The focus of the literature has been on commonalities across each type of 
GPT. This focus is natural, given that the goal of the literature has been to identify generalizable 
insights across technologies. Broadly, this literature emphasizes heterogeneity in co-invention 
costs across firms. Each GPT, however, provides a distinct benefit. Steam provided a new power 
source. The internet facilitated communication. The differences between GPTs are important for 
understanding adoption patterns. Using the examples of the internet and artificial intelligence, we 
discuss how both co-invention costs and distinct benefits determine the adoption of technology. 
For both technologies, we demonstrate that discussions of the impact of a GPT on productivity 
and growth need to emphasize the benefits as well as the costs. The goal of this paper is therefore 
to link the literature on co-invention costs with an understanding of the distinct benefits of each 
GPT.  
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Economists recognize the central role of productivity in economic growth. At the same time, 

economic models provide little insight into when the next big idea and its associated productivity 

dividend will come along. Once an important technology is identified, however, the next steps 

are more within the domain of economic analysis. The economist’s toolkit can provide an 

understanding when firms will adopt a new technology and for what purpose.   

Bresnahan and Trajtenberg (1995) emphasize one category of important technologies, which 

they label “General Purpose Technologies” or GPTs. These technologies have the potential to 

generate sustained productivity growth through a positive feedback loop of innovation in 

producing and using industries. They note that, “[m]ost GPTs play the role of ‘enabling 

technologies’, opening up new opportunities rather than offering complete, final solutions. For 

example, the productivity gains associated with the introduction of electric motors in 

manufacturing were not limited to a reduction in energy costs.”  

Since Bresnahan and Trajtenberg’s article appeared, a growing literature has explored the 

diffusion and impact of general purpose technologies. Some of this literature takes a historical 

perspective, for example examining how the steam engine and electricity diffused (e.g. Lipsey, 

Carlaw, and Bekar 2005; Moser and Nicholas 2004). Much of the literature focuses on more 

recent technologies, particularly computers, the internet, and artificial intelligence (e.g. 

Bresnahan, Brynjolfsson, and Hitt 2002; Bresnahan and Hitt 2003; Forman, Goldfarb, and 

Greenstein 2005; Cockburn, Henderson, and Stern 2019).  
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Regardless of the technology studied, the focus of the literature has been on commonalities 

across each type of GPT. This focus is natural, given that the goal of the literature has been to 

identify generalizable insights across technologies. The main commonality has been the role of 

complementary innovation, or co-invention. For example, Bresnahan and Greenstein (1996) 

examined the diffusion of client/server computing systems in large companies. They emphasize 

the role of co-invention, the invention of new technologies and processes that enable the 

technology to generate growth. Looking at a different information technology, enterprise 

resource planning software, Aral, Brynjolfsson, and Wu (2012) emphasize complementary 

innovations related to organizational structures. Broadly, this literature emphasizes heterogeneity 

in co-invention costs. Organizations with lower co-invention costs, whether because of internal 

or external advantages, are more likely to adopt. 

Each GPT, however, provides a distinct benefit. Steam provided a new power source. The 

internet facilitated communication. Recent advances in artificial intelligence reduce the cost of 

prediction (Agrawal, Gans, and Goldfarb 2018). The differences between GPTs are important for 

understanding adoption patterns. Co-invention costs do matter, but so do the benefits. The 

distinct benefits of GPTs determine why a particular GPT might be useful to a particular firm. 

Therefore, in order to understand how GPTs diffuse, and how they impact economic growth, it is 

necessary to consider the barriers to adoption common to all GPTs, as related to co-invention 

costs. It is also necessary to consider the benefits from adoption, which tend to be different with 

each GPT. These benefits often define the particular type of co-invention needed, as well as 

providing an understanding of which firms and industries will gain most from adoption. 
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Using the examples of the internet and artificial intelligence, we will discuss how both co-

invention costs and distinct benefits determine the adoption of technology. The discussion of the 

internet will be grounded in the empirical literature on internet adoption, particularly a re-

framing of Forman, Goldfarb, and Greenstein’s (2005) Journal of Urban Economics paper. The 

discussion of AI will build on a theory literature and an extrapolation of Mullainathan and 

Obermeyer’s (2021) study of AI in emergency departments. For both technologies, we 

demonstrate that discussions of the impact of a GPT on productivity and growth need to 

emphasize the benefits as well as the costs. The goal of this paper is therefore to link the 

literature on co-invention costs with an understanding of the distinct benefits of each GPT.  

General Purpose Technologies 

There has been a renewed interest in GPTs over the last five years. Figure 1 tracks citations to 

Bresnahan and Trajtenberg (1995) over time. Citations grew steadily until 2010, flattened 

through 2016, and then grew again. Many of these more recent citations discuss the potential of 

artificial intelligence to be a GPT.  
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Figure 1: Citations to Bresnahan & Trajtenberg (1995) in Web of Science

 

Bresnahan and Trajtenberg (1995) note that “[w]hole eras of technical progress and growth 

appear to be driven by a few ‘General Purpose Technologies.’” These GPTs generate follow-on 

innovations through what they label “innovational complementaries”. This perspective mirrors a 

larger literature on the economics of technology that emphasizes the importance of a handful of 

innovations in driving economic growth.  Such innovations have received different labels, with 

varying definitions, elsewhere. Mokyr (1990) emphasized the role of “macroinventions” in 

generating the potential for growth and innovation, and the role of follow-on “microinventions” 

in catalyzing the growth. This literature builds on studies that examine technological change in 

specific industries, such as David’s (1990) examination of electrification and the reorganization 

of factories and Rosenberg’s (1963) documentation of the breadth of innovations underlying the 

productivity increases in the 19th century US machine tools industry. Here we emphasize the 

particular framework provided in Bresnahan and Trajtenberg (1995) and Bresnahan’s (2010) 

review paper.     
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GPTs are defined by their “potential for pervasive use in a wide range of sectors and by their 

technological dynamism” (Bresnahan and Trajtenberg 1995). The technological dynamism is not 

limited to the industry or sector that produces the GPT. GPTs have an outsized impact on long 

term economic growth because they also generate innovation in using, or application, industries. 

The initial innovation in one sector generates productivity in the R&D in a downstream sector. 

This, in turn, generates further innovation in the upstream producing industry. This creates a 

positive feedback loop that pushes against decreasing returns to innovation. This positive 

feedback loop between producing and using industries defines GPTs as distinct from other useful 

technologies.  

Bresnahan and Trajtenberg attribute the increase in downstream R&D productivity to 

“innovational complementarities.” These complementarities generate what Bresnahan and 

Greenstein (1996) label “co-invention”. Gans (1995) and Aral, Brynjolfsson, and Wu (2012) 

note that these innovations can also occur in management and organization, and so they label 

them “organizational complementarities.”  

An empirical literature on information technology adoption has emphasized the costs associated 

with co-invention. Bresnahan, Brynjolfsson, and Hitt (2002) demonstrate that it takes several 

years for the productivity benefits of information technology to appear. They argue that this 

delay is caused by the challenges in developing new processes. Forman, Goldfarb, and 

Greenstein (2008) show that early adoption of advanced internet technologies was more likely in 

large firms or in large cities. They argue that this was driven by differences in co-invention costs. 

It is easier to undertake co-invention in firms with more resources, and in cities with more 
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expertise. Dranove et al (2014) further explore this hypothesis in the context of electronic 

medical records. They find that larger hospitals, and hospitals in cities with a large pool of health 

information technology workers, are more likely to gain from adopting electronic medical 

records, as measured by a reduction in hospital costs. As with Bresnahan, Brynjolfsson, and Hitt 

(2002), this cost reduction appeared after several years. Dranove et al (2014) also show that 

many adopters fail. Even six years after adoption, hospitals that adopted but did not have access 

to a large local pool of health information technology workers, experienced a substantial increase 

in costs with little benefit. Brynjolfsson, Rock, and Syverson (2021) take a more macroeconomic 

approach. They measure the relationship between IT investments and firm productivity in a 

cross-industry firm-level panel data set. They demonstrate a “productivity J-curve” in which 

measured productivity falls in the early years after IT investments but eventually rises. Their 

evidence suggests it is investments in intangible assets that lead to the short-term decrease in 

measured productivity. These investments generate complementary innovation.   

Broadly, this empirical literature on IT adoption and its consequences has emphasized the 

common thread of co-invention costs leading to a lag in the productivity benefit to adoption and 

higher levels of adoption in firms that could adapt their processes efficiently.  

The empirical literature on GPTs has emphasized commonalities in the costs of adopting 

different GPTs. In contrast, there has been little discussion of the benefits. That might be because 

the benefits are, at the surface, different across GPTs. Steam engines and electricity enabled new 

power sources. Interchangeable parts enabled production at scale. Railroads and the internal 
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combustion engine enabled new forms of transportation. The internet enabled new forms of 

communication. In each case, these benefits are different.  

Models simplifying these benefits provide insight into which firms will benefit the most. There is 

literature on new technologies, separate from the GPT literature, that emphasizes how 

technology reduces economic frictions. Shapiro and Varian (1999) emphasized the internet as a 

technology for cheap communication, reducing the costs of copying and of search. Goldfarb and 

Tucker (2019) noted how the internet also reduced the cost of transporting information and of 

tracking behavior. More broadly, Nordhaus (2007) linked computing advances to a drop in the 

cost of computation or arithmetic. For AI, Agrawal, Gans, and Goldfarb (2018) emphasized that 

it can be seen as a drop in the cost of prediction.2  

Adding this perspective on a common model of the benefits of a GPT provides insight into which 

firms will adopt early and experience a productivity gain. It also provides insight into the types 

of co-invention needed. Put differently, co-invention is necessary, and is the source of the 

positive feedback loop that generates sustained productivity growth. Nevertheless, that 

productivity growth depends on adoption and co-invention in the industries that use the 

technology. As a technology makes a particular process cheaper, whether computation, search, or 

prediction, then that process will be used more broadly. How much more broadly depends on the 

elasticity of demand. Thomas J. Watson, then-CEO of IBM, allegedly declared global demand 

for five computers. That implies a very inelastic model of demand. As computers reduced the 

price of machine arithmetic, the number of applications grew rapidly.   

                                                 
2 This framing can apply to a variety of technologies, even those that are not widely seen as GPTs. For example, for 
blockchain, Catalini and Gans (2020) saw it through the lens of a fall in verification costs. 
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In the remainder of this paper, we attempt to connect these two streams of literature. This attempt 

builds on work in economic history that emphasizes the particular benefits of a technology along 

with the challenges in co-invention. For example, David (1990) discusses how electrification 

provided a new way to power factories, but substantial co-invention was required for the new 

way of providing power to affect aggregate productivity. Similarly, Mokyr (1990, p. 82) 

emphasizes that during the Industrial Revolution, “a clustering of macroinventions 

occurred…thus creating a complementary flow of microinventions.” For the macroinvention of 

the steam engine, Mokyr (1990) describes several microinventions. These microinventions were 

in the producing industry, making the engines more efficient. They also occurred downstream, 

applying the engines to provide power in new industries such as shipping (e.g. Fulton). Mokyr 

details innovation in a competing power source, water, for comparison. Understanding the 

diffusion and impact of the technology requires understanding the challenges to innovation, but 

also the benefits.    

We use examples from relatively recent technologies in order to demonstrate how the impact of a 

GPT is best understood if the costs of co-invention and the benefits with respect to reducing a 

particular economic friction are taken into account. To do so, we first examine the diffusion of 

the commercial internet. Specifically, we re-interpret Forman, Goldfarb, and Greenstein’s (2005) 

paper in internet adoption using this framework. We demonstrate how an emphasis on both co-

invention costs and the benefits of the technology provides a useful lens for interpreting the 

results. Second, we describe emerging research on the usefulness of artificial intelligence. We 

combine the theoretical framework in Bresnahan (2020) and in Agrawal, Gans, and Goldfarb 

(2021) on AI systems with the empirical setting in Mullainathan and Obermeyer (2021). In doing 
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so, we demonstrate a feedback loop between the benefits of prediction technology and the need 

for a particular type of co-invention.     

Internet 

Forman, Goldfarb, and Greenstein (2005) examine internet adoption patterns by 86,879 US 

business establishments, measured in the year 2000. The paper takes an economic geography 

perspective, examining whether the internet was adopted more by rural or urban business 

establishments. The main result of the paper is that establishments in larger cities were more 

likely to adopt relatively advanced internet technologies such as enterprise resource planning 

(ERP) and customer relationship management (CRM), but they were somewhat less likely to 

adopt the basic technologies such as email and web browsing. 

The paper emphasizes that the result for advanced internet—that urban firms are more likely to 

adopt—supports the hypothesis that co-invention costs are important drivers of adoption. The 

other main result, that basic internet is more likely to be adopted in rural areas and smaller cities, 

received less focus in the paper and in the literature that followed. This is the result about the 

benefit of the technology, that the internet reduced communication costs and therefore has a 

distinct benefit for rural firms compared to urban firms. The authors wrote two additional papers 

with the same dataset that only looked at the advanced internet, emphasizing co-invention cost 

differences in urban and rural areas (Forman, Goldfarb, and Greenstein 2008; Forman, Goldfarb, 

and Greenstein 2012). 
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Table 7 (replicated below) of the paper provides the most important results for understanding the 

difference between co-invention costs and the particular benefits of internet technology for 

facilitating communication. To do so, the paper further categorizes basic and advanced internet 

into those that involve communication outside the establishment and those that facilitate only 

within-establishment communication. This leads to four broad types of internet technologies: 

1) Basic cross-establishment internet: These are applications of the internet that involve 

communication between establishments and do not require much expertise to use. 

Examples include email and web browsing.  

2) Advanced cross-establishment internet: These are applications that involve 

communication between establishments and require considerable expertise to implement. 

Examples include using the internet for commercial transactions between firms, or 

between firms and customers.  

3) Basic within-establishment internet: These are applications that primarily involve 

communication within an establishment and that do not require much expertise to use. 

Examples include internal web pages and networking services run through an intranet. 

4) Advanced within-establishment internet: These are applications that primarily involve 

communication within an establishment and require considerable expertise to implement. 

Examples include ERP and CRM systems.  
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Basic cross-establishment internet is more likely to be adopted in less populated areas (panel A 

columns 4-6). Advanced within-establishment internet is more likely to be adopted in bigger 

cities (panel C columns 1-3). The other two categories are in the middle, with no consistent 

significant difference between urban and rural firms for advanced cross-establishment internet 

and basic within-establishment internet. Together, as noted in the paper, these results are 

consistent with evidence of co-invention: advanced technologies are more likely to be adopted in 

urban areas. These results also show that less populated areas are more likely to adopt cross-

establishment internet, conditional on whether the technology is basic or advanced. Even for 

advanced technologies, small cities are as likely to adopt as large ones. Adoption is determined 

by more than co-invention costs. It is also determined by who benefits most from being able to 

communicate more efficiently across establishments.  
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Taken together, these results demonstrate that the internet is a GPT, but of a particular type. 

There is evidence that adoption is more likely in cities, but there is also evidence that the 

applications most related to communication technology were also likely to be adopted in rural 

areas.  

This gives a hint of what kind of co-invention was necessary and which types of firms benefited 

most. While co-invention is easier in cities, a key benefit of the technology is cross-firm 

communication. Several papers by Chris Forman examine the co-invention needed for this cross-

firm communication, although the papers do not frame it as such. Forman and Gron (2011) 

shows that internet adoption was faster for insurers that were vertically integrated with their 

agents, and therefore non-vertically integrated adopters need to adapt their systems to avoid 

“opportunistic behavior”, such as agents selling competitor products to consumers acquired 

through an insurer-funded electronic commerce system. The benefit of the communication 

technology is clear, but the incentives to adopt may not be aligned. Langer, Forman, Kekre, and 

Sun (2012) show that the successful addition of an internet distribution channel requires a change 

in product offerings that appeal to the more diverse set of customers that become feasible 

through digital communication. Forman and Van Zeebroeck (2012, 2019) examine within-firm 

knowledge flows after internet adoption. They show that internet connections increase 

collaboration and citations across inventors at different locations within a firm, but primarily for 

researchers with overlapping interests. They then suggest changes to the geography of the 

research group within the firm.  
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Each of these papers documents how the internet changed communication patterns. This, in turn, 

meant that firms needed to change their processes to take advantage of the change. While not 

labeled as such, this is co-invention. Put differently, the literature on internet adoption by 

businesses has emphasized co-invention costs (as in Forman, Goldfarb, and Greenstein’s papers) 

and it has discussed how easier communication benefits certain types of businesses (as in 

Forman’s other work). Our goal in this paper is to connect the two and point out that 

understanding co-invention and how a GPT might have an impact on productivity and growth 

requires an understanding of the benefits of the particular technology.    

Artificial Intelligence 

We proceed by assuming that AI is a GPT (whether part of a broader GPT or distinct), in the 

sense that AI technologies are defined by their “potential for pervasive use in a wide range of 

sectors and by their technological dynamism” (Bresnahan and Trajtenberg 1995). There has also 

been substantial innovation in both AI-producing and AI-using industries over the past ten years, 

suggesting potential for a positive feedback loop. AI patenting has growth rapidly since 2010 

(Bloom et al 2018). AI is frequently mentioned in earnings calls and job postings in a variety of 

industries (Bloom et al 2021; Goldfarb, Taska, and Teodoridis 2021).3 

In our prior work (Agrawal, Gans, and Goldfarb 2018, 2019), we have emphasized that it is 

useful to see AI as prediction technology, and so advances in AI can be understood as reductions 

in the cost of prediction, where prediction is defined in the statistical sense. AI makes it easier to 
                                                 

3 Artificial intelligence technologies are still diffusing, and it remains an open question as to whether they represent 
a new GPT (Agrawal, Gans, and Goldfarb 2019), an extension of the information technology GPT that has been 
diffusing since the 1950s, an aspect of data science as a GPT, or not a GPT at all (Goldfarb, Taska, and Teodoridis 
2021).   
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fill in missing information. Just as the internet is communication technology, steam provides an 

energy source, and the railway is transportation technology, AI enables prediction. 

AI has been developed to address a number of prediction problems. It underlies Google’s search 

engine, predicting which website a user wants in response to a query. It underlies Facebook’s 

news feed, predicting which information a user is most likely to engage with. It underlies 

Amazon’s recommendation engine, predicting which products people are likely to purchase. It is 

also an important component of business processes in a variety of other industries. It helps 

banks, credit card companies, and other financial institutions detect fraud. It helps insurance 

companies determine risks. It helps healthcare providers with diagnosis. 

Bresnahan (2020) argues that only the information technology companies have received a 

substantial productivity benefit from AI so far. Google, Facebook, and Amazon had processes 

that could adapt to the opportunities in AI relatively quickly. They had data tools in place to 

enable good prediction, and they had the ability to adapt workflows to accommodate the 

predictions. Bresnahan emphasizes that this requires a system-level approach to using AI. A 

system-level approach involves changing workflows, adding new products, and providing new 

forms of value to customers. In other words, co-invention around the technology was easier. 

Therefore, IT companies adopted the technology early and with success.   

In contrast, many other industries that have adopted AI have found relatively narrow applications 

within existing workflows. Financial services have used AI for fraud detection. As a result, fraud 
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detection has improved, but the overall workflow has changed little. There has been relatively 

little innovation, either in terms of algorithms or organizational structure.  

In Agrawal, Gans, and Goldfarb (2021), we formalized Bresnahan’s insight, focusing on AI as a 

prediction technology. Prediction is useful because it improves decision-making. A system of 

decisions can involve multiple decision-makers who may have different information and whose 

incentives may not be aligned. Focusing on differences in information, our model showed that a 

productivity-enhancing AI might not be adopted if coordination between decision-makers is 

difficult. In other words, as a prediction technology, AI helps with decision-making. When there 

are multiple decisions and multiple decision-makers, AI can face resistance due to alignment. 

Even if it improves some decisions, if they cannot be coordinated with other decisions, then 

adopting AI could make things worse. We, therefore, hypothesize that co-invention for AI will 

require the development of systems to overcome coordination challenges.   

Coordination of decisions in medical care: An application of AI as a GPT 

In this section, we provide an example of an AI that improves medical diagnosis and discuss the 

necessary coordination of decisions that would lead to a substantial productivity boost. 

Specifically, we take the AI for heart attack diagnosis in Mullainathan and Obermeyer (2021) 

and examine what changes the hospital would need to undertake in order to get substantial value 

out of the tool.  

When a patient arrives in the emergency department of a hospital, the medical staff assesses the 

likelihood of various ailments and recommends further testing. Mullainathan and Obermeyer 
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focus on physician decisions to recommend testing for a heart attack. This testing can be invasive 

and costly. At the same time, a missed heart attack has severe consequences for the patient, as 

well as bottom line implications for the hospital. Using information available to physicians at the 

time they make a decision about testing, Mullainathan and Obermeyer developed an AI that 

performed substantially better than the doctors. The AI is built from data on 246,265 emergency 

visits at a large top-ranked hospital. Approximately 15% of patients required treatment. The 

paper documents that the AI predicted better than doctors. Doctors sometimes overtested, 

providing invasive tests to patients who were unlikely to be having a heart attack. Doctors also 

undertested, failing to order tests to many patients who were likely to need treatment. If the 

number of tests were fixed, the AI could re-allocate them from low risk to high risk patients, 

leading to better outcomes. It could also achieve the same outcomes with fewer tests. The focus 

of their paper as published is on understanding the nature of physician mistakes, showing that 

physicians use an overly simplistic model of the heart attacks. 

The paper also contains an online appendix that explores how hospitals might change their 

processes in response to the algorithm. Next, we take the results of that appendix and build on 

them to model the potential for disagreement between physicians and hospital administrators. 

Specifically, in Appendix 3, they discuss two different tests for heart attacks. The definitive test 

is cardiac catheterization. This involves a cardiologist inserting an instrument into the coronary 

arteries. If a blockage is found, a stent is inserted during the same procedure. Alternatively, 

physicians can recommend that the patient first receive a stress test. These tests are less 

expensive and less invasive, but also less accurate. Furthermore, if positive, the patient still needs 

to have the catheterization in order to insert the stent.  
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While the main paper does not distinguish between stress tests and testing through 

catheterization, it is an important decision that can cost the hospital thousands of dollars and can 

affect the patient’s long-term outcomes. They estimate that the cost of catheterization is about 

$28,000 while the cost of a stress test is about $4,000. Patient outcomes and hospital profits are 

largely aligned. If hospitals identify patients who are having a heart attack, then the patient’s life 

is saved and the hospital generates substantial revenue from caring for the patient.4 Mullainathan 

and Obermeyer (appendix page 6) note, “it is intuitive and efficient for physicians to begin with 

stress testing for lower-risk patients…Higher-risk patients, on the other hand, should go straight 

to catheterization without incurring the additional cost and likelihood of false negative from 

stress testing.” 

Currently, stress testing serves a useful purpose. While Mullainathan and Obermeyer note that 

there is an active medical debate about whether stress tests should be used at all, stress tests 

continue to be used. They give doctors an outlet when they are highly uncertain whether a patient 

is at risk.  

The question we explore next is what happens as the AI prediction gets better. Better prediction 

means less uncertainty. The risk will be more accurately measured. More patients will be clearly 

high risk, and more patients will be clearly such low risk that even a stress test is not cost 

effective. The simulations in Mullainathan and Obermeyer use their predictions of risk and 

demonstrate that stress tests should be used less when those predictions are more accurate.  

                                                 
4 Details in the appendix are supplemented by an interview of Ziad Obermeyer on January 25, 2022. 
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Health economics often emphasizes differences in incentives between different players in the 

healthcare system, whether patients, doctors, insurers, or hospital administrators. For example, 

Bhattacharya, Hyde, and Tu’s (2014) textbook, Health Economics, discusses the model in Harris 

(1977) that hospitals should be thought of as two separate economic actors: physicians and 

administration. The physicians decide on testing and diagnosis for each patient. The 

administration decides on which inputs should be available to physicians. With this division of 

decision-making, doctors have little incentive to control hospital costs (p. 103). In terms of 

testing, in other contexts widespread screening leads to better patient outcomes but at higher cost 

(p. 281). Doctors and administrators may be at odds as to which tests to do. 

Table 2 provides back-of-the-envelope estimates of the benefits of allowing stress testing to 

doctors and to administrators with today’s 15% rate of diagnosis accuracy upon arrival into the 

emergency department, an improved AI with 50% accuracy, and an almost-perfect AI with 99% 

accuracy. While loosely based on the values in Mullainathan and Obermeyer’s appendix and 

elsewhere in the medical literature, these numbers are for demonstration purposes only.5  

  

                                                 
5 Estimates of revenue and profit vary. We use $100,000 in revenue and $20,000 in margin, based on Urbich et al’s 
(2020) two-year revenue estimates meta-analysis and a 20% margin (RANGE 20k to 200k). 
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Table 2 
AI accuracy if positive 1% 15% 50% 99% 
Doctor payoff     
Send patient home $148,500 $127,500 $75,000 $1,500 
Stress test first $140,101 $135,915 $125,450 $110,799 
Direct to catheterization $122,000 $122,000 $122,000 $122,000 
Administrative payoff     
Send patient home $0 $0 $0 $0 
Stress test first $-892.15 $1,807.75 $8,557.5 $18,007.15 
Direct to catheterization $-1285 $1,725 $9250 $19,785 
Calculations: Doctor: Benefit to doctor/patient of a healthy patient $150,000; cost of stress test to doctor $4,000; 
Cost of catheterization $28,000; false positive stress test 20%; false negative stress test 5%. Administration: Profit 
from detecting heart attack $20,000; profit from sending home $0; loss from stress test $800; loss from unnecessary 
catheterization $1,500; false positive stress test 20%; false negative stress test 5%. Numbers are back-of-the 
envelope and are not meant to represent accurate doctor or administration values.  

The second column shows that under a reasonable set of assumptions, doctors and administration 

are currently aligned. If a patient is predicted as having a 15% chance of a heart attack, both 

doctors and administrators will first send that patient for a stress test. If that stress test is positive, 

both doctors and administrators will move to catheterization.  

The first and fourth columns show that the doctors and administration will also be aligned with a 

very accurate AI. The first column shows that if a patient has a 1% chance of having a heart 

attack or less, then the doctors and administrators agree that the patient should be sent home 

untested. The downside of the test is too high relative to the benefit of detecting the heart attack. 

The fourth column shows that if a patient is predicted as 99% likely to be having a heart attack, 

both doctors and administrators agree that the stress test should be skipped and the patient should 

go direct to catheterization.  

However, the third column shows that if a patient is predicted to have a 50% chance of having a 

heart attack, then doctors and administrators might disagree. The source of disagreement relates 
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to different estimates of the downside of an unnecessary catheterization, and to different 

estimates of the cost of undertaking a stress test. We have assumed that administrators perceive a 

larger cost to unnecessary testing than doctors.   

Given the allocation of decision rights, as long as stress tests are available, doctors will choose to 

do a stress test first if they predict the patient has a 50% chance of having a heart attack. While 

the administration would prefer that the patient go straight to catheterization, the decision is the 

doctor’s. The administrator, however, has the choice of whether to allow stress testing at all. If 

the administration provides a doctor with an AI that allocates patients to, say, either a 0.1% 

chance of having a heart attack or a 50% chance of having a heart attack, the doctor will then 

provide stress tests to anyone that the AI predicts at 50%. The administration should then decide 

that stress tests are not an option. And so the doctor would need to either send patients home, or 

to catheterization. The doctor will choose catheterization.  

As modeled, the solution is straightforward. The administration should not offer the stress test. 

The doctor will choose catheterization. As practiced, however, it is unlikely to be so 

straightforward. The doctor will push back. A regulatory body may be called in. Patients’ rights 

will be discussed. When the decision-makers are no longer aligned, then the structure of the 

game as modeled may change. In other words, the system as described has administration 

making a take-it-or-leave-it offer to the doctors, and then the doctors making the best decision 

given the circumstances. The doctors, however, can change the game. If the administration wants 

the doctors on board, it may need to change how doctors perceive the payoffs of unnecessary 
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testing. This might involve new billing procedures, different liability protection, or other changes 

that suggest a change to the way the hospital operates.  

This, in turn, might make the administrator hesitant to adopt the AI in the first place. The AI 

changes the decision alignment. The organization then needs to be more specific about its 

objective function and coordinate on whose payoffs determine the decision. Even though the AI 

improves patient outcomes, it creates conflict. Depending on the costs of that conflict, the 

administration might decide to forego the benefits of better prediction.6 Predictions can change 

decision alignment, and this lack of alignment becomes a barrier to AI adoption.7 

We provide this example to demonstrate how AI can improve outcomes, but the specific nature 

of AI as prediction technology also generates challenges to its adoption. As noted in the previous 

section, our goal in this paper is to connect the literature on co-invention to an understanding of 

the particular benefits of each GPT. For AI, these are connected. The benefits relate to improved 

decision-making. Most organizations, however, have multiple decision-makers. The technology 

can lead to misalignment. Successful adoption may require negotiation, new processes, and a 

change in how payoffs are allocated.  

                                                 
6 Another point is that if the AI isn’t deployed early, then it may never gather enough data in order to 

improve the predictions to the point where the doctors and the administration are aligned give the predictions.  
7 Gans (2022) provides a general treatment of when internal conflicts can make the adoption of radical 

technologies more difficult. 
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Conclusion 

This paper has connected two different streams in the literature on the diffusion and 

consequences of GPTs. One stream focuses on the barriers to adoption, and the need for co-

invention to enable productivity growth. A second stream focuses on the benefits of each 

generation of technology. Using the examples of the internet and artificial intelligence, we show 

that understanding the consequences of GPT diffusion, and its associated challenges, requires 

understanding commonalities with prior GPTs in terms of co-invention, while recognizing that 

each technology brings with it specific benefits that suggest which firms will adopt and the 

direction of the necessary co-invention. 
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