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Abstract 
This paper analyzes how the increased use of data in economies affects productivity. We introduce a 
framework for measuring data and find that data assets are conceptually encompassed in the Corrado, 
Hulten, and Sichel (2005, 2009) intangible capital framework. To investigate the overlap between data capital 
and intangible capital, the paper develops measures of industry-level investments in data for nine European 
countries.  Analysis of the new measures concludes that about 50 percent of intangible capital is essentially 
data capital. Next, a model of an economy with data capital is used to assess the impact of the increased use 
of proprietary bigdata on productivity. We find two primary macroeconomic impacts. First, the greater 
relative efficiency of data capital boosts labor productivity. Second, the increased use of proprietary bigdata 
increases the appropriability of the intangible asset class, which diminishes TFP growth. The greater relative 
efficiency of data capital is unseen in official data but is estimated to be boosting labor productivity growth 
by about .2 percentage points per year. This is offset by the appropriability effect, however, that may have 
shaved as much as .3 to .4 percentage points off recent TFP growth and contributed to its measured 
slowdown. 

 

 

 

 
*  Paper originally prepared for the NBER/CRIW Conference on Technology, Productivity, and Economic 
Growth, March 17-18, 2022.  The authors are grateful to the OECD Economics Directorate and the 
European Commission’s DG ECFIN for partial financial support of work reported in this paper. 
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1. INTRODUCTION 

A defining aspect of the digital age is the use of data, specifically large stores of digitized information 

referred to as “bigdata.”  Much popular work on bigdata appears in the business strategy literature. By a 

very long way, the best-selling book on the subject is “Big Data: A Revolution That Will Transform How 

We Live, Work, and Think” by Mayer-Schönberger and Cukier (2013). The book makes several statistical 

claims, suggesting that data will be used to disprove much casually held causal intuition and reduce 

many measurement problems—in line with those who believe in the transformational promise of digital 

tools that adjust themselves to perform better as they are exposed to more and more data (e.g., 

Brynjolfsson and McAfee 2014) and assertions in the press that data is the new oil (e.g., The Economist 

Magazine 2017).   

These statements—some from a decade ago—would imply that data has had significant impacts on 

economic activity.  But has it?  Economic growth has slowed globally, and business productivity 

performance has been subpar. Though it is frequently suggested that business users face high 

adjustment costs in deploying the modern digital tools needed to derive knowledge from data, the very 

purpose of modern software and computing systems hosted in the cloud is to reduce technical barriers 

to user engagement in data analysis. As it seems unlikely that there has been a failure in the inherent 

productivity of artificial intelligence (AI) and cloud-based technologies, this paper looks to the character 

of knowledge gained through data as a contributor to the slowdown in productivity growth.  

Data is conceptualized as an intangible asset in this paper: a storable, nonrival (yet excludable) factor 

input that is only partially captured in existing macroeconomic and financial statistics.  The paper 

introduces a framework for capturing asset creation based on the processing and transformation of 

digitized information into useable knowledge in an economy.  This knowledge is referred to as “data 

capital,” and the framework we introduced is amenable to measurement and quantitative analysis.   

The first part of this paper (sections 2 through 4) addresses how the increased use of data affects 

intangible capital conceptually and empirically. New estimates of investment in data and data capital are 

developed and analyzed in relation to intangible capital. The second part of the paper (sections 5 

through 7) models how data capital, innovation, and productivity are related and includes an analysis of 

how data capital affects intangible asset prices and potential labor productivity growth. An eighth 

section concludes.  

This paper makes, we believe, three contributions. The first is its development and analysis of industry-

level estimates of data capital consistent with concepts used by management strategists and 

technologists. We find that data assets, from stores of raw data to actionable intelligence derived via 

data analytic tools, are largely subsumed within intangible capital. A second contribution is the paper’s 

modeling of the economic impacts of data capital, which finds that the efficiencies associated with 

modern data capital lowers intangible asset prices and strengthens the (partial) appropriability of the 

asset class. Third, the paper frames the likely macroeconomic impacts of these developments, using the 
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recently issued EUKLEMS & INTANProd database (LLEE 2023).  A feature of this database relative to its 

predecessors is that it includes estimates of intangible investment consistent with the intangible capital 

framework attributable to Corrado, Hulten, and Sichel (2005, 2009) for all European Union countries, 

Japan, the United Kingdom, and the United States. 

The paper finds that that the increased data intensity of intangible capital boosts its productive 

efficiency and thereby labor productivity growth by as much as one-quarter percentage point per year 

currently and potentially more in the future. At the same time, the increased role of proprietary bigdata 

in production processes for intangible assets renders the asset class more appropriable. This implies 

fewer spillovers to investments in data-driven intangible assets and slower growth in total factor 

productivity (TFP). All told we estimate that the appropriability effect has, so far, more than offset the 

efficiency effect and that the rise of modern data capital has contributed to the recent slowdown in 

productivity growth.  

Relation to recent literature 

Recent literature has advanced many models that focus on economic mechanisms affected by data and 

intangibles.  How does our approach relate to these models? 

At the micro level, data assets are usually assumed to have diminishing returns, e.g., Varian (2019) 

points out that there are diminishing returns to more and more training data fed to artificial intelligence 

(AI) algorithms. Jones and Tonetti (2020) formulate a model of an economy in which bigdata are an 

intermediate input with diminishing returns and analyze the welfare consequences of data and data 

sharing. Despite treating data as an intermediate (versus as an asset as we do in this paper), the Jones 

and Tonetti (2020) welfare analysis transcends this distinction. Their model, like ours, is based on the 

observation that firms hoard proprietary data for their own use and that this behavior stanches the 

reuse of data as a nonrival good, which is socially inefficient. The analysis of Arrieta-Ibarra et al. (2018) 

also focuses on the inefficiency of current data use in economies, highlighting the monopsony position 

of firms collecting consumer data and arguing that this depresses the value of personal data and 

potential productivity gains from its use.  

Most descriptive models of data in the economics literature assume diminishing returns to data assets 

but also show how they can co-exist with firm-level cost advantages due to the scale effects in data-

dependent production processes. This is the gist of The Economist (2017) article, which emphasized how 

data enable retail and social media giants to expand their customer base by exploiting network effects. 

The Economist also speculated that data hampers “creative destruction,” noting that data enables giant 

firms to utilize surveillance systems to “see” when a new product or service gains traction and take 

action to avoid being blindsided by competition from new entrants (e.g., Facebook’s acquisition of 

WhatsApp).  

Business and management scholars frequently emphasize scale and scope economies created by data in 

business activities such as marketing, distribution, and after-market services. It should be noted, 

however, that there is little economy-level evidence for these effects. In fact, an econometric study of 
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the global advertising and marketing services business found that scale efficiencies did not arise during 

the 1990’s era of globalization (Silk and Berndt 2003). 

The combined impact of scale and scope economies created by the use of bigdata, whether data-

induced scale efficiencies in production processes or network externalities induced on the demand side, 

will be seen as a rise in market power if data assets (and intangibles in general) are not accounted for in 

competition indicators such as rates of returns, price markups, or productivity dispersion. Virtually all 

studies finding a rise in market power in recent decades (e.g., as reviewed in the IMF’s April 2019 World 

Economic Outlook, IMF 2019) rely on firm-level datasets that exclude or improperly account for 

intangibles. Official macrodata currently account for a portion of total intangible assets, and evidence 

using official macrodata to investigate whether markups are rising is less dispositive (Basu 2019). In fact, 

aggregate data adjusted to include all Corrado, Hulten, and Sichel (2005, 2009) intangibles suggests that 

abnormal rents have not, in fact, accrued to U.S. private industries (see Corrado, Haskel, Jona-Lasinio, 

and Iommi 2022a, figure 4 and its discussion). 

But industry concentration measures have risen and many attribute this to scale economies of intangible 

assets at the firm level (e.g., Haskel and Westlake 2018, Crouzet and Eberly 2019, De Ridder 2019). 

Economies due to data-driven intangible capital also could be driving the widening of within-industry 

productivity dispersion documented in Andrews, Criscuolo, and Gal (2017), and a study addressing 

whether the increase in within-industry productivity dispersion since 2000 can be attributed to 

intangibles found that it could (Corrado, Criscuolo, Haskel, Himbert, and Jona-Lasinio 2021). While this 

evidence was stronger at large firms, strictly speaking, economies of scale were not detected. Dispersion 

was rather explained by financial barriers to the accumulation of intangible assets—which affect some 

firms more than others—and by the complementarity of intangibles with expenditures on digitization.  

Where does this leave us? First, the intangible capital framework is consistent with the welfare-

enhancing processes of data sharing as theorized by Jones and Tonetti in that (a) data assets have 

diminishing returns in production but (b) returns to data assets will only spill over to other firms to the 

extent data can be copied or shared within an industry or economy. Second, increased productivity 

dispersion between “leaders” and “laggards hints at how average productivity growth in an economy 

can slow at the same time as innovative, competitive firms amass bigdata: a breakdown in the diffusion 

of data-derived knowledge from the leaders to the laggards. In this paper we suggest that productivity 

spillovers to intangible capital have in fact weakened as production processes—notably, production 

processes for intangible assets—have become dependent on proprietary bigdata.   

In related work, Akcigit and Ates (2021) attribute slow productivity growth and declining business 

dynamism to a breakdown in knowledge diffusion. They give four reasons for this breakdown, three of 

which are supported by their R&D-inspired models of innovation and analysis of developments in patent 

protection by large firms. Their fourth reason for a breakdown in knowledge diffusion is attributed to 

the rise of proprietary bigdata used by productivity “leaders.” Akcigit and Ates do not offer direct 

empirical support this proposition, but we believe the that the evidence advanced in this paper, 
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combined with our previously mentioned microdata-based work on the determinants of productivity 

dispersion, provide a solid base of evidence for this view. 

Rise of Proprietary Bigdata 

As background for the arguments that we develop in this paper, consider first some examples of 

exclusive (or rival) versus nonrival use of data in modern economies as listed in table 1. Though data is 

inherently nonrival, the degree to which owners share data with the public or other organizations in an 

industry (or the economy) depends upon both context and competitive factors, illustrated by the range 

of examples listed in figure 1. 

The examples listed on lines 1–5 of the 

table mainly reflect applications of 

bigdata using new digital technologies by 

firms, i.e., digital platform-based 

businesses and/or machine learning and 

other AI-based algorithms applied to 

massive data. Product-led growth 

strategies (line 6) refers to marketing 

innovations based on user feedback data 

(also enabled by new technologies). 

Customer lists and after-sales customer 

feedback data long have been inputs to 

brand development and the design of 

marketing and customer retention 

strategies (line 7) and are emerging as 

fertile ground for application of data 

technologies. 

Examples of “nonrival” data use range 

from marketers of personal data for 

companies (line 8), to longer-standing 

examples of industry-level data sharing, e.g., financial records held by credit bureaus and shared across 

financial institutions (line 9), vehicle accident and major repair records shared by buyers and sellers in 

used car markets (line 10), personal medical records shared by medical care services providers (line 11), 

to newer cross-platform and cross-purpose uses (lines 12 and 13). 

Finally, the table lists some examples of government open data. Governments generate rather vast stores 

of information and are working to make the data they collect more “open”, i.e., freely available for 

anyone to download, modify, and distribute without legal or financial restriction. This suggests that 

government statistics are a public good externality—and possibly productivity enhancing. The UK Open 

Data Institute (ODI) estimates that the use of “core” public open data alone—data such as addresses, 

maps, weather, and land and property ownership records—currently contributes an additional 

TABLE 1. EXAMPLES OF DATA USE 

Rival 

1. Product-level forecasting (e.g., Amazon) 

2. A/B Internet testing and marketing (e.g., Google) 

3. IoT factory systems (e.g., Siemens) 

4. Targeted advertising on consumer content platforms 

5. Fintech (e.g., algorithmic trading, digital lending, etc.) 

6. Product-led growth strategies (e.g., Slack) 

7. Customer lists/after sales services design 

 

Nonrival  

8. DaaS (Data as a Service) platforms (e.g., BDEX) 

9. Financial records (FICO scores) 

10. Vehicle records (CARFAX reports) 

11. Personal medical records (across service providers) 

12. Open-source data generated by web users (traffic patterns)  

13. Private by-product data put to alternative uses (e.g., Zillow 
data used for economic research) 

14. Genomic and other public biomedical research data 

15. Official statistics (economic, demographic, social) 

Note: Data is inherently nonrival. The grouping of examples in the table reflects 
the degree to which data owners share their data assets with other 
organizations or the public. 
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½ percent of the country’s GDP in economic value every year (ODI, 2016). A review of estimates and 

surveys of the value of U.S. government data in business decision-making concluded that (a) the value of 

government data is increasing and that (b) while companies are generating ever-increasing amounts of 

big data from their own operations, the combination of proprietary data with comprehensive 

government data often creates more strategic benefit (Hughes-Cromwick and Coronado 2019). 

These examples suggest that while data has much potential for use and economic benefit when shared, 

many applications of bigdata involve proprietary use. Data-dependent business models are on the rise 

(Nguyen and Paczos 2020), as are regulations to protect consumer privacy, e.g., the General Data 

Protection Regulation (GDPR) in the European Union and the US equivalent, California Consumer Privacy 

Act (CCPA). These regulations limit third-party sales, even though certain cross-purpose uses of data 

(e.g., lifestyle data collected by marketers used in precision medicine solutions) have the potential to 

affect the pace of innovation. Conversely, policy interventions can facilitate data sharing and 

competitive entry, e.g., the data sharing environments facilitated by open banking policies in the United 

Kingdom and other countries.1  

All told, the foregoing suggests that a conceptual framework for measuring and analyzing data needs to 

account for the fact that: (a) data is nonrival and capable of improving economic welfare when shared or 

replicated at low cost; but that (b) data, though nonrival, is frequently used exclusively.  

2. A FRAMEWORK FOR DATA VALUE CREATION 

The Data Stack 

Many economic models of data focus on data as a “free” by-product of economic activity, and observers 

focus on certain special features of data, such as how rapidly it accumulates.  Data, in the sense of raw 

digitized records, may of course accumulate at an astonishing pace and be stored at little to no cost.  But 

accumulation of raw bits and bytes does not imply that a flow of services is being provided to 

production processes in an economy.  

Our approach to developing a framework for the analysis of data is thus based on the following 

observations/assumptions: (1) The accumulation of data has the potential to boost real output only 

when producers also invest in transforming such records into analytical insights and actionable business 

intelligence. (2) Knowledge-based assets gleaned from the application of data technologies to data (raw 

or transformed) are productive assets in an economy. (3) The appropriability of returns to these assets 

implies that business spending on data accumulation and transformation and on the conduct of data 

analytics are intangible capital investments.  

Our specific approach to data value creation is illustrated in figure 1, which depicts a framework that 

embraces widely used approaches in both the technology and management literatures. Technologists 

characterize data according to a “data stack” that describes the transformation of raw data into usable 

 
1 Open banking refers to a data sharing environment in which financial intermediaries—both incumbents and 
fintech entrants—can compete for customers. For an analysis of the impact of open banking regulations on 
financial innovation globally, see Babina, Buchak and Gornall (2022). 
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data structures and intelligence. Business 

management strategists use a “value chain” 

construct that includes monetization, or market 

implementation, as a capability required for 

creating value from data assets2. Technologists 

usually depict a sequence of data forms and 

digital tools in a single pyramid (e.g., Roca 

2021a). The data pyramid has deep roots in 

information science; it was used by Varian (2019) 

to depict the relationship between data, 

information, and knowledge in his analysis of AI.  

Figure 1 separates data forms, i.e., types of data, 

from the tools used to create them. Three major 

types of data appear in the business-oriented 

data value creation literature. These types are 

depicted on the left in figure 1 and reflect the business strategists’ notion of an information value chain, 

where greater value is produced as data is processed into usable intelligence. The digital technology 

tools that enable value creation from nondigitized records are depicted on the right. The sequence of 

data assets is horizontally aligned with the tools used in their formation on the left, i.e., ingestion tools 

are used to create data stores, etc.   

The three layers of value in figure 1’s data stack—data stores, databases, and data intelligence—

correspond to an asset type amenable to measurement and analysis.  The data asset types are defined 

as follows: 

• Data stores are raw records that have been stored but not yet cleaned, formatted, or 

transformed for analysis, e.g., data scraped from the web or sensor and economic data captured 

from production or transactions activity.  Raw records also cover the raw data collected from 

experiments, statistical surveys, or administrative records. 

• Databases consist of transformed raw data, records that have been cleaned, formatted, and 

structured such that they are suitable for some form of data analytics or visualization.   

• Data intelligence reflects the further integration of data with advanced analytic tools (e.g., 

machine learning training algorithms). Data intelligence is a set of quantitative inputs that 

provides actionable guidance for decision-makers and includes solutions to scientific and 

engineering problems. 

The “modern” data stack is hosted in the cloud and, compared with legacy, on-premises data 

management systems, requires little technical configuration by users.  According to technologists (e.g., 

Roca 2021b), “the modern data stack lowers the technical barrier to entry for data integration.” And 

“components of the modern data stack are built with analysts and business users in mind, meaning that 

 
2 See again Mayer-Schönberger and Cukier (2013), also PriceWaterhouseCoopers LLP (2019). 

Figure 1. The Data Asset Value Chain 



 7 

users of all backgrounds can not only easily use these tools, but also administer them without in-depth 

technical knowledge.”   

Data capital as Intangible capital 

The data value chain framework, in which greater value added is created as raw data is processed and 

developed into insights and solutions, applies to data-driven development of engineering designs, 

customer platforms, and organizational practices, and data-driven R&D processes. This suggests that 

data assets are largely subsumed—though not explicitly identified—in measures of intangible capital 

covering the full range of assets. Let us then consider the definitional/conceptual overlap between the 

data assets in the data stack and activities covered by existing measures of intangible assets. For this we 

refer to the latest EUKLEMS & INTANProd database (LLEE 2023), which as previously mentioned 

incorporates all Corrado et al. (2005) intangible assets. 

Identified intangible investment asset types are set out in table 2. Column 1 of the table shows that 

there are three major categories of intangible assets: digitized information, innovative property, and 

economic competencies. Column 2 reports specific assets used to populate each major category, and 

column 3 reports whether the asset is covered in national accounts. As may be seen, only lines 1 

through 5 are included in official measures of capital formation and GDP. 

 
Table 2. Intangible Investment: Major Categories and Asset Types 

Categories Investment by Asset Type NA Examples of Assets and Property 

(1) (2) (3) (4) 
 
Digitized 
Information 

 
1. Software 
2. Databases 

 
Yes 
Yes 

 
Digital capabilities, tools 
Trade secrets (data) 

 
Innovative 
Property 

3. Research and development (R&D) 
4. Mineral exploration 
5. Artistic, entertainment, and literary 

originals 
6. Attributed designs (industrial)  
7. Financial product development 

Yes 
Yes 
Yes 

 
No 
No 

Patents, licenses 
Mineral rights 
Copyrights, licenses 
 
Patents, trademarks 
Trademarks, software patents 

 
Economic 
Competencies 

8. Brand and market research 
 
9. Business process and organizational 

practices 
 

10. Employer-provided training 

No 
 

No 
 

 
No 

 

Brand equity, customer lists, market insights 

Operating models and platforms, supply chains 
and distribution networks, and management 
and employee practices 
 
Firm-specific human capital 

 Note. Column 3 indicates whether the asset type is currently included as investment in national accounts (NA). In 
national accounts, only databases generated by firms for their own internal use or embedded and sold as software 
products are included. 
Source: Updated version Corrado, Hulten and Sichel (2005) as set out in Corrado (2023). 
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At first blush one might infer from column 1 of table 2 that the digitized information grouping of 

intangible assets includes the data stack’s individual asset types, but as may be seen in the itemized list 

in column 2 of table 2, only databases appear. This implies that national accounts’ estimates of the value 

of investment in databases exclude the cost of acquiring or ingesting the data stores they contain; in 

addition, as a matter of practice, outright purchases of data stores and databases are included only if 

they are embedded and sold as software products. 

Consider now data intelligence, the most valuable, and final, stage of the data value chain per figure 1. 

This is where the utility of the intangible capital framework becomes especially apparent. The data stack 

pertains to all knowledge created from data, i.e., it encompasses all modern, data-driven services 

product development, marketing and business operations intelligence. Compared with national 

accounts, which may contain the software tools and databases used to produce this intelligence, 

intangible capital inherently contains the production of this intelligence from “soup to nuts” via, e.g., its 

inclusion of investments listed on lines 7, 8 and 9 of table 2—investments in new financial product 

development, marketing, and organization practices. 

An increase in the use of data capital in R&D activities (line 3), will cover novel forms of data-derived 

scientific intelligence, including the development of new AI techniques and certain bio-engineered 

substances/formulas. It will exclude, however, many uses of modern data-driven engineering design 

that yield improved industrial production systems and business operations—such solutions typically are 

regarded as not sufficiently novel to be included in R&D.  Investments in modern engineering design are 

covered in the intangible framework via line 6. Investments in business operations are a component of 

line 9, which includes outlays for the re-design of computer systems and network platforms to facilitate 

the ingestion and transformation of raw data. 

The intangibles framework thus covers most, if not all, forms of data intelligence. Indeed, while virtually 

all assets in table 1 are potentially data driven, the intangible framework can be used to inform the 

development of empirical estimates of data—and especially data intelligence.  Approaches that lack this 

perspective, have missed key application areas of modern data science. For example, the Statistics 

Canada (2019a, b) implementation covered financial and marketing forms of data-derived intelligence 

but did not include engineering design and business operations. 

Engineering design is generally recognized as a key factor in innovation. A meta-analysis of the joint 

evolution of engineering design and data science concluded that data-driven engineering design has 

become increasingly more prominent due to the developments in AI (Chiarello, Belingheri, and Fantoni 

2021). The emergence of digital platforms that use bigdata to design cost-efficient routes/processes for 

manufacturing parts production is a related development (Mandel 2019).  

In summary, the rise in use of data suggests that the composition of intangible investment is becoming 

more data intensive. This is especially true for investments in new financial products, industrial design, 

branding and marketing, and organizational processes, i.e., “data-intensive intangibles.”  Beyond this 

main message, key findings regarding the measurement of data capital are as follows: 
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• Data value creation involves the generation of data assets--data stores, databases, and data 

intelligence.  This is in addition to the design and production of the digital tools used to create 

them. 

• Data stores, purchased databases, and most forms of data intelligence are not currently 

captured in official statistics.  

• Data intelligence is the most valuable, and final, stage of the data value chain as it pertains to 

investments in modern digital business practices and engineering design. 

• Data intelligence has many forms—operations, marketing, engineering design, and scientific 

experimentation—and previous works have not fully covered data intelligence in their 

measurement schemes. 

3. MEASURING DATA: APPROACHES AND METHODS 

The economics literature has used diverse frameworks and approaches to measure the value of data.  

These frameworks and approaches are reviewed in Corrado, Haskel, Iommi and Jona-Lasinio (2022a, 

2022b). The reviews cover how concepts used in company financial accounts differ from national 

accounts and how methods used to measure data vary according to the scope, context, and economic 

sector of origin of the data to be valued (i.e., personal or institutional). After summarizing takeaways 

from these reviews, this section provides an overview of the methods and approach used to measure 

the value of data in this paper.  

Takeaways from Prior Reviews 

The economics literature has taken three main directions to develop estimates of the value of data.  

These include (a) approaches based on consumers’ valuations, (b) approaches based on firm valuations 

and market transactions, and (c) approaches based on estimates of resource costs used to produce data 

assets. 

The first takeaway from our prior reviews is that approaches aimed at valuing consumers’ personal 

information will not encompass the full data value chain of figure 1, which includes data originating in 

business and government organizations. That said, because some of the largest and fastest growing tech 

companies are built mainly on the economics of transforming personal information into business and 

marketing intelligence, the valuation of personal data is viewed with keen interest. The World Economic 

Forum (WEF, 2011) and OECD (2013) identified two broad categories of data—personal data and 

institutional data—based on the economic sector of origin of the information.  

A “personal data” value chain can be thought of as a construct that sits within the figure 1 data value 

chain in which public open data and business-specific information also reside and contribute to value 

creation. Because the overall value of data in economies derives, at least in part, from the combination 

of personal data with institutional and public open data, the value of personal data as an economic 

resource cannot be readily disentangled from the value of other data records in an economy. 

The second takeaway is then that it Is necessary to adopt a method that yields comprehensive coverage 

of data use in market activities. Ideally this implies using methods based on market prices and market 
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valuations. Market prices paid and received in actual transactions are the best proxy for quantifying the 

value of data.  

Adopting a market-based approach faces many obstacles, however. There is no well-defined market for 

most types of data, and when information on transactions is available, valuations are highly context 

dependent. Moreover, market transactions in unprocessed data will not capture the entire 

transformation chain necessary to generate values digitized information.3  Studies of digital platform 

companies (e.g., Li, Norei, and Yamana 2019) underscore that the valuation of a company’s data assets 

is highly dependent on the degree of vertical integration in a company’s data value chain—consistent 

with the data stack in which only the monetization of data intelligence captures the value of the entire 

chain.  

The examination of market capitalizations of companies that derive most (or all) of their income from 

advertising linked to personal data provide essential insights on measuring the value of data, but their 

methods are not very well suited to the development of comprehensive statistics.  For example, figure 2 

illustrates that the volatility in market capitalizations of individual companies is a major pitfall of using 

financial market indicators as a 

measurement tool.  The figure plots the 

value of an individual (active) record at 

Facebook/Meta (the bars in the figure), 

which has fluctuated with the company’s 

market capitalization (the line in the 

figure). As a result, the value of a typical 

Facebook user’s data, which averaged 

nearly 200 USD from 2013 to 2023 (Q1), 

stood both well above, and well below, 

that average at times (e.g., more than 300 

USD in Q4 of 2021 but only 100 USD in Q4 

of 2022).  

A third takeaway is that, absent 

comprehensive arms-length transactions, 

a resource cost approach provides the best way forward for valuing data in an economy.  National 

accounts estimate investment by asset type based on a resource cost approach.4 The aim of the 

approach is to consistently record investment flows and capital stocks for each industry (or institutional) 

sector. This involves estimating values for all sources of supply for each asset and deriving the asset 

 
3 Large-scale market transactions exist primarily for third-party data produced by data brokerage or data 
aggregator companies. These companies usually collect information from publicly available personal records and 
then aggregate, store, and sell it to different customers through licensing subscriptions or contractual 
arrangements.  Third-party data sit near the beginning of the value chain and their valuation will not reflect the 
entire chain. 
4 Though the approach differs substantially in context and application from the cost-based valuation method used 
in financial accounting, the concepts do overlap.  See the previously cited reviews for further elaboration. 
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valuations and quantities using information on prices for newly produced assets and how fast they lose 

value as they age (economic depreciation).   

If firms purchased all or most data assets from market transactions, as they do with tangible assets, 

measuring the cost of data would be conceptually like measuring expenditures for a construction firm’s 

purchase of excavators and concrete mixers. Instead, most digitized information used by businesses is 

not transacted on markets but produced in-house. Many of the components of intangible investment 

listed on table 2 also are produced, at least in part, in-house. For intangible assets, compilers must come 

up with two components of nominal investment for each asset type: own-account investment (when 

assets are produced and used in-house) and purchased investment (when assets are bought from 

producers in arm’s length transactions). 

Information on data products usually is missing in surveys of production or capital spending, and the 

national accountant’s total supply approach is difficult to implement for valuing data as an asset. 

Statistics Canada (2019a, 2019b) pioneered a practical approach to valuing data assets using the sum-of-

costs approach national accountants employ for in-house investments, e.g., own-account software, to 

comprehensively measure data investments in an economy. This is the approach we use in this study. 

Sum-of-costs Approach 

The measurement of in-house investment using sum-of-costs methods is as follows: Imagine a firm 

having a “software factory” inside it, and your task is to estimate the gross output of this hypothetical 

factory based on the market value of the payments made to factors employed by it (labor, capital, and 

intermediates). This task begins by identifying the workers in the factory-within-the-factory. Based on 

knowledge of the compensation paid to these workers, the total payments made to all factors involved 

in the in-house production can be estimated.   

As a practical matter, workers are identified by occupation, and consideration is given to the likelihood 

they are not involved in producing new assets their entire workday. For example, the conventional 

approach to measuring in-house software production in national accounts is to assume that software 

developers spend 50 percent of their time working in their firm’s “software factory” to produce original 

code.  In-house production of data assets can be estimated in a similar fashion. 

Statistics Canada (2019a, 2019b) prepared experimental estimates for Canada’s total economy and 

major institutional sectors—nonfinancial corporations, financial corporations, nonprofit institutions 

serving households, and governments. Occupational groups were selected from among those generally 

associated with converting raw data into digital formats suitable for knowledge creation and 

monetization.  

The Statistics Canada schema included three asset types that generally align with those in the data stack 

of figure 1, though Statistics Canada called the third category “data science” and viewed it as 

unmeasured R&D, e.g., spending to develop new AI algorithms. Data and AI data tools are inextricably 

bound via feedback training data used to develop and/or enhance the performance of AI tools, and the 

data stack/data value chain notion of how value is created from data does not end with the 
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development of new algorithms. Section 2’s discussion of the data stack and its overlap with intangible 

investment suggests that value creation due to data intelligence also occurs when existing AI tools or 

analytics are fine-tuned with data to obtain firm-specific solutions for product design, services 

development, marketing campaigns, and business organization processes. 

Statistics Canada estimated bands for the value of investment in the three data types that ranged from 

1-3/4 to 2-1/4 percent of the country’s GDP in 2018. They further found that about 47 percent of the 

total was accounted for by nonfinancial corporations, 31 percent by financial corporations, 20 percent 

by governments, and 2 percent by nonprofit institutions serving households. Statistics Canada produced 

estimates in volume terms (i.e., adjusted to consider price changes) and used them to develop capital 

stock measures. Price indexes were based on weighted input costs (without a productivity adjustment). 

Service lives were assumed to be 25 years for data stores, 5 years for databases (the same as software) 

and 6 years for their data science category. 

Goodridge, Haskel, and Edquist (2021) took essentially the same approach as Statistics Canada to 

estimate the value of investments in data capital for 16 EU countries. Their results suggest that including 

the Statistics Canada grouping of occupations engaged in producing data stores and data intelligence 

(which they refer to as data transformation and knowledge creation) raises own-account gross fixed 

capital formation by around 60 percent compared to own-account investment in software and 

databases measured in EU official national accounts. In GDP terms, their estimates are in line with the 

results for Canada. 

Emerging work analyzes skill requirements and work activities (tasks) by detailed occupation to classify 

workers (Autor 2013), an approach thought to be well-suited for identifying workers engaged in own-

account data asset production. In an early application, Squicciarini and Le Mouel (2012) used detailed 

task-level information on occupations from O*NET to measure own-account investment in 

organizational capital.5 Babina, Fedyk, He and Hodson (2022) used skills information from Burning Glass 

job postings and resumes from Cognism to estimate industry-level AI workers and AI investments at U.S. 

publicly traded corporations.   

 

Santiago-Calderón and Rassier (2022) also use skills information from Burning Glass but combine this 

with O*NET’s detailed occupation descriptors, and employment and wage data by detailed occupation 

from the OEWS survey.6 The authors employ a machine learning model to estimate the number of 

employees and employment time devoted to data asset production in the U.S. economy. They estimate 

that data investment was about 1 percent of U.S. business sector gross value added (GVA). Though less 

than the implied estimate of about 1-1/2 percent for the business sector of Canada and market sector 

 
5 O*NET is a database covering nearly 1000 standardized occupations and their descriptors; descriptors include job 
requirements (knowledge, skills, and abilities) and work activities and tasks. Information is updated annually to 
capture changes in occupations as they evolve over time. 
6 OEWS refers to The Occupational Employment and Wage Statistics (OEWS) program of the U.S. Bureau of Labor 
Statistics, which produces employment and wage estimates annually for approximately 830 occupations. 
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industries in European countries covered in Goodridge et al. (2021), the upshot of all three studies is 

that data investment is rather small. 

4. ESTIMATES OF DATA INVESTMENT IN EUROPEAN COUNTRIES 

The sum-of-costs method is used to develop estimates of data asset creation coherent with the value 

chain framework of section 2 and national accounts.  Broadly speaking, the estimates are developed 

from occupation employment and wage share data from Labor Force Surveys conducted in nine 

European countries; these surveys use the International standard classification of occupations (ISCO) 

system to define occupations. 

Features of the application 

The identification of workers engaged in producing data includes workers engaged in the data-driven 

business functions of engineering design, business operations, and marketing.  This is in line with the 

discussion of data assets and intangible capital in section 2 and a departure from prior works that 

excluded, or only partially included, workers in these business functions in their estimates of the value 

of data.  

Our occupation identification procedure exploits information from four primary sources (1) the results 

of the skills-based studies described above (Babina et al 2021; Santiago-Calderón and Rassier 2022), (2) 

the ISCO and detailed O*NET occupation descriptors, (3) detailed employment data by occupation from 

OEWS, and (4) a concordance of the ISCO system for classifying occupations in European economies and 

the SOC system used in North America. The skills-based studies and O*NET and OEWS data use the SOC 

system, for which more detailed information and estimates are available than for the for ISCO system. 

In addition to data assets, we generate sum-of-costs estimates of investment in software assets. 

National accounts combine software and databases in a single published asset category using a total 

supply approach, and these estimates are incorporated in the measures of intangible investment that 

follow the schema of table 2, e.g., EUKLEMS & INTANProd. The four sum-of-costs investment series` are 

generated for 14 NACE “letter” level nonagricultural market sector industries of nine European, mainly 

western, economies.7 Estimates cover the years 2010 to 2019. An appendix to this paper provides 

further details on the procedures and data sources used to develop the data and software sum-of-costs 

estimates reported in this paper. 

The estimates generated in this paper capture values produced in the market sector regardless of 

whether the produced output is intended for own final use or final sale. The produced value of data is a 

 
7 NACE is the system for classification of industries used in Europe. Market sector industries exclude NACE sections 
L (real estate activities), O (public administration and defense; compulsory social security), P (education), Q 
(human health and social work activities), and T (activities of households as employers; undifferentiated goods- 
and services-producing activities of households for own use).  
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good proxy for data capital investment in the market sector if data transactions between the 

government and the market sector are rather small.  

Strictly speaking, estimating market sector investment requires adjusting the estimates of in-house 

production for imports and exports of data flows as well. Information on transactions in data stores and 

databases, whether in domestic sales or international trade, is not readily apparent in official statistics 

(Ker and Mazzini 2020). This is mainly because official statistics are focused on industry activity, and 

industry classifications generate inexact identification of data production activities, i.e., Zillow sells its 

data on home real estate valuations, Nielsen sells it consumer survey data, as do credit agencies such as 

Experian, but these firms engage in widely different primary production activities and classified 

accordingly.  

Empirical results 

Our main results on the relative size and growth of market sector data asset production and intangible 

investment are shown in figures 3(a)–(d).  Data asset production is shown according to the three 

segments in the data value chain in the upper panel of the figure.  The total data value chain averages 

7.8 percent relative to nonagricultural market sector gross value added (GVA) in the covered countries 

and years. The United Kingdom is the most data intensive of the countries included (9.1 percent), and 

Italy and Spain are the least (5.2 and 6.5 percent, respectively).8 Data intelligence is the largest segment 

in the data value chain, with databases the smallest. 

The middle panel of figure 3 suggests that resources allocated to data asset production (the solid blue 

bars) were less than domestically produced intangible assets in 2019 (the solid gray bars). Averaged over 

countries (without regard to size of country), data asset production averaged 50 percent of intangible 

investment in 2019 and close to 50 percent of intangible asset domestic production. The panel also 

shows our estimates of the value of domestically produced software investment (the solid red bar 

stacked above the data asset production bar). The sum of data production and software production, 

which reflects in part the production of data tools, is 64 percent of intangible investment and 73 percent 

of domestic production of intangibles. Software production activity is found to be much smaller than  

 

Figure 3. Estimates of the Data Value Chain 

 
8 The authors have collaborated on work commissioned by the UK Department for Digital, Culture, Media (DCMS) 
to develop a business survey and assess the significance and value of data to industry and its impact on 
productivity in the UK. The resulting survey, the Department for Science, Innovation and Technology (DSIT) Data 
Use and Productivity Longitudinal Survey, provided time use estimates and implied values for spending on data in 
the UK that are broadly in line with the estimates reported in this paper. Reports detailing the survey’s technical 
design, the survey’s business microdata, and macroeconomic implications are forthcoming from DCMS. 
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(a) Estimates for nine European countries, 2010-2019 average. 

 

(b) Data and software production versus intangibles, 2019

 

    (c) GVA shares, Software & databases, this                (d)  Relative growth (2010=100), country- 
              paper versus national accounts (NA)                           level estimates aggregated using PPPs) 
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production activity in the data value chain, reflecting the fact that a significant share (about ½) of net 

imports of intangibles is software. 

The GVA shares of our sum-of-costs production estimates for software and databases are compared 

with those for official investment estimates for the combined category in the bottom left panel of the 

figure 3, in panel (c).9 The correlation of our sum-of-costs estimates is not all that strong (R2 of the 

simple regression line is .22), but there is a positive and significant intercept in the relationship shown 

on the figure, in line with the fact that that our sum-of-costs estimates miss net imports. Note further 

that even though methods used to develop our data and software production estimates are harmonized 

across countries (i.e., are the same; see appendix), notable cross-country differences remain. 10  

The bottom right panel of figure 3, panel (d), illustrates that estimated nominal data production 

(aggregated over countries using PPPs) grew a 5 percent faster than intangibles through 2015, but not 

thereafter. Cost efficiencies enabled by data-driven forms of intangible investment imply that the real 

growth of data assets may have eclipsed that of overall real intangible investment, however; we discuss 

the rationale for this thinking and evidence for it in the next section of this paper.  

Table 3 shows the sectoral distribution of data capital investment (column 1) compared with intangible 

investment (column 2) for 5 groups of NACE letter industries. Average rates for all nonagricultural 

market sector industries are shown in the memo item (line 6).  

The most data intensive industry groups are shown on lines 1 to 3.  These consist of the professional, 

scientific, and technical activities; information and communication services; and finance and insurance 

activities sectors. Along with manufacturing (line 4), these sectors also post high rates of intangible, 

knowledge-based investments (column 2 of the table). The manufacturing sector invests 

disproportionately in R&D compared with other intangibles, however, suggesting that R&D processes (in 

manufacturing) are less data intensive than business functions such as marketing, and supply logistics 

that are more predominant in services industries.  

Data asset production by type of data also differs across industry sectors (not shown), but consistent 

with figure 3 (a), the most data-intensive sectors are those with high contributions from data 

intelligence. This underscores the reasoning from our analysis of the data stack, that data intelligence is 

the final and most valuable stage of the value chain. 

 

 
9 Recall, national statistical agencies do not report software assets separate from database assets. 
10 Many observers suggest that cross-country differences in measurement methods contribute to the differences 
seen in official data on software and database investment rates across EU countries (see discussions in Colecchia 
and Schreyer 2001, Timmer, Inklaar, O’Mahony, and van Ark 2011, and Goodridge et al. 2021). Though figure 3(c) 
mixes two concepts and shows that the range in investment rates across countries (.01 to .05) is larger than that 
for production shares (.01 to more than .03), the figure suggests that software and database investment rates do 
differ fundamentally across EU countries. 
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Table 3. Sectoral distribution of investment in data and total intangibles, percentages 
of sector gross value added in nine European countries, 2010 to 2019.   

 
 

Data  
Investment 

Intangible 
investment 

 Selected industry sectors (1) (2) 

1. Professional, scientific & technical activities 16.3 27.0 

2. Information and Communication 14.2 28.2 

3. Financial and Insurance activities 14.5 14.2 

4. Manufacturing  7.3 21.6 

5. Administrative & support service activities  4.8 11.1 

Memo:   

6. Nonagricultural market sector  7.8 16.9 

Note: Each cell represents the unweighted average of investment as a percentage of sector gross value 
added over time and countries.  Industries shown correspond to NACE letter sectors M (row 1), J (row 2), K 
(row 3), C (row 4), N (row 5) and B to K, M, N, R, and S (row 6). European countries include Denmark (DK), 
Germany (DE), Finland (FI), France (FR), Italy (IT), Netherlands (NL), Spain (ES), Sweden (SE) and the 
United Kingdom (UK). 

 

 

Data capital and intangible capital: How much of an overlap? 

Our section 2 discussion suggested that measured data capital and intangible capital overlap 

significantly and that, conceptually, data capital is subsumed within intangible capital, especially in its 

“data-intensive” components: new financial products, industrial design, branding and marketing, and 

organizational processes.  This idea is supported by simple correlation tests indicating that data capital 

and intangibles are moderately linked (correlation coefficient is 0.5) and that correlation is stronger with 

data-intensive intangibles (correlation coefficient increases to 0.6).11 

To further explore this evidence, table 4 reports the results of a regression analysis of the relationship 

between labor productivity, data capital, and intangibles. The relationship is explored within a simple 

production function framework with controls for country, industry, and time fixed effects. 

Column 1 is a benchmark specification showing that intangible and tangible capital are statistically 

significantly associated with labor productivity growth. Adding data capital in column 2 reduces the 

coefficient of intangibles by 50 percent and renders tangible capital statistically insignificant. We next 

run a Wald test to check if data and intangible capital coefficients are equal. The Wald test indicates that 

the null hypothesis of perfect equality can be rejected at 0.05 significance statistical level, implying that 

both capitals contribute to explaining labor productivity growth.  

 
11 Appendix table A2 reports a matrix of correlations between the major components of investment in data and 
major components of investment in intangibles (in both level and growth terms). 
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Next, the overlap of data capital and intangible capital is examined in terms of components of 

intangibles: data-intensive intangibles, national accounts intangibles, and training; training is not 

included in the first two groupings. These results are reported in columns 3 and 4, which shows that 

once we control for data assets, data intensive intangibles lose their statistical significance. This suggests 

that the data-intensive grouping of intangibles and data capital capture similar factors affecting labor 

productivity growth. Finally, column 5 looks at the individual categories of data capital, which reveals 

that the high statistical significance of the relationship of data capital with labor productivity growth is 

mainly driven by data intelligence.  

Table 4. Regression model estimates of the contribution of the growth in data and intangible 
capital deepening to labor productivity growth 

      (1)   (2)   (3)   (4)   (5) 

Intangible capital .216*** .123*** 
   

   (.027) (.031)    
Tangible capital .168*** .029 .166*** .034 .034 
   (.029) (.036) (.029) (.036) (.036) 
Data capital  .325***  .331***  
    (.05)  (.051)  
Data-intensive intangibles   .033** .005 .007 
     (.016) (.016) (.016) 

National accounts intangibles   .073*** .05** .049** 
     (.02) (.02) (.02) 
Training   .132*** .061** .067** 
     (.027) (.029) (.029) 
Databases     -.006 
       (.037) 
Data stores     .005 
       (.061) 
Data intelligence     .316*** 
       (.065) 

 Observations 6614 6522 6680 6588 6588 
       

Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
Note: Dependent variable is labor productivity computed as change in the natural log of value added per 
hour; value added is adjusted to include intangibles not currently capitalized in national accounts. All 
explanatory variables are in similar, i.e., per hour, delta natural log terms. Estimates are generalized least 
squares. All columns include time, industry and country fixed effects.  
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Data intelligence and SNA guidance 

International guidelines for compiling GDP given by the 2008 System of National Accounts (SNA) will be 

soon superseded by the planned 2025 SNA. This new SNA is expected to expand the types of intangible 

investment in GDP to include data. Though not officially endorsed as of this writing, the guidance of the 

United Nations digitalization task team (DZTT) is to create a new asset category called “data” and to 

report it separate from current category of computer software (United Nations DZTT 2023). The 

guidance defines data in a manner generally consistent with the data stack of figure 1 and calls for a 

sum-of-costs approach be used for measuring investment in data.  

The analysis in the SNA guidance depicts a data value chain with three stages where the final stage is 

termed “insights” (rather than “data intelligence”).  Studies investigating the measurement of data in 

preparation for the 2025 SNA (e.g., Statistics Canada 2019a, 2019b; Santiago-Calderón and Rassier 2022) 

conceptually include something like what we have set out as investment in data stores and databases 

but not the full scope of the data value chain including data intelligence.  

The omission of data intelligence seems to be the primary reason why prior studies produce estimates 

of data investments that are much smaller than those developed in this paper. In a value chain the 

output of final stage reflects the further processing of the output of earlier stages. It is possible that 

national account practitioners interpret the final stage output of the data value chain as another good or 

service entirely, rather than as a data asset as done in this paper. If so, the distinction they are making is 

semantic because the output of the data value chain is still capital to the extent its use in production is 

long-lasting.12 The distinction seems to be reinforced elsewhere in the 2025 SNA deliberations. Guidance 

from the Joint Globalization task team (GZTT) suggests that marketing assets may also be included in 

investment if measuring them is determined to be feasible (United Nations GZTT 2023). This of course is 

coherent only if marketing assets do not overlap with data assets, which goes against the logic of the 

data stack as well as the empirical analysis in this paper (e.g., table 4 and the correlations reported in 

the appendix).  

The exclusion of data intelligence notwithstanding, the very small size of estimates generated by prior 

studies follows from the approach used to identify occupations for estimating the costs of data asset 

production—occupations with job and/or skill descriptors that include the word “data” in them (e.g., 

Customer Data Integration, Customer Service Database, Data Management, and Data Science to name 

just a few). Though we include these occupations in our analysis, we also allocate fractional amounts of 

the value of time of selected managers, professionals, and technicians to the production of data assets. 

To justify this approach, we appeal to both the data stack and the intangible capital framework—but 

note, the SNA guidance language also provides support.   

The guidance by the United Nations Digitalisation Task Team (UN DZTT) for the 2025 SNA lists some 

specific costs that data asset investment should include, and these costs include more than the costs of 

 
12 This logic is of course symmetric with that used for tangible capital, e.g., an engine block made by a machine tool 
is still a capital good (despite its difference in character). 
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digitizing and organizing records into databases for visualization and application of analytics. For 

example, the “costs of planning and developing a data production strategy” (UN DZTT, 2023, page 8) are 

to be included, an activity sure to involve a company’s C-suite as well as its computer and data 

professionals. The costs of “analyzing data for the purpose of drawing conclusions from it” (United 

Nations DZTT, 2023, page 8) are also to be included, an ongoing activity that involves multiple types of 

managers and technical professionals that may, or more likely may not, have “Data” in their job 

descriptions.  

Finally, as previously discussed, modern data use fosters faster, more efficient experimentation and 

feedback in business processes. Existing SNA guidance does not address how the relative efficiency of 

data assets is to be captured in price statistics and thereby reflected in real GDP and productivity 

calculations. This is a major omission and a topic discussed in some depth in the next part of this paper. 

5. DATA INVESTMENT, GROWTH ACCOUNTING AND INNOVATION 

The aggregate effects of the rise of data capital are analyzed using the upstream/downstream two-

sector model summarized in Corrado et al (2022a). The model is based on Corrado, Hulten, Sichel (2005, 

2009) as adapted and termed “upstream/downstream” in Corrado, Haskel, and Goodridge (2011). 

As previously suggested, data affects innovation and productivity growth in divergent ways. On the one 

hand cutting-edge digital tools that exploit bigdata have the potential for making production and 

innovation processes more efficient. On the other hand, the data assets created by them may be 

inextricably bound with network externalities in customer demand that weaken competition and/or, 

due to the difficulty to replicate proprietary data assets, weaken knowledge diffusion in economies. This 

section investigates how these two forces—the “efficiency” promise of bigdata/AI versus the 

“appropriability effect” (that restrains TFP growth)—operate in a two-sector model with data/intangible 

capital. 

Upstream/downstream model of an economy   

A simplified model of an economy with data as an intangible asset divides production into two broad 

sectors: (1) an “upstream” sector that produces new knowledge that can be commercialized, e.g., a new 

or improved product design (or product formula), or a software program adapted to the needs of the 

organization; and (2) a “downstream” sector that uses the knowledge generated by the upstream sector 

to produce final output.  

Box 1 sets out the upstream/downstream model in more detail, including sectoral inputs and their 

payments, sectoral outputs and their prices, and sectoral productivity. Intangible investment is the value 

of the upstream sector’s output in this model—the investment stream corresponding to data asset 

creation in our prior discussion. The outstanding stock of data assets is then the accumulation of 

upstream output after adjusting for losses due to ageing (economic depreciation).  

The downstream production sector uses the stock of data-derived intelligence to produce final goods, 

and the upstream sector is remanded a portion of the income earned from the sale of final goods in 
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return. Because knowledge producers demand (and earn) returns on their investments, the value of the 

data knowledge stock must be included in calculations of the realized return to capital, which is 

arbitraged across sectors and asset types in competitive equilibrium. As mentioned previously, not 

recognizing data and other forms of intangible capital in calculations of the realized return to capital can 

cause observers to mischaracterize the competitive intensity of markets and industries. 

To the extent there are pure rents from innovation in this model, they create a wedge between asset 

prices for data capital (𝑃𝑁) and its production cost; by extension (see Box 1), they enter the per period 

remand paid by downstream producers for use of the data capital (𝑃𝑅). The model thus allows for 

innovators/data capital owners to hold temporary market power, a common feature of many economic 

models of innovation, especially Schumpeterian-inspired models such as Aghion and Howitt (1992). In 

these models, innovation results from entrepreneurial investments motivated by prospects of monopoly 

rents.  

The temporary nature of the market power is due to the inherent nonrival character of knowledge-

based assets. As valuable commercial knowledge diffuses (is copied/replicated), innovator profits are 

competed away. This loss of revenue-generating capacity forms the conceptual basis for the relatively 

short service lives found for intangible capital in empirical studies (reviewed in De Rassenfosse and Jaffe 

2017) and surveys (e.g., Awano et al. 2010).  

Data capital in GDP and growth accounting 

Without the capitalization of data assets, GDP consists solely of downstream sector output 𝑌, but when 

upstream investments in building data stores, databases and developing data intelligence are 

capitalized, aggregate value added 𝑄 reflects production in both sectors: 

(1a)        𝑃𝑄𝑄 = 𝑃𝑌𝑌 + 𝑃𝑁𝑁 = 𝑃𝐶𝐶 + 𝑃𝐼𝐼 + 𝑃𝑁𝑁  

(1b)                                  ≡ 𝑃𝐿𝐿 + 𝑃𝐾𝐾 + 𝑃𝑅𝑅.   . 

As seen in (1a) to the right, investment in final demand is expanded to include data value creation and 

thus GDP is larger.  Factor income, the second line (1b), accounts explicitly for returns to intangible 

assets in total capital income. The term may contain monopolistic returns to innovation in the price 

element 𝑃𝑅  as discussed above. 

When Solow’s sources-of-growth decomposition is applied to GDP with investment expanded to cover 

data value creation, the usual log differentiation cum constant returns yields: 

(2)           𝑑𝑞 =  𝜎𝑄
𝑋𝑑𝑥 + 𝜎𝑄

𝑅𝑑𝑟 + 𝑑𝑎   
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Box 1.  A Model of an Economy with Intangibles 

A simplified model of the economy divides production into two broad sectors: (1) an “upstream” sector 
that produces new knowledge that can be commercialized; and (2) a “downstream” sector that uses the 
knowledge generated by the upstream sector to produce final output. For simplicity, the model assumes 
that there are no exports or imports of intangible assets and no intermediate purchases of other goods 
and services. 

Sectoral activity is described and denoted as follows: 

• Upstream output reflects the production of new commercial knowledge.  This is also intangible 
investment, which in volume terms intangible investment is 𝑁 and in nominal terms is 𝑃𝑁𝑁, where 
𝑃𝑁 is a price index for intangible assets. 

• Downstream output reflects the production of (tangible) investment and consumer goods, 𝑃⬚
𝑌𝑌, or 

𝑃𝐼𝐼 + 𝑃𝐶𝐶, in nominal terms. 

• The outstanding stock of commercially valuable knowledge reflects the accumulation of the upstream 
sector output after adjusting for losses due to economic depreciation (i.e., ageing), i.e., the stock of 
intangible capital, 𝑅, is given by the perpetual inventory relationship, 𝑅𝑡 = 𝑁𝑡 + 𝛿

𝑅𝑅𝑡−1. 

• Freely available basic knowledge, scientific or otherwise, is represented by 𝑅𝐵𝑎𝑠𝑖𝑐.  It is an input to 
upstream production, e.g., open-source software, which we assume is produced outside the model.  
(This assumption can be relaxed with no major change in model implications.) 

• The value of intangible capital, defined as its replacement cost, is given by 𝑃𝑁𝑅. The payments made 
to the owners of 𝑅 are denoted by 𝑃𝑅𝑅, where 𝑃𝑅is the per period rental price equivalent of using 
intangible capital in production. 

• The stock of tangible assets is denoted by 𝐾, its value by 𝑃𝐼𝐾, and payments to owners by 𝑃𝐾𝐾. 
Labor inputs and their price are 𝐿 and 𝑃𝐿, respectively. 

• Total factor productivity in the upstream and downstream production functions is given by AN and AY 

Regarding monopoly power: 

• 𝑅 is inherently nonrival and thus only partially appropriable. Appropriability lasts for the time the 
producer-innovator can sell or rent the knowledge to the downstream sector at a monopoly price.  

• The downstream sector is assumed to be a price-taker for knowledge, i.e., monopoly power resides in 
the upstream sector. Final output prices for consumption and tangible investment are assumed to be 
competitive, as are factor input prices for labor and tangible capital. 

The sectoral production and income flows in this economy are written as follows:  

(B1-1)                              𝑁 = 𝐴𝑁𝐹𝑁(𝐿𝑁 , 𝐾𝑁 , 𝑅𝐵𝑎𝑠𝑖𝑐);      𝑃𝑁𝑁 =  𝑃𝐿𝐿𝑁 + 𝑃𝐾𝐾𝑁 + 𝜋𝑁 

(B1-2)                             𝑌 =  𝐴𝑌𝐹𝑌(𝐿𝑌  , 𝐾𝑌 , 𝑅);               𝑃𝑌𝑌 =  𝑃𝐿𝐿𝑌 + 𝑃𝐾𝐾𝑌 + 𝑃𝑅𝑅 

where 𝜋𝑁 is the upstream sectors’ pure rents from innovation—rents that are embedded in 𝑃𝑁and 𝑃𝑅.   

In this model, the asset price of commercial knowledge 𝑃𝑁 and the price of its services for a year 𝑃𝑅 are 
linked via the Jorgenson (1963) user cost expression 𝑃𝑅 = (𝑟 + 𝛿𝑅)𝑃𝑁ignoring asset price inflation.  The 
user cost of tangible capital is similarly linked to its asset price. The model is closed via arbitrage of returns 
(𝑟) across sectors, i.e., returns to investments in innovation (that build intangible capital 𝑅) with returns 
to alternative long-term investments (that build tangible capital 𝐾).   

The model allows for the existence of “abnormal” innovator profits for periods of time, but intertemporal 
arbitrage operates to constrain innovator profits to zero (i.e., 𝜋𝑁 = 0) in long-term equilibrium. As a 
practical matter, with continuous entry of innovators (and waves of technological change), the model is 
consistent with varying degrees of market power continuously embedded in time series for intangible 
asset prices. 
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where 𝜎𝑄
𝑋 is the combined factor income share for conventional inputs 𝐿 and 𝐾 in total production 

and 𝜎𝑄
𝑅 is the factor income share attributed to owners of data/intangible capital.13  This decomposition 

says that output growth consists of a contribution from conventional inputs 𝜎𝑄
𝑋𝑑𝑥, a contribution from 

paid-for, commercially valuable knowledge 𝜎𝑄
𝑅𝑑𝑟, plus total factor productivity (TFP) growth 𝑑𝑎.  What 

is different in this model then is that the contribution of paid-for data capital has become a source of 

growth.  

Data capital and knowledge diffusion 

The intangibles framework also helps explain the origins of TFP growth, and this is no less true when the 

framework is applied to data capital. Unappropriated returns that the economy enjoys when 

knowledge-based assets are copied and used at low-cost in production elsewhere in an economy are a 

source of growth in measured TFP. The costless diffusion (or “spread”) of innovators’ knowledge from 

one organization to another—a phenomenon termed “knowledge spillovers” by Griliches (1992, 1994) 

in the context of R&D—drives the increasing returns on investments in knowledge that play a central 

role in modern growth theory (Romer 1990, Jones 2005).  

From this perspective, whether data are proprietary or freely available (per the range of examples given 

in table 1) becomes crucial for assessing the productivity implications of data assets. Consider how Lyft 

was able to duplicate and compete against Uber’s innovative, data-enabled ride-sharing business model. 

The idea of ridesharing as a business model was freely available once Uber became a fast-growing 

enterprise. So were the mapping and traffic data needed for ridesharing implementation because 

governments make this information freely available. But when data-enabled innovations are based on 

proprietary data (Amazon’s very efficient delivery system, Google’s targeted advertising systems, etc.), 

they operate more like trade secrets than patented technologies. After all, patented technologies are 

disclosed when filed and protected only for a time. Innovations stemming from trade secrets are not 

easily (or ever) duplicated, and first-mover advantage may be maintained.  

So, when proprietary data-derived knowledge assets are a prevalent source of innovation, knowledge 

diffusion—and TFP growth—will weaken. This is the “appropriability” effect of data capital, i.e., unless 

offset by moves to promote industry data sharing, an increase in the share of data-derived intangible 

capital in total intangible capital will lead to lower measured growth of total factor productivity due to 

fewer spillovers from a given stream of investment.14 

 
13 The decomposition is obtained via the usual log differentiation of (1b) assuming constant returns to scale and 
that factors are paid their marginal revenue product. The notation “𝑑𝑧” is the log change in “𝑍” where 𝑍 is any 
variable in the model. Conventional inputs 𝐾 and 𝐿 are combined as 𝑋 and weighted appropriately.   
14 A secondary aspect of this effect is that proprietary bigdata will create longer-lasting positions of competitive 
advantage (all else equal), which implies that data-derived knowledge stocks have longer service lives (i.e., lower 
values for 𝛿𝑅). 
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The “appropriability effect” is not the whole story of the impact of data on innovation but it has much 

potential for being very significant. Aggregate productivity in the upstream/downstream model can be 

expressed as 

(3)    𝑑𝑎 = 𝑠𝑄
𝑌𝑑𝑎𝑌 + 𝑠𝑄

𝑁𝑑𝑎𝑁 

I.e., the share-weighted sum of total factor productivity growth in each sector.  To the extent 

proprietary data assets are like trade secrets and generate commercial knowledge that is not easily 

replicated at low cost, the appropriability effect operates largely via its impact on 𝑑𝑎𝑌, the first term in 

(3). The production shares in figure 4b imply that the weight on downstream productivity 𝑠𝑄
𝑌  ranges 

anywhere from 80 to 90 percent, so even small changes in 𝑑𝑎𝑌 have significant impacts on aggregate 

(measured) productivity 𝑑𝑎.  

Data capital and data technologies 

The efficiencies of modern data technologies are an opposing force to the diminishment of productivity 

spillovers to investments in intangible capital. To the extent the latest wave of AI-driven digital 

technologies cum data assets produces innovations more efficiently, the second term in (3), upstream 

total factor productivity 𝑑𝑎𝑁, is boosted.  Though the impact will become larger as the production share 

of data capital in intangibles increases, it is also possible that data and data technologies create 

innovations and efficiencies that are impactful enough to offset the heavily weighted, diminished pace 

of 𝑑𝑎𝑌. 

As the composition of intangible capital becomes, in effect, data capital, the relative efficiency of data 

capital will be reflected in lower relative prices for intangible assets. The relative decline in prices of 

intangible assets due to use of data in their production is the “efficiency effect” of data capital. This is 

analogous to the situation with ICT capital, whose relative efficiency is a familiar theme in the 

productivity literature. In the initial phases of ICT innovations in the 1990s through the rapid adoption of 

mobile by the early 2000s, ICT capital asset prices fell very rapidly—anywhere from 10 to 20 percent 

price drops indicative of the relative productivity of the asset class.15  

6. INTANGIBLE ASSET PRICES 

Let us then look at prices of intangible assets to see what they may be signaling about the relative 

productivity of data capital. 

Intangible asset price change in the upstream/downstream model 

The change in intangible asset prices 𝑑𝑝𝑁 is obtained by log differentiation of the upstream factor 

payment equation (shown in the Box as equation B1-1), yielding: 

 
15 Byrne and Corrado (2017a, 2017b) develop and report these relative ICT prices and analyze their implications as 
measures of the relative productivity of the asset class. 
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(4)     𝑑𝑝𝑁 = 𝜎𝑁
𝐿𝑑𝑝𝐿 + 𝜎𝑁

𝐾𝑑𝑝𝐾 + 𝜎𝑁
𝜋𝑑𝜋𝑁 −  𝑑𝑎𝑁 . 

This equation expresses 𝑑𝑝𝑁 as a weighted average of changes in constant quality unit input costs (the 

first two terms) and innovator profits (the third), both of which are offset by changes in the efficiency of 

upstream production (the last term).  

Consider now how changes marginal productivities of factor inputs may offset changes in input costs. 

Let upstream input, 𝐿𝑁, be an aggregate of services provided by a range of worker types that differs 

from its “transactions unit” equivalent, hourly input 𝐻𝑁, by a composition effect, Θ.  The composition 

effect accounts for differences in the marginal productivity of different worker types employed in 

production; thus, aggregate labor input may be expressed as 𝐿𝑁 = Θ𝐻𝑁.  A similar logic applies to 

capital inputs but, for simplicity, in what follows we ignore the role capital productivity by implicitly 

combining it with upstream TFP in a single term, denoted as 𝑑𝑏.   

This simplifies the modeling of upstream production, i.e., upstream production may be represented as a 

function of multiple labor types and technology that is essentially free. “Free technology” includes all 

aspects of data technologies, e.g., open-source AI engines and other software that engender data 

production cost efficiencies; cloud technologies that enable computing and data processing efficiencies; 

and trends in the availability and use of public and/or open data.   

This simplified data capital production model is rewritten as  

(4’)   𝑑𝑝𝑁 = 𝜎𝑁
𝐿 (𝑑𝑤 − 𝑑𝜃)+ 𝜎𝑁

𝜋𝑑𝜋𝑁 −  𝑑𝑏 

where the impact of upstream labor input composition changes on data/intangible asset prices is 

explicit in the term 𝑑𝜃. Grouping the terms in (4’) according to factors that positively influence price 

change versus those that exert a downward influence yields 

(5)   𝑑𝑝𝑁 = (𝜎
𝑁
𝐿
𝑑𝑤 + 𝜎𝑁

𝜋𝑑𝜋𝑁) − (𝜎𝑁
𝐿 𝑑𝜃 + 𝑑𝑏)  

where first group of terms includes increases in wages and innovator profits. The second group reflects 

improvements in the marginal productivity of the sector’s average worker and the combined impact of 

embodied and disembodied technical change in the production of intangibles. 

Relative efficiency of data capital: Some evidence 

Equation (5) suggests how data and data technologies might affect intangible asset prices. Evidence that 

the impact of data technologies on intangible capital asset price change might be rather powerful 

include: (a) strong relative demand for skills used in the production of data capital, (b) stunning growth 

in the availability of open-source software based on data technologies, and (c) direct indicators of data 

production capital cost efficiencies, i.e., costs of algorithm design, cloud computing, and 

advertising/marketing media. These indicators are reviewed in turn below: 

AI/Cloud systems skill demand.  
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Skills related to automation, AI, data connectivity, and cloud storage/computing is reshaping IT work.  

Direct evidence of employer demand for these skills—is suggested by figure 4, which shows that the 

demand for AI and cloud systems skills accelerated the fastest among IT roles during the pandemic.  To 

the extent this shifted the composition of the upstream workforce, it boosts 𝑑𝜃 and suggests that 

workforce composition changes associated with increased data use may have significantly offset wage 

pressures on asset prices for data capital.  

Figure 4. Emerging skill clusters including Artificial Intelligence and Cloud Solutions  
 relative to other tech occupations 
 Percent change in the share of selected skill cluster mentions in job ads for tech occupations  
 from 2019 to the last 12 months ending in February 2021 

 

 
                Source: The Conference Board (2021) based on The Conference Board®-Burning Glass® Help Wanted OnLine®  
                (HWOL) data series.  
 

The figure also underscores that upstream labor composition effects are moves within the usual 

grouping of workers termed “high-skilled” in measures of labor composition used in practical growth 

accounting. The latter are developed using broad groupings of employment by worker type, implying 

that the usual growth accounting understates the contribution of upstream labor composition to labor 

productivity growth and, consequently, thereby elevating 𝑑𝑎𝑁. 

Open-source software.   

Studies that quantify the resource cost of open-source software (OSS) activity suggest significant value 

creation, much of which is arguably correlated with the production of data capital.   
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Robbins et al. (2021) set out a sectoral framework for measuring investments in OSS in GitHub 

repositories, where much cutting edge open-source software is held. They use software engineering 

metrics (lines of code and project complexity) to estimate OSS resource cost in terms of global person-

months of effort, enumerating results by country from 2009 to 2019.  For the United States, their 

person-months estimates translated to 38 billion dollars in new OSS investment activity in 2019, having 

grown nearly 20 percent per year from 2014 to 2019—and likely boosting 𝑑𝑎𝑁 (though to an 

unquantified degree).16 Their estimates of person-months of effort in value creation for the nine 

European countries for which data capital production estimates were reported in Section 4 grew about 

22 percent annually, moving the level of person months in these countries from 87 to 94 percent of US 

person-months from 2014 to 2019. 

The very rapid growth in the value of OSS in GitHub repositories owes, at least in part, to the relative 

growth in AI applications in overall OSS software. AI application software ranges from general purpose 

algorithms to specific application-tuned systems, e.g., the software that runs industrial Internet-of-

Things (IoT) installations and advanced robots. The OECD developed a classification algorithm to 

determine the fraction of AI GitHub repositories in all GitHub repositories and found very fast relative 

growth of AI open-source applications based on measures of “commits” (changes to code).17 Despite 

their estimates of stunning growth of AI software in OSS repositories (a three-fold relative increase), the 

OECD also reports that the proportion of AI in the total is still rather small. 

Cloud and other efficiencies.  

Many studies document improvements in the efficiency of modern cloud systems to ingest, store, 

process and analyze large quantities of data (e.g., Byrne, Corrado, and Sichel 2021, Coyle and Nguyen 

2018). The findings are consistent with a strong impetus to upstream productivity growth. But the effect 

will show through in productivity estimates only insofar as these changes in intangible/data capital 

production costs are captured in intangible asset prices.  

Indicators of these cost efficiencies are shown in figure 5. According to tests shown in the AI Index 

Report (Zhang et al 2021, page 49), the costs of training a contemporary image recognition system was 

“a few dollars in 2020, down by around 150 times from costs in 2017” (figure 5, left panel). This 

dramatic reduction represents progress in both algorithm design and drops in the costs of cloud-

computing resources. Similar factors have affected the accumulation of data on consumer buying 

patterns and tastes that have lowered (directly and indirectly) advertising media costs (figure 5, right 

 
16 By contrast the U.S. national accounts reports that gross fixed capital formation on software by private sector 
industries grew 7.5 percent per year from 2014 to 2019. 
17 Barruffaldi et al. (2020, page 32) report “…”in 2010, there were 50 active AI GitHub repositories that had 
gathered 1,350 commits from contributors, making up 0.26 percent of total commits on GitHub that month. In 
June 2017, AI software activity had increased to 26,275 commits on 1,533 projects, making up 0.74 percent of total 
commits on GitHub.  …most of [the 2010 to 2017] growth [took] place since 2014. … [from 2014 to 2017], AI open-
source software grew about three times as much as the rest of open-source software.” 
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panel), though note that internet advertising media costs reversed course and began to rise sharply in 

the aftermath of the pandemic (2021 and 2022).18   

 

 

Hard-to-measure services price research typically does not address intangible asset-producing 

activities—R&D labs, marketing teams, engineering design projects—nor do assessments of productivity 

mismeasurement view these activities as hotbeds of rapid quality change missed by price collectors. 

That said, the digital transformation of economies, rise of digitally enabled business models, and 

increased use of data in business more generally is arguably driving down the production costs of 

intangible assets.    

 

A new intangible asset price deflator 

A price deflator for U.S. intangible investment, reported in Corrado (2024), has been constructed using a 

brand and marketing investment price deflator calculated using the media input cost price indexes 

shown in figure 5 (b) and a production/content creation cost price index based on the gross output price 

 
18 The media cost price indexes are developed from detailed BLS input cost indexes aggregated using information 
from the Census Bureau and industry sources. The appendix in Corrado (2024) provides additional details. 
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Figure 5.  Data-driven Cost Efficiencies 

(a) Training cost of image recognition                       (b) Advertising media costs, 1985 to 2022 
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index for the advertising and public relations industry (NAICS 5418). Changes in the resulting price index 

for intangible assets are shown in figure 7 and table 5. 

Figure 6 shows that prices for intangible assets exhibit a disinflationary trend beginning in 2009, in line 

with the prediction that increased data intensity of intangible capital improves its production efficiency 

and slows its price change. The slower pace of price change mainly reflects the net effects of sharpy 

slower price change for investments in brand and marketing and in organizational capital (table 5, lines 5 

and 6). 

 

 

 

Table 5. U.S. Intangible and Tangible Asset Price Change, selected periods 

  1995 to 
2009 

2009 to 
2019 

2019 to 
2022 

 Asset group (1) (2) (3) 

1. Intangibles 2.7 .7 1.6 

2. Tangibles -1.7 -.4 2.5 

Intangibles, selected components:    

3. Software -1.9 -1.6 -1.0 

4. R&D 2.2 1.8 3.4 

5. Brand and marketing investment 3.4 -.8 1.0 

6. Organization process investment 3.0 -.7 .8 

Relative price change (asset price/business output price):  

-4.5

-2.5

-0.5

1.5

3.5

5.5

1985 1990 1995 2000 2005 2010 2015 2020

Intangibles Tangibles Business Output

Figure 7. U.S. Intangible and Tangible Asset Price Change, 1985 to 2022

Note. Private nonresidential assets. Natural log changes, annualized. 
Source. Intangibles price, Corrado (2023); Tangible price, constructed from NIPA table 5.3.4, Business 
output price, NIPA table 1.3.4 (NIPA data accessed May 2023). 
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7. Intangibles, total 1.2 -.8 -2.5 

8. Software -3.4 -3.1 -5.1 

9. Brand and marketing investment 1.9 -2.3 -3.1 

10. Organization process investment 1.4 -2.2 -3.3 

Note: Private nonresidential assets. Natural log changes, annualized. 
Sources. Lines 1 and 2 and denominator of lines 7 to 9, see Figure 7; lines 3 and 4, NIPA table 
5.3.4 (accessed May 2023); lines 5 and 6, Corrado (2023). 

 

From 2009 to 2019, the relative price of total intangible assets fell 0.8 percent per year in the United 

States (table 5, line 7) and the relative price of the data-intensive components, investments in branding, 

marketing and organizational process change (lines 9 and 10), fell 2-1/4 percent per year. During the 

pandemic and subsequent global inflation (2019 to 2022, column 3), the relative prices of these assets 

fell even faster, primarily reflecting the sharp rise in overall business output prices (4.1 percent from 

2019 to 2022, not shown on the table).   

As advances in data technologies continue, the composition of intangibles will continue to shift toward 

data assets. This implies that declines in the relative price of intangible assets in the 1 to 2 percent range 

seem likely to persist for a time, which in turn implies a range for declines in the relative price of data-

intensive intangible assets, i.e., data capital, of about 2 to 4 percent per year.  

Relative asset prices and “potential” growth in labor productivity 

The long-term growth-promoting potential of a capital input depends on the extent to which its volume 

rises more rapidly than its relative price falls (i.e., that the input shares continue to rise). In the context 

of data/AI, this is typically viewed as a question about the degree of substitutability between AI/data 

capital and human efforts, the limits to which are discussed in Nordhaus (2021).   

We have argued in sections 3 and 4 that the rise of modern data capital is mainly a shift in the 

composition of intangible capital. This suggests data capital may then be viewed as improving the 

productivity of capital, i.e., it is an efficiency effect resulting from the substitution of data capital for 

other capitals (tangible or intangible).  As a first step then, we can estimate the impact of data capital on 

labor productivity by making assumptions about data capital’s relative productivity and income share, 

assuming labor’s share is fixed.   

The steady-state solution to the two-sector upstream/downstream model provides a starting point for 

calibrating estimates of the growth-promoting potential of data capital. To obtain a simple, closed-form 

steady state solution for this model, simplifying assumptions must be made, mainly, that the sectoral 

production functions (Box 1 equations B1-1 and B1-2) exhibit constant returns and differ only by their 

“A” terms and that there is faster TFP growth in the data capital-producing sector, i.e., 𝑑𝑎𝑁 > 𝑑𝑎𝑌.  For 

further details on this solution in similar models, see Oulton (2012) and Byrne and Corrado (2017a).  

The contribution of data capital to the growth in labor productivity in this solution is the sum of a “use” 

or “investment” effect plus a “production” effect that may be expressed as follows: 
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(6)           

 
𝜎𝑅

𝜎𝐿
⁄  (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒)⏟                      

𝑖nvestment or use effect

   +  𝜔𝐷(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒) ⏟                    
production effect

 . 

The “overbar” notation in (6) denotes steady-state solution values. Thus, 𝜎𝑅 and 𝜎𝐿 represent steady 

state income shares of data capital and labor, respectively, and  𝜔𝐷 is the steady state domestic 

production share of data investments.  

“Productivity advantage” is the steady-state solution for the relative productivity of data capital. By 

assumption there is faster TFP growth in the data capital-producing sector, i.e., 𝑑𝑎𝑁 > 𝑑𝑎𝑌, and the 

solution for this productivity difference is (the negative of) data capital’s relative price change.  Thus, the 

relative productivity of data capital in steady growth is given by, 

(7)      𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒    = − (𝑑 ln 𝑝𝑁 − 𝑑 ln 𝑝𝑌) ,  
 
i.e., the rate of decline in the relative price of data assets (sign reversed).  

Table 6 presents alternative scenarios for potential labor productivity growth using equations (6) and 

(7). The scenarios vary according to assumptions regarding the breadth of data capital use and 

production share (the rows of the table) and its productivity advantage (the columns). The cells 

represent simple scenarios that vary according to assumptions for 𝜎𝑅, 𝜔𝐷 (limited or broad) use and 

production of data capital) and the productivity advantage of data capital, where the assumptions are 

drawn from measures developed and reviewed in this paper.  

The capital input shares of data capital are assumed to range from 5 to 10 percent, i.e., a bit above the 

approximate band about the estimates for the penetration of data capital in intangible capital as 

discussed in section 4. Production shares are assumed to be the capital income share +/- 10 percent, a 

rough estimate of the range for net exports of intangibles (excluding R&D and software, not shown but 

embedded in the share of intangible investment attributed to net imports in figure 4b). 

The upper and lower bounds for the productivity advantage are drawn from the relative price 

differential implied by the data-intensive components of intangibles investment shown in table 5. They 

are set at 1 and 5 percent, respectively. This lower bound is a bit below the US historical experience, 

whereas the upper bound is higher. Deflators for data-intensive components of intangibles rely on 

national accounts prices, e.g., gross output deflators for industrial design and management consulting 

that are unlikely to incorporate efficiency gains due to increased application of AI or use of open-source 

content, and it seems prudent to consider these measurement realities.  

For the upper bound, consider first the long-term price decline of conventionally defined IT capital, 

about 15 percent per year (based on the estimates reported in Byrne and Corrado, 2017). Our best 

estimates of price declines for two data-intensive intangibles are extremely modest by comparison, and 

an upper bound for the relative productivity of data capital at 5 percentage points per year is likewise 

very prudent. All calculations assume labor’s share of total income 𝜎𝐿equals .7. 
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Table 6.  Productivity Scenarios: Contribution of data capital to 
potential labor productivity growth (percentage points) 
 Productivity advantage 
 (Relative asset price growth differential) 
 
Income and production share 

Narrow edge 
2 percentage point 

Large edge 
5 percentage points 

Broad use     

 (and net exporter of data services) 0.51  1.26 

   10 percent capital income share    

   11 percent production share    

    
Limited use    

 (and net importer of data services) 0.23  0.58 

   5 percent capital income share    

   4.5 percent production share    

Note: Contributions include the sum of the use and production effects of data capital. 

 

All told, estimates of the contribution of data capital to labor productivity growth range by more than a 

factor of 5—from 0.23 percentage point per year to 1.26 percentage point per year.  The range 

highlights the synergies among data capital efficiency and an economy’s capability for digital 

transformation of its production processes. 

Having established that data capital has considerable potential for impacting labor productivity growth, 

let us now address how data capital affects measured total factor productivity 𝑑𝑎. 

7. DATA CAPITAL AND TOTAL FACTOR PRODUCTIVITY 

To calculate total factor productivity, we use the recently issued EUKLEMS & INTANProd database, 

which reports productivity data including investment streams for the intangible assets listed in table 2 

for Europe, the United States, and Japan.19  The investment and capital estimates for assets not regularly 

capitalized in national accounts are developed using national accounts-consistent methods, i.e., they are 

not calibrations of a model or developed from data in company financial reports.20  

The EUKLEMS & INTANProd database covers the years 1995 to 2020 (as of June 2023). Below we report 

and analyze estimates of total factor productivity for the nine European countries included in the 

empirical analysis of the data value chain in section 4 of this paper, as well as for the United States, for 

all years except the global pandemic year 2020. It should be noted that INTANProd includes estimates of 

 
19 This update/expansion of EUKLEMS was funded by the European Commission’s Directorate General for 
Economic and Financial affairs. 
20 Methods used to develop the harmonized estimates of intangible investment are documented in Bontadini et al 
(2023), available on the EUKLEMS & INTANProd portal at https://euklems-intanprod-llee.luiss.it.  Compared with 
previous estimates issued via the INTANInvest database (at www.intaninvest.net), the figures in EUKLEMS & 
INTANProd reflect significant improvements to the own-account components of intangible investment and to 
intangible asset price deflators for non-national accounts components. 

https://euklems-intanprod-llee.luiss.it/
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total industry intangible investment for 25 EU countries; intangible investment for market sector 

industries for 19 EU countries (though histories for both are short for some).  NACE “letter-level” TFP 

estimates are available for aggregation to total industry and to nonagricultural market sector industries 

for 9 EU countries beginning in 1995 and 11 countries beginning 2001. The limitation on EU countries 

available for analysis of total factor productivity change reflects the availability of sufficient years of 

consistent input and output data for industry-level growth accounting.  

The EUKLEMS & INTANProd data used here are from the project’s analytical module, accessed late 

February 2023.21 For international comparability, the intangible capital estimates reflect the 

incorporation of price deflators for brand and marketing that are harmonized to include the drop in 

advertising media marketing costs shown in figure 5 (b); see Bontadini et al. (2023a, pages 31-32). The 

quality change component of asset price deflators for computer, and communications equipment and 

software also are harmonized across countries, and net stocks of capital (intangible and tangible) are 

estimated using common rates of economic depreciation.  

Growth decompositions  

The growth accounting reported below is in per hour terms, i.e., the growth in output per hour is 

decomposed into its proximate factors.  The accounting for the European aggregate is developed at the 

country-industry level, where industries are aggregated to nonfarm “market” sector aggregates for each 

country and weighted using purchasing power parities to form the European aggregate.  Nonfarm 

market sector aggregates used here exclude the public sector and most majority-public industries, 

resulting in coverage that is broadly similar, though not identical, to the nonfarm business sector used 

for headline productivity statistics in the United States.22   

As commonly understood, country-level output per hour reflects both “within” and “between” industry 

sector effects, with the reallocation of labor across sectors (the “between” effect), e.g., out of 

agriculture to manufacturing, is an important factor driving productivity change in some countries. 

Figure 7 shows that the reallocation of hours across market sector industries has had a negligible impact 

on broad changes in market sector output per hour in Europe and the United States in recent decades.23 

The calculations reported in figure 7 follow Stiroh (2002). The first set of columns shows changes in 

aggregate labor productivity 𝑑 𝑙𝑛 (𝑉/𝐻) where 𝐻 denotes aggregate hours and 𝑉 real value-added 

output, and second two sets of bars display its decomposition into two terms, the impact of productivity 

growth in each industry (a “pure productivity” or “within” effect)—and a reallocation effect, the impact 

of hours worked moving from low- to high-productivity industries, i.e., 

 
21 Compared with previous editions of EUKLEMS, the LUISS update presents productivity in two “modules”: one 
with capital stock estimate issued by national statistical offices (“statistical” module) and another harmonized for 
international comparability (“analytical” module).  
22 The market sector aggregates are formed as described in footnote 7.. 
23 This statement excludes the global pandemic year 2020, where reallocation of hours jumped but was largely 
reversed thereafter; for further discussion and individual country results, see Bontadini et al. 2024).  
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(8)  𝑑 ln(𝑉 𝐻⁄ ) =  ∑ 𝜎𝑖
𝑃𝑉𝑑 𝑙𝑛 (

𝑉𝑖
𝐻𝑖
⁄ )𝑖 + ∑ 𝜎𝑖

𝑃𝑉𝑑 𝑙𝑛 𝐻𝑖 + 𝑑 ln𝐻𝑖⏟              
𝑅𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡

 

where 𝜎𝑖
𝑃𝑉denotes the value-added (Divisia) 

weight of industry 𝑖 in (nominal) aggregate 

value added. As explained in Stiroh (2002, 

page 1572), aggregate hours growth, 𝑑 𝑙𝑛 𝐻, 

weights industries by their (lagged) share of 

aggregate hours, so aggregate productivity 

rises if industries with value-added shares 

above labor shares experience growth in 

hours. 

To analyze the drop in “pure” labor 

productivity growth in market sector 

industries in the aftermath of the global 

financial recession (GFR), period averages 

from 2010 to 2019 are compared with those 

from 1995 to 2005 for two reasons.  First, 

the comparisons exclude the onset and initial 

recovery years of the GFR during which changes in factor utilization created sharp, temporary 

fluctuations in productivity that obscure underlying trends.24  Second, our analysis of trends in bigdata 

pointed to 2009/2010 as a break date for the emergence of efficiency effects due to the increased use of 

data in the production of intangible assets such as marketing, industrial design, and organization 

practices/structure. 

Figure 8 sets out decompositions of the within-industry change in labor productivity that account for the 
full range of intangibles per table 2. These decompositions are calculated as follows: 

(9)   ∑ 𝜎𝑖
𝑃𝑉𝑑 𝑙𝑛 (

𝑉𝑖
𝐻𝑖
⁄ )𝑖  =   ∑ 𝜎𝑖

𝑃𝐿𝑑 𝑙𝑛 (𝐿 𝐻𝑖
⁄ )𝑖  +   ∑ 𝜎𝑖

𝑃𝐾𝑑 𝑙𝑛 (
𝐾𝑖
𝐻𝑖
⁄ )𝑖      

                + ∑ 𝜎𝑖
𝑃𝑅𝑑 𝑙𝑛 (

𝑅𝑖
𝐻𝑖
⁄ ) + 𝑑 ln 𝑎𝑖  

where the first term is the contribution of labor composition, the second two are contributions of capital 

intensity (tangible and intangible), and the final term total factor productivity.25 Comparing the first set 

of columns in figure 8 for each region with the last set (i.e., comparing average changes and contribution 

from 1995 to 2005 with 2010 to 2019), the drop in labor productivity growth is mainly accounted for by 

slowdowns in tangible capital deepening and total factor productivity (TFP) growth. In the United States, 

 
24 This is not to imply that these temporary factors are similar for each region shown. Indeed, differences in labor 
market strategies, e.g., a greater emphasis on job retention strategies and job stability in the Euro area relative to 
the United States, appear to create very disparate short-run impacts on job levels in response to a common shock. 
25 For simplicity, the superscript notation for the income shares on the right side of equation (10) do not indicate 
that the nominal values for each factor’s income have their own price element. 

Figure 7. Labor Productivity and Hours Reallocation 
 
Percentage points per year 

 

Source: EUKELMS & INTANProd. LLEE (2023). 
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TFP growth is 0.9 percentage point less per year in the period after 2010. In Europe the drop is much 

less, about 0.2 percentage points, though it followed 5 years during which TFP posted a sharp negative 

average change (-0.5 percent per year).  That said, the drops in labor productivity, contribution of 

tangible capital intensity and TFP growth are rather more dramatic for the United States.26 

 

The contribution of the second set of bars (labor composition) reflects the per hour contribution of 

increases in (employed) human capital, i.e., the contribution of changes in the proportion of high-

skilled/high wage jobs in an economy. Though this effect works in opposite directions in Europe vs the 

United States, the contribution of changes in labor composition to explaining developments in 

productivity growth in these regions over the past 20 years is relatively modest. 

The important takeaway from figure 9 is that direct contribution of intangible capital deepening does 

not contribute to the productivity slowdown.  The rate at which workers in both Europe and the United 

States were equipped with intangible capital was well maintained for the period shown in the figure. 

And the edge down in intangible capital deepening shown in the post-GFR period for the United States 

reverses direction if we include figures for the pandemic period (2020 and 2021), which are available for 

the United States but not for Europe; U.S. labor productivity and TFP growth are a tad higher too when 

the pandemic period is added.27 That resources continued to be invested in innovation while the growth 

of TFP slowed suggests that the slowdown story must be about, at least in part, changes in the diffusion 

of the fruits of those investments across firms and industries in these economies.  

Before we turn to discussing innovation diffusion, consider further how we might interpret the fact that 

the contribution of intangible capital deepening did not slow as productivity growth slowed.  

 
26 These drops from the so-called “bubble” years may seem exaggerated compared to the 20 years of slow 
productivity growth that preceded them. But when the recent experience is compared with longer-term averages, 
i.e., from 1948 to 2005, the drops in the contribution of tangible capital intensity and TFP growth shown in figure 8 
are in line with historical experience. According to official BLS historical statistics, the contribution of tangible 
intensity to labor productivity is the same from 1948 to 2005 as it is from 1995 to 2005, and TFP growth is just 
0.1 percentage point less. Labor productivity growth was exceptionally high in the United States in the bubble 
years, however, averaging 0.6 percentage points per year higher compared with growth during the preceding 47 
years.  
27 Based on information from the BLS; as of this writing, the EUKLEMS & INTANProd database reports data through 
2020 but not 2021. 
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Interpretation of Innovation 

When considering innovation, economists typically look to TFP as a measure of underlying technical 

progress. It seems clear that TFP as a production function “shifter” is capturing innovation, being a 

residual after subtracting share-weighted paid-for inputs from output, but it is rather hard to talk 

meaningfully about a residual with practitioners interested in innovation.  Innovation strategists 

typically focus on how individual firms innovate (e.g., develop a new business model, launch a new 

product) and recognize that business decision-makers need to weigh the costs involved in bringing 

about change through innovation against retaining profits. Intangible investment captures the cost of 

implementing and managing innovations.  

Whether this connection between innovation and intangible investment helps depends on how 

innovation at the individual organization level is discerned in economists’ productivity measures. In his 

evidence to the Gutierrez commission (Schramm et al. 2008), Dale Jorgenson explained growth by 

stressing innovation versus duplication. Consider this by asking, how might the firm Peloton make more 

sales? One way would be to employ more 𝐾 and 𝐿 to produce more bikes and treadmills, i.e., growth via 

duplication. The other path would be to get more sales from existing 𝐾 and 𝐿: mixing new exercise 

 

Figure 8. Decompositions of Growth in Labor Productivity 

Percentage points, annual rate 

Note: The bars labeled “Labor productivity” correspond to the value-added weighted industry aggregate 
shown in the middle set of bars in figure 8. European countries include Denmark (DK), Germany (DE), 
Finland (FI), France (FR), Italy (IT), Netherlands (NL), Spain (ES), Sweden (SE) and the United Kingdom (UK). 
Source: EUKELMS & INTANProd. LLEE (2023). 
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music, developing new software, re-engineering the supply process. Jorgenson called this growth via 

innovation.  

The intangible capital framework gives this a natural interpretation (Goodridge, Haskel and Wallis 2012). 

Innovation is output less the contribution of 𝐾 and 𝐿, which suggests that innovation reflects the final 

two terms in (9), or   

(10)    𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 =  𝜎𝑄
𝑅𝑑𝑟 + 𝑑𝑎   

using the terminology of the upstream/downstream model of section 5. This implies that when 

considering innovation, residually calculated TFP growth (𝑑𝑎) should not be the sole focal point of 

analysis but rather a fuller picture includes the appropriated returns intangible investment.  

The table below summarizes the fraction of labor productivity growth accounted for by the combined 

contributions of intangible capital deepening and TFP growth, which is, in effect, an innovation account 

(Corrado and Hulten 2014). Seen from this perspective, innovation became a more relevant contributor 

to labor productivity growth in Europe and the United States since 2010 (compare line 2 with line 1). The 

table also suggests that innovation has been the dominant factor contributing to labor productivity 

growth in the United States since 1995 (column 2). 

Table 7. Innovation Accounting: Innovation Share of Labor 

Productivity Growth 

 

  Europe 

(1) 

United States 

(2) 

1. 1995 to 2005 .41 .57 

2. 2010 to 2019 .50 .69 

Note: Innovation share is the combined contributions of intangible capital 

deepening and TFP growth to labor productivity growth as a fraction of labor 

productivity growth. 

Source: Equation (10) and Figure 9. 

 

Diffusion of commercial knowledge and increased productivity dispersion 

The diffusion of commercially valuable knowledge is the primary determinant of total factor productivity 

growth (measured 𝑑𝑎) in the intangible capital framework.  Cross-country and firm-level econometric 

work has repeatedly estimated increasing returns (or knowledge spillovers) to intangible capital.28 In 

simple terms, these works imply that the proportional relationship, 𝑑𝑎 ≈ .2 𝑑𝑟, could be used to 

represent the costless diffusion of commercially valuable knowledge in market economies. As 𝑑𝑟 (per 

 
28 This refers to the aggregate implications of estimates for R&D spillovers reported by Griliches for manufacturing 
(e.g., Griliches 1992) and for intangible capital spillovers (excluding R&D and software) reported by Corrado, 
Haskel, and Jona-Lasinio (2017). The latter study used a dataset from the late 1990s to the onset of the GFR.  
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worker) did not materially slow after 2010, the logical (endogenous) explanation for the slowdown in 

measured 𝑑𝑎 is that factors driving these increased returns ceased to operate as strongly as they 

previously had.  

How should we think about this interpretation? The traditional view of knowledge diffusion is that its 

potential for boosting market sector productivity growth is determined by an economy’s innovation 

ecosystem.  Besides intellectual property rights and their enforcement, innovation ecosystems consist of 

processes such as the ability of producers to transform new basic knowledge (e.g., research findings and 

new ideas) into new, useful commercial knowledge in an industry. It also depends on whether there a 

healthy degree of Schumpeterian competition in an industry.   

This paper has argued that the larger role of (untraded/untradable) big proprietary data used by global 

productivity “leaders” in the post-GFR period is consistent with a breakdown in knowledge diffusion and 

weak total factor productivity growth. It is also consistent with increased industry concentration and 

changes in regulatory frameworks regarding data. If large firms with strong internal cash flows 

disproportionately invest in, and benefit from, untraded bigdata, industry concentrations may rise. If 

regulatory policies prevent third-party trading of data, digital productivity leaders (whether large or 

small) will be able to distance themselves from competitors via their use of data capital. 

These observations on the impact of proprietary bigdata on TFP deserve further study and econometric 

analysis. But the empirics developed in this paper are sufficient to frame their likely macroeconomic 

impact. With post-2010 growth of intangible capital services in nonagricultural market sector industries 

averaging 3.3 percent per year in Europe and 4.4 percent in the United States and if data capital 

accounts for 50 percent of that, a complete cessation of data capital diffusion mechanism could shave 

.33 to .44 percentage point per year off measured total factor productivity growth in these regions, 

respectively. This is a sizeable impact and an upper bound, which note, does not allow for an offsetting 

potential boost to spillovers to software discussed in the previous section and overexplains the 2010 to 

2019 drop in European TFP growth and approaches one-half of the drop in TFP growth in the United 

States (recall from figure 8 these drops were .2 and .9 percentage points, respectively).  

Productivity growth via the costless replication of commercial knowledge is unlikely to have staunched 

completely, and other structural or policy-induced factors or mismeasurement may have contributed to 

the productivity slowdown. But our analysis of the increased data intensity of intangible capital, 

combined with the tendency for data assets to be closely held, suggest that mechanisms that boosted 

TFP growth in the past may have weakened with the increased use of proprietary bigdata in production 

processes.  

8. DIGITAL PARADOXES UNPACKED AND CONCLUDING REMARKS 

The changing nature of the global economy has put a spotlight on intangible capital as a source of 

economic growth and driver of innovation. But intangible capital itself has been evolving with the 

digitization of modern economies and increased use of proprietary bigdata in production processes. At 
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the same time productivity growth—labor productivity and total factor productivity—has slowed, 

created what some have called a digital productivity paradox. 

We have used an intangible assets approach to address the question of how the increased use of data in 

economies affects productivity. We argue that data, or more accurately transformed raw digitized 

records, and the capital services derived from them fit neatly into both the management/technology 

literature on the data stack and the economics literature on intangible capital. We estimated new 

measures of industry-level data investments, analyzed new price measures for intangible assets most 

affected by data, and outlined a simple two-sector growth accounting framework to articulate how 

much the relative technology gains from the use of data might affect labor productivity growth. Then, 

using a new multi-country total factor productivity dataset, we documented and analyzed how the 

slowdown in total factor productivity growth in major developed economies may have been affected by 

the increased use of proprietary bigdata.  

An econometric analysis of the relationship between our new “data stack”-inspired estimates of data 

investment the intangible investment estimates in EUKLEMS & INTANProd found the strongest overlap 

of data capital with intangible capital was in components hypothesized to be most likely driven by 

modern data use: investments in branding and marketing, marketing research, industrial design, and 

organization processes and structure. This does not imply that all intangible capital in these categories is 

data capital, but that each of these components overlaps strongly with data capital, with the degree of 

overlap expected to vary across industry sectors and with time. 

Our modeling of the economic impacts of data capital produced two results and associated predictions 

not featured in prior works. Both results stem from the fact that modern data capital, though inherently 

nonrival, reflects the rise of proprietary bigdata and its use in production primarily as an “innovation in 

the method of innovation.”  Our analysis implied that the efficiencies associated with modern data 

capital lower prices for intangible assets and that the proprietary nature of bigdata strengthens the 

(partial) appropriability of the intangible asset class. The first-order impacts of these results on 

productivity are that the use of data capital boosts labor productivity growth (the efficiency effect) but 

that the increased data intensity of intangibles weakens commercial knowledge diffusion and diminishes 

TFP growth (the appropriability effect). 

In stepping through all of this—from how we should conceptualize and measure bigdata as an asset to 

framing its first-order impacts on macro productivity growth—we shed light on several frequently 

mentioned paradoxes of modern digital economies. The first is that the much-touted efficiency gains 

promised for businesses as they incorporate AI and bigdata into decision-making likely are present in 

economies, but they are not so readily “seen.” Data investments overlap mainly with components of 

intangible capital that not included in national accounts investment, and the size and relative efficiency 

of data investments are thus not very apparent in GDP.   

This paper argued that the relative efficiency of data capital is captured by changes in the relative price 

of data-intensive intangible assets (sign reversed). Price research on data-intensive intangibles is 

relatively underdeveloped, and an important implication of this paper is that the measurement of these 
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asset prices deserves more attention as data technologies and data use gain more traction in business 

processes. This paper reported relative price declines for branding, marketing, and organizational 

change that ranged from 2-1/4 to 3-1/4 percent per year in the United States. Though these price 

declines are not nearly as dramatic as drops in relative prices for IT capital during the late 1990s and 

early 2000s, this paper also found that data investment is rather large—about 8 percent of market 

sector gross value added on average for the countries studied in this paper (and a figure validated by a 

very recent survey conducted in the UK). Combined with the fact that most data assets are produced in-

house, i.e., are domestic production, and that most data assets are intangibles not included as 

investment in national accounts, the potential for data capital to contribute to “unseen” growth in labor 

productivity is significant.  

In our work in this paper, we used a multi-country dataset that covers all intangibles and incorporates 

price measures that capture at least some of the efficiency effects of data capital. The implied boost to 

labor productivity stemming from these effects was about .2 percentage points in countries with 

significant investments in intangibles. But the calculations also reveal that the boost to labor 

productivity from the use of data capital appears to be offset by the appropriability effect that 

diminishes aggregate TFP, perhaps in absolute amounts by as much as .3 or .4 percentage points per 

year. This is an upper bound and our discussion of the impacts of data on the production processes for 

intangibles noted that spillovers to software may have increased in the age of bigdata. 

One might ask whether data capital’s (negative) appropriability effect is an economic rationale for what 

some describe as the downside (or paradox) of the digital transformation of modern economies: the 

unleashing of winner-take-all forces that stifle the spread of innovations. There are several points to 

make here, the first of which is that in the context of the intangible capital framework, an increase in the 

complexity of new marketing, design, and organizational assets that makes them harder to copy is not 

per se anti-competitive (any more than is the introduction of a newly engineered, complex polymer). Its 

rather that such science and engineering breakthroughs are more often disclosed (via patents) whereas 

data knowledge is more likely to be held closely as a trade secret. Second, the winner-take-all view that 

recent growth has been slowed by diminished competition is often framed as a correlate of rising 

industry concentration and market power, but measures of industry concentration have been rising for a 

very long time—100 years according to Kwon, Ma, and Zimmerman (2023)—suggesting the use of 

bigdata and digital business model platforms are not so fundamental as a factor affecting the rise in 

industry concentration.  

Finally, the winner-take-all, excessive market power view is typically supported by empirics that do not 

account for all intangibles (or neglect them entirely), leading observers to misstate the degree of excess 

profits in an economy. Here we account for all intangibles, and when this is done, as shown in Corrado 

et al (2022a, figure 4), the realized after-tax rate of return in in private industry in the United States 

showed no material increase after 1995.  And while the rise of proprietary bigdata may be staunching 

knowledge diffusion and diminishing the rate of TFP growth, these outcomes can be reversed by policies 

that promote open public data and industry data sharing (Jones and Tonetti 2020).   
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A full explanation for the recent productivity slowdown perhaps remains elusive, but we are hopeful 

that the new measurements and findings reported in this paper demonstrate that the increased 

importance of data assets in intangible capital is a factor in the explanation.  
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APPENDIX 

This appendix provides a description of the cost-based approach and data sources used to estimate 

market sector investment and capital stocks in data stores and data intelligence (the components of 

data not currently included in official national accounts), databases and computer software introduced 

in this paper. The methodological approach is the same adopted to estimate own-account brand, design, 

organizational capital, and new financial products in EUKLEMS & INTANProd database (Bontadini et al 

2023). The data sources and main steps of the calculation are described below. A final section provides 

an illustration of the approach followed to estimating domestically sourced component of intangible 

investment. 
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Data assets measurement 
 
The method adopted to generate estimates of data assets follows a cost-based approach assuming that 
the value of an asset can be obtained as the sum of the costs sustained for producing it. The basic 
approach can be summarized as follows: 
 

Yi 
bc

 = COMPi + ICi + CKi + Ti        (A1) 

where i = asset type, Y is the value of the produced asset at basic prices, COMPi is the labor cost of the 

relevant personnel measured as compensation of employees, ICi are intermediate costs related to the 

activity, CKi refers to the costs of capital services and Ti to net taxes on production related to these 

activities. But notice that besides COMPi the remaining components in equation (A1) are not directly 

measurable, thus the sum of these unmeasurable components, set equal to   is a factor that must be 

approximated So equation (A1) can be re-written as:   

Yi 
bc

 = COMPi + i                (A2) 

where, notice that Yi 
bc

 can be measured directly by computing the compensation of employees (COMP) 

and finding a proxy for . Thus COMP can be obtained as: 

COMPi = EMPi
tot * Wi

avg* ti     (A3) 

where EMPi
tot is the total number of employees employed for producing the relevant asset, Wi

avg is the 

average remuneration (average wage) and ti refers to the time spent on these activities (table A1 below 

shows the time assumptions (t) underlying the calculations developed in this paper). Using equation (A3) 

and substituting it in equation (A2) where it is assumed that i=COMPi*bpi - COMPi, the value of the 

produced asset is determined as: 

 

Yi 
bc

 = COMPi*bpi       (A4) 

where bp is a blow-up factor that accounts for other cost components besides the compensation of 

employees and essential to develop a measure of output consistent with national accounts. The blow-up 

factors for each asset are measured using the ratio of gross output (GO) over the compensation (COMP) 

of all persons engaged where GO is adjusted to exclude national accounts own-account intangibles and 

intermediate purchases of intangibles that are capitalized in our framework. COMP is compensation of 

employees plus an estimate of compensation of self-employed. This adjustment is relevant, especially 

for those industries producing a sizable amount of intangibles whose production structure is assumed 

rather similar to the internal intangible factory described in the main text. The blow-up factors are 

estimated at the detailed industry level using US supply and use tables. The bp of the relevant industries 
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averaged over 1997-2020 are then applied to each data asset.29 In this paper, the blow-up factors are 

set equal to 1.7 for data intelligence and 1.8 for the other assets.    

Main sources 

The estimates of data assets illustrated in this paper have been produced applying equation (A4) across 

industries and countries. The main information needed to implement the calculation for each individual 

data asset is the following: i) a detailed list of occupations engaged in producing data assets; ii) 

occupation-specific (and industry-specific, if relevant) assumptions on the share of time spent in 

producing each data asset; iii) data on the number of employees for the relevant occupations and their 

compensations; iv) blow-up factors to account for other cost components (intermediate consumption 

and gross operating surplus) to derive an output measure consistent with national accounts definitions.  

More specifically, table A1 shows the list of occupations that are assumed to be engaged in producing 

data assets and computer software capital formation based on ISCO-08 codes and of the time-use 

assumptions by asset as detailed below. 

Notice that the selection of relevant occupations is constrained by the level of detail of available data 

sources. For this paper, we use micro-data from the EU Structure of Earnings Survey (SES) for the years 

2010, 2014, and 2018 and the EU Labour Force Survey (LFS) for 2008 and 2019. The SES provides 

information on the number of employees by occupation (at the three-digit level of the 2008 

International Standard Classification of Occupations, ISCO) and economic activity and their annual 

earnings. The LFS, instead, provides data on employment with no information on wages. In the LFS, 

occupations are available at three-digit level of ISCO classification for all countries. On the other hand, 

the SES provides data for 11 countries at two-digit level, that have to be further expanded to three-digit 

level to get a coherent information set. The higher level of disaggregation for the SES wages from two to 

three digits has been obtained computing the share of relevant three-digit occupation from the LFS then 

applied to the SES variables. 

Estimating the time-use factors 

In this paper, we make a further step in developing the estimates of the time use factors compared to 

previous literature. In particular, we generate our measures resorting to a very high level of 

disaggregation of the occupation classification,  four-digit level, for a group of European economies30. 

 
29 For data stores, we apply the average of blow-up factors calculated for Miscellaneous professional, scientific, 
and technical services, Computer systems design and related services, and Publishing industries, except internet 
(includes software); for databases and software, the average of Computer systems design and related services, and 
Publishing industries, except internet (includes software); for data intelligence, the average of Management of 
companies and Miscellaneous professional, scientific, and technical services. 
30 Ideally, the selection of the occupations and the definition of the corresponding time-use assumptions would 

have to be done at four digits level in the ISCO classification. But the available sources, the LFS and SES provide 

data at three digits level thus requiring a careful analysis of each code to identify the best time use assumption. As 
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First we have identified the relevant occupations and the corresponding time-use assumptions at four-

digit level of the US Standard occupations Classification (SOC 2010) and then we have used the data 

from the US Occupational Employment and Wage Statistics 2019 (OEWS) to compute a set of weights to 

generate an estimate of the time-use factor aggregated at 3-digit ISCO level. 

More precisely, the approach for measuring the time-use factor for each data asset can be summarized 

as follows: i) Identification of the ISCO unit groups included in each ISCO minor group31; ii) for each ISCO 

unit group, identification of the corresponding occupation in the 2010 SOC (based on a crosswalk 

between the ISCO-08 and the 2010 SOC available from the US Bureau of Labor Statistics); iii) assignment 

of a time-use factor to each four-digits SOC occupation.  

 

Finally, the time use factors at three digit level have been computed as the weighted average of the 

time-use factor of the corresponding four-digits SOC where the weights have been generated from 

employment data gathered from the 2019 OEWS32.  

 

Capital stock and price deflators 

The estimates of capital stock in real terms used in the econometric analysis are generated applying the 

perpetual inventory method (PIM) based on the aggregation of real investment over time allowing for 

declines in efficiency and value until the assets reach the end of their service lives and are retired33.  

We assume economic depreciation is geometric, in which case the real stock of data asset j in industry i 

at the end of year t (Kqi,tj) is defined as:  

    Kqi,tj = Kqi,t-1j * (1-δj ) + Iqi,tj    (A5) 

  

 
a matter of fact, not all the occupations within each ISCO code devote their working time to data production to the 

same extent or to produce the same type of asset. 

So far, approaches to measure data assets dealt with aggregate occupation groups tweaking the assumption on 

the time-use factors to consider that each minor group includes workers who differ in how much time they spend 

producing a given data asset (or who do not create data assets at all). However, this approach adds a further layer 

of imprecision to estimates which are in themself based on many assumptions.  

 
31 In the ISCO classification, minor groups are occupations defined at the level of three digits and unit groups at the 
level of four digits. 
32 However, this approach has some drawbacks. It is implicitly assumed that the employment shares of four-digit 
occupations within each three-digit group are the same in all European countries and equal to those in the US. In 
addition, the aggregate percentages are used to develop industry-level calculations.   
 
33 See Hulten Charles R. "The Measurement of Capital" in Ernst R. Berndt and Jack E. Triplett, eds., ifty Years of 
Economic Measurement: The Jubilee of the Conference on Research in Income and Wealth, Chicago, University of 
Chicago Press, 1991 
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TABLE A1. RELEVANT OCCUPATIONS FOR DEFINING TIME-USE ASSUMPTIONS TO ESTIMATE DATA ASSETS AND 

COMPUTER SOFTWARE  

 

Note: 413 includes data entry clerks (4132); 422 includes survey and market research interviewers (4227); 431 

includes statistical, finance and insurance clerks (4312). 

 

  

Software Databases Data Stores
Data 

Intelligence

1 1 Managers

11 11 Chief executives, senior officials and legislators

111 11 Legislators and senior officials 0.00 0.00 0.00 0.00

112 11 Managing directors and chief executives 0.00 0.00 0.00 0.17

12 12 Administrative and commercial managers

121 12 Business services and administration managers 0.00 0.00 0.00 0.00

122 12 Sales, marketing and development managers 0.00 0.00 0.00 0.10
13 13 Production and specialised services managers

131 13 Production managers in agriculture, forestry and fisheries 0.00 0.00 0.00 0.00

132 13 Manufacturing, mining, construction, and distribution managers 0.00 0.00 0.00 0.00

133 13 Information and communications technology service managers 0.00 0.10 0.10 0.10
134 13 Professional services managers 0.00 0.00 0.00 0.00

14 14 Hospitality, retail and other services managers

141 14 Hotel and restaurant managers 0.00 0.00 0.00 0.00

142 14 Retail and wholesale trade managers 0.00 0.00 0.00 0.00

143 14 Other Services Managers 0.00 0.00 0.00 0.00

21 21 Science and engineering professionals

211 21 Physical and earth science professionals 0.00 0.00 0.10 0.40
212 21 Mathematicians, actuaries and statisticians 0.05 0.06 0.13 0.32

213 21 Life science professionals 0.00 0.02 0.11 0.28

214 21 Engineering professionals (excluding electrotechnology) 0.00 0.00 0.10 0.25
215 21 Electrotechnology engineers 0.00 0.00 0.10 0.36

216 21 Architects, planners, surveyors and designers 0.00 0.00 0.18 0.09

24 24 Business and administration professionals

241 24 Finance professionals 0.00 0.00 0.10 0.26
242 24 Administration professionals 0.00 0.07 0.07 0.11

243 24 Sales, marketing and public relations professionals 0.00 0.00 0.15 0.21

25 25 Information and communications technology professionals

251 25 Software and applications developers and analysts 0.48 0.10 0.03 0.01

252 25 Database and network professionals 0.10 0.47 0.10 0.03
263 26 Social and Religious Professionals 0.00 0.00 0.00 0.03
33 33 Business and administration associate professionals

331 33 Financial and mathematical associate professionals 0.00 0.00 0.10 0.25

332 33 Sales and purchasing agents and brokers 0.00 0.00 0.00 0.00

333 33 Business services agents 0.00 0.02 0.02 0.04

334 33 Administrative and specialised secretaries 0.00 0.00 0.00 0.00

335 33 Regulatory government associate professionals 0.00 0.00 0.00 0.02

35 35 Information and communications technicians

351 35 Information and communications technology operations and user support technicians0.01 0.02 0.03 0.04

352 35 Telecommunications and broadcasting technicians 0.00 0.00 0.10 0.05
41 41 General and keyboard clerks 0.00 0.00 0.07 0.00
42 42 Customer services clerks

422 42 Client information workers 0.00 0.00 0.05 0.00
43 43 Numerical and material recording clerks

431 43 Numerical clerks 0.00 0.00 0.16 0.00

432 43 Material-recording and transport clerks 0.00 0.00 0.05 0.00

ISCO-08 sub-major group ISCO-08 minor group Occupation description

Time-use (%)
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where Kqi,t-1j is the real stock of asset j in industry i at the end of year t-1, δj is the annual depreciation 

rate for asset j and Iqi,tj is real investment for asset j in industry i during year t. Note that depreciation 

rates are asset-specific and are assumed to not vary across industries and over time. 

Real investment in each type of data asset is obtained by dividing its nominal investment flow by an 

appropriate price index. The real value for data intelligence has been computed applying the deflator of 

non-national accounts intangibles while for data stores, computer software and databases exploiting the 

harmonized software deflator developed for the analytical module of the EUKLEMS & INTANProd 

databases (see Bontadini et al 2023).  

For what concern the depreciation rates, for data intelligence it is the average of the depreciation rates 

of non-national accounts intangible assets (0.35), while for the other data assets it is the same 

depreciation rate used for software in EUKLEMS & INTANProd (0.315).    

Estimates of data assets have been developed by industry, at the level of Nace sections, and then 

aggregated at the market sector level, defined as all industries excluding Nace sections L (real estate 

activities), O (public administration and defense; compulsory social security), P (education), Q (human 

health and social work activities), T (activities of households as employers; undifferentiated goods - and 

services-producing activities of households for own use). 

Domestic Component of Intangible Investment: Data Sources and Estimation Method  

In what follows we illustrate the main steps for estimating domestically sourced component of 

intangible investment.  

Measures of domestically produced investment in R&D and computer software and databases are 

obtained using data from national supply and use tables. First, it is necessary to compute the share of 

gross output in total resources for domestic use, SGOD, as follows: 

SGODi = (GOi – EXi) / (GOi – EXi + IMi)         (A6) 

where GOi, EXi and IMi are gross output, exports and import of product i (i= CPA_M72 for R&D, and 

CPA_J62-63 for computer software and databases). 

Then, the domestic component of each asset is generated multiplying national accounts investment by 

the corresponding share of gross output in total resources for domestic use. A main assumption 

underlying this approach is that the share of the domestic component is the same across different uses 

(intermediate consumption, final consumption, and investment).        

For those intangible assets not included in national accounts (brand, design and organizational capital), 

the domestic component is computed as the sum of the own-account investment and an estimate of the 

domestically sourced purchased component. That is, for organizational capital: 

    Idom
OrgCap = (IOrgCap(OA)+ Idom

OrgCap(Purchased))    (A7) 
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New financial products are only domestically produced, and that there are no available data sources for 

estimating imported training. The imported component for training is deemed very small and is ignored. 

To estimate equation (A7) it is essential to measure the domestically sourced purchased component of 

brand, design, and organizational capital. Estimates of these components are generated from the 

information gathered from the world input-output tables reporting the intermediate use of domestic 

output and intermediate use of imports from other countries disaggregated by product, for each 

industry in each country (World Input-Output Database, or WIOD, available at 

https://www.rug.nl/ggdc/valuechain/wiod/?lang=en). 

Resorting to these data, it is possible to compute the share of domestic output in market sector 

intermediate consumption of the following products: advertising and market research services (CPA 

M73), architectural and engineering services, technical testing, and analysis services (CPA M71) and 

legal and accounting services, services of head offices and management consulting services 

(CPA_M69_70). Then the domestically sourced purchased component of brand, design and 

organizational capital can be generated by multiplying the purchased investment component by the 

share of domestic output in total intermediate consumption for the relevant products listed before (CPA 

M73 for brand, CPA_M71 for design, and CPA_M69_70 for organizational capital). 

The 2016 WIOD release provides an annual time-series of world input-output tables from 2000 to 2014. 

For the most recent years, shares have been extrapolated regressing the 2000-2014 shares on a linear 

time trend. 

Correlation tables 

Tables A2 A) and B) below shows the correlations between the estimated 2010 to 2019 time series for 

the value-added shares of data assets and intangibles and for the rate of growth of the shares. 

 

 

 

https://www.rug.nl/ggdc/valuechain/wiod/?lang=en
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TABLE A2. CORRELATION OF ESTIMATES 

A) INVESTMENT SHARES OF ADJUSTED VALUE ADDED 

 

B) GROWTH RATE OF INVESTMENT SHARES OF ADJUSTED VALUE ADDED 

 

Notes:  ** p<0.01, *** p<0.001 .   Countries include Denmark (DK), Germany (DE), Finland (FI), France (FR), Italy (IT), Netherlands (NL), Spain (ES), Sweden (SE) and the United Kingdom (UK). 
Gross value added is adjusted to include all intangibles, as reported in the EUKLEMS & INTANProd database (analytical module). 

 

Data capital 1

   Data stores 0.746*** 1

   Databases 0.663*** 0.594*** 1

   Data intelligence 0.905*** 0.442*** 0.369*** 1

Software 0.795*** 0.284** 0.526*** 0.859*** 1

-----------

Intangible capital 0.553*** 0.0476 0.461*** 0.634*** 0.866*** 1

    Digitized information 0.111 -0.263* 0.377*** 0.156 0.577*** 0.763*** 1

    Innovative property 0.247* 0.0102 0.222* 0.283** 0.389*** 0.632*** 0.368*** 1

    Economic competencies 0.678*** 0.244* 0.422*** 0.740*** 0.836*** 0.791*** 0.478*** 0.101 1

Data-intensive intangibles 0.643*** 0.140 0.410*** 0.741*** 0.900*** 0.921*** 0.602*** 0.367*** 0.943*** 1

   Organization 0.576*** 0.140 0.456*** 0.627*** 0.838*** 0.864*** 0.673*** 0.210* 0.946*** 0.937*** 1

   Design 0.142 -0.121 0.0827 0.235* 0.369*** 0.577*** 0.369*** 0.904*** 0.0825 0.386*** 0.198 1

   Brand 0.610*** 0.366*** 0.242* 0.646*** 0.554*** 0.399*** 0.0233 -0.176 0.782*** 0.667*** 0.557*** -0.188 1

Memo: R&D 0.244* 0.0824 0.317** 0.214* 0.328** 0.601*** 0.364*** 0.943*** 0.0998 0.309** 0.219* 0.726*** -0.193 1
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Data capital 1

   Data stores 0.834*** 1

   Databases 0.746*** 0.419*** 1

   Data intelligence 0.919*** 0.577*** 0.729*** 1

Software 0.770*** 0.528*** 0.710*** 0.778*** 1

-----------

Intangible capital 0.0963 0.0784 0.0609 0.0910 0.102 1

    Digitized information -0.0361 -0.0755 -0.00605 -0.0114 0.0291 0.750*** 1

    Innovative property -0.0917 -0.0748 -0.0873 -0.0803 -0.0350 0.918*** 0.622*** 1

    Economic competencies 0.552*** 0.518*** 0.373*** 0.472*** 0.368*** 0.364*** 0.135 0.122 1

Data-intensive intangibles 0.622*** 0.581*** 0.378*** 0.546*** 0.418*** 0.320** 0.0391 0.116 0.904*** 1

   Organization 0.409*** 0.331** 0.340** 0.351*** 0.370*** 0.330** 0.180 0.106 0.785*** 0.766*** 1

   Design 0.350*** 0.403*** 0.148 0.262* 0.161 0.0432 -0.204 0.0136 0.247* 0.598*** 0.301** 1

   Brand 0.494*** 0.492*** 0.233* 0.440*** 0.268* 0.267* 0.0769 0.0996 0.844*** 0.732*** 0.379*** 0.0905 1

Memo: R&D -0.109 -0.0913 -0.105 -0.0918 -0.0349 0.894*** 0.631*** 0.988*** 0.114 0.0769 0.0743 -0.0721 0.120 1
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