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ABSTRACT

We show that patents related to clean energy generation & storage, changes to
industrial production, and carbon capture & sequestration (CCS) – where break-
throughs are seen as being particularly critical to addressing climate change – are
more than twice as likely to cite fundamental science than other Net-Zero patents,
highlighting their ‘deep tech’ focus compared to innovation in areas such as energy
efficiency, ICT and transportation. Interestingly, VC-backed firms have patents
that are significantly more likely to cite fundamental science compared to other
firms, including in these ‘deep tech’ sectors. Net-Zero related patents granted to
VC-backed firms are also three-to-five times more likely to be among the group of
highest cited patents, indicating the distinctive nature of innovations commercial-
ized by VC-backed firms. However, VC still accounts for a tiny share of all patents
related to Net Zero, and the patenting focus of VC-backed firms has shifted away
from ‘deep tech’ in recent years. We discuss the growing literature on the potential
frictions facing the commercialization of science-based deep tech innovations and
also touch on potential solutions that might enable venture capital to play a more
meaningful role in supporting the transition to Net Zero in the coming decades.
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1 Introduction

As the consequences of rising global temperatures and related climate change are

becoming more apparent, a growing number of countries – covering over 70% of global

CO2 emissions – have committed in recent years to work towards achieving Net-Zero

emissions by 2050, in an effort to limit long-term increase in global temperatures to 1.5◦

C. Despite this progress, a seminal report released by the International Energy Agency

(IEA, 2022) notes that about half the projected CO2 reductions that will be required to

achieve Net Zero by 2050 will depend on technologies that are currently not commercially

viable– highlighting the critical need for breakthrough innovations to mitigate the impacts

of climate change.

In this chapter, we discuss the prevalence and focus of U.S. innovation related to

achieving Net-Zero targets, with a particular focus on the potential role played by Ven-

ture Capital-backed startups. We identify patents related to the mitigation of climate

change using tags developed by the the Cooperative Patent Classification (CPC).1 The

classification scheme was put together with the help of experts in the field, including

the Intergovernmental Panel on Climate Change (IPCC), and was developed to tag tech-

nologies with certain attributes rather than to replace the classification of technologies

themselves. As described in Table I, the Y02 subclasses include areas related to specific

clean energy technologies, but also technologies related to energy efficiency, transporta-

tion, industrial production and carbon capture and sequestration –that have the potential

to mitigate climate change through lowering green house gas in the atmosphere. Together,

these technologies account for about 6.5% of all utility patents in the USPTO between

2000 and 2020, but have grown at over twice the rate of other patents in the USPTO

since 2010.

The IEA report (IEA, 2022) notes that breakthrough innovations are likely to be

particularly important in areas such as energy generation & storage, industrial production

and in carbon capture & sequestration, given their current contribution to CO2 emissions

relative to what is required by 2050. Using a measure of a patent’s reliance on fundamental

science developed by Marx and Fuegi (2020), we show that patents in these sectors tend

to cite fundamental science much more intensively than other sectors such as energy

1The Cooperative Patent Classification is a patent classification system, which has been jointly devel-
oped by the European Patent Office and the United States Patent and Trademark Office.
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efficiency, ICT and transportation. We refer to these three more science-intensive sectors

as the subset of Net-Zero patents that are ‘deep tech’.

The fact that these deep tech sectors coincide with the areas that require the biggest

breakthrough innovations is important in light of growing evidence that large corpora-

tions have pulled back considerably from fundamental innovation in recent years (Arora

et al., 2018, 2020). Moreover, a large body of academic research has highlighted how the

organizational form associated with the commercialization of innovations can have first

order effects on the degree to which radical versus incremental innovations are brought

to market (Akcigit and Kerr, 2018). The bureaucratic organizational structure and re-

lated incentives in large firms are often not conducive to radical innovations (Kortum and

Lerner, 2000). Moreover, large corporations often have weaker incentives to commercial-

ize technologies that compete with core lines of business (Reinganum, 1983, Cunningham

et al., 2021). This suggests an important role for ‘deep tech’ inventions emerging from

universities and the related importance of sources of finance such as Venture Capital to

help support their commercialization.

Consistent with this view, we find that patents associated with mature firms have the

lowest citations to science, while VC-backed startups, which tend to be the most science-

intensive on average, have over three-times the number of scientific citations compared to

mature firms. In addition, when examining the influence of patents, we find that Net Zero

patents granted to VC backed startups are three to six times more likely to be in the top

percentile of patents in terms of citations received, when compared to USPTO patents

granted to mature firms in a same technology class and granted in the same year. This

higher influence of VC-backed patents compared to mature firms within Net Zero patents

is even larger than the differential identified by Howell et al. (2020) in their analysis of

VC-backed patenting in general.

Despite the greater influence and scientific reliance of VC-backed patents which are

likely to be of particular relevance in deep tech sectors, we nevertheless also note that

VC-backed patents comprise under 3% of all Net-Zero patents and moreover, have dispro-

portionately grown in non-deep tech areas such as energy efficiency and transportation

in recent years. In Sections 3 and 4, we discuss potential frictions and possible solutions

related to the commercialization of climate-related deep tech that might enable venture

capital-backed startups to play a more meaningful role in supporting the transition to

Net-Zero in the coming decades.
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2 Innovations related to Net-Zero

2.1 Identifying Net-Zero Patents

We focus on patents granted by the USPTO from 2000 and 2020, restricting the

analysis to utility patents.2 To identify innovations related to Net-Zero, we use a novel

classification scheme that is part of the Cooperative Patent Classification (CPC) System.

The CPC classification is the result of a partnership between the European Patent Office

(EPO) and the USPTO that was implemented in 2013. The aim of this project was

to harmonize the different classification systems in place, and to bring the best practices

from both Offices together 3. The Y02 category that identifies environmental technologies

was first introduced in January 2013 4. More sub-classes of that same category were then

added in 2015 and 2018, and the scheme is now considered to be complete, with 8 main

categories, that are reported in Table I.5

The aim of this categorization is to extend the reach of patents related to ‘green’

technologies to a wider range of stakeholders, including non experts. As such, the Y02

categorization works as a separate class applied by the patent office, that is considered

additional to standard classifications of technology classes. An important feature of this

categorization is that it spans many different fields and it is able to capture innovations

in both mitigation and adaptation technologies (Haščič and Migotto, 2015). This allows

for a compelling way to classify ICT and related energy efficiency technologies that are

typically harder to classify in terms of their contribution to climate change mitigation.6

2We obtain patent data from PatentsView.org, a platform that provides data from the United States
Patent and Trademark Office (USPTO). We only keep patents for which we observe information on: the
date it was applied for, the date it was granted, the patent title, the organization it was assigned to, the
type of organization and its CPC technology classification. With these restrictions, our sample comprises
90.3% of the 5,367,164 patents granted over this period.

3https://www.cooperativepatentclassification.org/about
4https://www.uspto.gov/about-us/news-updates/uspto-and-epo-announce-launch-cooperative-

patent-classification-system
5Cohen et al. (2020) use the same classification system to examine patenting differences between

mature publicly-traded firms to the link between the ESG-ratings of these firms and their innovation.
Our analysis focuses on the universe of firms regardless of whether they are publicly traded.

6In the CPC tagging, a patent can belong to multiple Y02 classes. However, this happens for a
minority of patents. 293,278 out of 356,996 (82.2%) belong to one group only. In the case of patents
being assigned to more than one Y02 class, we proceed to allocate each patent to a unique group as
follows: first, we sum the number of subcategories for each group. We allocate the patent to the group
that has the highest number of sub-classes with the rationale that a patent with more tags in one group
suggests that this group is the most relevant for the patent. This procedure is applied to 20,191 patents
(6% of total). Second, for patents that do not have a prevalent sub-class, we allocate them to one
group after considering the different combinations of sub-classes. When carbon captures technologies
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As shown in Table I, the classification system of climate change technologies include

innovations related both to climate change mitigation and to adaptation. A deeper ex-

amination of the adaptation technologies tagged in Y02A shows that they are largely

related to technologies helping to address growing threats of vector-borne, fly-borne, or

waterborne diseases whose impact is exacerbated by climate change. Y02W is focused

on waste management and wastewater. While technologies in these two groups can play

a role in climate change, they are less related to addressing the specific goals related to

reaching Net Zero targets, so we exclude them from our analysis.

For our analysis we therefore focus on the six main categories related to Net-Zero.

Panel A of Figure I reports the number of Net-Zero patents granted by the USPTO from

2000 to 2020 in relation to all other USPTO patents, where Net-Zero patents refer to the

six categories of Y02 patents noted above that are related to achieving Net-Zero targets.

As can be seen from Panel A, Net-Zero patents constitute a small share of total patents

in the USPTO, but have grown from 4% in 2000 to 8% in 2020.

Panel B reports the growth of Net Zero patents and all other patents relative to the

baseline year 2000. As can be seen from Panel B, Net-Zero patents have grown over

twice as fast as other patents in the USPTO, with a large inflection emerging in 2010.

The inflection seen in 2010 could represent changing fundamentals driving an increase in

Net-Zero innovation, or could be driven at least in part by the new classification being

implemented in those years leading to a greater focus on these technologies.7

We turn next to validating the CPC classification using text taken from the titles of

all Net Zero patents and identifying distinctive words associated with patents in each

category. The distinct words associated with each category are derived using a Term

Frequency - Inverse Document Frequency (TF-IDF) procedure, where the frequency of

each word in a document (TF) is weighted by the inverse of the frequency across all

are combined with energy efficiency classes, this is usually because GHG obtained with carbon capture
can be also used for other purposes. In this case we consider carbon capture as the main technology
group. When technologies related to transportation, efficiency in buildings and ICT are combined with
classes such as energy generation, this is because they are related to technologies that improve energy
efficiency, and make use of energy from renewable sources, in this case we keep the main intended use of
the technology (home appliances, car engines and batteries, etc.) as the main technology group. Lastly,
when the sub-class of energy generation is combined with waste, it is because these are technologies
related to fuels obtained from waste, so we consider them as generation technologies. Overall this second
step is applied to 41,694 of patents, which represents 11.7% of total.

7Although the classification was applied retrospectively, it is possible that it was more effective for
identifying patents applied for from that moment on.
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documents in the corpus (IDF).8 Panels A to F of Figure II report word clouds of the

content of patents titles of the six Net-Zero categories. As can be seen from Figure II,

the types of keywords emerging from the patent titles in each of these categories appear

intuitive, which is reassuring in terms of the quality of the classification. Figure III shows

the total trend of patents in each of these categories from 2000 to 2020. In relative terms

the highest growth was reported in the category of mitigation technologies related to

household appliances and ICT. Column 1 of Table II reports the precise number of Net

Zero patents issued in each category over the 2000 to 2020 period, ranging from just

over 4,000 patents for GHG capture to nearly 110,000 patents related to generation and

storage.

2.2 ‘Deep Tech’ Sectors that rely more on fundamental science

As noted in the introduction, one of our goals is to understand differences in the Net-

Zero sectors in terms of their reliance on fundamental science as this is likely to impact

the commercialization frictions they face. The word clouds reported in Figure II provide

an intuitive sense that the first three categories of renewable energy generation & storage,

carbon capture & sequestration and industrial production are likely to be much more

reliant on fundamental science relative to the the categories related to energy efficiency

and transportation. However, we also validate this intuition using data provided by Marx

and Fuegi (2021), that identifies citations that a patent makes to scientific papers.9

Column 2 of Table II reports the share of patents in each category that cites at least

one scientific paper. As can be seen from the Table, the first three rows correspond to

sectors with a much greater reliance on science. Between a third and half of all patents

cite science in these sectors, compared to 27% for all utility patents over the 2000-2020

period. Columns 3-8 report the means and quantiles of scientific paper citations of these

patents, conditional on citing at least one science paper. They reinforce the stark differ-

ence in reliance on science across these categories. Not only do the first three sectors have

8In our dataset, each list of patents titles belonging to a certain category is a separate document,
and the corpus is composed by all documents. We start by cleaning the text of titles and removing all
punctuation and special characters, and use lemmatization to group together the inflected forms of a
word in order to be analysed as a single term. We then apply a list of stop-words to be excluded from
the frequency count. The list includes standard English stop-words, as well as USPTO stop-word lists
that are specific for technical language processing. With TF-IDF we then add a list of stop-words created
from terms that are recurrent in all documents of the corpus. The frequency of the remaining words is
then adjusted for how rarely a word is used in the corpus.

9The authors link data from the USPTO to a broad set of scientific articles not limited by industry
or field. Their algorithm can capture up to 93% of patent citations to science with an accuracy rate of
99% or higher.
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a much greater propensity to cite science at the extensive margin, but have a significantly

greater intensity of reliance on science, as can be seen by the larger number of scientific

papers cited at all points above the 25th percentile. As noted before, these deep tech cat-

egories coincide with the sectors where we need some of the most important breakthrough

innovations to reach Net Zero targets. We return to this fact and the implications for

policy in the subsequent sections.

2.3 The Role of Venture Capital

We turn next to understand differences in Net Zero patenting by the type of assignee.

To do so, we first distinguish firms from other assignees such as universities, government

labs and individuals by supplementing the USPTO classification of assignees (as reported

in the disambiguated assignee data) with text analysis to better distinguish institutions,

hospitals and universities from the company or corporation group.10

Within firms, we further distinguish between mature firms, young firms and those

backed by venture capital. We define young firms as those whose first patent was granted

less than 10 years before the focal patent. In other words the same firm could have some

of its patents categorized as being associated with a young firm indicator and others

being associated with mature firm indicator. Finally, we merge the patent data with the

Refinitiv VentureXpert database, following a similar procedure to Bernstein et al. (2016)

in order to identify venture capital-backed startups.11

In light of the fact that corporations have been documented to be pulling back from

fundamental research in recent years (Arora et al., 2018, 2020), we turn next to looking

specifically at firm-type differences in Net Zero patents, given the particular importance

10This is performed taking into account that inventors are international, so the same word that indicates
for example a university, has to be considered in different languages.

11We start by matching each standardized name of a company in VentureXpert with standardized
names from the USPTO dataset: if an exact match is found, this is taken to be the same company
and removed from the list. For the remaining companies, we use a fuzzy matching technique that gives
a similarity score to matches of stem names weighted by the inverse frequency of use of each word in
the names list. If a similarity score higher than 85% is found, we combine this information with other
identifying information, such as founding dates and patents grant dates, and standardized city/nation
combination. In the overall sample of international startups we identify 18,987 startups that have at
least one patent granted by the USPTO, this is approximately 20% of the overall VentureXpert dataset
of VC-backed startups and this ratio is in line with other papers matching these two datasets. As we want
to identify innovations that are in the portfolios of VC and not all innovations belonging to companies
that were funded by VCs many years beforehand, we apply two more restrictions: first, we define a patent
to be VC-backed if it was applied for between the first and last round of financing by VC funds. Second,
we restrict patent level that indicates if a patent is applied for within 10 years since the first patent was
issued by that same firm.
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of deep tech innovations in order to achieve Net Zero targets. As seen in Table III, mature

companies account for about two-thirds of the Net Zero patents granted between 2000 and

2020. A further fifth is accounted for by ‘young’ firms. VC-backed firms account for just

under 3% of Net Zero patents. Universities, government labs and individuals account for

the balance. Columns 3-8 look at variation in the share of these patents by the different

Net Zero sectors. Generation and Storage accounts for the largest relative share of patents

for all assignees. However, it can be seen that while all the other assignees have 40-50% of

their Net Zero patents in this category, mature companies have a relatively smaller 30%

share in generation and storage. In comparison, mature companies have a much larger

relative share of patents related to mitigation in Transport. Energy Efficiency in buildings

and ICT account for between 30% and 35% of patents for all the firms. GHG capture has

a very small share of patents across all assignees, with the greatest relative share coming

from universities, government labs and individuals.

Looking at the sum of shares for Deep Tech patents (columns 3-5) vs. Non Deep Tech

(columns 6-8) for different assignees in Table III, it can be seen that Deep Tech constitutes

a larger share of VC-backed firms’ overall patenting (60%), compared to young firms (55%)

and mature firms (44%). In Table IV, we document the degree to which patents granted

to different assignees rely on fundamental science, broken down by whether or not the

patent is in one of the three deep tech categories. The difference between the average

number of scientific citations between Deep Tech and non Deep Tech for all assignee

groups is consistent with the pattern documented in Table II. However, it is also striking

that VC-backed firms are much more likely to cite fundamental science relative to firms in

general. This is driven by both the extensive and intensive margin, as well as the fact that

(as seen in Table III), VC-backed firms have a larger share of deep tech patents among

the set of patents that they have been granted.

Another way of examining differences in nature of patenting by assignees is to look

at the impact of these patents through their citations. In Table V, we report the share

of patents granted to each type of assignee that are in the top (10 and 1) percentiles in

terms of citations received, relative to all other patents granted in the same year across

the entire USPTO patent database. The reason for looking at the right tail of citations

is that some patenting is ‘defensive’. Looking at the most highly cited patents gives a

better indication of the degree to which there is a pattern in terms of the firms where the

most influential patents are being developed. Given the large share of patents comprised

by these assignees, we see that Net-Zero patents filed by other – particularly mature –
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firms are about proportional to what might expect at random, albeit a bit less influential.

These results are consistent with mature firms focusing more on incremental, sustaining

innovations. On the other hand, and consistent with the findings of Howell et al. (2020),

we find that VC-backed startups are disproportionately likely to have top cited patents.

They are almost three times more likely than random to have Net Zero patents that are in

the top 10% of citations and almost 5 times times more likely to have patents in the top

1% of citations. Given the role that Venture Capital can play in stimulating breakthrough

innovation (Kortum and Lerner, 2000, Bernstein et al., 2016, Lerner and Nanda, 2020),

these results suggest that VC has the potential to play an increasingly important role in

helping to drive the breakthrough innovations needed to achieve Net Zero targets.

Despite the outsized impact the VC-backed patents appear to have among Net Zero

patenting, one potential limitation of Venture Capital’s impact is the small number of

firms and Net Zero patents it is associated with. However, this is equally true of VC-

backed innovations in general and yet VC-backed firms are associated with some of the

most innovative, transformational and valuable firms in the world (Lerner and Nanda,

2020). Of potentially greater concern is that fact that, following a brief increase during a

boom in venture financing for renewable energy startups (Nanda et al., 2014, Popp et al.,

2020), Venture Capital funding within Net Zero is increasingly associated with non-deep

tech patents. Figure IV shows that while venture capital-backed startups continue to

dominate mature firms in terms of the share of deep tech patenting in Net Zero, the share

has declined from over 70% in 2012 to about 55% in 2020.

3 Potential Frictions in Financing Deep Tech

Venture Capital investment in the US – encompassing all investments, not just those

related to Net Zero – has grown substantially since the early 2000s. The number of

startups doubled over this period and the amount of capital being invested has risen more

than five-fold since the early 2000s. However, as Lerner and Nanda (2020) note, this

growth has not been uniform. It has come disproportionately from sectors such as IT

software and related services such as consumer internet, enterprise software and media

and communication. Hardware, Energy, materials, and resources combined accounted for

about 10% of capital invested by VCs in 2020, falling from a high of 40% in earlier part

of the sample. To some extent, these ebbs and flows of funding across sectors reflect

technology life cycles, the huge wave of application-related innovations made possible by

the Internet revolution in the late 1990s, and the subsequent rise of cloud computing
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in the mid-2000s (Nanda, 2020). Nevertheless, growing academic research has begun to

articulate certain aspects of start-ups that tend to make them have lower risk-adjusted

returns and hence less attractive to Venture Capital investors. We turn next to reviewing

this work.12

3.1 Capital Intensity and Time Scale of Experimentation Cycles

Venture Capital (VC) investors do not shy away from investing large sums of money,

particularly when financing the scale-up of successful ventures. Many business-to-consumer

social networks and business-to-business enterprise software firms have raised hundreds

of millions, or even billions, of dollars of equity financing from Venture Capital investors

in the prior decade.

However, VCs are particularly sensitive to how much time and money it takes to

achieve initial de-risking milestones. To see why, it is useful to recognize the skewed

nature of risk and return in VC: over half of the investments that even the most successful

VCs make fail entirely, while the majority of return for VC firms is generated by one or

two extremely successful investments that are very hard to predict (Kerr et al., 2014).

VCs therefore invest in stages, where each stage or round of financing by the VC can be

thought of as an experiment that generates information about whether or not a start-up

can achieve its promised potential. Staged financing is tied to milestones and effectively

gives VCs real options—they can choose to invest further in the next round of financing

when start-ups achieve milestones, or they can choose to abandon follow-on financing if

they do not feel the start-up is showing sufficient promise. VCs are therefore naturally

drawn to start-ups where early experiments are quicker and cheaper since it means their

real option to reinvest or abandon at the next round is more valuable and the returns

from their investments can be higher.

Ewens et al. (2018) highlight how the introduction of cloud computing services dra-

matically lowered the cost of learning about the ultimate potential of risky web-based

start-ups. Specifically, it allowed those start-ups to rent hardware in small increments

from providers like Amazon Web Services, use this to quickly gauge customer demand,

and postpone expensive investments to scale up until after learning about the size and

nature of demand from consumers. This, in turn, led to a disproportionate rise in the

number of start-ups that could benefit from such lowered cost of experimentation and

12This section draws extensively on Nanda et al. (2014), Nanda and Rhodes-Kropf (2016) and Nanda
(2020).
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faster experimentation cycles. Related to this, VC investors are often drawn to startups

with limited technical risk and where the key uncertainty relates to market demand for

the product or service. Rapid iteration around early customer validation can either show

a lack of demand or help reduce market risk substantially, thereby making the initial

de-risking cheap and efficient.

It is true that there is increasing scope for software and related information technolo-

gies to play a role in addressing climate and related challenges because products emerging

from energy technologies are now more likely to be smaller, modular, and able to rely on

innovation in high-tech sectors (Popp et al., 2020). However, our analysis of VC-backed

Net Zero patents has also shown that the ‘deep tech’ patents that rely more on fundamen-

tal science are disproportionately related to startups in sectors such as semi-conductors,

computer hardware and industrial production. These are areas where early prototypes

still embody substantial technical risk, where initial experiments involved in technical

de-risking are expensive and do not always benefit from the faster experimentation cycles

that VC investors are drawn to. This friction is consistent with the relative decline in

such innovations coming from VC firms in recent years.

3.2 Learning Efficiency of Lab Experiments

When considering the role of experiments in early de-risking, it is also helpful to rec-

ognize that real options are more valuable in sectors where initial experiments generate

more information —in other words, where achieving or missing initial milestones helps

VCs learn more about the ultimate potential of a venture (Nanda and Rhodes-Kropf,

2016). This is because more informative experiments help VCs learn faster about firms

that might ultimately fail, enabling them to “throw less good money after bad”. More in-

formative experiments also show firms achieving their promise earlier in their life, enabling

start-ups to raise their next round of financing at much higher valuation step-ups. VCs

who fund the initial rounds of financing in these ventures are therefore less diluted—that

is, they maintain greater equity ownership—and hence generate a larger return for any

given exit value.

Some of the challenges associated with deep tech commercialization stem from the

fact that it is difficult to project how successful lab experiments might work at scale. For

example, forecasting the unit costs – at scale – associated with energy storage using a

new battery material or carbon capture and sequestration technology can be extremely

difficult, even if the technology has been shown to work in a controlled laboratory en-
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vironment. Moreover, since demand is tied to the ability of firms to produce at certain

price points, this also implies that technology and market risk can often be intricately

tied to each other in the energy sector (Arora et al., 2022). In such instances, the costs

and timelines associated with the lower learning efficiency and de-risking process can

be prohibitively large for commercial investors, as they may need to finance a full-scale

demonstration pilots before learning whether the technology is sufficiently good to dis-

rupt a market. The equity needed by a profit-seeking investor in such instances can be

prohibitively large, leading projects with potential to not make it past the early de-risking

phase.

Advances in digital chemistry and synthetic biology, as well as huge increases in com-

putational power that enables more accurate simulation of material properties at scale,

are helping to improve the ability to forecast from successful lab experiments to success

at scale. However Siegmund et al. (2021) also point to the fact that lab experiments

are often not conducted with a view to increasing learning efficiency. In the context of

new catalysts, they point to specific examples of how success being defined on a different

temperature, pressure and time-scale can lead to a large number of false positives – po-

tential solutions that are deemed to be promising in lab experiments but could have been

identified as having ‘failed’ in the lab if the thresholds used were more consistent with the

requirements of at-scale commercial applications. Some of this is due to the fact that the

early de-risking is increasingly done in university environments, where there can often be

a lack of understanding of the specific industrial specifications or bottlenecks that need

to be optimized in an industrial setting. Even within large organizations however, the

R&D and product teams may not work to jointly set early-stage technical milestones in

a manner that increases the information value of the early experiments.

3.3 Human Capital involved in Deep Tech translation

There are numerous challenges to building a new venture that faces large amounts

of technical risk in addition to having to sell into highly regulated industries with large

entrenched incumbents who are averse to adopting new technologies unless they have a

huge economic benefit. This makes the challenge of having the right entrepreneurial tal-

ent to build such ventures and sell these products to commercial customers non-trivial

(Nanda et al., 2014). Those with technical talent may not have the skill or inclination to

get involved in commercialization, while those with entrepreneurial talent can find it hard

to evaluate the quality of technical ideas at the nascent stages, making it unappealing to
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select into entrepreneurship for those with very high opportunity costs (Hall and Wood-

ward, 2010). This is likely to be particularly true when the experimentation cycles and

hence time to product is longer as is the case with many science-based deep tech ventures

(Ewens et al., 2020).

3.4 Appropriating Value being Created

The discussion above has focused on supply-side frictions that make it harder to reduce

the technical, market and execution risk associated with building Deep Tech ventures

relative to sectors such as information technology, software and services.

It is also the case that software ventures often have the potential to more easily

generate return. One of the attractive features of information technology is the highly

scalable and asset-light businesses it is associated with. This leads to high levels of

profitability and more cash flow to investors per unit of revenue, which in turn creates

enormous opportunities for outsized returns.

In many of the deep tech sectors such as energy generation, storage, capture and

industrial production, new firms are typically selling to large incumbents with substantial

market power and low willingness to adopt new technologies, thereby making it hard to

command high profit margins when selling to them. Many of these customers could also

be competitors, making it harder to appropriate value. Finally, to the extent that these

require substantial investment in physical assets to generate cash, the path to becoming

a valuable company can be slower. Indeed as van den Heuvel and Popp (2022) note, a

combination of ‘lackluster demand and a lower potential for outsized returns’ makes clean

energy firms less attractive to venture capital investors.

4 Policy Implications

Having discussed some of the key frictions making Deep Tech investment less attrac-

tive to VC investors, we turn to a discussion of some policy implications. We note that

innovation is clearly an important part of environmental policy, and encouraging inno-

vation is often an explicit goal of policymakers. A large literature on the links between

between environmental policy and innovation is beyond the scope of this paper (see for

example, Popp (2019) and (Fu et al., 2018)). Similarly, the speed required to develop

Covid-19 vaccines underlines how much society depends on the pace of scientific research

and how effective science funding can be. A bias against funding risky research has also
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been discussed in the literature (Franzoni et al., 2021, Stephan, 2014) but we do not focus

on this. We focus more narrowly on policies that might help address the specific sets of

frictions outlined above that have been argued to reduce the risk-adjusted return of Deep

Tech opportunities for VC investors.13

4.1 Government’s role in stimulating demand

Many successful examples of government involvement in the commercialization of

tough tech have been related to the government’s role as a customer (Mowery, 2010,

Mazzucato, 2013). A key reason for this may have to do with such advance market

commitements substantially reducing market risk through a willingness to pay for early

versions of an emerging technology. A large military contract can also help to establish

standards and coordinate the direction of technology trajectories.

Mazzucato (2013) notes the spillovers to ICT from NASA’s decade-long mission to

put a man on the moon. In a compelling case study of the iPhone, she also shows how

several of its key components—GPS, touchscreen glass, accessibility of the Internet, and

voice-recognition technology—benefited either directly or indirectly from state funding.

Evidence has also been found that federal investment during World War II subsequently

led to increased private sector investment. It is also suggested that a very substantial

increase in federal investment in the life sciences and the growth of the biotechnology

revolution was triggered by President Nixon’s declaration of “War on Cancer” in 1971 and

the substantial commitments to federal funding of biomedical science in the subsequent

years through the National Institutes of Health.

Mowery (2010) discusses the role of the U.S. military R&D and procurement budgets

in driving substantial innovation and technological change in the United States in the

post–World War II era. The government’s role as a customer was very important in

the 1960s and 1970s to the semiconductor industry—the one sector downstream from

materials science where Venture Capitalists have profited at scale. The U.S. Department

of Defense along with NASA played the role of collaborative customer, pulling the new

industry down the learning curve to low cost, reliable production, as military customers

had done for the preceding microelectronics industry up to and during World War II.

Similarly, the U.S. government’s role in reimbursement of new drugs and devices through

Medicare and Medicaid substantially reduces market risk for drug development, implying

that biotechnology ventures have enjoyed very high rates of access to the IPO market,

13This section draws extensively on Janeway et al. (2021).
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despite the very high degree of technology risk, the very long and expensive path to

regulatory approval, and hence substantial cash flow deficits (Pisano, 2006). In the context

of clean energy, Germany’s role in committing to purchase electricity generated from

renewable energy sources is likely to have played a role in driving the growth of the

industry and bringing the solar-PV down. Paying part of the contract value in advance

can substantially reduce start-ups’ dependence on external finance. This important role

of the government as customer is often underappreciated when considering the role that

policymakers can play in jump-starting innovation.

Government’s role as a customer can also be used in outlining property rights, par-

ticularly those that help to level the playing field for and enable innovation by start-ups.

Program managers of the Defense Advanced Research Projects Agency (DARPA), espe-

cially in its early years when it was funding general-purpose IT-related research, conceived

of their mission to include protection of the new entrants from the established incumbents

(Azoulay et al., 2019). Related to this, strong intellectual property rights and a well func-

tioning Markets for Technology (Arora et al., 2021) helps startups motetize the value of

their innovations.

4.2 Supporting Financing and Certification of Technical De-
Risking

The record of government involvement in trying to directly subsidise the financing of

startups has been mixed at best. Nevertheless, one setting where start-ups engaged in

innovation have been shown to benefit substantially is the U.S. Department of Energy’s

SBIR grant program, which has helped start-ups finance the prototyping of new tech-

nologies and thereby substantially increase the odds of receiving venture capital (Lerner,

1999, Howell, 2017). This ties in directly to the friction outlined above—where start-ups

in some sectors cannot attract VC due to the difficulty they face in learning about the

effectiveness of a new technology in the field as opposed to the lab, and hence have trouble

convincing investors they can achieve product-market fit and generate sufficient customer

demand.

In the context of Net Zero innovations, organizations such as ARPA-E also play an

important certification role in helping to vet promising technologies. This can help provide

independent validation that a technology is meeting technical milestones as VC and other

commercial investors very often do not have the technical capability to assess and evaluate

the efficacy and promise of a new technology.
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4.3 Supporting New Organizational and Financing Models

As noted above, Deep Tech solutions to global challenges such as achieving Net Zero

targets are increasingly being developed within universities. Many of the frictions noted

above relate to the challenge of effective effective hand-off from a university lab environ-

ment to a commercial setting.

Given that they already have a lot of the specialized equipment, talent and technical

expertise needed to support and validate technical de-risking, academic institutions have

the potential to play a central role in helping to support the initial technical de-risking and

development prior to start-ups raising risk capital from investors. Beyond cost, another

potential key benefit of de-risking in a university environment is the potential to recycle

knowledge arising from failure. Since most early stage experiments fail and the insights

from the failure of such technical experiments is instructive for future generations of

entrepreneurs, the different incentive system of a university related to scaling knowledge

can be extremely valuable in this context, particularly in settings where there are strong

externalities as is the case with knowledge around early stage de-risking and translation.

Another role that universities can play is in helping founders of deep tech ventures, who

often have technical background but less business training, to understand the appropriate

customer segments, business models, and financing sources for their new ventures (Cohen

et al., 2020, Sauermann and Stephan, 2010). In addition to helping to stimulating the

supply of technical talent that is also trained for building ventures, universities can play

a role in helping to match strong technical projects with similarly strong entrepreneurial

talent.

In terms of the transition from universities to Venture Capital, VC firms typically

raise closed-end funds, implying that they are required to invest the money they raise and

return the proceeds within a fixed period, usually 10 years. Given that investments are

made over the first few years, this implies that VCs are naturally drawn to investments

where they can realize a return through an exit—either an acquisition or an IPO—within

a short time. Not all ventures are amenable to this timeline. For example, start-ups that

have a physical component to generating cash flows often take longer to build, particularly

if the venture needs to build factories to produce new products—as is the case with energy

production, storage and many industrial production methods. Although VCs have some

leeway to extend the fund life a few years, the fixed limit to a fund’s life can become a

binding constraint for investors, although the use of evergreen funds can overcome such
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constraints Lerner and Nanda (2020).

As noted by Nanda (2020), universities, government labs, corporate R&D, VC firms,

corporate venture capital firms, and longer-term “patient capital” associated with family

offices each bring different incentives, funding models, ability to experiment, and tolerance

for failure. Each has different benefits and constraints. Understanding the degree to which

these can be adapted to most effectively help commercialize Deep Tech addressing Net

Zero Challenges —perhaps while also harnessing non-dilutive capital from philanthropy

for initial experiments—is a promising area of further inquiry.
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Figures

Figure I: Level and Growth of USPTO Patents from 2000-2020 This figure shows the
number of Net-Zero and all other patents granted by the USPTO from 2000 to 2020 (Panel
A). Net-Zero patents include the six groups identified using the CPC classification system and
reported in Table 1. Panel B reports the growth of these two groups, relative to the number of
patents in each group in 2000.
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Figure II: Distinctive Words in each Category of Net Zero Patents granted between 2000
and 2020 This figure uses text taken from the titles of all Net Zero patents to identify distinctive words
associated with each Net Zero sub-category. The distinct words associated with each category are derived
using a TF-IDF procedure, where the frequency of each word in a document (TF) is weighted by the
inverse of the frequency of all documents in the corpus (IDF).
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Panel E: Energy Efficiency in Buildings Panel F: Energy Efficiency in ICT
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Figure III: Level and Growth of Net Zero Patents from 2000-2020, by Category
This figure reports details on Net Zero patents granted by the USPTO from 2000 to 2020, by
the six Net-Zero categories used in this paper. The six Net-Zero groups are identified using
the CPC classification tagging system, and they are: energy Generation & Storage (class Y02E
in Table I), technologies for GHG Capture (class Y02C in Table I), technologies for mitigation
in industrial production (class Y02P in Table I), technologies related to transportation (class
Y02T in Table I), technologies related to energy efficiency in buildings (class Y02B in Table I)
and in ICT (class Y02D in Table I). Panel A is a stacked chart that reports the overall number
of patents in each class, Panel B reports the growth of these groups, relative to the number of
patents in each group in 2000.
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Figure IV: Share of Net-Zero Patents that are Deep Tech, by Assignee Type This
figure reports the share of Net-Zero patents that are classified as deep technologies, by assignee
type over the 2000-2020 time period. Deep technologies are identified using patents to science
citations as described in Table II, and this group includes: energy generation and storage, GHG
mitigation in industrial production, and carbon capture technologies.
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Tables

Table I: Cooperative Patent Classification of ‘Green Innovations’ This table reports the description
of different CPC classification groups used to tag green innovation. As can be seen from the Table, green
patents include the categories Y02A and Y02W, but these have been excluded from our analysis as the focus
of this paper is on technologies who can directly contribute to meeting Net-Zero targets.

Y02E REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRI-
BUTION

10/00 Energy generation through renewable energy sources
30/00 Energy generation of nuclear origin
20/00 Combustion technologies with mitigation potential
40/00 Technologies for an efficient electrical power generation, transmission or distribution
50/00 Technologies for the production of fuel of non-fossil origin
60/00 Enabling technologies;Technologies with a potential or indirect contribution to GHG emissions mitigation
70/00 Other energy conversion or management systems reducing GHG emissions

Y02C CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]

20/00 Capture or disposal of greenhouse gases
20/10 of nitrous oxide (N20)
20/20 of methane
20/30 of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
20/40 of CO2

Y02P CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS

10/00 Technologies related to metal processing
20/00 Technologies relating to chemical industry
30/00 Technologies relating to oil refining and petrochemical industry
40/00 Technologies relating to the processing of minerals
60/00 Technologies relating to agriculture, livestock or agroalimentary industries
70/00 Climate change mitigation technologies in the production process for final industrial or consumer products
80/00 Climate change mitigation technologies for sector-wide applications
90/00 Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation

Y02T CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION

10/00 Road transport of goods or passengers
30/00 Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
50/00 Aeronautics or air transport
70/00 Maritime or waterways transport
90/00 Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Y02B CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RE-
LATED END-USER APPLICATIONS

10/00 Integration of renewable energy sources in buildings
20/00 Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
30/00 Energy efficient heating, ventilation or air conditioning [HVAC]
40/00 Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
50/00 Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies
70/00 Technologies for an efficient end-user side electric power management and consumption
80/00 Architectural or constructional elements improving the thermal performance of buildings
90/00 Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Y02D CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E.
INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE

10/00 Energy efficient computing, e.g. low power processors, power management or thermal management
30/00 Reducing energy consumption in communication networks

Y02A TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE

10/00 at coastal zones; at river basins
20/00 Water conservation; Efficient water supply; Efficient water use
30/00 Adapting or protecting infrastructure or their operation
40/00 Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
50/00 in human health protection, e.g. against extreme weather
90/00 Technologies having an indirect contribution to adaptation to climate change

Y02W CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT

10/00 Technologies for wastewater treatment
30/00 Technologies for solid waste management
90/00 Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
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Table II: Citation to fundamental science by Net Zero patents, by Category This table reports the propensity to cite science
for Net Zero patents and heterogeneity across sub-categories. Column 2 reports the share of Net-Zero patents that cite at least 1 scientific
article for each category. Columns 3-8 report the intensity of scientific citations by category, conditional on citing at least one scientific
paper. Data on scientific citations are obtained through the open-source dataset provided by Marx and Fuegi (2020). Citations include
front-page citations to scientific papers as described in section 2. Energy generation and storage, GHG capture and technologies for
Mitigation in Industrial Production cite science more intensively and hence are labeled as ’Deep Tech’.

% with 1 or more

# Patents scientific citations Mean p10 p25 p50 p75 p90

GHG Capture 4,248 48% 13 1 2 4 10 37
Deep Tech Mitigation in Industrial Prod. 43,641 39% 12 1 1 4 10 28

Generation and Storage 108,691 33% 11 1 1 3 9 24

Energy Efficiency in ICT 42,053 29% 7 1 1 2 5 14
Non Deep Tech Energy Efficiency in Buildings 37,358 18% 6 1 1 2 5 13

Mitigation in Transport 84,843 12% 7 1 1 2 5 1322



Table III: Net Zero Patenting by Sector and Assignee Type The first two columns of this table document the number and share
of Net Zero patents that are associated with different assignee types. Columns 3 to 8 report the share of each assignee-type’s patents
that correspond to each sector. For example, 45.5% of VC-backed startup patents are related to Generation & Storage, while 1.3% of
mature firm patents are related to GHG Capture.

Share of Total Patents of each Assignee in each Class

# of tot % of tot Generation & GHG Mitigation in Mitigation in Energy Eff. Energy Eff.
patents patents Storage Capture Industrial Prod. Transport in Buildings in ICT

VC Backed Startups 8,806 2.6% 45.5% 0.6% 13.9% 11.6% 13.9% 14.5%
Young Firms 70,001 20.8% 38.7% 1.2% 15.6% 21.6% 14.3% 8.4%
Mature Firms 218,417 64.8% 30.4% 1.3% 12.6% 29.9% 10.2% 15.5%
Others 39,935 11.8% 45.9% 2.0% 15.6% 19.9% 12.0% 4.5%
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Table IV: Citation to Science associated with different Assignee types This table
reports differences in propensity to cite science by patents granted to different assignee types.
Columns report results for all patents in the USPTO database from 2000-2020 and separately
for Net Zero, Deep Tech and Non-Deep Tech patents and defined in Table II. Data on scientific
citations are obtained through the open-source dataset provided by Marx and Fuegi (2020).

Panel A: Unconditional mean of citations to science

All Net-Zero Net-Zero Net-Zero
Patents Patents Deep Tech Non DT

VC Backed Startups 11.6 12.4 17.3 5
Young Firms 3.6 2.9 4.2 1.3
Mature Firms 3.1 2.2 3.7 1

Others 3.9 2.5 3.4 1.1

Panel B: Conditional on having at least one citation to science

All Net-Zero Net-Zero Net-Zero
Patents Patents Deep Tech Non DT

VC Backed Startups 23.3 24.4 29.7 12.7
Young Firms 13.6 10.6 12.1 7
Mature Firms 11.3 9 10.9 6

Others 13.8 4 8.3 6
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Table V: Patent Impact by Assignee Type This table reports the share of each assignee’s
patents that are in the top 10% (Panel A) and top 1% (Panel B) of influential patents, normalized
within a given grant year and USPTO technology class. The sample includes patents granted
from 2000-2017 as patents granted extremely recently have not accumulated sufficient number
of citations to accurately identify outliers.

Panel A: Share of Patents being in the top 10% of Citations Received

All Net-Zero Net-Zero Net-Zero
Patents Patents Deep Tech Non DT

VC Backed Startups 21.4% 27.3% 23.6% 33.4%
Young Firms 10.6% 13.3% 11% 16.3%
Mature Firms 9% 10.2% 8.8% 11.5%

Others 6.9% 9.7% 8.1% 12.5%

Panel B: Share of Patents being in the top 1% of Citations Received

All Net-Zero Net-Zero Net-Zero
Patents Patents Deep Tech Non DT

VC Backed Startups 2.9% 4.6% 3.7% 6%
Young Firms 1.1% 1.6% 1.2% 2%
Mature Firms 0.9% 1.0% 1.1% 1%

Others 0.6% 0.9% 0.6% 1.2%
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Ivan Haščič and Mauro Migotto. Measuring environmental innovation using patent data.

OECD Environment Working Papers, 89, 2015.

Sabrina T. Howell. Financing innovation: Evidence from r&d grants. American Economic

Review, 107(4):1136–64, April 2017.

Sabrina T Howell, Josh Lerner, Ramana Nanda, and Richard R Townsend. How resilient

is venture-backed innovation? evidence from four decades of u.s. patenting. Working

Paper 27150, National Bureau of Economic Research, May 2020.

William H. Janeway, Ramana Nanda, and Matthew Rhodes-Kropf. Venture Capital

Booms and Start-Up Financing. Annual Review of Financial Economics, 13(1):111–127,

2021.

William R. Kerr, Ramana Nanda, and Matthew Rhodes-Kropf. Entrepreneurship as

Experimentation. Journal of Economic Perspectives, 28(3):25–48, Summer 2014. URL

https://ideas.repec.org/a/aea/jecper/v28y2014i3p25-48.html.

Samuel Kortum and Josh Lerner. Assessing the contribution of venture capital to inno-

vation. The RAND Journal of Economics, 31(4):674–692, 2000.

27

https://ideas.repec.org/a/eee/jfinec/v128y2018i3p422-442.html
https://ideas.repec.org/a/eee/jfinec/v128y2018i3p422-442.html
https://ideas.repec.org/p/nbr/nberwo/27296.html
https://ideas.repec.org/p/nbr/nberwo/27296.html
https://ideas.repec.org/a/aea/jecper/v28y2014i3p25-48.html


Josh Lerner. The government as venture capitalist: The long-run impact of the sbir

program. The Journal of Business, 72(3):285–318, 1999.

Josh Lerner and Ramana Nanda. Venture capital’s role in financing innovation: What we

know and how much we still need to learn. Journal of Economic Perspectives, 34(3):

237–61, August 2020.

Matt Marx and Aaton Fuegi. Reliance on science: Worldwide front-page patent citations

to scientific articles. Strategic Management Journal, 41:1572–1594, 2020.

Matt Marx and Aaton Fuegi. Reliance on science: Worldwide front-page patent citations

to scientific articles. Journal of Economic and Management Strategy, 31:369–392, 2021.

Mariana Mazzucato. The entrepreneurial state : debunking public vs. private sector myths.

Anthem frontiers of global political economy. Anthem Press, 2013.

David C. Mowery. Military r&d and innovation. In Bronwyn H. Hall and Nathan Rosen-

berg, editors, Handbook of the Economics of Innovation, Volume 2, volume 2 of Hand-

book of the Economics of Innovation, pages 1219–1256. North-Holland, 2010.

Ramana Nanda. Financing Tough Tech innovation. In Global Innovation Index 2020:

Who Will Finance Innovation?, chapter 5, pages 113–119. Cornell University Press,

2020.

Ramana Nanda and Matthew Rhodes-Kropf. Financing Entrepreneurial Experimentation.

Innovation Policy and the Economy, 16(1):1–23, 2016. doi: 10.1086/684983. URL

https://ideas.repec.org/a/ucp/ipolec/doi10.1086-684983.html.

Ramana Nanda, Ken Younge, and Lee Fleming. Innovation and entrepreneurship in

renewable energy. In The Changing Frontier: Rethinking Science and Innovation Policy,

NBER Chapters, pages 199–232. National Bureau of Economic Research, Inc, April

2014.

Gary P. Pisano. Science Business: The Promise, the Reality, and the Future of Biotech.

Boston: Harvard Business School Press, 2006.

David Popp. Environmental policy and innovation: A decade of research. Working Paper

25631, National Bureau of Economic Research, March 2019.

28

https://ideas.repec.org/a/ucp/ipolec/doi10.1086-684983.html


David Popp, Jacquelyn Pless, Ivan Haščič, and Nick Johnstone. Innovation and en-

trepreneurship in the energy sector. Working Paper 27145, National Bureau of Eco-

nomic Research, May 2020.

Jennifer F Reinganum. Uncertain Innovation and the Persistence of Monopoly. American

Economic Review, 73(4):741–748, September 1983. URL https://ideas.repec.org/

a/aea/aecrev/v73y1983i4p741-48.html.

Henry Sauermann and Paula E Stephan. Twins or strangers? differences and similarities

between industrial and academic science. Working Paper 16113, National Bureau of

Economic Research, June 2010.

Daniel Siegmund, Sebastian Metz, Volker Peinecke, Terence E. Warner, Carsten Cremers,
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