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Nutrient Pollution

and US Agriculture

Causal Effects, Integrated
Assessment, and Implications
of Climate Change

Konstantinos Metaxoglou and Aaron Smith

9.1 Introduction

Nutrient pollution is one of the country’s most widespread, costly,
and challenging environmental problems. It is caused by excess nitrogen
and phosphorus in the air and water. Although nutrients such as nitro-
gen and phosphorous are chemical elements that plants and animals need
to grow, when too much nitrogen and phosphorus enter the environment,
usually from a wide range of human activities, the air and water can become
severely polluted.

Some of the largest sources of nutrient pollution include commercial
fertilizers, animal manure, sewage treatment plant discharge, storm water
runoff, cars, and power plants. In the Mississippi River basin (MR B), which
spans 31 states and drains 40 percent of the contiguous US (CONUS) into
the Gulf of Mexico (GoM), nutrients from row crops, large farms, and
concentrated animal feeding operations account for most of the nutrient
pollution. Fertilizer runoff from agricultural crops has been estimated to
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contribute somewhere between 50 percent (CENR 2000) and 76 percent
(David, Drinkwater, and Mclsaac 2010) of the annual and spring nitrogen
riverine export from the MRB to the GoM fueling a hypoxic (“dead”) zone,
with oxygen levels that are too low for fish and other marine life to survive.
The GoM hypoxic zone is the second largest in the world behind the dead
zone in the Arabian Sea with a peak areal extent equal to that of New Jersey
(8,776 square miles) recorded in the summer of 2017.

According to the EPA (2016), 46 percent (about 546,000 miles) of US
streams and rivers are in poor condition in terms of their phosphorous
levels, and 41 percent (about 495,000 miles) are in poor condition in terms
of their nitrogen levels based on sampling results from almost 2,000 sites
benchmarked against conditions represented by a set of least-disturbed sites.
Excessive nitrogen and phosphorus in water and the air can cause health
problems, damage land and water, and take a heavy toll on the economy.!
Reducing the areal extent of the hypoxic zone to a five-year running aver-
age of 5,000 square kilometers, a target set in the Action Plan of the GoM
Hypoxia Task Force, comes at an estimated price tag of $2.7 billion per year
(Rabotyagov et al. 2014b).

In this chapter, we focus on water pollution and its relationship to US agri-
culture. We use regression analysis to establish a causal link between farmers’
decisions about crop acreage and nutrient pollution that is detrimental to
surface water quality. In particular, we estimate the causal effects of corn
acreage on nitrogen concentration in water bodies using panel fixed-effect
(FE) regressions and what we call “(c)ounty-centric” analysis. We make few
and transparent assumptions that allow us to the assess the robustness of
our findings to various factors. In contrast, most prior estimates of effects
similar to the ones estimated in this chapter are based on agronomic and
hydrologic models.

To perform our c-centric analysis, we combine annual county-level data
on acres planted and nitrogen pollution. Data on acres planted are readily
available from the US Department of Agriculture (USDA). We compile
data on nitrogen pollution using US Geological Survey (USGS) monitor-
ing sites within a 50-mile radius from the county centroids. Based on our
preferred estimate of the elasticity of nitrogen concentration (mg/L) with
respect to corn acreage of about 0.1, an increase in corn acres planted equal
to 1 within-county standard deviation implies a 3.3 percent increase in the
level of nitrogen concentration. At the average nitrogen concentration of
about 2.5 mg/L and the average streamflow of the Mississippi River in the
GoM in our sample, this effect entails close to 50,800 additional metric tons
of nitrogen in the GoM. Using the median potential damages of nitrogen

1. See CENR (2000), EPA (2007), and, more recently, Olmstead (2010), GOMNTF (2013)
and Rabotyagov et al. (2014a). Several papers assess the cost of nitrogen pollution employing
a variety of methodologies: see Dodds et al. (2009). Compton et al. (2011), Birch et al. (2011).
Rabotyagov et al. (2014b), and Sobota et al. (2015), among others.
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due to declines in fisheries and estuarine/marine life of $15.84 per kilogram
($2008) from Sobota et al. (2015), the implied annual external cost is about
$800 million. The magnitude of the estimated effects depends on the amount
of annual precipitation but not on extreme heat despite its well-documented
negative impact on crop growth and, hence, nutrient uptake.

We also explore the implications of climate change for nitrogen pollution
using the NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP-CMIP6) data set to obtain out-of-sample projections for
precipitation and temperature, which we translate into projections of corn
acreage marginal effects on nitrogen pollution. The NEX-GDDP-CMIP6
data set is comprised of global downscaled climate scenarios derived from
the General Circulation Model runs conducted under the Coupled Model
Intercomparison Project Phase 6 and across two of the four “Tier 1” green-
house gas emissions scenarios known as shared socioeconomic pathways
(SSPs), namely, SSP2-4.5 and SSP5-8.5. Abstracting from the impact that
climate change may have an acreage, yields, nitrogen fertilizer use, legacy
nitrogen, runoff, and streamflow, all of which may contribute to nitrogen
pollution, the out-of-sample precipitation and temperature projections
imply similar effects of corn acreage on nitrogen concentration as in our
estimation sample. This finding arises because the climate models project
relatively small changes in precipitation and because our estimated effects of
corn acreage on nitrogen concentration do not vary a lot with temperature.

The focus of this chapter is different from the chapter by Elbakidze et al.
(2022) in this volume. Elbakidze et al. study the effects of changes in nitro-
gen fertilizer use by US farmers on surface water quality due to climate
change. Investigating the effect of climate-driven productivity changes on
water quality in the GoM using an integrated hydro-economic agricultural
land use model (IHEAL), they find that land and nitrogen use adaptation
in agricultural production to climate change increases nitrogen loads to the
GoM by 0.4-1.58 percent. As we discuss later in the chapter, our findings
are consistent with new research in environmental science arguing that there
is a large amount of nitrogen stored in subsurface soil and groundwater
contributing to the so-called legacy nitrogen, which may increase loadings
in rivers and streams with a long delay. The work by Elbakidze et al. does
not address legacy nitrogen. Elbakidze et al. account for farmers’ adapta-
tion to climate change in their analysis while our reduced-form econometric
analysis does not.

The remainder of the paper is organized as follows. Section 9.2 provides
a background on nutrient pollution emphasizing the role of agriculture and
shedding light on the impacts of climate change. Section 9.3 isa simple theo-
retical backdrop for section 9.4, where we describe the empirical approach
for estimating the causal effects of interest. Subsequently, having discussed
the data and provided some descriptive analysis in section 9.5, we present
the results from our regressions in section 9.6. We next explore the impli-



300 Konstantinos Metaxoglou and Aaron Smith

cations of climate change for nitrogen pollution in section 9.7. We finally
conclude.

9.2 Background on Nutrient Pollution

Preamble. Nitrogen inputs to the ecosystem from both anthropogenic and
natural sources are transported via atmospheric, surface flow, drain flow,
and groundwater pathways. Nitrate-nitrogen concentrations in the Missis-
sippi River, which drains most US cropland, increased dramatically in the
second half of the last century, especially between the early 1960s and the
mid-1980s, largely coinciding with the surge in commercial fertilizer use
for row crops in the MR B states (e.g., see Capel et al. 2018). The corn-and-
soybeans cropping system that dominates the Corn Belt is an inherently
“leaky” system—some nitrogen loss to subsurface drainage water is inevi-
table (McLellan et al. 2015). In fact, the majority of agricultural nitrogen
loss occurs via subsurface drainage water, either as seepage through soils and
shallow geologic units or in engineered drainage structures such as drainage
tiles and ditches.

Aside from oscillations in streamflow, artificial drainage and other
changes to the hydrology of the Midwest (e.g., dams and reservoirs), atmo-
spheric deposition of nitrates within the MR B, non-point discharges from
urban and suburban areas, and point discharges, particularly from domestic
wastewater treatment systems and feedlots, all contribute to the nutrients
that reach the GoM (Goolsby et al. 1999). Between 1980 and 2016, close to
1.5 million metric tons of nitrogen (about 63 percent in the form of nitrate)
per year were discharged, on average, to the GoM. From 1968 to 2016, the
average annual Mississippi streamflow was close to 21,500 cubic meters per
second.” During this time, there was a strong positive relationship between
the streamflow of the Mississippi and nitrogen flux in the GoM.

Dairy, beef, hog, poultry, and aquaculture systems can also cause sig-
nificant discharges of nutrients to streams and rivers. Untreated wastewa-
ter from these systems generally has very high concentrations of nitrogen,
most often as ammonia-nitrogen, although high concentrations of nitrate-
nitrogen are also possible. Urban and suburban areas have significant runoff
from lawns, parking lots, rooftops, roads, highways, and other impervious
sources. The major point sources of direct discharges of nutrients, particu-
larly nitrogen-nitrogen, appear to be domestic wastewater treatment plants.
Fossil-fuel combustion in car engines and electric generating plants also
contributes to airborne nitrates that return to the earth’s surface with rain,
snow, and fog (wet deposition) or as gases and particulate (dry deposition).

2. We refer to the average flow and total Mississippi-Atchafalya nitrogen flux (sum of
NO,+NO,, TKN, and NH;) AMLE estimates using data in this link: http://toxics.usgs.gov
/hypoxia/mississippi/flux_ests/delivery/index.html.
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Table 9.1 Nitrogen pollution damages and abatement costs

Source Damages Details

A. Damages

Taylor and Heal (2021) $583 U.S.. per ton of nitrogen
Sobota et al. (2015) 515,840 U.S., per ton of nitrogen
Van Grinsven et al. (2013) $13.338-$53.351 E.U.. per ton of nitrogen
Compton et al. (2011) $56.000 GoM fisheries decline, per ton of nitrogen
Compton et al. (2011) $6.380 CB recreational use, per ton of nitrogen
Blottnitz et al. (2006) $300 E.U.. per ton of nitrogen
Dodds et al. (2009) $2.2 billion U.S., freshwater eutrophication, annually
Kudela et al. (2015) $4 billion U.S.. algal blooms, annually
UCS (2020) $0.552-52.4 billion GoM fisheries & marine habitat, annually
Anderson et al. (2000) $449 million U.S.. algal blooms, annually
Source Abatement costs Geographic scope
B. Abatement costs
Xuetal. (2021) $6 billion Mississippi River Basin
Tallis et al. (2019) $2.6 billion Mississippi River Basin
Marshall et al. (2018) $1.9-8$3.3 billion Mississippi River Basin
McLellan et al. (2016) $1.48 billion Mississippi River Basin
Whittaker et al. (2015) $9.25 billion Mississippi River Basin
Rabotyagov et al. (2014a) $2.6 billion Mississippi River Basin
USEPA (2001) <$1-%4.3 billion US, national
Ribaudo et al. (2001) $0.1-$7.91 billion Mississippi River Basin
Doering et al. (1999) —$0.1-817.95 billion Mississippi River Basin

Note: In Van Grinsven et al. (2013a). the reported cost of €25-100 billion per year implies a cost of
€4.11-16.43 per Ib of nitrogen using 0.6 ¥ 4.6 = 2.6 million tons of nitrogen attributed to agricultural
sources. At an exchange rate of $1.5/in 2008, we have a cost of $6.05-$24.20 per Ib of nitrogen in 2008.
We report the cost per ton of nitrogen. In the case of USEPA (2001), the costs are per year for the devel-
opment of TMDLs, Table IV-1 in USEPA (2001) shows the leading causes of water impairment (nutri-
ents account for 11.5%) and leading sources (agriculture accounts for 24.6%). See table 6.1 in Doering et
al. (1999), where the numbers are reported as net social benefits. See table 2 in Ribaudo et al. (2001),
where the numbers are reported as net social benefits too. We use “CB" to refer to the Chesapeake Bay,
“GoM™ to refer to the Gulf of Mexico. For additional details, see section 9.2 in the main text and section
A.1 of the online appendix (http://www.nber.org/data-appendix/c14692/appendix.pdf).

This nitrogen then enters streams and rivers and/or is retained in terrestrial
systems in the same pathways as nitrate-nitrogen fertilizer.

Damages and abatement costs of nitrogen pollution. In table 9.1, we sum-
marize studies related to damages and abatement costs associated with
nitrogen pollution noting that the estimation of the economic value of
the damages associated with nutrient pollution can be particularly chal-
lenging.* The social cost of pollution in the context of water quality has

3. EPA (2015) provides estimates of external costs associated with nutrient pollution impacts
on tourism and recreation, commercial fishing, property values, human health. as well as drink-
ing water treatment costs, mitigation costs. and restoration costs.



302 Konstantinos Metaxoglou and Aaron Smith

received less attention than the social cost of carbon in the context of cli-
mate change. Quantifying the social cost of nitrogen is challenging due to
multiple loss pathways associated with damages to water quality, air qual-
ity, and climate change that occur over heterogeneous spatial and temporal
scales (Gourevitch, Keeler, and Ricketts 2018). The diversity of nitrogen
loss pathways and endpoints at which damages occur makes it challeng-
ing to construct a single cost metric. The impacts are largely driven by
the location where the nitrogen is emitted and applied, the transport and
transformation of nitrogen into different forms, and the expected damages
along the flow path (Keeler et al. 2018).

Nitrogen pollution and agriculture. Using too little nitrogen for a highly
responsive crop such as corn entails lower yields, poorer grain quality, and
reduced profits. When too much nitrogen is applied, crop yields and qual-
ity are not affected, but profit can be reduced somewhat and negative en-
vironmental consequences are very likely. Thus, many farmers choose to
err on the liberal side in terms of nitrogen application rates. This extra
nitrogen is often called “insurance” nitrogen; see Mitsch et al. (1999) and
CENR (2000), among others. Overall, nitrogen use efficiency (uptake) and
the “4Rs” in nutrient management—right source, rate, time, and place for
plant nutrient application based on local agronomic recommendations—
in order to minimize nitrogen losses to the environment are of paramount
importance for addressing nitrogen pollution.

The prevention of nutrient pollution, particularly in the form of nitrate-
nitrogen, is possible through a number of general approaches and specific
techniques, ranging from modification of agricultural practices to the con-
struction and restoration of riparian zones and wetlands as buffer systems
between agricultural lands and waterways.* To provide some examples, on-
site control of agricultural drainage is possible via adoption of one or a com-
bination of the following: nitrogen fertilizer application rates, management
of manure spreading, timing of nitrogen application, the use of nitrification
inhibitors, the change of plowing (tillage) methods, and increasing drainage
tile spacing. Wetlands and riparian buffers can be effective means of off-site
control.

Policy responses to nutrient pollution. As of this writing, the major federal
response to nutrient pollution from agriculture continues to be through
research, education, outreach, and voluntary technical and financial incen-
tives. A number of USDA agencies provide support through education,
outreach, and research, while federal funds are provided through conserva-
tion programs to help agricultural producers, who participate voluntarily,
to adopt best management practices in crop production to achieve nutri-

4. EPA (2007). Ribaudo et al. (2011), NRCS (2017b), and Capel et al. (2018). among others,
offer a very informative discussion on controlling nitrogen pollution from agricultural sources.
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ent pollution reduction. At a very high level, the USDA programs are dis-
tinguished between land-retirement and working-land programs with the
spending on conservation programs having increased substantially since
the 2002 Farm Security and Rural Investment Act.® In the case of the land-
retirement programs, landowners receive payments in exchange for taking
land out of active agricultural production and putting the land into peren-
nial grasses, trees, or wetland restoration. Landowners or producers par-
ticipating in working-land programs receive payments to cover part or all
of the costs of making changes in conservation practices and management
decisions on their land that remains in agricultural production.

In one of the most comprehensive assessments of conservation prac-
tices by US farmers, the USDA Conservation Effects Assessment Project
(CEAP) national nitrogen loss report (NRCS 2017b) found that 29 percent
of nitrogen applied as commercial fertilizer or manure was lost from the
fields through various pathways based on survey data for 2003-2006. The
mean of the average annual estimates of total nitrogen loss was 34 Ib per
cultivated cropland acre per year. The amount varied considerably, however,
among cultivated cropland acres. Total nitrogen losses were highest for acres
receiving manure (56 1b per acre per year). Based on simulations performed
using the APEX model in the report, the use of conservation practices dur-
ing 2003-2006 reduced total nitrogen loss (all loss pathways) by 14.9 1b per
acre per year, on average, representing a 30 percent reduction.

9.3 A Simple Theoretical Framework

We estimate the reduced-form effect of an increase in corn acreage on
nitrogen pollution via OLS regressions. We focus on this relationship in part
because corn acreage is the driving force behind the amount of nitrogen
fertilizer used. In addition, acreage is much better measured than fertilizer
use. We observe nitrogen fertilizer sales by county, but we do not know in
which county or year that fertilizer was applied to a field. In contrast, we
observe annual acreage by county.®

5. We refer to this link, https:/www.fsa.usda.gov/programs-and-services/conservation
-programs/index. and Capel et al. (2018) for a succinct and very informative discussion of the
various USDA conservation programs.

6. Paudel and Crago (2020) use the nitrogen fertilizer sales data to estimate the effect of
fertilizer on nitrogen pollution. They obtain an elasticity of nitrogen pollution with respect
to nitrogen fertilizer of about 0.15 for the US. We find an elasticity of nitrogen pollution with
respect to corn acres of a very similar magnitude. Adding the assumption of no substitution
between nitrogen fertilizer and other inputs to the assumption of a fixed amount of nitrogen
fertilizer per corn acre allows us to link the price elasticity of the demand for fertilizer (n,,)
to the price elasticity demand for corn (m,,,,) Via Mg, = (P | Pogrn) Meorn- In terms of notation,
Ppn and p,,,, are the prices of nitrogen fertilizer and corn. respectively. As we discuss later in the
paper. fertilizer costs account for about 20 percent of the value of corn production during the
period we study, which coupled with a reasonable value of m_,,, of about —0.3, also supported
empirically in subsequent section. imply mg, = 0.3 x 0.2 = ~0.06. Hence. the demand for
nitrogen fertilizer is highly inelastic.
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Our empirical analysis, which focuses on the relationship between corn
acreage and nitrogen pollution, is motivated by the following. Farmers
decide how to allocate acreage to various crops including corn, which is the
most fertilizer intensive and is the crop we focus on. Soybeans, the other
commonly planted crop in the US Corn Belt, require little nitrogen fertilizer.
Farmers apply about 150 Ib of nitrogen fertilizer per planted acre of corn
and 5 1b per planted acre of soybeans. About 70 percent of soybean acres
receive no nitrogen fertilizer.” Crop production requires various inputs such
as labor, capital, fuel, seeds, fertilizers, and chemicals. Farmers’ planting
decisions are based on the expected post-harvest crop price and expected
costs. Weather conditions, especially precipitation and temperature, dur-
ing the growing season determine plant growth and eventually yields. Pre-
planting weather conditions may also affect planting decisions.

As farmers plant more corn acres, they use more nitrogen fertilizer, gen-
erally following agronomic recommendations. The shape of the crop pro-
duction function implies that fertilizer application in excess of agronomic
recommendations does not reduce yields, which provides an insurance moti-
vation to use extra fertilizer, as we discussed earlier. A combination of fac-
tors in and out of the farmers’control, including weather, determine the crop
nitrogen uptake, and, hence, the amount of surplus (excess) nitrogen that
will not be used by the plants and will remain in the soil. This surplus nitro-
gen will eventually find its way to lakes, rivers, and streams, contributing to
nutrient pollution. The amount of surplus nitrogen that enters waterways is
determined in part by the weather. Wetter conditions affect acreage, nutrient
runoff, and streamflow, all of which can contribute to nutrient pollution. All
else equal, more rainfall means more nutrients carried through the soil and
along the surface into waterways. Thus, we expect increases in corn acreage
to increase nitrogen concentration, especially in wet years. Similarly, extreme
heat, which has a well-documented negative impact on crop growth (e.g.,
Jigermeyretal. 2021, among others) may limit nutrient uptake and contrib-
ute to runoff. On the one hand, it is plausible that farmers may compensate
for the loss in yields by fertilizing more. On the other hand, as discussed in
the chapter by Elbakidze et al. (2022), lower yields may reduce the profit-
ability of crop production and may result in decreased crop acreage, which
could reduce nitrogen runoff.

In general, more rainfall due to a warmer and wetter atmosphere is
increasing nitrogen pollution exacerbating algae growth and expanding dead
zones in coastal areas.® Evidence suggests that several projected outcomes
of global climate change will act to increase the prevalence and negative

7. Based on the USDA ERS Fertilizer Use and Price data for 2018 (US average).

8. In the US Gulf Coast, the frequency and severity of hurricanes, which have been linked
to climate change, can also play an important role in the areal extent the hypoxic zone formed
every sumimer.
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impacts of dead zones.” Warmer waters hold less oxygen than cooler water,
thus making it easier for dead zones to form. Warmer waters also increase
metabolism of marine creatures, thereby increasing their need for oxygen.
Additionally, warmer temperatures and increased runoff of fresh water will
increase stratification of the water column, thus further promoting the for-
mation of dead zones. Increased runoff will also increase nutrient inputs into
coastal water bodies. On the other hand, projections of more intense tropical
storms and lower runoff would act to decrease stratification and thus make
dead zones less likely to form or less pronounced if they do form.'"

Diaz and Rosenberg (2008) assembled a database of over 400 dead zones
worldwide showing that their number is increasing exponentially over time.
To characterize the severity of climate change that these ecosystems are
likely to experience over the coming century, Diaz and Rosenberg also
explored the future annual temperature anomalies predicted to occur for
each of these systems. The majority of dead zones are in regions predicted
to experience over 2°C warming by the end of this century. Sinha, Michalak,
and Balaji (2017) show that precipitation changes due to climate changes
alone will increase by 19 percent the riverine total nitrogen loading within
the CONUS by the end of the century for their business-as-usual scenario.
The impacts are particularly large in the Northeast (28 percent), the upper
MRB (24 percent), and the Great Lakes Basin (21 percent). According to
the authors, precipitation changes alone will lead to an 18 percent increase
in nitrogen loads in the MR B, which would require a 30 percent reduction
in nitrogen inputs. The target of a 20 percent load reduction set by the GoM
Hypoxia Task Force in 2015 would require a 62 percent reduction in nitrogen
inputs taking into account the confounding effect of precipitation.'!

9.4 Empirical Approach

We estimate panel fixed-effect (FE) OLS regressions of the form:

{1) yr‘f = 8# + B]an + B?_anpn + ZF:Y + gf(r) i E,-,,

9. Our discussion borrows heavily from the discussion on “Dead Zones and Climate Change”
available in the VIMS website here: https://www.vims.edu/research/topics/dead_zones
fclimate_change/index.php.

10. According to Diaz and Rosenberg (2008), tropical storms and hurricanes influence the
duration, distribution, and size of the GoM dead zone in a complex way. In 2005, four hur-
ricanes (Cindy. Dennis, Katrina, and Rita) disrupted stratification and aerated bottom waters.
After the first two storms, stratification was reestablished and hypoxia reoccurred. but the
total area was a fourth less than predicted from spring nitrogen flux. The other two hurricanes
occurred later in the season and dissipated hypoxia for the year.

11. In February 2015, the states and federal agencies that comprise the Mississippi River/
GoM Watershed Nutrient Task Force (Hypoxia Task Force, or HTF) announced that the
HTF would retain its goal of reducing the areal extent of the GoM hypoxic zone to less than
5.000 km?, but that it will take until 2035 to do so. The HTF agreed on an interim target of a
20 percent nutrient load reduction in the Gulf of Mexico by the year 2025 as a milestone toward
achieving the final goal in 2035.
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where i denotes the cross-sectional unit (county) and ¢ denotes the time
(year) in what we call the (c)ounty-centric (henceforth, c-centric) analysis.
The dependent variable y, is nitrogen concentration in milligrams per liter
(mg/L), a;, denotes corn acres planted, p, denotes precipitation, and z,, is a
vector of weather-related control variables. The weather-related controls
include precipitation, squared precipitation, moderate-heat, and extreme-
heat degree days. We use g,(¢) to denote alternative functions of time (e.g.,
time trend, year FE, etc.). Finally, €, is the error term.

For our c-centric analysis, y, is the average nitrogen concentration
recorded at USGS monitoring sites within a 50 mile-radius from the county
centroids, and a,, are corn acres planted in county 7 at time 7. As part of a
series of robustness checks to our results, we estimate (1) using average
nitrogen concentration recorded at sites within larger (100- and 200-mile)
radii, as well as accounting for streamflow using only sites downstream of
the county centroids.

Our specifications aim to capture the most salient factors that are both
in the control and out of the control of US farmers and that influence the
nitrogen concentration of waters draining cropland, some of which we
have already discussed. Aside from weather, factors outside farmers’ con-
trol include hydrologic conditions, terrain properties of the cropland (e.g.,
slope and elevation), and soil properties (e.g., depth, texture, mineralogy,
capacity to support crop growth, and susceptibility to erosion). Factors in
farmers’ control include agricultural management practices used to boost
profits, such as cropping systems, rate of and timing of nitrogen applica-
tion, use and type of drainage and tillage systems, deployment of programs
aiming to combat nutrient pollution by the US Environmental Protection
Agency (EPA), and conservation programs administered by the USDA,
among others.

Precipitation and temperature generally affect the farmers’ decision mak-
ing during the spring planting season (e.g., when and what to plant, and how
much to fertilize). Miao, Khanna, and Huang (2015) include monthly pre-
cipitation in March to May to control for the effect of pre-planting weather
conditions on corn acreage in the US. They argue that a wet spring can make
it difficult for corn to be planted on time, and, hence, corn acreage may be
switched to soybean acreage. During the growing season, which is some-
where between March and September for most of the US, both temperature
and precipitation have an effect on crop growth and, hence, on the plants’
nutrient uptake. In the absence of robust crop growth rates, nutrients that
are not absorbed by the plants can be carried over to streams, rivers, and
lakes, depending on soil characteristics and precipitation.

Nitrogen concentrations in a basin like the MRB, which drains most
of the cropland where corn is grown and is characterized by an abundant
supply of nitrogen in the soil, tend to peak in the late winter and spring
when streamflow is highest, and lowest in the late summer and fall when
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streamflow is low. This strong positive relationship between concentration
and streamflow has been well documented in the Midwest; see Goolsby
et al.(1999) and the references cited. Importantly, the same strong positive
relationship implies that nitrogen pollution is predominantly due to non-
point sources. Nitrogen concentrations generally decrease in the summer
and fall as streamflow and agricultural drainage decrease. Assimilation of
nitrate by agricultural crops on the land and aquatic plants in streams also
helps decrease nitrogen concentrations in streams during the summer. More-
over, in-stream denitrification rates also increase during the summer due to
increased temperatures and longer residence times of water in the streams.
Hence, temperature and precipitation are correlated with both acres planted
and nitrogen concentration.

The fixed effects 8, aim to capture time invariant spatial attributes such as
soil properties and texture, and water infiltration rates that affect both the
farmers’ planting decisions and levels of nitrogen in the water due to, say,
transport and attenuation. For example, soil texture—the proportions of
sand, clay, and silt—influences the ease with which the soil can be worked,
the amount of water and air the soil holds, and the rate at which the water
can enter and move through the soil. Fine-grained (clayey) solid can hold
more water than coarse-grained (sandy) soils.

Finally, g,(r) allows us to model in a flexible way trends in fertilization
rates, as well as land management practices, such as tillage, and subsurface
tile drainage, for which data with good spatial and time coverage are not
available. They also allow us to account for farmers’ participation in conser-
vation programs administered by the USDA and other unobservables that
may exhibit spatially differentiated trends and affect both the corn acreage
and nitrogen concentration.

In the robustness checks discussed later in the chapter, we consider a long
list of additional controls to capture factors that may be correlated with both
corn acres planted and nitrogen concentration as discussed above to alleviate
concerns for potentially biased estimates. We also explore alternative ways
to measure nitrogen concentration including distance, streamflow, and time
of the year, as well as spatial and temporal variation in the effects of corn
acreage on nitrogen concentration.

9.5 Data

9.5.1 Data Sources

Water quality. The data on nitrogen concentration are from the Water Qual-
ity Portal (WQP). The WQP is a cooperative service sponsored by the USGS,
the EPA, and the National Water Quality Monitoring Council. It serves data
collected by over 400 state, federal, tribal, and local agencies with more than
more than 297 million water quality records.
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We accessed WQP data on sites and sample results (physical/chemical
metadata) associated with the parameter code 00600, which is described as
“total nitrogen [nitrate + nitrite + ammonia + organic-N], water, unfiltered,
milligrams per liter” without imposing any other of the additional filters
available in the portal in December 2019. At the time we accessed the WQP
data, there were close to 754,000 observations in the sample results data and
41,800 observations in the site data.'?

The site data contain information regarding the site’s location such as
longitude and latitude, county, and the eight-digit hydrologic unit (HUCS).
The site data also contain information on the agency operating the site (e.g.,
“USGS-IL”) and the site type (e.g., “stream,” “facility,” “lake,” “well,” etc.)
The sample results data contain a long list of variables related to water
quality measures, such as the date, time, and method of the water sample
collection. Linking the site to the sample results data is straightforward using
the site location identifier field, which is present in both data sets.

We measure nitrogen pollution using concentration in milligrams per liter
(mg/L). We limit the data to those for sites in the CONUS and for which
we track “surface water” and “groundwater” concentration in the sample
results data. For the interested reader, some additional information regard-
ing the WQP data used in the paper is available in sections A.2-A.4 of the
online appendix.

Crops. Annual county-level data on corn acres planted are available from
the National Agricultural Statistics Service (NASS) of the USDA." Fol-
lowing Schlenker and Roberts (2009) and Annan and Schlenker (2015),
among others, in a long stream of literature in agricultural economics, and
to focus on rainfed agriculture, we limit our sample to counties east of the
100th meridian and exclude Florida. This is the part of the country that
accounts for more than 95 percent of the corn produced during the time
relevant for our analysis; as part of our robustness checks, we expand the
geographic scope of our analysis to the CONUS.

Weather. We use updated temperature and precipitation data from Schlen-
ker and Roberts (2009), which are available for each county during the
growing season for 1970-2017 and are based on PRISM gridded weather
data. The data from Schlenker and Roberts have been used extensively in
the literature on the effects of climate change on US agriculture and are
discussed in great detail elsewhere (Roberts, Schlenker, and Eyer 2012).

12. The WQP data can be accessed in this link, https://www.waterqualitydata.us/ using web
service calls. A parameter code is a five-digit number used in the National Water Information
System (NWIS) to uniquely identify a water quality characteristic.

13. Table A1 in the online appendix (http://www.nber.org/data-appendix/c14692/appendix
.pdf) shows corn production by state for 1970-2017.
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Following this stream of the literature, we use precipitation, the square of
precipitation, cumulative degree days (DDs) between 10°C and 29°C
(moderate heat), and cumulative degree days above 29°C (extreme heat).
In what follows, the precipitation is measured in meters, the moderate heat
1s measured in 1,000 DDs, and the extreme heat is measured in 100 DDs.

Hydrologic Units. We use the USDA Natural Resources Conservation Ser-
vice (NRCS) watershed boundary data set (WBD) to identify hydrologic
units of different size."* We use two-digit hydrologic unit codes (HUC2s)
to explore spatial variation in our estimated acreage effects in the panel
FE regressions and to construct spatial FEs in robustness checks that per-
tain to cross-section regressions. We use four-digit hydrologic unit codes
(HUC4s) to cluster the standard errors in our regressions. We use HUCS8s
in an analysis based on an alternative data aggregation scheme, as part of
our robustness checks.

National hydrography data set plus V21. As in Keiser and Shapiro (2018),
we use the NHD Plus flowline network to follow water pollution upstream
and downstream. In particular, we use the National Seamless Geodatabase
built on NHD Plus to identify monitoring sites downstream of counties
of interest.

9.5.2 Data Overview and Descriptive Statistics

For our baseline estimates, we use data for counties east of the 100th
meridian (EAST-100) excluding Florida for 1970-2017. We use the latitude
and longitude of the county centroids to identify the relevant EAST-100
counties which we obtain from the CENSUS TIGER shape files. As we dis-
cussed earlier, we calculate nitrogen concentration using USGS monitoring
sites within a 50-mile radius from the county centroids.

Table 9.2 shows basic summary statistics for nitrogen concentration, our
measure of pollution, and corn acres planted. These are the dependent and
main explanatory variables of interest in our regression models. The table
also shows summary statistics for precipitation (total annual and total by
month), as well as for moderate and extreme heat by month. Precipitation

14. The GBD files for hydrologic units of different size are available in the following link:
https://nres.app.box.com/vigateway/folder/18546994164. The US is divided into successively
smaller hydrologic units which are classified into four levels: regions, subregions, accounting
units, and cataloging units. The hydrologic units are arranged or nested within each other from
the largest geographic areas (regions) to the smallest geographic areas (cataloging units). Each
hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight
digits based on the four levels of classification in the hydrologic unit system. It is common to
refer to hydrologic units as watersheds, and what we describe here as hydrologic accounting is
also described as watershed delineation. The word watershedis sometimes used interchangeably
with drainage basin or catchment.



Table 9.2

Summary statistics

Variable Panel obs Years  Mean sd. B sd. W Median
nitrogen 2232 64,121 28.7 2.451 1.645 1.663 1.683
acres planted 2,232 64,121 28.7 0.038 0.048 0.011 0.015
precipitation annual 2,232 64,121 28.7 1.088  0.259 0.174 1.070
precipitation jan 2,232 64,121 28.7 0.073 0.041 0.039 0.060
precipitation feb 2232 64,121 28.7 0.067 0.036 0.036 0.055
precipitation mar 2232 64,121 28.7 0.092 0.038 0.046 0.081
precipitation apr 2232 64,121 28.7 0.095 0.024 0.048 0.086
precipitation may 2,232 64,121 28.7 0.111 0.022 0.050 0.104
precipitation jun 2,232 64,121 28.7 0.109 0.017 0.050 0.101
precipitation jul 2,232 64,121 28.7 0.106 0.023 0.049 0.098
precipitation aug 2232 64.121 28.7 0.099 0.021 0.047 0.091
precipitation sep 2,232 64.121 28.7 0.094 0.021 0.056 0.082
precipitation oct 2,232 64.121 28.7 0.082 0.019 0.049 0.072
precipitation nov 2,232 64,121 28.7 0.082 0.031 0.044 0.073
precipitation dec 2,232 64,121 28.7 0.078 0.038 0.043 0.067
moderate heat jan 2,232 64,121 28.7 0.018 0.027 0.017 0.004
moderate heat feb 2232 64.121 28.7 0.027 0.035 0.017 0.011
moderate heat mar 2,232 64,121 28.7 0.070 0.062 0.027 0.051
moderate heat apr 2,232 64,121 28.7 0.138 0.076 0.030 0.125
moderate heat may 2,232 64,121 28.7 0.253 0.082 0.040 0.245
moderate heat jun 2,232 64,121 28.7 0.361 0.071 0.029 0.365
moderate heat jul 2,232 64,121 28.7 0.430 0.061 0.027 0.439
moderate heat aug 2:232 64,121 28.7 0.408 0.068 0.031 0.415
moderate heat sep 2,232 64,121 28.7 0.295 0.082 0.033 0.291
moderate heat oct 2,232 64.121 28.7 0.157 0.079 0.031 0.144
moderate heat nov 2,232 64,121 28.7 0.064 0.055 0.024 0.047
moderate heat dec 2,232 64,121 28.7 0.025 0.033 0.017 0.008
extreme heat jan 2,232 64,121 28.7 0.000 0.000 0.000 0.000
extreme heat feb 2,232 64,121 28.7 0.000 0.001 0.001 0.000
extreme heat mar 2,232 64.121 28.7 0.000 0.003 0.002 0.000
extreme heat apr 2:232 64,121 28.7 0.004 0.010 0.009 0.000
extreme heat may 2,232 64,121 28.7 0.022 0.034 0.026 0.006
extreme heat jun 2,232 64,121 28.7 0.106 0.100 0.071 0.066
extreme heat jul 2,232 64,121 28.7 0.216 0.172 0.119 0.167
extreme heat aug 2,232 64,121 28.7 0.174 0.165 0.108 0.108
extreme heat sep 2:252 64,121 28.7 0.061 0.074 0.054 0.024
extreme heat oct 2,232 64,121 28.7 0.006 0.016 0.011 0.000
extreme heat nov 2,232 64,121 28.7 0.000 0.001 0.001 0.000
extreme heat dec 2,232 64,121 28.7 0.000 0.000 0.000 0.000

Note: An observation is a county-year combination. The panel column indicates the number
of counties. The years column gives the average number of observations per county. We also
report the between-counties (s.d. B) and within-county (s.d. W) standard deviation. The acres
are measured in millions and the nitrogen concentration is measured in mg/L. The precipita-
tion is measured in meters. The moderate heat is measured in 1,000 degree days between 10°C
and 29°C. The extreme heat is measured in 100 degree days above 29°C. For additional details,

see section 9.5.2.
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plays an important role in our assessment of the effects of agriculture on
nutrient pollution based on our earlier discussion regarding the tight con-
nection between nitrogen pollution and rainfall.

We have about 64,000 observations and 2,200 counties. On average, we
track a county for 29 years during the 48-year period 1970-2017. The mean
nitrogen concentration is about 2.5 mg/L and both the between-counties and
within-county standard deviation are around 1.65 mg/L. Hence, pollution
exhibits similar variation across counties and within a county over time.
On average, 38,000 acres of corn are planted per year in a county. Contrary
to nitrogen pollution, the variation in acres is much larger across counties
(48,000 acres) than within a county over time (11,000 acres). As a bench-
mark for the acres planted, the mean (median) county land area is 603 (556)
square miles or 386,187 (355,969) acres. The total annual precipitation is,
on average, close to 1.1 meters and varies more across counties than within
a county over time. On average, February and May are the months with the
smallest (0.067 meters) and largest (0.111 meters) total precipitation, respec-
tively. July is the month with the largest number of moderate-heat (430) and
extreme-heat (21.6) DDs. While monthly precipitation varies more within a
county over time than across counties with the exception of January, extreme
and moderate heat DDs vary more across counties than within a county over
time for most months.

9.5.3 Nitrogen Concentration Across Space and Over Time

The choropleth maps in figure 9.1 offer visualizations of the spatial varia-
tion for the variables used in our analyses and provide some descriptive
evidence on the spatial correlation between nitrogen concentration and corn
acreage. In general, we see higher concentration in watersheds in south-
ern Minnesota, Ilowa, Illinois, Indiana, and Ohio that drain large areas of
agricultural land. We explore this spatial correlation in more depth using
cross-section regressions.

In panel A of figure 9.2, based on monitoring-site level data on average
daily nitrogen concentrations (mg/L), we show trends in nitrogen concentra-
tion. We also show flow-normalized annual nitrogen concentration in the
GoM using data from the USGS National Water Quality Network in panel
B. Panels C and D provide information related to fertilizer use and acreage,
which are important in understanding the relationship between agriculture
and nitrogen concentration.

The use of nitrogen fertilizer increased from about 2.5 million metric tons
(mmts) in 1964 to 11.8 mmts in 2015; it reached its peak of about 12 mmts
in 2013. Most of the almost fivefold increase took place before the early
1980s (panel C). By 1981, nitrogen use had steadily increased to 10.8 mmits.'?

15. See table 9 (percent of corn acreage receiving nitrogen fertilizer) in this link: https://www
.ers.usda.gov/webdocs/DataFiles/50341/fertilizeruse.x1s?v=5014.
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Fig. 9.1A-F Nitrogen concentration, corn acreage, and weather-related variables
Note: Panels A—F are read from left to right. In all panels. we show averages for 1970-2017.
The shading of the choropleth maps is based on the deciles of the empirical distribution. In
panels D, E. and F. we show the months with the highest average values. The acres are in mil-
lions and the nitrogen concentration is in mg/L. The precipitation is in meters. The moderate
heat is in 1,000 degree days between 10°C and 29°C. The extreme heat is in 100 degree days
above 29°C. For additional details, see section 9.5.2.
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Fig. 9.2A-D Nitrogen pollution and related factors

Note: Panels A-D are read from top left to bottom right. In panel A, we regress the average
daily nitrogen concentration at the USGS monitoring-site level for the CONUS on site fixed
effects (FEs). year FEs, day. day squared, day cubed. month. month squared. month cubed,
and report the estimated year FEs. The 95% confidence intervals shown are constructed using
standard errors clustered by HUCS. Additional details regarding the flow-normalized total
nitrogen concentration in the Gulf in panel B are available in the following USGS link: https:/
nrtwg.usgs.govinwqn/\#/GULF. In panel C, we show US consumption of nitrogen fertilizer
from table 9.1 in the USDA ERS report on fertilizer use and price. In panel D, we show corn
acres planted from the USDA Historical Track Records. For additional details, see section
9.5.3:

The expansion of nitrogen use during this time was due to expanded acre-
age (panel D), increase in application rates, and a higher share of acres
receiving fertilizer (from 85 percent to 97 percent); the percent of US corn
acreage receiving nitrogen fertilizer has been 95 percent, on average, in the
last 50 years or so. Since then fertilizer use has fluctuated over time following
changes in cropping system implementation and fertilizer crop prices, but
has shown no persistent trend (Hellerstein, Vilorio, and Ribaudo 2019). The
application rates in the major corn producing states follow similar trends
with a notable increase between the mid-1960s and early 1980s. The fertilizer
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costs have oscillated between 14 percent and 27 percent of the corn gross
value of production averaging close to 20 percent.

Overall, there is an increase in nitrogen concentration between the early
1970s and early 1980s from about 2 mg/L to a peak of about 3 mg/L. This
pattern is consistent with the increase in corn acreage and nitrogen fertilizer
use. Following a downward trend between the mid-1980s and the mid-1990s,
nitrogen concentration has plateaued at about 2.3 mg/L in the last 20 years
or so. These are roughly the concentration levels in the early 1970s. The
flow-normalized annual nitrogen concentration in the GoM exhibits a very
similar behavior over time.'®

9.6 Econometric Estimates

Preamble. Table 9.3 shows detailed results of the panel FE regressions for
our (c)ounty-centric analysis. In panel A, we report results from regressing
nitrogen pollution on corn acres planted without controlling for weather.
In panel B, we control for weather. In particular, we use 12 control variables
(one for each month) for precipitation, squared precipitation, moderate-heat
DDs, and extreme-heat DDs, for a total of 48 variables. In panel C, we add
the interaction of acres with total annual (January—December) precipita-
tion to the set of explanatory variables. The standard errors are clustered
at the HUC4 level (124 clusters) accommodating arbitrary correlation of
the unobservables across time and space.'” To explore the implications of
climate change for our estimated effects, we also interact corn acreage with
moderate- and extreme-heat DDs in a subsequent section.

Baseline estimates. For the models without weather-related controls, the
adjusted R-squared (R?) is 0.26-0.53 depending on the specification with
most of the fit improvement attributed to the county FEs. Apart from the

16. Sprague, Hirsch, and Aulenbach (2011) estimate changes in nitrate concentration and
flux during 19802008 at eight sites in the MRB using the WRTDS model, which produces
flow-normalized (FN) estimates of nitrate concentration and flux. Their results show that
little consistent progress had been made in reducing riverine nitrate since 1980, and that FN
concentration and flux had increased in some areas. Murphy. Hirsch, and Sprague (2013), who
extended the analysis in Sprague, Hirsch. and Aulenbach (2011), show that trends in FN nitrate
concentration and flux were increasing or near-level at all sites for 1980-2018. They note, how-
ever. that trends at some sites began to exhibit decreases or greater increases during 20002008,

17. In Section A.5 of the online appendix (http://www.nber.org/data-appendix/c14692
fappendix.pdf). we discuss results from cross-section regressions. In section A.6, we discuss
results from (h ) ydrologic unit-centric and ( m )onitoring site-centric analyses. For the h-centric
analysis, i denotes an eight-digit hydrologic unit (HUCS), y, is the average nitrogen concentra-
tion using sites located in the same HUCS, and a,, are acres planted planted in counties that lie
in the same HUCS weighted by their area. For the m-centric analysis, y,,is the concentration for
monitor i and g, are the acres planted in counties within a 50-mile radius from the site. Regard-
ing the weather-related variables, in the case of the m-centric analysis, p, and z,, are averages
across counties within the assumed radius of site i. For the h-centric analysis, we use averages
of the same variables weighted by the area of the counties that lie within the HUCS polygons.
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specifications with county-specific linear trends in columns A7 and AS,
the acres coeflicient is statistically significant at 5 percent level with values
between 3.862 (column AS5) and 23.581 (column Al). According to these
estimates, the implied elasticities are 0.060-0.364 and they are significant
at 5 percent level. For the specifications with county-specific linear trends,
the elasticities are not significant at conventional levels.'®

In the presence of weather-related controls, there is a notable change in
the acres coefficient from 23.581 (column A1) to 18.458 (column B1) for the
specification without county FEs. The model fit improvements, however, are
relatively minor. As it was the case for the models without weather-related
controls, the acres coefficients fail to be statistically significant at conven-
tional levels for the specifications with county-specific trends (columns B7
and B8). Apart from the specification without county FEs (column B1), the
elasticity of nitrogen concentration with respect to corn acreage is between
0.061 (column B5) and 0.093 (column B6).

The interaction of acres with precipitation implies effects that are signifi-
cant at 5 percent level even in the presence of county-specific trends. Indeed,
all but 2 of the 24 elasticities are significant at 5 percent level. Once again,
apart from the specification without county FEs that implies elasticities of
0.278 (first precipitation quartile) to 0.395 (third quartile), we see elasticities
of up to 0.086, 0.130, and 0.178, depending on the precipitation quartile, all
of which are significant at 1 percent level. For the richest specification (col-
umn C8) that includes county FEs, county-specific trends, and year FEs, the
elasticities are significant at 1 percent level and equal to 0.076 and 0.118 for
the second and third precipitation quartiles, respectively; their counterpart
for the first quartile is not significant at conventional levels.

Figure 9.3 shows point estimates along with 95 percent Cls for the 48
weather-related controls. Among the 48 coefficients, only the ones associ-
ated with January precipitation and its square are statistically significant.
Based on multiple-hypotheses testing performed separately for each of the
three sets of weather-related controls, the 24 precipitation controls, as well
as the 12 extreme-heat controls, are jointly significant at 5 percent. The 12
moderate-heat controls are not jointly significant at conventional levels."

Statistical significance. In all, we see positive and statistically significant ef-
fects of corn acreage on nitrogen pollution. The specifications that control
for weather and contain an interaction of corn acreage with precipitation

18. Throughout the paper. we refer to statistical significance at < 10 percent as significance
at conventional levels.

19. We discuss additional estimates for the panel FE regressions summarized in tables 9.4-6
and figure 4 in section A.6 of the online appendix (http://www.nber.org/data-appendix/c14692
fappendix.pdf). A detailed discussion of the motivation behind our additional estimates and
any related data sources for the panel FE regressions is available in section A.6.1 and section
A.6.2. A similar discussion for the cross-section regressions is available in section A.6.3.
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Fig. 9.3A-D Panel FE regressions, weather related controls

Note: Panels A-D are read from top left to bottom right. The figure shows point estimates and
95% confidence intervals (Cls) for the 48 weather related controls in specification CR of the
panel FE regressions in table 9.3. The Cls are constructed using standard errors clustered by
HUC4. The F statistics and the p-values in squared brackets for the joint significance of the
coefficients shown in the four panels are as follows: 2.06 [0.024] for panel A, 2.94 [0.001] for panel
B. 1.39[0.178] for panel C. and 2.02 [0.027] for panel D. For additional details, see section 9.6.

generally imply larger effects than their counterparts that do not contain
such interactions. Spatial FEs matter more than time-related controls for the
magnitude of the effects. According to our preferred specification (column
C8), the elasticity of nitrogen concentration with respect to corn acreage is
0.076 for the second precipitation quartile and increases to 0.118 for the third
quartile. In both instances, the elasticity is significant at 1 percent level.

Economic significance. The statistically significant effects reported above
are also economically meaningful according to a back-of-the-envelope cal-
culation that utilizes the (median) potential damage costs of nitrogen due
to declines in fisheries and estuarine/marine life of $15.84 per kg ($2008)
from table 1 in Sobota et al. (2015). At the third precipitation quartile, a
1 within-county standard deviation increase in corn acres planted implies
a 3.3 percent increase in the level of nitrogen concentration. At the average
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nitrogen concentration of about 2.5 mg/L and the average streamflow of
the Mississippi River in the GoM in our sample (= 21,500 cubic meters per
second), this effect entails close to 50,800 additional metric tons of nitro-
gen in the GoM. Hence, our estimated increase in nitrogen concentration
of 3 percent implies an external cost of $805.5 million per year in $2008, or
approximately $805.5 x 1.14 = $918.3 in $2017 (the last year in our sample)
using the GDP deflator (FRED GDPDEF series).”

Reconciling our baseline estimates. Table 4 in Hendricks, Smith, and Sum-
ner (2014) gives the average nitrogen loss from the edge-of-field (EoF) as
predicted by the SWAT model—coupled with an econometric model—for
different land uses in Iowa, Illinois, and Indiana for 2000-2010. Nitrogen
losses are the sum of nitrate and organic nitrogen loss. Corn after corn
generates the largest nitrogen losses (34.7 1b per acre per year [Ib/aly], on
average) because more fertilizer is applied to corn after corn since there is
no nitrogen carry-over from a previous soybean crop. The mean loss of
34.7 Ib/aly reported by the authors is similar to the average estimate of
total nitrogen loss of 34 Ib/a/y in the USDA CEAP national nitrogen loss
report (NRCS 2017b) we discussed earlier.

Assuming the mean annual EoF loss of about 35 Ib/a/y from Hendricks,
Smith, and Sumner and 79,384,857 corn acres per year (average of national
corn acres planted during the same period according to USDA data), we
have 1,260,294 metric tons of total nitrogen per year. This calculation
assumes that the EoF losses translate to an equivalent nitrogen loading in
the GoM —admittedly a strong assumption, because some nitrogen that
leaves the field does not reach the GoM. Note that the average annual total
nitrogen flux of the Mississippi and the Atchafalaya Rivers to the GoM
between is 1,460,419 metric tons for 1968-2016.%"

In our case, the average nitrogen concentration is 2.5 mg/L. According to
the USGS, the mean annual flow of the Mississippi plus Atchafalaya to the
GoM (Ibid) is about 21,376 cubic meters per second for 1968-2016. This
mean annual flow implies 1,685,245 metric tons of total nitrogen per year,
which translates to 46.8 1b/a/y using the average annual corn acreage for
1968-2016. However, a comparison of 46.8 1b/a/y with 35 Ib/a/y from Hen-
dricks, Smith, and Sumner hinges on the assumption that all nitrogen pollu-
tion recorded at the USGS monitoring sites is due to fertilizer loss from corn
fields, but it is not. A better, albeit imperfect comparison, is to assume that
70 percent of the 1,685,245 metric tons are attributed to agriculture (David,
Drinkwater, and MclIsaac 2010), in which case we have 32.8 Ib/aly (see
Wu and Tanaka 2005 for a similar approach). This loss of 32.8 Ib/a/y cal-

20. We use the average flow for years 1970-2016 from column F (Total Mississippi-
Atchafalaya River) available in the following link: https://ftoxics.usgs.gov/hypoxia/mississippi
fflux_ests/delivery/Gulf-Annual-2016.x1sx.

21. See the USGS link here: https://toxics.usgs.gov/hypoxia/mississippi/flux_ests/delivery
findex.html.



320 Konstantinos Metaxoglou and Aaron Smith

culated using our estimates is similar to the average loss of 34.7 lb/aly in
Hendricks, Smith, and Sumner.

According to our baseline panel FE estimates in column C8 of table 9.3,
a 28 percent increase in corn acres planted—assuming an increase equal 1
within-county standard deviation (11,000 acres) and using the mean acreage
(38,000 acres) from table 9.2 to calculate the percent increase—implies a a
3.3 percent increase in nitrogen concentration when evaluated at the mean
concentration of 2.5 mg/L. A 3.3 percent increase in mean concentration of
2.5 mg/L implies an increase in flux equal to 55,613 metric tons. Assuming
that this 3.3 percent increase in concentration is associated with a 28 percent
increase in 79,384,857 corn acres, the implied increase is 5.52 1b/aly.

The effect of additional corn acres on measured nitrogen in waterways is
an order of magnitude smaller than agronomic estimates of excess nitrogen
applied to those acres assuming EoF losses translate to an equivalent nitro-
gen loading to streams and rivers. However, we do not interpret our results
as evidence that the amount of surplus nitrogen used on crops is much
smaller than previously believed. Instead, our findings are consistent with
new research in environmental science arguing that there is a large amount
of nitrogen stored in subsurface soil and groundwater (e.g., Van Meter, Basu,
and Cappellen 2017; Van Meter, Van Cappellen, and Basu 2018; Ilampoor-
anan, Van Meter, and Basu 2019) and contributes to the so-called legacy
nitrogen, which may increase loadings in rivers and streams with a long
delay.”? The presence of large quantities of legacy nitrogen has substantive
policy implications because it increases the relative efficacy of downstream
policies such as fluvial wetlands (i.e., those connected to waterways) and it
is a topic we explore in more detail in Metaxoglou and Smith (2022).

Using the elasticity estimate of 0.076 from column C8 of Table 9.3, an
additional corn acre generates an average of 3.5 Ib/a/y of nitrogen in small
(level 4) streams within a 50-mile radius from the country centroids for
median precipitation and average streamflow of 362 cubic feet per second
(cfs).” This estimate is close to 10 percent of the USDA CEAP estimate of
34 Ib/aly of EoF losses. If we instead use 5.52 Ib/aly, per our discussion in
the previous paragraph, and a streamflow of 1,997 cfs, which is the average
across all streams, an additional corn acre generates an average of 30 Ib/aly
in streams and rivers, which is almost 80 percent of the NRCS estimate of
surplus nitrogen.

Additional estimates. Panel A of figure 9.4 shows that a more flexible speci-
fication for the interaction of corn acreage with precipitation does not have
a material effect on our estimated corn acreage elasticities. Similar flexible

22. Van Meter et al. (2016) study soil data from cropland in the Mississippi River basin
and find nitrogen accumulation of 25-70 kg per hectare per year (22—-62 1b per acre per year).

23. This is the average streamflow based on the Enhanced Unit Runoff Method (EROM)
Flow Estimation in the USGS NHD Plus data for years 1971-2000 and is readily available by
river segment (COMID).
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Fig. 9.4A-D

Additional elasticity estimates based on panel fixed-effect regressions

Note: Panels A-D are read from top left to bottom right. In panels A-C, we report elasticity
estimates along with 95% confidence intervals using standard errors clustered by HUC4. In
panels B and C, the legend pertains to the quartiles of total annual precipitation. We use the
same set of weather-related controls, county fixed effects (FEs). year FEs, and county-specific
trends as in column C8 in table 9.3. In panel A, we use a flexible specification (cubic spline) to
model the interaction of corn acreage and precipitation. We use the vertical dashed lines to
indicate the precipitation quartiles and the horizontal gray lines to indicate the elasticities
from specification C8 in table 9.3. In panel B, we interact corn acreage with total annual pre-
cipitation, annual moderate-. and extreme-heat degree days. In panel C. we interact corn acre-
age with total annual precipitation and corn yield residuals. We obtain the yield residuals by
regressing yields on county-specific trends. In panel D, we summarize the elasticity estimates
in tables 9.4 9.6 by precipitation quartile using kernel density plots. For additional details,
see section A.6 in the online appendix, http:/www.nber.org/data-appendix/c14692/appendix
.pdf.
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specifications based on total precipitation for different time windows dur-
ing the year (March—August and April-September) produced very similar
elasticities to the ones shown here. In panels B and C of figure 9.4, we ex-
plore the role of crop nutrient uptake. Holding extreme-heat DDs and pre-
cipitation constant, additional moderate-heat DDs imply lower elasticities.
Holding moderate-heat DDs and precipitation constant, an increase in
extreme-heat DDs has no material impact on the magnitude of the acreage
elasticities despite the well-documented negative effect of extreme heat on
yields. Holding moderate- and extreme-heat DDs constant, an increase in
precipitation implies larger elasticities. In all, the elasticity estimates when
we interact corn acreage with moderate- and extreme-heat DDs in addition
to precipitation are very similar to their baseline counterparts obtained by
interacting the corn acreage with precipitation alone. The pattern in the
magnitude of the elasticities just described also holds for panel FE regres-
sions estimated using counties in the MR B, and counties in the most north-
ern (coldest) states east of the 100th meridian from Schlenker and Roberts
(2009). The elasticity estimates for the most southern (warmest) states
from Schlenker and Roberts are generally noisy and indistinguishable from
zero at conventional levels. Their counterparts for the middle states exhibit
very little variation across the quartiles of precipitation and heat we con-
sidered. Yield shocks, calculated as deviations from county-specific yield
trends, do not matter for the magnitude of the acreage elasticities either.

The implied corn acreage elasticities for a number of models we estimated
performing a series of robustness checks, discussed in detail in section A.6
in the online appendix,* are summarized by precipitation quartile using
the kernel density plots in panel D of figure 9.4. Similar to the baseline
results, the coefficient of the interaction of corn acreage and precipitation
(coefficient 3, in equation [1]) is positive and highly significant in the vast
majority of the models we explored. Hence, the amount of precipitation
matters for the magnitude of the estimated acreage elasticities. With very
few exceptions, the corn acreage elasticities based on the second and third
precipitation quartiles are highly significant. Their counterparts based on
the first precipitation quartile are not. For the second precipitation quartile,
the elasticities that are significant at conventional levels are 0.043-0.331.
Their counterparts for the third precipitation quartile are 0.059-0.438. As
a reminder, for our preferred baseline specification in column C8 of table
9.3, the acreage elasticities are 0.076 and 0.118 for the second and third
precipitation quartiles.

9.7 Climate Change and Nitrogen Pollution

According to our econometric analysis, corn acreage drives nitrogen con-
centration and the magnitude of the acreage effect depends on precipitation

24, See http://www.nber.org/data-appendix/c14692/appendix.pdf.
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with more precipitation implying larger effects for our baseline estimates
that pertain to the part of the country east of the 100th meridian. An addi-
tional specification in which we also interact corn acreage with moderate and
extreme-heat DDs shows that, all else equal, an increase in moderate-heat
DDs implies smaller effects, while an increase in extreme-heat DDs has no
material impact on the magnitude of the effects.

We now explore the implications of climate change for our findings
regarding the relationship between corn acreage and nitrogen concentration.
In particular, we use the NASA Earth Exchange Global Daily Downscaled
Projections (NEX-GDDP-CMIP6) data set to obtain projections for pre-
cipitation, moderate-, and extreme-heat DDs, and, in turn, projections of
the marginal effects (MEs) of corn acreage on nitrogen concentration. The
NEX-GDDP-CMIP6 data set is comprised of global downscaled climate
scenarios derived from the General Circulation Model runs conducted under
the Coupled Model Intercomparison Project Phase 6 (Eyringet al. 2016) and
across two of the four “Tier 17 greenhouse gas emissions scenarios known as
shared socioeconomic pathways (SSPs), namely, SSP2-4.5 and SSP5-8.5.%°

We use out-of-sample projections from three climate models (CanESMS5,
UKESMI1-0-LL, and GFDL-ESM4) and SSP2-4.5 and SSP5-8.5 for three
weather-related variables available at a latitude/longitude resolution of
0.25°, namely, the mean of the daily precipitation rate (pr), the daily mini-
mum near surface air temperature (tasmin), and the daily maximum near
surface air temperature (tasmax). Projections of these variables from the
climate models based on alternative SSPs allow us to obtain projections of
total annual precipitation, moderate-heat, and extreme-heat DDs, which in
their turn translate to projections of corn acreage ME on nitrogen concen-
tration. These MEs do not take into account the impacts of climate change
on other factors affecting nitrogen concentration and loads (e.g., streamflow,
change in farmers’ behavior as in Elbakidze et al. 2022, etc.).

Although projections for the three weather-related variables are available
until 2100, we obtain ME projections for 2018-2050, as we are skeptical
about the use of a model that has been estimated using data for 1970-2017
to project MEs more than 20 to 30 years out of sample. We opt for projec-
tions of MEs as opposed to elasticities because the former do not require an
assumption about future values of nitrogen concentration and corn acreage
while the later do. To the best of our knowledge, projections of both acreage
and nitrogen concentration with the spatial and temporal coverage required
to obtain projections of elasticities are not available. The MEs discussed
are estimated assuming an increase in corn acreage equal to the histori-
cal (in-sample) within-county standard deviation and estimating different
regressions for five sets of counties. The specification of these regression

25. The data are available here: https://www.nccs.nasa.gov/services/data-collections/land
-based-products/nex-gddp-cmipé. Additional information including variable descriptions is
available here: https://www.nccs.nasa.gov/sites/default/files/ NEX-GDDP-CMIP6-Tech_Note
.pdf.
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equations is identical to specification C8 of table 9.3. The sets of counties
for which we obtained projections of MEs are as follows: counties east of
the 100th meridian excluding Florida (baseline), counties in the MRB, as
well as all counties in the northern, middle, and southern states east of the
100th meridian as in Schlenker and Roberts (2009).

The precipitation projections are generally smaller than their historical
counterparts across all climate models, SSPs, and quartiles of the precipita-
tion distribution. A notable exception is the median precipitation for the
middle counties for which the projections exceed their historical counterpart
for all climate models and SSPs. The projected quartiles for moderate-heat
DDs are larger than their historical counterparts for all climate models and
SSPs for all sets of counties and all three quartiles of precipitation consid-
ered. The projected quartiles for extreme-heat DDs, on the other hand, are
generally smaller than their historical counterparts, especially for the lower
quartiles of the extreme-heat distribution. It is also the case that the differ-
ences between projected and historical quartiles are generally larger for the
moderate- and extreme-heat DDs than for precipitation.

For the discussion that follows, it important to keep in mind that for the
panel FE regressions in which we interact acreage only with precipitation,
the coefficient on the interaction is significant at conventional levels for the
MRB and northern counties, in addition to the baseline counties. For the
regressions in which we interact corn acreage with precipitation and DDs,
in addition to the baseline counties, the coeflicient on the interaction of
corn acreage with precipitation is significant at conventional levels in the
MRB and northern counties. The coefficients on the interaction of the corn
acreage with moderate-heat DDs, as well as those on the interaction of
the corn acreage with extreme-heat DDs, are indistinguishable from zero at
conventional levels.

For the baseline counties—depending on the climate model and SSP—the
projected median precipitation is 1.047—-1.078 meters (panel A, table 9.7).
Its third-quartile counterpart is 1.242-1.289 meters. The implied MEs
based on the projected median precipitation are 0.048-0.053 mg/L, which
are similar in magnitude to the ME of 0.051 mg/L based on the historical
median precipitation. For the MRB counties, an area of particular inter-
est for policies aiming to address the GoM HZ areal extent, the median
precipitation projections are 0.945-0.980 meters implying MEs of 0.045-
0.051 mg/L, the lower end of which is slightly smaller than their historical
counterpart of 0.056 mg/L but similar to their baseline counterparts. For
the northern counties, the median precipitation projections are 0.875-0.937
meters implying MEs of 0.017-0.031 mg/L, respectively. Their historical
ME counterpart is 0.032 mg/L. For the middle counties, the median pre-
cipitation projections are 1.057-1.079 meters implying MEs of 0.133-0.134
mg/L, which are essentially identical to their historical counterpart, noting
that the coefficient of the interaction of corn acreage with precipitation
is statistically indistinguishable from zero. Finally, for the southern coun-
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Table 9.8

Marginal effects of corn acreage on nitrogen concentration alternative climate

models & SSPs
Model & SSP Year P25% P50% P75% ME25% MES0% ME75%
A. Baseline
Historical 1970-2017  0.885 1.070 1.274 0.025 0.051 0.080
CANESMS5 SSP245 2018-2050  0.848 1.070 1.269 0.020 0.051 0.080
CANESMS SSP585 2018-2050 0.852 1.078 1.289 0.020 0.053 0.083
GFDL-ESM4 SSP245 2018-2050 0.870 1.073 1.275 0.023 0.052 0.081
GFDL-ESM4 SSP585 2018-2050 0.866 1.062 1:251 0.023 0.050 0.077
UKESMI1-0-LL SSP245  2018-2050  0.834 1.073 1.282 0.018 0.052 0.082
UKESMI1-0-LL SSP585  2018-2050  (.838 1.047 1.242 0.018 0.048 0.076
B. Mississippi River Basin

Historical 1970-2017  0.789 1.008 1.230 0.018 0.056 0.095
CANESMS5 SSP245 2018-2050  0.695  0.963 1.203 0.001 0.048 0.090
CANESMS SSP585 2018-2050 0.691 0.967 1.218 0.000 0.048 0.092
GFDL-ESM4 SSP245 2018-2050 0.720 0.980 1.208 0.005 0.051 0.091
GFDL-ESM4 SSP585 2018-2050 0.726 0.975 1.191 0.006 0.050 0.088
UKESMI1-0-LL SSP245  2018-2050  0.673 0.960 1.199 0.003 0.047 0.089
UKESMI1-0-LL SSP585  2018-2050  0.686  0.945 1.163 0.001 0.045 0.083

C. Northern states east of the 100th meridian
Historical 1970-2017  0.801 0.940 1.087 0.002 0.032 0.063
CANESMS5 SSP245 2018-2050  0.761 0.905 1.068 0.007 0.024 0.059
CANESMS5 SSP3585 2018-2050  0.767  0.907 1.074 0.006 0.024 0.060
GFDL-ESM4 SSP245 2018-2050 0.797 0.937 1.089 0.001 0.031 0.064
GFDL-ESM4 SSP585 2018-2050 0.793 0.927 1.069 —0.000 0.029 0.059
UKESM1-0-LL SSP245 2018-2050 0.725 0.875 1.031 —0.015 0.017 0.051
UKESMI1-0-LL SSP585  2018-2050  0.731 0.883 1.019 0.014 0.019 0.049

D. Middle states east of the 100th meridian
Historical 1970-2017  0.881 1.055 1.222 0.144 0.134 0.125
CANESMS5 SSP245 2018-2050  0.848 1.066 1.215 0.146 0.133 0.125
CANESMS5 SSP585 2018-2050  0.845 1.072 1.225 0.146 0.133 0.124
GFDL-ESM4 SSP245 2018-2050 0.868 1.076 1.244 0.145 0.133 0.123
GFDL-ESM4 SSP585 2018-2050 0.878 1.064 1.204 0.144 0.133 0.126
UKESMI1-0-LL SSP245 2018-2050 0.866 1.079 1.216 0.145 0.133 0.125
UKESMI1-0-LL SSP585  2018-2050  0.857 1.057 1.189 0.145 0.134 0.126

E. Southern states east of the 100th meridian
Historical 1970-2017 1.111 1.279 1.475 —0.030 -0.024 —0.017
CANESMS5 SSP245 2018-2050  1.072 1.253 1.438 0.031 0.025 0.018
CANESMS5 SSP585 2018-2050  1.082 1.275 1.468 0.031 0.024 0.017
GFDL-ESM4 SSP245 2018-2050  1.047 1.243 1.433 0.032 0.025 0.018
GFDL-ESM4 SSP585 2018-2050 1.047 1.233 1.401 —0.032 -0.025 —0.020
UKESM1-0-LL SSP245 2018-2050 1.123 1.298 1.460 —0.029 —0.023 —0.017
UKESM1-0-LL SSP585 2018-2050 1.074 1.253 1.436 —0.031 -0.025 —0.018

Note: For each climate model and SSP combination. we report precipitation (P) quartiles and marginal
effects (MEs) calculated assuming an increase in corn acreage equal to | within-county standard deviation
using the appropriate set of counties in each panel. For comparison, we show MEs calculated using data
for 1970-2017. The precipitation is total annual and it is measured in meters. In panel A, the MEs are in
mg/L and they are calculated using specification C8 of the panel fixed-effect (FE) regressions in table 9.3.
In panels B-E, the MEs are also in mg/L and they are calculated for the same specification of the panel
FE regressions estimated using counties in the Mississippi River Basin. and the northern, middle, and
southern states following the classification in Schlenker and Roberts (2009). For additional details. see

section 9.7.
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Fig. 9.5A-L. Corn acreage marginal effects with GFDL-ESM4 precipitation pro-
jections

Note: Panels A-L are read from top left to bottom right. We show corn acreage marginal effects
(MEs) in mg/L for specification C8 of the panel fixed-effect (FE) regressions in table 9.3. We use
baseline to refer to counties east of the 100th meridian excluding Florida. We define the northern,
middle, and southern states following Schlenker and Roberts (2009). For the MEs based on the
historical data, we use precipitation averages for 1970-2017. For the MEs based on the projec-
tions from two SSPs of the GFDL-ESM4 climate model. we use precipitation averages for 2018
2050. The shading of the choropleth maps is based on deciles of the ME empirical distribution.
For additional details, see section 9.7.

ties, the median precipitation projections are 1.233-1.298 meters implying
ME:s of —0.025 to —0.023 mg/L, which are also essentially identical to their
historical counterpart. Similar to the middle counties, the coeflicient of the
interaction of corn acreage with precipitation is statistically indistinguish-
able from zero for the southern counties.

Figure 9.5 shows the spatial variation of the MEs when we interact corn
acres with precipitation projections for the two SSPs of the GFDL-ESM4
climate model. For comparison, we also show MEs based on historical
precipitation. For each county, we calculate MEs using the average pre-
cipitation for either 1970-2017 (historical) or 2018-2050 (projected) and
the appropriate coefficients of the estimated panel FE regression. For the
baseline counties, we see some of the largest MEs in counties in the South



Fig. 9.5 (cont.)
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Fig. 9.6A-L  Corn acreage marginal effects with GFDL-ESM4 precipitation and
heat projections

Note: Panels A-L are read from left to right. We show corn acreage marginal effects (MEs) in
mg/L for the panel fixed-effect (FE) regressions in which we interact corn acreage with precipita-
tion, moderate-heat DDs, and extreme-heat DDs. In the regressions, we use the same set of
weather-related controls, county fixed effects (FEs), year FEs, and county-specific trends as in
column C8 in table 9.3. We use baseline to refer to counties east of the 100th meridian excluding
Florida. We define the northern, middle, and southern states following Schlenker and Roberts
(2009). For the MEs based on the historical data, we use precipitation. moderate-, and extreme-
heat DD averages for 1970-2017. For the MEs based on the projections from two SSPs of the
GFDL-ESM4 climate model. we use averages for 2018-2050. The shading of the choropleth
maps is based on deciles of the ME empirical distribution. For additional details, see section 9.7.

(e.g., Louisiana, Mississippi, Alabama, Arkansas) and some of the small-
est effects in the Plains (e.g., northern Texas, Oklahoma) and in the upper
Midwest (e.g., Michigan, Wisconsin). We see a very similar spatial pattern
in the MEs for the MR B counties. The lack of variation across the middle
and southern counties is because of the coefficients on the interaction of
corn acreage with precipitation being indistinguishable from zero. For the
northern counties, we see negative MEs in North and South Dakota, and
some of the larger positive MEs in Pennsylvania and New Jersey. The nega-
tive MEs are due to a combination of a large negative coefficient on corn
acreage and very low precipitation.

Figure 9.6 shows the spatial variation of MEs when we interact corn
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acres with precipitation, moderate-heat DDs, and extreme-heat DDs for
the two SSPs of the GFDL-ESM4 climate model. For each county, we cal-
culate MEs using the average precipitation, extreme-heat, and moderate
heat DDs for either 1970-2017 (historical) or 2018-2050 (projected) and
different panel FE regressions for each of the five sets of counties. Across
the baseline set of counties, the median ME based on the historical data is
0.049. Its projections-based counterparts are 0.030 for SSP 245 and 0.027
SSP 585. All three median MEs are smaller than their counterparts based
on the panel FE regression in which we interact corn acreage with precipi-
tation only. This is especially true for the projected MEs. In terms of the
spatial pattern of the MEs, we see some of the largest effects in Tennessee,
and in the northern parts of Alabama and Mississippi. Some of the smallest
ME:s are those for counties along the 100th meridian, as well as in Georgia
and South Carolina. Across the MRB counties, we also see smaller median
MEs when we interact corn acres with precipitation and the DDs and more
so when we use the 2018-2050 projections. The same is true for the middle
and northern counties. For the southern counties, the median historical and
projected MEs are negative and larger in magnitude than their counterparts
based on the interaction of corn acreage with precipitation alone.

9.8 Conclusion and Policy Implications in an Era of Climate Change

We study the relationship between water nutrient pollution and US agri-
culture using data from 1970-2017 documenting a causal positive effect of
corn acreage on nitrogen concentration in the country’s water bodies east of
the 100th meridian using alternative empirical approaches. According to our
baseline estimates, a 10 percent increase in corn acreage increases nitrogen
concentration in water by up to 1 percent. Annual precipitation plays an
important role in the magnitude of the estimated effects with higher pre-
cipitation exacerbating the acreage effect on nitrogen concentration. Tem-
perature also matters for the magnitude of the acreage effect. An increase in
moderate-heat degree leads to smaller effects due to its beneficial effect on
the crop nutrient uptake. Extreme-heat degree days do not seem to matter
for the magnitude of the effect. The 1 percent increase in the average level
of nitrogen concentration in the Midwest coupled with the average stream-
flow of the Mississippi River at the Gulf of Mexico during this period and
damages of about $16 per ton of nitrogen implies an annual external cost
of $800 million.

Our estimated effect of additional corn acres on measured nitrogen in
waterways is an order of magnitude smaller than agronomic estimates of
excess nitrogen applied to those acres assuming edge-of-field losses trans-
late to an equivalent nitrogen loading to streams and rivers. Our findings
regarding the magnitude of the effect are consistent with a new line of
research showing that large amounts of nitrogen stored in subsurface soil
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and groundwater give rise to the so-called legacy nitrogen, which may con-
tribute to loadings in rivers and streams with a long delay, a topic we explore
in more detail in Metaxoglou and Smith (2022).

Given the role of precipitation and temperature on the magnitude of the
estimated effect of corn acreage on nitrogen concentration, we explore the
implications of climate change for our findings. We use the NASA Earth
Exchange Global Daily Downscaled Projections data set to obtain precipita-
tion and temperature projections for 20182050, which we translate to pro-
jections of marginal effects of corn acreage on nitrogen concentration. The
marginal effects based on precipitation projections from the NASA GFDL-
ESM4 climate model and two shared socioeconomic pathways are very simi-
lar in magnitude to their counterparts calculated using historical data. The
marginal effects based on temperature projections are slightly smaller than
those using historical data. These estimated effects do not account for the
impacts of climate change on acreage, nitrogen fertilizer use, legacy nitrogen,
runoff, and streamflow, all of which contribute to nutrient pollution.

Based on recent work identifying wetlands as a powerful weapon in the
war against nutrient pollution, especially due to their efficacy in also remov-
ing legacy nitrogen, we ought to emphasize their vulnerability to changes
in landscapes and weather patterns impacted by climate change. Increased
flooding, drought spells, extreme heat, and frequency of severe storms due
to climate change all can negatively affect wetlands (Salimi, Almuktar, and
Scholz 2021). Taking into consideration other ecosystem services that wet-
lands also provide, such as absorbing floodwaters, providing habitat for wild-
life, and acting as net carbon sinks, adds to the case for policy discussion
of these issues, especially in the light of recent developments in redefining
the Waters of the United States that are protected by the Clean Water Act.
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