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Fertilizer and Algal Blooms 
A Satellite Approach to Assessing 
Water Quality 

Charles A. Taylor and Geoffrey Heal 

4.1 Introduction 

The US Environmental Protection Agency considers nutrient pollu­
tion one of the "most widespread, costly and challenging environmental 
problems ."' Increasing flows of nitrogen have far exceeded the Earth's car­
rying capacity and have impaired ecosystem functioning (Vitousek et al. 
1997; Gruber and Galloway 2008; Erisman et al. 2013), and nutrient levels 
far exceed the planetary boundaries of certainty (Steffen et al. 2015). 

Nutrient enrichment, hypoxia , and algal blooms are interrelated environ­
mental phenomena. They are caused by excess nitrogen and phosphorus , 
coming primarily from fertilizer use but also from human and industrial 
waste. These nutrients leach into waterways and feed the growth of phyto­
plankton in a process called eutrophication (Nixon 1995). Eutrophication 
can produce algal blooms , which are considered harmful when concentra­
tions of algae (e.g., cyanobacteria) achieve sufficient density to create nega­
tive environmental or health effects (Smayda 1997). 

Occurring in both fresh and salt water, algal blooms can be produced 
by excess nutrients and climactic anomalies like warmer water tempera-
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tures (Paerl and Huisman 2008; Michalak et al. 2013; Ho , Michalak , and 
Pahlevan 2019). Algal blooms are often followed by hypoxic aquatic con­
ditions , defined by dissolved oxygen levels below two ml per liter, as dead 
phytoplankton sink to the seafloor and are decomposed by bacteria. Sus­
tained low oxygen levels, in turn , can result in aquatic dead zones. 

Algal blooms have increased in frequency and intensity over the decades 
(Anderson 1989; Hallegraeff 1993; Hudnell 2008; Huisman et al. 2018; Ho , 
Michalak , and Pahlevan 2019). The quantity and extent of dead zones have 
also increased across the globe (Diaz and Rosenberg 2008). Dead zones are 
now considered a major threat to the health of aquatic ecosystems (Diaz 
and Rosenberg 2008; Doney 2010). While natural processes like upwelling of 
nutrient-rich ocean water contribute to eutrophication , anthropogenic nutri­
ent loading is increasingly the driver of algal blooms and hypoxic events. 

Fertilizer use is mostly exempt from federal regulation under the Clean 
Water Act despite being the major source of water quality impairment in 
the US (Olmstead 2010), and individual states have been hesitant to regulate 
agricultural inputs (Kling 2013). While regulation of agriculture is politi­
cally difficult to implement , several other challenges also inhibit efficient 
regulation of this market. 

First , the economic impacts of hypoxia and algal blooms and the related 
external cost of fertilizer are difficult to quantify (Rabotyagov et al. 2014; 
Barbier 2012). This is partly due to the inherent challenges of estimating 
the costs of nonpoint pollution (Shortle and Horan 2001, 2013), in which it 
is difficult to link accumulated downstream pollution to specific upstream 
sources. In an analysis of contributors to the dead zone in the Gulf of Mex­
ico, David , Drinkwater , and Mcisaac (2010) found that the highest nitrogen 
yields occurred in the tile-drained Corn Belt of Minnesota , Iowa , Illinois, 
Indiana , and Ohio - areas 1,500 km upstream from the pollution culmina­
tion point at the mouth of the Mississippi River. 

A second challenge to rigorous estimation of the social cost of fertilizer is 
the lack of temporally consistent and spatially relevant data on water quality 
(Brooks et al. 2016) that can be linked to economic outcomes. Water quality 
studies rely on data from in situ samples of water bodies , which are limited 
in temporal and spatial extent and face challenges related to inconsistent 
sampling practices and lack of coordination between scientific and govern­
mental entities (Monitoring Water Quality 1995). 2 Past studies of the impact 
of algal blooms have been limited to specific geographies or relatively short 
time frames. To overcome this problem , we construct a measure of county­
level algal bloom intensity that is derived from over three decades of Landsat 
satellite imagery, as well as a spatially weighted measure of fertilizer use that 
is linked to watersheds. 

2. The availabilit y of standardized historic water qualit y data ha s impro ved following the 
launch of the Water Qualit y Port al by USGS , EPA, among other s (Read et al. 2017). 
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4.2 Data 

Algal blooms : We construct a county-level measure of algal bloom inten­
sity derived from over three decades of Landsat satellite imagery and pro­
cessed using computing power available through Google Earth Engine. 3 Sev­
eral satellite products have been used to detect and monitor algal blooms , 
including the European Space Agency's Medium Resolution Imaging 
Spectrometer (MERIS) product (Clark et al. 2017) and a Moderate Reso­
lution Imaging Spectroradiometer (MO DIS) product for ocean color, which 
measures chlorophyll levels at 500 m resolution in the ocean and large inland 
lakes. Each satellite product has its own trade-offs around duration , revisit 
time, resolution , and geographic extent. We opt for Landsat given its longer 
time series and the higher spatial resolution at 30 m, which allows us to better 
capture small inland water bodies and rivers. 

We build on the approach of Ho , Michalak , and Pahlevan (2019) to ana­
lyzing global lakes. We use Landsat Thematic Mapper top-of-atmosphere 
(TOA), combining Landsat 5 (1984- 2000) and Landsat 7 (2000- present). 
The bloom algorithm is based on the near-infrared (NIR) band with an 
atmospheric correction for shortwave radiation (SWIR) : B4 - 1.03*B5 
(Wang and Shi 2007). In matching Landsat 5 with Landsat 7, we subtract 
the satellite bias based on the difference in county-level bloom values during 
the years in which the products overlapped . 

We filter out all images with over 25 percent cloud cover. Unlike Ho et al. 
(2017), we do not filter out pixels beyond a certain hue threshold. We then 
take the temporal average of the bloom measure across all the 16-day revisit 
periods for each pixel during the peak bloom time in late summer (July to 
September). Next , we take the US county-level mean over a 30 m water mask 
from the National Land Cover Dataset (NLCD) for the maximum water 
extent from 2001 to 2016. US state boundaries extend three nautical miles 
from the coast , and this area is included in each state 's county calculations 
of bloom intensity. We thus include both saline coastal waters and inland 
fresh water. We exclude counties lacking significant water features (less than 
5 km2 of surface water), dropping about 25 percent of US counties. However, 
the results are robust to their inclusion . 

It is worth noting that our calculated index is not a direct measure of 
concentrations of either chlorophyll or any specific algal species; rather , it 
measures relative greenness in the upper layer of the water column. Many 
studies over the years have used Landsat to identify algal blooms (Tyler et al. 
2006; Duan et al. 2007; Tebbs, Remedios , and Harper 2013). This specific 
algorithm has been validated on the ground in Lake Erie (Ho et al. 2017) 
and globally through tests of how the index reflects the spatial gradients of 
chlorophyll-a levels within lakes (Ho, Michalak , and Pahlevan 2019). 

3. Google Earth Engine , http s://earthengine.google.com. 
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(b) Houston -Beaumont , TX 
1999 2019 

Figure 4.1 Panel A shows late summer bloom index averaged over 20 years from 
1999 to 2019 in the US Corn Belt, then with a close-up of the boundary region of 
Iowa, Illinois and Missouri, where the Des Moines River meets the Mississippi. 
Panel B shows the late summer algal bloom index at two discrete points in time 
(1999 and 2019) in the Houston-Beaumont region. 

The construction of our bloom index can be visualized in panel A of 
figure 4.1, along with how the bloom index changes over time in panel B. 

Fertilizer: We employ the US Geological Survey (USGS)'s annual county­
level estimates of nitrogen and phosphorus use from 1987 to 2012 (Brakebill 
and Gronberg 2017), which was recently updated for the year 2017 (Falcone 
2021). Data are based on fertilizer product sales compiled by the Asso­
ciation of American Plant Food Control Officials (AAPFCO) , and thus 
exclude organic fertilizers like manure. We normalize fertilizer values by the 
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County flow direct ion of selected counties 

Flow 

Figure 4.2 Watershed classification of counties based on their relative location 
within the USGS NHD hydrologic unit code HUC 4 watershed boundary. Thirteen 
randomly selected counties are shown in gray. Areas with diagonal lines represent 
counties that are at least partly within the same HUC 4 and downstream from the 
gray county, as determined by their overlap with finer resolution HUC 12 water­
sheds. Likewise, black counties are upstream from gray counties. Finally, the areas 
with dashed lines, "Both," include counties that have land area that is both upstream 
and downstream from gray counties. 

land area in a given county. We further calculate the sum of fertilizer use in 
upstream counties within a given watershed (HUC 4) from a county. The 
upstream-downstream relationship for a random subset of counties can be 
visualized in figure 4.2. Our main measure is farm fertilizer use, but results 
hold including non-farm fertilizer use as well. 

The upstream-downstream analysis is based on USGS watershed bound­
aries of hydrologic unit code HUC 4 and HUC 12 to assign water flow 
relationships between counties using flow relationships from the National 
Hydrography Dataset (NHD) (Buto and Anderson 2020). 

County-level climate data come from NOAA's Climate Divisional Data­
base (nCLIMD IV) of monthly temperature and precipitation levels. Annual 
estimates of hypoxic extent in the northern Gulf of Mexico spanning 1985 
to 2019 come from Nancy Rabalais , LUMCON , and R. Eugene Turner, 
LSU.4 County-level data on agricultural yields come from the US Depart­
ment of Agriculture's historical census and National Agricultural Statistics 
Service (NASS). 

4.2.1 Validation of Satellite Algal Bloom Measure 

To provide evidence that our algal bloom measure is both accurate and 
representative nationally , we compare our Landsat algal measure to a recent 

4. Source: http s://www.epa.gov /ms-htf /northern-gulf-mexico-h ypoxic-zone. 
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Table4.1 Relationship between measures of Landsat algal bloom and Sentinel-3 
chlorophyll 

Dependent variable: Sentinel-3 Chloroph yll 

(I) (2) (3) (4) 

Landsa t bloom 195.47*** 146.44*** 151.57*** 100.24*** 
(30.90) (23.99) (18.38) (3 1.51) 

Climate controls X X X 
Spatial FE Division Coun ty 
Observations 9,109 9,109 9,109 9,109 
R 2 0.19 0.23 0.34 0.64 

Note: Linear regression. Dependent va riable is Sentinel-3 OL CI band 11 (Ch i fluore scence 
baseline , red edge tran sition) . Predictor is Land sat algal bloom inten sity measure used in thi s 
paper. Both mea sures aggregated at county-level from July to September over areas with water. 
Time series from 2017 to 2020 when both satellite products available. Co untie s with less than 
5 km 2 of water dropped from analysis. Standard errors clustered at the state level. * p < 0.1 ; 
** p < 0.05 ; *** p < 0.01 

satellite product for chlorophyll-a , an indicator of algal activity. We make 
the comparison at the county-year level, using a similar construction by 
averaging values over water area in a county and across July to September. 
Since late 2016, the Sentinel-3 Ocean and Land Color Instrument has pro­
vided chlorophyll measures at 300 m resolution with a two-day revisit time. 
We use the band at 709. 7 5 nm for chlorophyll fluorescence baseline , red 
edge transition. While MODIS has an Ocean Colour SMI Chlorophyll-a 
product going back to 2000, we do not use this measure due to its even 
lower resolution and geographic restriction to primarily oceanic and coastal 
regions. Table 4.1 shows the results of regressing Sentinel chlorophyll on 
our Landsat algal bloom measure at the county-year level. We find a strong 
positive relationship as expected, which persists with controlling for climate 
and various spatial fixed effects. 

Figure 4A.1 shows a scatterplot of these two measures of water quality 
at the county-year level from 2017 to 2020, splitting counties into quartile 
by water area. We note a positive relationship , which improves with amount 
of water in an area. The weak relationship in the first quartile motivates the 
fact that we drop counties in the first quartile (less than 5 km2 water area) 
from our general analyses. Figure 4A.2 shows a similar scatterplot but facets 
across regions to test the generalizabilty across the US. We find a generally 
positive relationship between our Landsat measure of bloom intensity and 
Sentinel chlorophyll at the county-year level in all places except the Moun­
tain region. It is worth noting that this region is the driest part of the US 
with the lowest proportions of water area by counties. 

Altogether , we take the persistent correlation we see between our Landsat 
algal bloom measure and Sentinel chlorophyll at the county level to mean 
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Table4.2 Bloom algorithm and i11 situ measurements of chlorophyll-a 

Dependent variable: Chlorophyll-a concentration (ug/L) 

(I) (2) (3) (4) (5) (6) (7) 

Bloom 0.066*** 0.063*** 
(0.010) (0.008) 

Bloom:Estuary 0.031 *** 0.031 *** 0.024*** 0.024*** 0.027*** 
(0.010) (0.009) (0.007) (0.007) (0.005) 

Bloom:Lake 0.065*** 0.072*** 0.065*** 0.064*** 0.039*** 
(0.008) (0.009) (0.008) (0.009) (0.008) 

Bloom:Stream 0.042*** 0.044*** 0.043*** 0.044*** 0.024*** 
(0.01 I) (0.0 IO) (0.008) (0.007) (0.005) 

RGB controls No Yes Yes Yes Yes Yes Yes 
Month FE No No No Yes Yes Yes Yes 
Geo FE No No No No Grid County Site 
Observations 137,246 137,246 137,246 137,246 137,246 137,246 137,246 
R 2 0.070 0.165 0.171 0.182 0.305 0.355 0.629 

Not e: Linear regression. Dependent variable is in situ chloroph yll-a concentration from on-th e-ground 
sampling. Bloom is the computed Landsat algal bloom measure. Observations filtered to exclude images 
with less than 50 percent water in surrounding pixels and more than 25 percent cloud cover. Outliers 
beyond the 99.9th percentile dropped. RGB includes controls for Landsat 's red, green , and blue radiance 
bands. Standard errors clustered at the HUC 4 watershed level. * p < 0.1; ** p < 0.05; *** p < 0.01. 

that both are measuring broadly similar phenomen a. A perfect correlation 
would not be expected , given that these two measures aggregate million s of 
images over an entire county's water area from independent satellite prod­
ucts with different spatial resolutions and revisit times to create one annu al 
value per county. 

For further validation , we compare our Landsat measure of algal bloom 
intensity to in situ measurement s of chlorophyll at the individu al site level­
instead of aggregating over time and space. To do so, we employ the Aquasat 
data set, which matches over 600,000 in situ water quality measures (includ­
ing total suspended sediment , dissolved organic carbon, chlorophyll-a , and 
Secchi disk depth) with spectra l reflectance from Land sat 5, 7, and 8 col­
lected within one day of the sample over 1984 to 2019 (Ross et al. 2019). We 
calculate an image-specific algal bloom measure using the same algorithm 
used in our paper (Wang and Shi 2007). 

Result s are shown in table 4.2. At the site level, we see a consistently 
positive relationship between sampled chlorophyll-a concentration and our 
site-specific Land sat algal bloom measure, holding across the three main 
water type classifications in the Aquasat data set ( estuary, lake, and stream). 

4.2.2 Satellite-Derived Bloom Inten sity Trends 

Figure 4.3 showcases the temporal and spatia l patterns of the constructed 
bloom index across US counties. As expected , bloom intensity is higher 
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(a) Summer algal bloom average 

(b) Summer algal bloom change , 1985-2019 
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Figure 4.3 Panel A plots the county-level late summer bloom index averaged over 
the entire sample time period from 1984 to 2020. Panel B plots long-term change 
from 1985 to 2019 using three-year averages around the endpoints (i.e., 1984-1986 
for 1985). Gray counties lack enough surface water for a reading. 

in agricultural regions. There is significant geographic variation in where 
bloom intensity increased and decreased , although there seems to be a gen­
eral upward trend in the upper Great Plains and along the 100th meridian . 

Figure 4.4 graphs average annual bloom intensity by US region from 
1984 to 2020. Trends appear flat or decreasing in most locations. Decreasing 
bloom intensity in the US Southeast (South Atlantic) signifying potential 
water quality improvement may be attributable to a reduction in cropland 
area in that region. Algal blooms have intensified in the upper Midwest (West 
North Central) beginning in the mid-2000s. This may be linked to Corn 
Belt cropland expansion and intensification driven by ethanol demand in 
response to the Energy Policy Act of 2005, as noted by others (Metaxoglou 
and Smith 2021). We see that four of the five largest ethanol producers in 
the US are included in the West North Central division (Iowa , Nebraska , 
South Dakota , Minnesota). 
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Figure 4.4 Trends in late summer algal bloom intensity from 1984 to 2020 by US 
Census division. "No rtheast" includes New England and the Middle Atlantic. Leg­
end map in panel (i) below. 
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(i) Legend map 

Figure 4.4 (continued) 

Notwithstanding some anomalies in recent years, the overall improvement 
in water quality that we see aligns with Topp et al. (2021 ), who use a similar 
approach to ours that links Landsat to in situ measures of water quality 
to model water clarity over 14,000 lakes in the US. They find a marked 
improvement in water quality over time. Our findings also align with Keiser 
and Shapiro (2019), who note a reduction in water pollution through 2001 
using in situ data. 

4.3 Empirical Strategy 

We employ several empirical approaches: a panel approach of county­
year observations to assess annual variation; a five-year panel to assess inter­
mediate variation; and a long-difference cross-sectional approach to assess 
longer-term effects. We apply these approaches to estimate the impact of 
fertilizer on algal blooms . 

Panel 

Long-difference 

(2) 
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In the panel model , the outcome variable, bloom, is the satellite-derived 
measure of late summer algal bloom intensity in county i and year t. fert 
is tons of nitrogen fertilizer in county i and year t, or alternatively the sum 
of fertilizer use in counties upstream of county i but within its watershed 
w. Fertilizer values are normalized by dividing by county land area. Wis a 
vector of climate controls including mean summer temp and precip. 

County-level fixed effects a are used to demean the observations and allow 
for interannual comparisons , as well as year-level fixed effects -y to account 
for national-level variation (i.e., commodity prices). State-specific annual 
time trends state are also included to account for differential state-level 
policy. Standard errors are clustered at the state level s. 

In the long-difference, the outcome variable, f:!.bloom, is the change in our 
satellite-derived measure of late summer algal bloom intensity between 1987 
and 2017, each period calculated as a three-year average (i.e., period 1987 is 
the average of 1986 to 1988) to reduce the likelihood of anomalous years 
influencing outcomes. Similarly, f:!.fert and D. W represent the change in each 
variable at the county level over that same time period. We also employ state­
level fixed effects, state , to isolate within-state variation. Standard errors 
are again clustered at the state level. Note we restrict our analysis to the 
continental US. To ensure a clear satellite signal for water quality , we drop 
counties with less than 5 km2 of water cover (one-quarter of US counties) , 
as well as counties with no cropland. However, results are robust to the 
inclusion of such counties. 

For robustness , we also estimate "intermediate " effects with a panel of 
five-year intervals using three-year rolling-window moving averages calcu­
lated over our annual panel data set. This allows us to account for a multi­
year process. For example , it can take several years for fertilizer to leach 
into downstream waterways (Rabotyagov et al. 2014 ), and likewise, fertilizer 
use over a multi-year period may result in elevated bloom intensity over the 
course of several years. For this intermediate analysis, we utilize the five-year 
panel of county-level fertilizer data developed by Falcone (2021). 

4.4 Results 

4.4.1 Drivers of Fertilizer Use 

Nitrogen fertilizer consumption in 2015 in the US was 13 million tons ,5 

and world nitrogen demand was 119 million tons in 2019 (FAO 2018). Nitro­
gen usage has steadily increased over the last couple of decades , aided by the 
Haber-Bosch process and low-cost energy (Glibert 2020), while the use of 
phosphate and potash-based fertilizers has flattened or declined , as shown 

5. Fertilizer U se and Price: www.ers.usda.gov /data-product s/fertilizer-u se-and-price . 
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(a) Historical US fertilizer use by type (b) Annual growth rate 
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Figure 4.5 USDA ERS fertilizer use aggregated nationally by fertilizer type and 
year 

in figure 4.5. However, phosphates are also an important driver of algal 
blooms. Figure 4A.3 plots the relationship between nitrogen and phosphate 
use at the county level. Again, we see a very high correlation . 

We first analyze the drivers of fertilizer use at the county level. For an 
individual farmer, the yield-response curve for fertilizer use is well-known. 
As described earlier, nitrogen fertilizer accounts for a large cost component 
of commercial farm operations (~10 percent of production value). There is 
a strong incentive to apply an amount that optimizes yield response relative 
to the marginal cost of fertilizer. Since fertilizer and crops have transparent 
commodity pricing , we are not concerned about pricing differentials across 
location driving changes in input use. 

At the county level we expect fertilizer use to be driven by changes in land 
use. In table 4.3, we regress county-level nitrogen use on several potential 
land use variables : total harvested acres of the four major crops in the US 
(corn , soy, wheat , cotton), the ratio of corn-to-soy acres, and acres of land 
enrolled under the USDA Conservation Reserve Program (CRP). Cropland 
area is strongly related to nitrogen use. We would expect that places that 
increased corn production relative to soy production would increase their 
nitrogen fertilizer use given that soybeans are nitrogen-fixing leguminous 
plants that require less nitrogen compared to corn. Finally, we see a nega­
tive relationship with CRP enrollment , which makes sense given that this 
program entails taking land out of active farm production. 

Overall , these results reassure us that fertilizer use is responding to the 
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Table4.3 Drivers of farm nitrogen use 

Dependent variable: Nitrogen use (1,000 tons) 

(I) (2) (3) (4) 

Crop area 0.009*** 0.012*** 0.009*** 0.012*** 
(0.003) (0 .003) (0 .003) (0 .003) 

Corn-soy ratio 0.929*** 0.920*** 
(0 .252) (0 .248) 

CRPacres -0 .008*** -0 .010** 
(0.003) (0.004) 

County FE X X X X 
Year FE X X X X 
State-Yr trends X X X X 
Observations 83,094 51,538 82,804 51,458 
R2 0.954 0.956 0.954 0.956 

Note: Linear regression. Dependent variab le is aggregate farm-level nitrogen use (1,000s of 
tons) at the county level. Crop area is the total harvested acres of corn , soy, wheat , and cotton. 
Corn-soy ratio is the amount of corn acres divided by the sum of corn and soybean acres. CRP 
acres is the amount of acres under the USDA Conservation Reserve Program. Time series to 
1987 to 2012 and 2017. Sample size varies based on extent of counties with both corn and soy 
production and CRP data. Standard errors clustered at the state level. * p < 0.1 ; ** p < 0.05 ; 
*** p < 0.01. 

individual and aggregate -level factors that one would expect and that our 
nitrogen use data are capturing meaningful variat ion across counties and 
over time. 

4.4.2 Fertilizer on Blooms 

We next test the relation ship between nitrogen use and algal bloom inten­
sity at the county level, as captured by a satellite measure of late summer 
water greenness. In table 4.4 we separate ly test for the effects of nitrogen use 
in the county and the sum of nitrogen use over up stream counties within the 
county's watershed. We further control for weather conditions and county 
and year fixed effects, as well as state -year trends, as described earlier. 

Figure 4.6 plots the coefficients for the annu al panel , the five-year panel , 
and the long difference cross-section over thirty years from 1987 to 2017. We 
see that algal bloom inten sity responds to nitrogen use across short-term , 
medium-term , and long-term hori zons. 

There are valid concerns about the extent to which weather is a potential 
confounder given its influence on farm-level decisions (e.g., reducin g fertil­
izer use in response to adverse weather) as well as bloom intensity directly 
through phytopl ankton biologic al proc esses. While we cannot completely 
unt angle this relationship , in figure 4A.4 we run the analyses from figure 4.6 
but omit the controls for growing season precipitation and temperature. The 
resulting coefficients are quite similar. 



Table4.4 Late summer algal bloom intensity and fertilizer use per km2 

Dependent variable: Algal boom intensity 

(I) (2) (3) (4) 

Nitrogen , in county 1.409*** 0.589* 
(0.440) (0.320) 

Nitrogen , upstream 1.576*** 0.529 
(0.448) (0.471) 

County FE X X X X 
Year FE X X X X 
State-Yr trend X X 
Controls Weather Weather Weather Weather 
SE cluster State State State State 
Observations 61,020 61,020 54,221 54,221 
R2 0.856 0.858 0.858 0.860 

Note: Linear regression. Dependent variable is county-leve l average bloom intensity from July 
to September in areas with water. Nitrogen is 1,000s of tons of farm -level use per km 2 land 
area of either county or counties upstream within the HUC 4 watershed. Time series to 1987 
to 2012 and 2017. Counties with less than 5 km2 of water dropped from ana lysis. Standard 
errors clustered at the state level. * p < 0.1; ** p < 0.05; *** p < 0.01. 
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Figure 4.6 Effect of nitrogen use on late summer algal bloom intensit y. Coefficient 
plot. Lines with black shapes include the same specification as table 4.4. Lines with 
gray shapes include observations every five years from 1987 to 2017, using average 
values in the year prior through the year after each point. Lines with white shapes 
are the results of the cross-sectional long difference from 1987 to 2017, similarly us­
ing three-year average values around the endpoints. All models control for average 
weather conditions. Counties with less than 5 km2 of water dropped from analysis. 
Standard errors clustered at the state level. Error bars are at the 95 percent confi­
dence range. 
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Table4 .5 M ississippi River basin annual nitrogen use and Gulf hypox ia exte nt 

Dependent variable: 

Hypoxia (sq km) Log Hypoxia (sq km) 

(I) (2) (3) (4) (5) (6) 

Nitrogen 4.386** 3.702* 4.633* 
(2.087) (1.960) (2.409) 

Log Nitrogen 6.571 ** 5.448** 5.709* 
(2.902) (2.577) (3.241) 

Weather upstream X X X X 
Weather coastal X X 
Observations 26 26 26 26 26 26 
R2 0.155 0.375 0.398 0.176 0.455 0.456 
Adjusted R2 0.120 0.290 0.247 0.142 0.380 0.320 
F Statistic 4.417** 4.407** 2.641* 5.128** 6.117*** 3.356** 

Note: Linear regression. D ependent variable is Gu lf of Mexico summer hypoxic extent as 
defined by the estimated area where bottom-water dissolved oxygen is below 2 mg/L. Nitrogen 
is measured in 1,000s of tons for farm use, inverse weighted by distance from the mouth of the 
Mississippi River and summed across all counties in the Mississippi River basin. Weather 
contro ls include average temperature and precipitation from January to June of the given year 
for all counties in the Mississippi River basin (upstream) and counties along the coast of the 
Gulf of Mexico (coastal). Time period from 1985 to 2019. * p < 0.1; ** p < 0.05; *** p < 0.01. 

4.5 Gulf of Mexico Effect 

This paper has focused on the within-coun ty impact of fertilizer on algal 
blooms in that same count y. While we accoun t for nutrient pollution from 
the fertilizer deployed upstream from the county, we do not explicitly assess 
downstream impacts. A proportion of all fertilizer applied across the entir e 
Mississippi River basin (3.2 million km2, or about 40 percent of the con­
tinent al US including the entire Midwestern Corn Belt) reaches the Gulf 
of Mexico via the Mississippi River (and the nearby Atchafalaya River). 
Thi s upstream nutri ent polluti on creates hypoxic conditi ons in the Gulf 
of Mexico (Rabotyagov et al. 2014). Figure 4A.5 shows the corre lation 
between upstream nitrogen and phosphate use and the size of the Gulf of 
Mexico hypoxic zone. We see the strong corre lation between nitrogen and 
phosphate fertilizer use, as well as a positive bu t weaker corre lation with 
hypoxic zone extent. 

In table 4.5 we estimate the impact of upstream nutrients on the extent of 
the hypoxic zone. We take the inverse distance-weighted average of fertilizer 
use across all coun ties in the Mississippi River basin. Since weather also 
affects hypoxia via its impact on water flow and phytop lank ton activity, 
we flexibly control for precipitation and temperat ure across the Mississippi 
River basin and along the coast. We find a somewhat weak but persisten tly 
posit ive relationship between nitrogen use and hypoxic extent: a 1,000 ton 
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increase in upstream nitrogen adds 4 km2 to the hypoxic zone in the Gulf. 
The average hypoxic zone during this time period was 14,000 km2

• In log 
form, we see that a 1 percent increase in nitrogen is associated with about 
a 6 percent increase in hypoxic extent in km2• We also show the results for 
phosphates , another important limiting factor in phytoplankton growth 
(Turner and Rabalais 2013), in table 4A.1. 

4.6 Discussion 

Estimating the economic cost of fertilizer via water quality is difficult due 
to the fact that farm pollution is largely exempt under the Clean Water Act , 
as well as the lack of annual panel on water quality linked to an administra­
tive level. To this end , we create such a data set using a satellite algorithm to 
approximate algal bloom intensity at the US county level from 1984 to 2020. 

We find that fertilizer is a major driver of water quality impairment at an 
annual and longer-term timescale. Impacts are apparent both locally and 
downstream from the fertilizer use, extending to the Gulf of Mexico. 

We find significant geographic variation in where blooms occur, and where 
bloom intensity has increased and decreased over time. On average bloom 
levels have been relatively flat with the exception of an upward trend in the 
upper Great Plains and along the 100th meridian starting in the mid-2000s. 
This finding may be linked to Corn Belt cropland expansion and intensifica­
tion driven by ethanol demand in response to the Energy Policy Act of 2005. 

We hope that this new satellite product of water quality can be tested , 
refined, and utilized in research on other policy-relevant questions , including 
the valuation of wetlands and other ecosystem services- and assessing the 
benefits of land use programs such as the USDA's Conservation Reserve Pro­
gram and Wetlands Reserve Program. For example, wetland protection and 
restoration may significantly reduce downstream nutrient pollution (Mitsch 
et al. 2005) while providing co-benefits like flood mitigation (Taylor and 
Druckenmiller 2021). 

Further , given the global nature of remote sensing data , we hope this 
product can be utilized in an international context where water quality 
impairment and algal blooms are increasing challenges. 
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Figure 4A.1 Scatterplot of water quality at the county-year level for Landsat algal 
bloom measure (x-axis) and Sentinel chlorophyll measure (y-axis) from 2017 to 
2020. Outliers outside the 99.9th percentile dropped for clarity. Panels split counties 
into quartile by water area (1 is least water; 4 is most water). Lighter areas show 
higher density of points. 
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Figure 4A.2 Scatterplot of water quality at the county-year level for Landsat algal bloom 
measure (x-axis) and Sentinel chlorophyll measure (y-axis) from 2017 to 2020. Outliers outside 
the 99.9th percentile dropped for clarity, as well as counties with less than 5 km2 water area. 
Panels split counties into US census regions corresponding to the bottom map. 
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Figure 4A.3 Scatterplot of USGS county-level farm nitrogen and phosphate use 
per km2• Left panel shows annual levels, right panel shows annual change in term of 
growth rate. 
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Figure 4A.4 Effect of nitrogen use on late summer algal bloom intensity, no climate 
controls. Coefficient plot. Same as figure 4.6 except does not include weather controls. 
Lines with black shapes include the same specification as table 4.4. Lines with gray 
shapes include observations every five years from 1987 to 2017, using average values in 
the year prior through the year after each point. Lines with white shapes are the results 
of the cross-sectional long difference from 1987 to 2017, similarly using three-year av­
erage values around the endpoints. All models control for average weather conditions. 
Counties with less than 5 km2 of water dropped from analysis. Standard errors clus­
tered at the state level. Error bars are at the 95 percent confidence range. 
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Figure 4A.5 Scatterplots with line of best fit for weighted upstream basin fertilizer 
use of nitrogen (N) and phosphate (P) in millions of tons and Gulf of Mexico hy­
poxic zone extent in km2• Diagonal line is kernel density plots showing distribution 
of annual values. 

Table4A.1 Mississippi River basin annual phosphate use and Gulf hypoxia extent 

Dependent variable: 

Hypoxia (sq km) Log Hypoxia (sq km) 

(I) (2) (3) (4) (5) (6) 

Phosphate 27.314* 26.447** 26.622* 
(13.499) (12.068) (13.379) 

Log Phosphate 3.159 3.207 3.239 
(2.908) (2.487) (2.671) 

Weather upstream X X X X 
Weather coastal X X 
Observations 26 26 26 26 26 26 
R2 0.146 0.404 0.404 0.047 0.390 0.415 
Adjusted R2 0.110 0.323 0.255 0.007 0.307 0.269 
F Statistic 4.094* 4.975*** 2.714** 1.180 4.691 ** 2.836** 

Note: Linear regression. Dependent variable is Gulf of Mexico summer hypoxic extent as 
defined by the estimated area where bottom-water dissolved oxygen is below 2 mg/L. Phos­
phate is measured in 1,000s of tons for farm use, inverse weighted by distance from the mouth 
of the Mississippi River and summed across all counties in the Mississippi River basin. 
Weather controls include average temperature and precipitation from January to June of the 
given year for all counties in the Mississippi River basin (upstream) and counties along the 
coast of the Gulf of Mexico (coastal). Time period from 1985 to 2019. * p < 0.1; ** p < 0.05 ; 
*** p < 0.01 
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