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Supply chains for many agricultural products have an hour-glass shape; in between a sizable 

number of farmers and consumers is a smaller number of processors.  The concentrated nature of 

the meat processing sectors in the United States implies that disruption of the processing capacity 

of any one plant, from accident, weather, or as recently witnessed – worker illnesses from a 

pandemic – has the potential to lead to system-wide disruptions.  We explore the extent to which 

a less concentrated meat processing sector would be less vulnerable to the risks of temporary plant 

shutdowns.  We calibrate an economic model to match the actual horizontal structure of the U.S. 

beef packing sector and conduct counter-factual simulations.  With Cournot competition among 

heterogeneous packing plants, the model determines how industry output and producer and 

consumer welfare vary with the odds of exogenous plant shutdowns under different horizontal 

structures.  We find that increasing odds of shutdown results in a widening of the farm-to-retail 

price spread even as packer profits fall, regardless of the structure.  Results indicate that the extent 

to which a more diffuse packing sector performs better in ensuring a given level of output, and 

thus food security, depends on the exogenous risk of shutdown and the level of output desired; no 

horizontal structure dominates.  These results illustrate the consequences of policies and industry 

efforts aimed at increasing the resilience of the food supply chain and highlight that there are no 

easy solutions to improving the short-run resilience by changing the horizontal concentration of 

meat packing.  
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1. Introduction 

Concentration in the U.S. meat packing sector has increased markedly from the 1960s to the 1990s 

(MacDonald et al., 1999).  In 2019, the 22 largest beef packing plants, representing just 3.3% of 

all plants, were responsible for 71.7% of federal inspected cattle processing in the United States 

(National Agricultural Statistics Service or NASS, 2020).  Pork packing is similarly concentrated 

with the largest 15 plants, representing only 2.5% of all plants, responsible for 61.9% of all 

federally inspected hogs slaughtered (see appendix 1).  The high level of horizontal concentration 

can be explained, at least in part, by the economies of scale in meat packing (Koontz and Lawrence, 

2010; MacDonald, 2003; MacDonald and Ollinger, 2005; Morrison Paul, 2001), implying that, in 

normal times, large and cost-efficient packing plants result in more affordable meat for consumers 

and higher livestock demand than would be the case with a more diffuse and higher-cost packing 

system.   

However, times are not always normal, and unexpected events can lead to plant shutdowns.  

For example, in August 2019, a fire at a beef packing plant in Kansas, responsible for about 5% of 

the total U.S. processing capacity, caused a spike in the farm-to-retail price spread and led to 

lawsuits and a federal investigation (USDA, 2020).  Then, in April and May 2020, worker illnesses 

from COVID-19 led to the shutdown of a number of large beef and pork packing plants, as roughly 

40% of processing capacity was brought offline, leading to an unprecedented increase in the farm-

to-wholesale price spread and serious concerns over food security and meat supply (Lusk, Tonsor, 

and Schulz, 2021).  These recent events have raised questions about the resilience of the beef and 

pork supply chains, and policy makers have sought ways to encourage the entry of more small and 

medium-sized processors, hoping to enhance the resilience (Bustillo, 2020; Nickelsburg, 2020; 

Pitt, 2021).  Despite these efforts, at present, it remains unclear whether and to what extent a less 
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concentrated meat packing sector would have performed better during the pandemic, a knowledge 

gap this paper aims to rectify.  

Resilience is a widely discussed topic across disciplines, like ecology, sociology, and 

management, and the definition of resilience is disciplinary specific (Bhamra et al., 2011).  

Regarding the resilience of the supply chain, researchers mainly study the short-run as well as 

long-run adaptive capability of a supply chain to respond to disruptions and maintain operations 

at the desired level (Ponomarov and Holcomb, 2009).  In our context, we evaluate resilience of the 

U.S. meat supply chain based on the short-run performance of different horizontal structures in 

achieving target output and producer/consumer welfare, in response to an exogenous chance of 

shutdown faced by packing plants.  

Our model of the U.S. meat supply chain captures key features of the meat packing sector, 

including its concentrated nature and economies of scale.  The concentrated nature of meat packing 

has been the subject of much attention, and numerous studies have attempted to estimate and 

determine the presence or extent of imperfect competition in the sector, finding mixed evidence 

(e.g., see Wohlgenant, 2013 for one review).  Our model allows heterogeneous packers to exercise 

market power under Cournot competition, though packers may not exercise much seller or buyer 

power under a particular horizontal structure.  

Legal complaints and livestock producer concerns have focused on the farm-to-wholesale 

or farm-to-retail price spreads as evidence of market power, and concerns about widening price 

spreads have been reignited by price dynamics following recent plant shutdowns.  Our model and 

findings re-enforce Brester, Marsh, and Atwood’s (2009) results that price spreads, in isolation, 

are uninformative as it relates to market power and packer profits.  A few recent papers have 

explored the market impacts that occur, when a firm decides to close down one of its packing 
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plants (e.g., McKendree, Saitone, and Schaefer, 2021; Raper, Cheney, and Punjabi, 2006).  Our 

paper goes beyond this prior work by introducing a broader framework that allows us to explore 

outcomes resulting from differing horizontal structures, and when plants in the industry face an 

exogenous risk of shutdown rather than the endogenous choice to reduce capacity.  

 This paper is organized as follows.  In section 2, we set up a three-stage theoretical model 

to characterize the interactions among livestock farmers, meat packing plants, and retailers.  

Because entering the meat packing sector requires considerable fixed investment in constructing 

the plant (i.e., sunk costs), the processing capacity of each plant is assumed to be fixed in our short-

run context.  We allow the plants to Cournot-compete by choosing the optimal production scale in 

the scenario with no exogenous risk of shutdown, given size-specific heterogeneous processing 

cost functions.  Under Cournot competition, the degree of seller and buyer power exercised by a 

packing plant is determined by its volume share in the sector.  

 To calibrate the model, we impose linear functions to beef demand and cattle supply to 

obtain analytical solutions for equilibrium prices, quantities, and welfare measurements in section 

3.  The demand elasticity, supply elasticity, and marginal costs of retailing are collected from 

recent empirical studies and government statistics.  Given these parameters, marginal costs of 

processing are specified to ensure that the equilibrium size distribution of plants in the risk-free 

scenario matches the actual horizontal structure of U.S. beef packing in 2019.   

 In section 4, we conduct simulations to study counter-factual equilibria in the beef industry 

under various risk levels and different horizontal structures.  For each simulation, a particular level 

of risk is randomly imposed on all packing plants, causing some plants to shut down.  In addition 

to the actual structure of the beef-packing sector, we consider two alternative structures: a market 
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with small-sized plants only (i.e., the diffuse structure) and a market with large-sized plants only 

(i.e., the concentrated structure).  The actual structure lies in between the two extreme structures.  

Simulation outcomes reveal the complexity in the relative resilience across horizontal 

structures of meat packing.  When each plant in the industry faces chance of shutdown equal to 

10-30%, for example, simulation results show that a more concentrated packing sector performs 

better in ensuring a relatively high level of output (e.g., less than 20% output reductions), and thus 

food security, than a diffuse packing sector, while the reverse is true if the goal is to ensure that 

output does not fall below a minimal threshold (e.g., more than 40% output reductions).  On 

average, though, differences across horizontal structures are typically not of large economic 

magnitudes.  What distinguishes the three structures is the variation in the prices and quantities 

across simulations.  A more diffuse packing sector has lower variability in output and consumer 

and producer welfare for any given shutdown risk than a more concentrated packing sector.  While 

lower variability might be interpreted as a benefit of a diffuse packing sector, it need not be the 

case as it might imply certainty of a poor outcome. Sensitivity analysis suggests that these patterns 

are robust to alternative values of key parameters, including supply elasticity, and alternative 

structures and assumptions on the plant-level output. Similar conclusions apply to the pork supply 

chain which has similar structural features as the beef supply chain.  

As discussed in section 5, these results help illustrate the consequences of policies and 

industry efforts aimed at increasing the resilience of the food supply chain.  Policy proposals, 

academic writings, and popular discussions, have tended to focus on lessening the degree of 

concentration as key to improving resilience (e.g., Hendrickson, 2015; Pitt, 2021; Rotz and Fraser, 

2015).  Using the beef supply chain as an example, our research shows that the relationship 

between concentration and resilience is complex.  Odds of output, or producer or consumer surplus, 
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falling below a given level is sometimes lower and sometimes higher when the packing sector is 

less concentrated; however, it is generally the case that a more diffuse packing sector has slightly 

lower odds of witnessing the worst possible outcomes.  However, total expected welfare is 

typically lower under a more diffuse packing sector because of the lost economies of scale, a result 

related to findings such as that by Azaam and Schroeter (1995) who show welfare losses from 

market power are more than offset by improved cost efficiencies.  However, if the social planner 

is risk averse, especially loss averse, a more diffuse structure may be preferred (see section 4.3). 

Despite the sizable literature on concentration and market power in meat packing, our study 

is among the first to relate these issues to the short-run resilience to exogenous (or “disaster”) 

shutdown risks on packing plants.  Given the severe adverse impacts of COVID-19 on livestock 

and meatpacking sectors, and impending policy changes and legal challenges to the present system, 

it is of high importance to understand how short-run resilience may be impacted by degree of 

concentration.  

2. Conceptual Model 

Given heterogeneity in size of processors in the U.S. meat-packing industry, we employ a Cournot 

competition model to characterize plant interactions.  The Cournot model offers an appropriate 

framework for our context because a meat processor is committed to producing at a particular scale 

upon building its plant.1  Once the plant is built, the processor tries to, and often does, produce 

near full capacity where costs are minimized (Koontz and Lawrence, 2010; Bina et al., 2021).  It 

is hence reasonable to model plants competing in quantity, which implies rising marginal costs of 

                                                 

1 This model does not account for spatial factors related to plant location.  In reality, all the largest beef packing plants 

are located in a tight geographic region around the Texas panhandle, Western Kanas, and Nebraska, suggesting that 

distance is unlikely to be a predominant factor affecting competition.  
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processing at the full capacity or increasing shadow value of relaxing the capacity constraint of a 

given plant.  The model also allows for imperfect competition in the cattle as well as beef retail 

markets, and can consider various counter-factual structures of the meat-packing sector.  

 Let there be n processing plants of different sizes. The plants are denoted by 𝑖 ∈ {1,2,3 … 𝑛}.  

Relatively large processors enjoy economies of scale and have relatively low marginal costs of 

processing than smaller processors (Koontz and Lawrence, 2010; MacDonald, 2003; MacDonald 

and Ollinger, 2005).  Under Cournot competition, a processor with lower marginal costs always 

produces at a larger scale in equilibrium.  

 Prior studies find that meat processors exercise buyer power against livestock producers 

and may also exercise seller power against retailers (Wohlgenant, 2013).  We hence specify an 

upward sloping supply function and a downward sloping inverse demand function faced by the 

processors.  The inverse demand function that processors face is derived from the inverse demand 

function for beef less a constant retailing marginal cost (𝑐𝑟):  

(1a) 𝑃𝑟 = 𝐷(𝑄𝑟|𝑋), 

(1b) 𝑃𝑤 = 𝑃𝑟 − 𝑐𝑟 = 𝐷(𝑄𝑟|𝑋) − 𝑐𝑟, 

where 𝑃𝑟  is the retail price, 𝑃𝑤  the wholesale price, and X demand shifters. The inverse farm 

supply of cattle is expressed as: 

(1c) 𝑃𝑓 = 𝑆(𝑄𝑓|𝑌), 

where 𝑃𝑓 is the farm-gate price and Y supply shifters.  

Assume for convenience that the processing technology satisfies quasi-fixed proportions, 

so that no substitution is permitted between cattle and other processing inputs like labor and energy 

in producing beef products.  Without loss of generality, we can hence measure total quantities at 
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farm, processor, and retail stages in the supply chain as 𝑄𝑟 = 𝑄𝑤 = 𝑄𝑓 = 𝑄 = ∑ 𝑞𝑖𝑛  where 𝑞𝑖 

denotes the output of a packing plant.  

Assuming a constant marginal cost of processing for each packing plant, we express the 

total cost of plant 𝑖 as: 

(2) 𝐶𝑖
𝑤 = 𝑐𝑖

𝑤𝑞𝑖 + 𝑃𝑓(𝑄)𝑞𝑖, 

where 𝑐𝑖
𝑤 is a constant marginal cost of processing and decreases in the size of the plant.  We then 

write a profit-maximizing processor’s objective function as: 

(3) 𝜋𝑖
𝑤 = (𝐷(𝑄|𝑋) − 𝑐𝑟)𝑞𝑖 − (𝑐𝑖

𝑤 + 𝑃𝑓(𝑄|𝑌)) 𝑞𝑖. 

Taking the derivative with respect to 𝑞𝑖 gives the first order condition: 

(4) 𝑃𝑟 (1 −
𝜉𝑖

𝑤

𝜂𝑤) − 𝑐𝑟 = 𝑃𝑓 (1 +
𝜃𝑖

𝑓

𝜖𝑓) + 𝑐𝑖
𝑤, 

where 𝜉𝑖
𝑤 =

𝜕𝑄

𝜕𝑞𝑖

𝑞𝑖

𝑄
∈ [0,1]  is the market power parameter of a particular processor against retailers 

and indicates processor’s seller power (Perloff, Karp, and Golan, 2007), 𝜂𝑤 is the absolute value 

of demand elasticity for the meat, 𝜃𝑖
𝑓
 is the market power parameter of a particular processor 

against farmers and measures processor’s buyer power, and 𝜖𝑓 is the elasticity of farm supply.  

When the market power parameter equals zero, there is perfect competition in the corresponding 

market.  The closer the market power parameter is to one, the more market power exercised by the 

processing plant.   

Under Cournot competition, 𝜉𝑖
𝑤 =

𝜕𝑄

𝜕𝑞𝑖

𝑞𝑖

𝑄
=

𝜕𝑄/𝑄

𝜕𝑞𝑖/𝑄𝑖
= 𝑠𝑖 = 𝜃𝑖

𝑓
, meaning that the market 

power parameter of a processor equals its output share in the market. 2  As illustrated in section 3, 

                                                 

2 One might be concerned about the common ownership across packing plants in the meat industry.  For instance, the 

largest four meat packing companies own most of the large-sized plants.  Our model is readily able to incorporate 

common ownership by letting 
𝜕𝑄

𝜕𝑞𝑖
 be larger than 1.  That is, when a plant changes its output levels, other plants 
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we calibrate output shares of plants based on the actual distribution of plant sizes.  Taking the 

actual horizontal structure of beef packing in 2019 as an example, the market shares of largest 

plants are merely 3-5%, implying limited exercise of market power in the processing sector.  

3. Parameterization 

To apply this framework to the U.S. livestock industry, we need to obtain analytical solutions from 

the general model by assigning functional forms, choosing plant sizes to be considered, and 

obtaining values of parameters.  Referring to NASS (2020), we take the most recent, pre-COVID 

size distribution of beef packers in the United States as the benchmark to characterize the risk-free 

horizontal structure.  The pork packing sector has a similar structure.  

As detailed in appendix 1, the nine size groups reported by NASS are consolidated into 

three groups.  Plants with yearly output of 1-49,999 head account for 91.8% of all plants, but 

contribute only 3.1% of the industry output.  Their average annual output is 1.7 thousand head per 

plant.  Plants with yearly output of 50,000-499,999 head account for 4.9% of all plants and 

contribute 25.2% of the total output.  On average, their annual output is 252.3 thousand head per 

plant.  Finally, 3.3% of the plants slaughter over half million head per year and contribute 71.7% 

of industry output.  Their average annual output per plant is as large as 1.1 million head.  

Throughout the rest of this article, we rely on the three output groups referred to as the small-sized, 

medium-sized, and large-sized beef packers, respectively.  

3.1 Analytical Solutions 

We utilize linear inverse demand and supply functions faced by meat packers, respectively: 

                                                 

belonging to the same company would do the same.  Doing so results in a smaller 𝑄∗ and gives large-sized plants 

more market power, but would not change our central insights in the distribution of simulated outcomes across 

structures.  Moreover, our main focus is on risks of shutdown, which occur at the plant, not ownership level.  
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(5a) 𝑃𝑟 = 𝑎 − 𝛼𝑄, 

(5b) 𝑃𝑓 = 𝑏 + 𝛽𝑄. 

Assume that perfect competition is achieved with a large number of small-sized processors 

in the industry.  Normalizing the equilibrium retail price and quantity under perfect competition to 

1, we are able to express the competitive wholesale price as 1 − 𝑐𝑟 and the competitive farm price 

as 𝑓 = 1 − 𝑐𝑟 − 𝑐𝑆
𝑤, where the 𝑆 subscript indicates small-sized plants.  It follows that 𝛼 =

1

𝜂𝑟
, 

𝛽 =
𝑓

𝜖𝑓
, 𝑎 = 1 +

1

𝜂𝑟
, and 𝑏 = 𝑓 − 𝛽.  

 Rewriting the first order condition of a processing plant 𝑖 as: 

(6) 𝑃𝑟 − 𝑐𝑟 − 𝑃𝑓 − 𝑐𝑖
𝑤 = −𝑞𝑖 (

𝜕𝑃𝑟

𝜕𝑞𝑖
−

𝜕𝑃𝑓

𝜕𝑞𝑖
), 

we obtain:  

(7a) (𝑎 − 𝛼𝑄) − ( 𝑏 + 𝛽𝑄) − 𝑐𝑟 − 𝑐𝑖
𝑤 = (𝛼 + 𝛽)𝑄

𝜕𝑄

𝜕𝑞𝑖

𝑞𝑖

𝑄
. 

Because 
𝜕𝑄

𝜕𝑞𝑖

𝑞𝑖

𝑄
 equals the production share of plant 𝑖, adding up over the 𝑛 plants yields:  

(7b) 𝑛(𝑎 − 𝑏) − 𝑛( 𝛼 + 𝛽)𝑄 − 𝑛𝑐𝑟 − ∑ 𝑐𝑖
𝑤𝑛

𝑖 = (𝛼 + 𝛽)𝑄. 

Equation (7b) implies the equilibrium industry output is:  

(8a) 𝑄∗ =
𝑛

𝑛+1

(𝑎−𝑏)−𝑐𝑟−𝑐𝑤̅̅ ̅̅

𝛼+𝛽
, 

where 𝑐𝑤̅̅̅̅ =
∑ 𝑐𝑖

𝑤𝑛
𝑖

𝑛
 is the industry-level average processing marginal cost.  

 With 𝑄∗, it is easy to compute the equilibrium prices 𝑃𝑟∗ and 𝑃𝑓∗.  Because we assume 

linear functional forms for demand and supply, we compute consumer surplus (CS), producer 

surplus (PS), and processor profits (Π) as:  

(8b) 𝐶𝑆 =
(𝑎−𝑃𝑟∗)𝑄∗

2
, 
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(8c) 𝑃𝑆 =
(𝑃𝑓∗−𝑏)𝑄∗

2
, and 

(8d) Π = (𝑃𝑟∗ − 𝑐𝑟 −  𝑃𝑓∗)𝑄∗ − ∑ 𝑐𝑖
𝑤𝑞𝑖

∗𝑛
𝑖 . 

The equilibrium production of plant 𝑖 is solved by plugging 𝑄∗ into equation (7a). Re-arranging 

the equation, we see that plant i’s output is given by: 

(8e) 𝑞𝑖
∗ =

(𝑎−𝑏)−𝑐𝑟−𝑐𝑖
𝑤

𝛼+𝛽
− 𝑄∗. 

 Given a shutdown shock imposed on each plant, some plants stop operation, leaving 𝑛′ <

𝑛 active plants in the sector.  In the short-run, we do not allow the remaining 𝑛′ plants to Cournot-

compete and achieve new equilibrium production scales, because building new production 

capacity takes considerable time and is unlikely due to temporary shutdowns of competitors.  Thus, 

the new total quantity processed is: 

(9a) 𝑄′ = ∑ 𝑞𝑖
∗

𝑛′ . 

Correspondingly, the new market equilibrium retail price and farm price can be found 

based on the demand and supply functions that are unchanged under the shock on processing plants.  

In the new equilibrium, 𝑐𝑖
𝑤 rises to ensure that the initial output levels are equilibrium values in a 

new equilibrium with 𝑛′ active plants.  The implied processing marginal costs are higher than the 

initial values and equal:  

(9b) 𝑐𝑖
𝑤′

= (𝑎 − 𝑏) − 𝑐𝑟 − (𝛼 + 𝛽)(𝑞𝑖
∗ + 𝑄′). 

In sensitivity analysis, we relax the assumption of fixed 𝑞𝑖
∗ and show that main conclusions remain 

unchanged.  

3.2 Parameter Values 

The key parameters in our simulation model are the own-price demand elasticity for beef (𝜂𝑟), the 

short-run supply elasticity of cattle (𝜖𝑓), the retail marginal costs (𝑐𝑟), marginal costs of processing 



12 

for different sizes of slaughter plants (𝑐𝑖
𝑤), and the competitive farm share of retail beef value (𝑓).  

We survey the literature and public statistics to assign appropriate values to the parameters in our 

baseline simulation model.  

To find the plausible value for 𝜂𝑟, we surveyed recent U.S. focused empirical studies on 

beef demand.  These studies use a variety of data sources at different frequencies ranging from 

individual-consumer survey data, to weekly retail scanner data, to quarterly or annual, aggregate 

nationwide data.  We summarize seven recent studies providing 31 point estimates of demand 

elasticity in appendix table A2.  The estimates range widely and roughly fall in two domains: a 

low domain from -0.5 to -1, suggesting inelastic demand, and a high domain from -1.7 to -2.3, 

implying elastic demand.  The relatively elastic magnitudes are generally from studies using high 

frequency data.  We take the mean value of the high domain as the baseline value of 𝜂𝑟 because 

our study focuses on short-run changes in the market equilibrium.  

 Estimating supply responses for products with biological cycles has long been a challenge 

(Aadland and Bailey, 2001).  There are relatively few recent studies providing estimates of cattle 

supply elasticities in the United States (see appendix table A3 for a few estimated values).  The 

values are quite consistent, suggesting inelastic cattle supply in the short-run, with 𝜖𝑓 equal to 

about 0.2.  With respect to our simulation model, however, letting 𝜖𝑓 be smaller than one might 

lead to cases where the equilibrium farm price is negative.  Such cases happen when a sufficiently 

large number of plants shut down, and imply that farmers need to pay plants to get their animals 

slaughtered to make room for new feeder animals.  While these outcomes would be highly unusual, 

the market might approximate the outcome, as in the case of COVID-19, when hog producers 

resorted to euthanizing hogs (e.g., Dipietre and Mulberry, 2021).  For the purpose of simulations, 

we restrict 𝑃𝑓 to be non-negative by setting the supply elasticity to one, assuming that farmers 
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may enjoy some flexibility in holding the stock for a few days to a couple of weeks if the farm 

price falls too low.  Less elastic supply is considered in section 4.2 where we conduct sensitivity 

analysis.  

 The retail marginal cost parameter is approximated by price spreads reported by USDA, 

Economic Research Service (2021).  We assume that a common 𝑐𝑟 applies to all sizes of slaughter 

plants and 𝑐𝑟 is independent from shutdown risks.  USDA monthly beef price spread data are 

measured in retail-weight equivalent units based on fixed conversion rates from cattle to processed 

beef and from processed beef to retail beef (Hahn, 2004).  The average monthly wholesale-to-retail 

price spread margin in 2019 accounts for 41-43% of the retail beef value.  In the base simulation, 

we hence set 𝑐𝑟 at the mean value or 0.42 given the competitive retail price is normalized to 1.  

To replicate the actual distribution of plant sizes grouped into three levels, we set 

processing marginal costs for the three sizes of plants such that their risk-free, relative output sizes 

under Cournot competition match with the actual statistics reported by USDA (see appendix table 

A1).  Normalizing the risk-free output of small-sized plants to 1, the scale of medium-sized plants 

is 154, and the scale of large-sized plants is 660.  Once the marginal costs of processing for the 

small-sized plants are determined, the farm share under perfect competition is found by 𝑓 = 1 −

𝑐𝑟 − 𝑐𝑆
𝑤.  The value of 𝑓 also matches with the farmer share of beef reported by USDA (2021).  

Baseline parameter values are summarized in table 1.  
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Table 1. Parameter Values in the Base Simulation 

Parameter Definition Value 

𝜂𝑟  Magnitude of demand elasticity for beef 1.94 

𝜖𝑓  Supply elasticity of cattle 1.00 

𝑐𝑟  Retail marginal costs 0.42 

𝑓  Farm share of the retail value under no risk 0.43 

𝑐𝑆
𝑤  Processing marginal costs, small-sized under no risk 0.16 

𝑐𝑀
𝑤  Processing marginal costs, medium-sized under no risk 0.15 

𝑐𝐿
𝑤  Processing marginal costs, large-sized under no risk 0.12 

 

4. Simulation Results 

The calibrated model is flexible in considering various horizontal structures of the U.S. beef 

packing sector.  We consider various risk levels and present baseline simulation outcomes for three 

horizontal structures of interest.  Sensitivity analysis suggests that the baseline outcomes are robust 

to alternative parameter values and assumptions.  

4.1 Baseline Outcomes 

In addition to the actual structure, we are interested in two counter-factual horizontal structures of 

the beef packing sector: small-sized-only and large-sized-only.  In the rest of this article, we refer 

to the actual structure as the “current scenario” where the size distribution of packing plants 

matches exactly the actual distribution in 2019, when collapsed to three size groups.  The small-

sized-only is referred to as the “all-small scenario” and characterizes a diffuse structure which is 

completely occupied by small-sized plants.  The third structure is called the “all-large scenario” 

and characterizes an oligopoly-oligopsony market which is occupied by a few large-scale plants.  
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For easier comparison across different horizontal structures, we let all the scenarios reach 

the same equilibrium industry output under no risk.3  The number of different sized plants are 

adjusted accordingly.  The distribution of plant sizes in each scenario is displayed in table 2.  

Because the output scale of a small-sized plant is only 
1

660
th of a large-sized plant, it is no surprise 

the see many more small-sized plants in the all-small scenario and only a few large-sized plants in 

the all-large scenario. 

Table 2. Plant Size Distributions under Different Structures 

Scenario No. small plants No. medium plants No. large plants No. plants 

Current 615 33 22 670 

All-small 22,000 0 0 22,000 

All-large 0 0 30 30 

 

We consider various shutdown risks, including 5%, 10%, 20%, 30%, 40%, and 50%. The 

risk is common to all plants in a scenario and is independently and randomly realized.  The risk is 

not set as a function of the plant size, because there is no evidence against this setup.  For example, 

capacity reductions in beef slaughter plants during COVID-19 did not depend on plant sizes (Bina 

et al., 2021).  Other supply-side risks such as fire outbreak and machinery breakdown could be 

higher for smaller plants due to their use of older buildings/facilities (Williams, 2018) or lower 

because of more careful supervision in daily operation.  By imposing a common risk to all plants, 

we are able to isolate the effect of changing the structure on industry outputs and prices under a 

particular risk.  

                                                 

3 Strictly speaking, the total output by 30 large plants is slightly lower under no risk compared with the current and 

all-small scenarios.  Because the number of plants has to be an integer, 30 plants already give us an output level closest 

to the other two scenarios.  
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Given a scenario and a risk level, 1,000 simulations are conducted to generate equilibrium 

prices and outputs.  At each iteration, a [0, 1] uniform random draw is taken for each plant.  If the 

draw exceeds the assigned shutdown risk level (e.g., 0.3), the plant stays open, otherwise the plant 

closes and produces zero output.  Once the risk is realized for each plant, industry output and prices 

and welfare measurements are re-computed for packing plants that remain open.  

To judge the fitness of the model, we begin by comparing simulation outcomes from the 

current scenario to actual price and output changes witnessed during COVID-19, confirming that 

this scenario indeed captures key features of the U.S. beef industry.  In April and May 2020, the 

U.S. beef packing sector experienced substantial supply-side disruptions due to slowdown and 

shutdown of packing plants.  Daily number of federally inspected cattle processed fell 20-40% 

year-over-year for eight weeks (Lusk, Tonsor, and Schulz, 2021).  From February to mid-May, the 

farm-to-wholesale price spread increased by over 250%.  Our simulation outcomes depict a similar 

picture.  When the risk of shutdown is 30%, the farm-to-wholesale price spread rises from 0.16 to 

0.44, an increase of 179%.  With a 40%-risk, the increase becomes 241%.  The large increases in 

the price spread, however, do not mean an increase in packer profits.  Our simulations show that 

the total profits of plants fall with a decreased processing capacity of the sector, as observed in the 

real world.  

We proceed to compare the current horizontal structure to the two counter-factual 

structures.  One general insight is that the new equilibrium prices and outputs after plant shutdowns 

have almost identical mean values, regardless of the structure.  The structure matters only when 

we consider the variation in new equilibrium prices and outputs across the 1,000 iterations: there 

is much less variation in a diffuse sector than in more concentrated ones.   
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The intuition is straightforward and captured by panel (a) of figure 1.  With a large number 

of small plants, outcomes from imposing random shocks always converge to the expected level.  

For example, if each plant faces a 30% chance of shutdown in the all-small scenario, approximately 

30% of plants will close and, because all plants are the same small size, output will fall 

approximately 30% in every iteration.  Therefore, its distribution of simulated outputs is highly 

concentrated around the mean of 0.70 (i.e., the green bars in the figure).  With a small number of 

plants, however, a simulation outcome of imposing random shocks could vary widely around the 

expected level, particularly if a large plant happens to receive a “good” or “bad” draw in an 

iteration.  The distribution of simulated outputs under the all-large scenario has wide tails or high 

variance (i.e., the blue bars in the figure).  The current scenario generates outcomes that lie in 

between the two extreme structures.  

Panel (b) of figure 1 shows the probability of avoiding different reductions (i.e., target 

levels of operation) in the sector’s total output given a shutdown risk and a horizontal structure.  

When the risk is small (e.g., 5%), the all-small scenario always outperforms the other two scenarios 

in achieving the lowest probability of experiencing any output reduction, and the all-large scenario 

is always the worst.  When the risk level is medium (e.g., 30%), the all-small scenario outperforms 

only in achieving the lowest probability of experiencing large output reductions such as 40%+ (i.e., 

more than 40%) and 50%+.  The current scenario performs the best regarding relatively small 

output reductions.  When the risk level is high (e.g., 50%), the three scenarios perform equally in 

experiencing 10%+ and 20%+ reductions. The all-large scenario performs slightly better in 

avoiding 30%+ reductions. The current scenario outperforms regarding 40%+ reductions, while 

the all-small scenario remains the best in avoiding 50%+ reductions.   



18 

Given the patterns, we argue that the short-run resilience of a horizontal structure depends 

on the goal of a policy as well as the risk of shutdown.  If the goal is to ensure a level of output 

close to the “normal” level (and thus food security), a relatively concentrated processing sector 

performs better than a more diffuse packing sector for a medium or large risk of plant shutdown, 

while a diffuse sector outperforms under a small risk.  If the policy aims to ensure output does not 

fall below a minimal threshold, then the diffuse structure tends to outperform under all risk levels 

considered.  

 

 

(a) 
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(b) 

Figure 1. Simulated Industry Output under Different Risk Levels and Structures 

Source: Author’s simulation outcomes.  

Note: In panel (a), the horizontal axis is the normalized simulated total output ranging from 0.4 to 1. The vertical axis is the percentage of 1,000 simulated cases 

that produce the corresponding output under a particular structure. In panel (b), the horizontal axis indicates the reduction in total industry output with “X%” 

meaning that “total output falls by more than X% compared with the risk-free output”.  The vertical axis measures the corresponding probability of experiencing a 

reduction in total output larger than X%.  Plant outputs under risks are fixed at the risk-free levels.  
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Table 3 summarizes the mean farm-to-retail price spread under different horizontal 

structures and risk levels.  The mean values under the three structures are almost the same and all 

increase with shutdown risk, but there is considerably more variation in the price spread across 

simulations in a less concentrated market.  The price spread widens as shutdown risk increases, 

intuitively, because the retail price increases as the quantity of processed beef decreases and the 

farm price falls.  Even in a perfectly competitive market (i.e., the all-small scenario), the price 

spread widens at the same rate as the other scenarios with an increasing shutdown risk.4  

In the meantime, the profits made by packing plants drop.  In the perfectly competitive 

scenario, of course, the packers never make profits by construction, and the packer profits remain 

at zero regardless of the risk.  In the two other scenarios, the packing plants exercise some buyer 

and seller power.  Their profits do not increase with the widening price spread because the increase 

in the spread is not due to packers’ markups over retailers or markdowns over farmers.  Instead, 

the increasing spread is driven by the loss of processing capacity.  Marginal costs of processing 

increase considerably as the capacity falls, more than cancelling out any potential profits to packers 

from reducing industry-level outputs.  

Worth noticing from table 3, consumer and producer (farmer) surpluses fall with an 

increasing shutdown risk.  In expectation, the three scenarios lead to the same consumer and 

producer surpluses under a given risk.  Total social welfare, which is the summation of consumer 

and farmer surpluses and packer profits, is the largest in the all-large scenario, thanks to the high 

cost efficiency of large-sized processing plants.  The finding echoes prior studies such as Azaam 

and Schroeter (1995) who find that welfare losses from market power are more than offset by 

                                                 

4 By construction of our model, the farm-to-wholesale price spread increases by the same increments as the farm-to-

retail price spread because the marginal costs of retailing is fixed at 𝑐𝑟 =0.42.  



21 

higher cost efficiencies of large-sized packing plants.  We revisit the evaluation of social welfare 

in section 4.3. 

Table 3. Simulated Mean Values under Different Structures 

Scenario Risk=5% Risk=10% Risk=20% Risk=30% Risk=40% Risk=50% 

Price spread       

Current 0.622 0.671 0.762 0.856 0.951 1.045 

All-small 0.623 0.670 0.764 0.858 0.952 1.046 

All-large 0.624 0.671 0.765 0.859 0.950 1.042 

Packer profits       

Current 0.023 0.021 0.019 0.017 0.014 0.012 

All-small 0.000 0.000 0.000 0.000 0.000 0.000 

All-large 0.030 0.028 0.025 0.022 0.019 0.016 

CS       

Current 0.233 0.208 0.167 0.128 0.095 0.066 

All-small 0.232 0.209 0.165 0.126 0.093 0.064 

All-large 0.232 0.209 0.166 0.128 0.095 0.067 

PS       

Current 0.192 0.172 0.137 0.106 0.078 0.054 

All-small 0.191 0.172 0.136 0.104 0.076 0.053 

All-large 0.191 0.172 0.136 0.105 0.078 0.056 

Total welfare       

Current 0.448 0.402 0.323 0.251 0.187 0.133 

All-small 0.424 0.381 0.301 0.230 0.169 0.118 

All-large 0.453 0.409 0.327 0.255 0.192 0.139 

 

Source: Authors’ simulation outcomes.  

Note: “Price spread” refers to the farm-to-retail price spread.  “CS” means consumer surplus and “PS” means producer 

surplus.  “Total welfare” equals the summation of consumer surplus, producer surplus, and packer profits.  

 

Figure 2 summarizes changes in the marginal processing costs of small-sized, medium-

sized, and large-sized plants in the current scenario.  The mean increases are similar in the other 

two scenarios.  Changes in the marginal processing costs for three size groups follow similar trends 
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as the shutdown risk increases.  Because the processing capacity of each plant is fixed in the short-

run, the implied marginal costs increase with the decreasing total outputs as indicated by equation 

(9b).  For example, when the average reduction in total outputs is 30%, the marginal costs of small, 

medium, and large plants increase by 180%, 189%, and 224%, respectively, relative to the risk-

free level.  The substantial costs increases imply a tight bottleneck in processing at the full capacity 

and also increased operational costs in a risky environment like COVID-19 (e.g., Lusk, Tonsor, 

and Schulz, 2021).5  

 

Figure 2. Marginal Processing Costs of Different Sized Plants under Risks 

Source: Authors’ simulation outcomes. 

Note: The small, medium, and large sized plants are defined in the modeling section under the current structure.  See 

table 1 for plant sizes.  “Cw_S” refers to the marginal costs of processing for small-sized plants, “Cw_M” for medium-

sized plants, and “Cw_L” for large-sized plants.  

                                                 

5 Marginal costs of manufacturing rises substantially at a binding capacity constraint regardless of the commodity. 

See a recent example from the electricity industry in Texas. https://www.usnews.com/news/us/articles/2021-02-

18/texas-power-consumers-to-pay-the-price-of-winter-storm  

https://www.usnews.com/news/us/articles/2021-02-18/texas-power-consumers-to-pay-the-price-of-winter-storm
https://www.usnews.com/news/us/articles/2021-02-18/texas-power-consumers-to-pay-the-price-of-winter-storm
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4.2 Sensitivity Analysis 

We test the robustness of baseline simulation outcomes by considering alternative parameter 

values and assumptions.  First, we relax the assumption of unit supply elasticity.  According to the 

literature, the short-run supply of beef is likely to be quite low (see table A3).  Letting 𝜖𝑓 be 0.8, 

0.6, and 0.4, respectively, we re-run the simulations.  The general patterns observed in the baseline 

stay unchanged.  

Taking the cases where the shutdown risk is 30% as an example, figure 3 shows output 

reductions under less elastic supply.  Again, the relative resilience of a horizontal structure depends 

on the goal of a policy.  If the goal is to ensure a high level of output, a concentrated processing 

sector performs better than a more diffuse packing sector.  If the goal is to ensure output does not 

fall below a minimal threshold, then the diffuse structure tends to outperform. 

 Worth noticing, with less elastic supply of cattle, the farm-gate price may fall negative if 

the shutdown risk is large.  For instance, when 𝜖𝑓 = 0.4 and the risk is 30%, 𝑃𝑓 falls to -0.03 if 

the industry-level output drops by 43.2% from the risk-free level.  A negative 𝑃𝑓 implies that the 

farmers have to pay the processing plants for slaughtering their animals, when the processing 

capacity is very low.  Consequently, the farm-to-retail price spread tends to be larger the more 

inelastic the cattle supply.   
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Figure 3. Simulated Industry Output under Different Risk Levels and Inelastic Cattle Supply 

Source: Author’s simulation outcomes.  

Note: same as figure 1.   
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Second, we consider simultaneous negative shocks on the demand and supply.  For 

example, consumer demand may fall in a pandemic due to decreased visits to restaurants and 

reduced visits to grocery markets (Chetty et al., 2020), reductions in income, or the concern about 

getting the virus from consuming potentially contaminated products (McFadden et al., 2021).  If 

the demand curve shifts inwards, we need to update the demand function as: 

(10) 𝑃𝑟 = 𝑎′ − 𝛼𝑄, 

where 𝑎′ < 𝑎. All other calculation steps remain the same.  

Following this approach, we re-run the simulations by setting 𝑎′ = 0.95𝑎, 0.9𝑎, and 0.85𝑎, 

respectively.  By construction, changes in the industry output follow the same patterns as shown 

in figure 1, because the supply would not be affected by a parallel shift in the demand curve.  Only 

equilibrium prices at the farm gate and retail would be different.  Specifically, the increase in 𝑃𝑟 

would be smaller if both demand and supply curves shift in.  The change in 𝑃𝑓 is not affected by 

𝑎′, leaving the price spread smaller with smaller 𝑎′, ceteris paribus (see table 4).  

Table 4. Mean Price spreads under Different Demand Shocks 

Scenario 𝑎′ = 𝑎  𝑎′ = 0.95𝑎  𝑎′ = 0.9𝑎  𝑎′ = 0.85𝑎  

 Risk=30% 

Price spread     

Current 0.856 0.780 0.636 0.442 

All-small 0.858 0.780 0.638 0.444 

All-large 0.859 0.783 0.639 0.445 

 

Source: Authors’ simulation outcomes.  

Note: “Price spread” refers to the farm-to-retail price spread.  
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Thirdly, we assume that demand remains unchanged, but allow operating plants to increase 

their outputs under supply-side shocks.  Amid COVID-19 disruptions, for example, some packing 

plants made changes to fabrication and produced more whole cuts instead of small cuts or ran extra 

shifts on weekends in order to increase the total output with the same facilities and rising 

operational costs (Lusk, Tonsor, and Schulz, 2021).  Being able to increase outputs beyond the full 

capacity is expected to add resilience in the supply chain.  

In this simulation, we let plants that do not shutdown find new equilibrium outputs given 

higher marginal processing costs.  With a shutdown risk of 30%, for example, we bring up the 

marginal costs of small-sized, medium-sized, and large-sized plants by 100%, 104.5%, and 120%, 

respectively.  These cost increases are chosen to ensure that all plants achieve higher outputs, after 

some plants shut down, and that their output increases are not too large to be realistic nor so large 

that their size rankings change.  

Given the cost increases listed here, the new equilibrium outputs of small-sized, medium-

sized, and large-sized plants on average become 2.27, 1.07, and 1.19 times as large as their outputs 

under no risk, respectively.  The average reduction in industry output is only 16.6% instead of 

29.8% in the baseline, showing considerably more resilience in the beef supply chain.  Besides, 

the probability of industry output falling by more than 20% drops to zero.  Across all three 

scenarios, figure 4 shows that the decreases in industry outputs become smaller if we allow plants 

to increase outputs under supply shocks.  The current and all-small structures result in almost 

identical outcomes, and both outperform the all-large structure.  

 



27 

 

Figure 4. Simulated Industry Output with Adjustable Plant Outputs 

Source: Author’s simulation outcomes.  

Note: same as figure 1.  Plant equilibrium outputs increased after the supply shocks.  

 

 Lastly, we consider an alternative structure that is less extreme than all-large and all-small 

– some large-sized plants are replaced by small-sized plants, and the number of medium-sized 

plants remain unchanged.  Specifically, we let there be 12 large-sized plants, 33 medium-sized 

plants, and 7,215 small-sized plants, which is a structure lying in-between the current and all-small 

structures.  Figure 5 is directly comparable with panel (b) of figure 1.  As expected, the simulation 

outcomes under this “in-between” structure are in-between outcomes from the current and all-

small structures.  Baseline insights remain unchanged.6  

                                                 

6 We also change the way of imposing risks.  Instead of assuming that we know the level of risk, we can draw the 

level of risk from a normal distribution.  Then we generate multiple rounds of outcomes under an unknown risk.  Again, 

the core insight that more concentrated structure leads to more variance in outcomes and similar mean stays robust.  
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Figure 5. Simulated Industry Output under the Fourth Structure 

Source: Author’s simulation outcomes.  

Note: same as figure 1.  “Sm-Md_Lg2” refers to the structure with 12 large-sized plants, 33 medium-sized plants, 

and 7,215 small-sized plants.  

 

4.3 Welfare Implications 

Regarding social welfare, the criterion of welfare affects the ranking of alternative horizontal 

structures of meat packing.  Table 3 indicates that, if a social planner only cares about the expected 

total welfare, the concentrated structure is preferred thanks to the economies of scale and lower 

marginal costs in processing.  However, a social planner may care more than the mean welfare.  In 

particular, the planner may want to avoid extreme losses in CS and PS.  For instance, the planner 

may maximize a utility function that imposes a penalty if CS or PS falls below a lower bar 

(Holthausen, 1981).   

To see how the alternative welfare criterion changes the ranking of various structures, we 

consider a linear loss avoidance utility function: 
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(10) {
𝑈(𝑥) = 𝑥, ∀𝑥 > 𝑥

𝑈(𝑥) = 𝑥 − 𝜅(𝑥 − 𝑥), ∀𝑥 ≤ 𝑥,
 

where 𝑥 ∈ {𝐶𝑆, 𝑃𝑆}, 𝑥 is the bar triggering penalty, and 𝜅 is the loss avoidance parameter.  The 

larger is 𝜅, the more loss averse is the planner.  The total social welfare is the summation of 𝑈 =

𝑈(𝐶𝑆) + 𝑈(𝑃𝑆) + Π with Π being the collective profits of packers.   

 We consider a common risk of 30% as an example.  Let the planner set 𝑥 at 49% of the CS 

(PS) value without risk and maximizes the expected 𝑈.  We find that the ranking of the three 

alternative structures varies with the magnitude of 𝜅.  Figure 6 indicates that, when the planner is 

not loss averse or 𝜅 is small, the all-large scenario outperforms due to efficiency gains discussed 

earlier.  As the planner becomes sufficiently loss averse, the diffuse scenario starts to be preferred 

by being better at avoiding severe CS (PS) losses.  Similarly, if the planner is risk averse and treats 

variance in the total welfare as disutility, the all-large scenario would tend to be less preferred than 

the other two structures.  

 

Figure 6. Simulated Social Welfare under Different Loss Avoidance Parameters 

Source: Author’s simulation outcomes.  

Note: The vertical axis measures the expected social welfare.  The horizontal axis measures the loss avoidance 

parameter, 𝜅, in equation (10).  
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5. Policy Discussions 

Several states have recently considered or adopted legislation to subsidize the introduction of 

small- or medium-sized meat packers.  At the federal level, bills have been proposed to encourage 

more capital investments and allow small processors to access larger markets (e.g., Feedstuffs, 

2020; Hagstrom, 2020).  The implicit assumption behind such policy proposals is that they would 

result in more short-run resilience in the packing system faced with shocks like COVID-19.  As 

the foregoing simulations suggest, however, a less concentrated packing system on average would 

not necessarily have produced outcomes much different than what was observed during April and 

May 2020, when cattle and hogs slaughter dropped by almost 40%.  One, perhaps counterintuitive, 

simulation result is that total welfare is typically lower under a more diffuse packing sector because 

of the lost economies of scale.   

 In addition to policies aimed at promoting more small and medium-sized packers, a number 

of lawsuits have been levied at large meat packers, and a Justice Department investigation has 

been launched, following the packing plant shutdowns (e.g., Bunge and Kendall, 2020).  

Complaints tend to focus on the dramatic increase in the farm-to-wholesale price spread that 

occurred as a result of the plant shutdowns (Lusk, Tonsor, and Schulz, 2021).  Our simulation 

provides insight into this phenomenon and the controversy surrounding it.  In particular, regardless 

of the degree of concentration, the price spread rises when the industry is faced with an exogenous 

risk of shutdown.  This finding is entirely consistent with the theory of marketing margins 

(Wohlgenant, 2001), and we show that widening price spreads result from disruptions to 

processing even if all packers are small-sized and there is no market power.   

Moreover, even in scenarios where all packers are large, and packers earn profits, our 

simulations show that compared to the risk-free scenario, packer profits fall as price-spreads rise 
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due to an exogenous shutdown risk.  This seemingly counter-intuitive result arises because 

marginal costs also rise as exogenous shutdown risks bring down the packing capacity of the 

industry.  Thus, our results suggest extreme caution in inferring market manipulation, market 

power, or packer profits from widening farm-to-wholesale or farm-to-retail price spreads.  

These simulation outcomes reveal complex consequences of government and industry 

efforts aimed at increasing the resilience of the food supply chain through changing the horizontal 

structure.  The consequences depend critically on the exogenous risk as well as the target level of 

industry output.  Neither a diffuse nor a concentrated horizontal structure dominates.  More 

comprehensive policy designs may be needed to add short-run resilience in the supply chain under 

supply-side disruptions.  Though long-run resilience is not discussed in this article, biological 

cycles of livestock production, fixed investments, and other factors are likely to make the role of 

horizontal structure even more complex and imply even more difficulty in policy design.  We leave 

the long-run resilience in U.S. meat supply chains for future research.  
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Appendix 1. Size Distribution of Processing Plants in the United States 

Table A1 summarizes the distribution of plant sizes in the beef and pork processing sectors, 

respectively.  Their horizontal structures are similar.  

Table A1. Size Distributions of U.S. Meat Packing Plants 

Size group #  plants % plants Head/year Head/plant/year % total output 

Beef      

1-999 480 71.6% 163.2 340.0 0.5% 

1,000-9,999 107 16.0% 261.5 2,443.9 0.8% 

10,000-49,999 28 4.2% 604.9 21,603.6 1.8% 

50,000-99,999 6 0.9% 483.0 80,500.0 1.5% 

100,000-199,999 9 1.3% 1,270.7 141,188.9 3.8% 

200,000-299,999 4 0.6% 1,018.8 254,700.0 3.1% 

300,000-499,999 14 2.1% 5,554.3 396,735.7 16.8% 

500,000-999,999 10 1.5% 6,394.2 639,420.0 19.3% 

1,000,000+ 12 1.8% 17,318.8 1,443,233.3 52.4% 

All 670 100% 33069.4  100% 

      

Pork      

1-999 396 64.0% 125.4 316.7  0.1% 

1,000-9,999 123 19.9% 337.9 2,747.2 0.3% 

10,000-99,999 39 6.3% 1,529.4 39,215.4 1.2% 

100,000-249,999 18 2.9% 2,967.6 164,866.7 2.3% 

250,000-499,999 7 1.1% 2,501.0 357,285.7 1.9% 

500,000-999,999 3 0.5% 2,074.1 691,366.7 1.6% 

1,000,000-1,999,999 6 1.0% 7,849.1 1,308,183.3 6.1% 

2,000,000-2,999,999 12 1.9% 31,794.8 2,649,566.7 24.6% 

3,000,000+ 15 2.5% 80,031.5 5,335,433.3 61.9% 

All 619 100% 129210.8  100% 

 

Source: National Agricultural Statistics Service (2020). 

Note: The column of “head/year” shows the number of animals slaughtered by plants in the size group in a year and 

uses the unit of 1,000 head.   
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Appendix 2. Elasticities of U.S. Beef Demand and Cattle Supply 

The two tables below summarizes estimates of beef demand and cattle supply in the United States 

from recent empirical studies.  

Table A2: Demand Elasticities of U.S. Beef in Recent Studies 

 

Source Data 

period 

Data 

frequency/type 

Demand 

elasticities  

Notes 

Lusk and 

Tonsor (2016) 

2013-14 Monthly, Choice 

experiment 

-1.959 Low income, Ground beef, 

Price increase 

  -1.834 Middle income, Ground beef, 

Price increase 

  -1.703 High income, Ground beef, 

Price increase 

  -2.511 Low income, Ground beef, 

Price decrease 

  -2.377 Middle income, Ground beef, 

Price decrease 

  -2.075 High income, Ground beef, 

Price decrease 

  -1.738 Low income, Steak, Price 

increase 

  -1.836 Middle income, Steak, Price 

increase 

  -1.674 High income, Steak, Price 

increase 

  -2.625 Low income, Steak, Price 

decrease 

  -2.606 Middle income, Steak, Price 

decrease 

  -2.061 High income, Steak, Price 

decrease 

Mutondo and 

Henneberry 

(2007) 

1995-2005 Quarterly, 

USDA/ERS, 

USDA/FAS 

-0.712 U.S. grain-fed beef, 

Uncompensated 

  -0.507 U.S. grass-fed beef, 

Uncompensated 
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Table A2 (continued)  

 

Lusk, Jayson L., and Glynn T. Tonsor. 2016. How Meat Demand Elasticities Vary with Price, 

Income, and Product Category. Applied Economic Perspectives and Policy 38(4):673-711. 

Mutondo, Joao E., and Shida Rastegari Henneberry. 2007. A Source-Differentiated Analysis of 

U.S. Meat Demand. Journal of Agricultural and Resource Economics 32(3):515-33. 

Source Data 

period 

Data 

frequency/type 

Demand 

elasticities  

Notes 

Shang and 

Tonsor (2017) 

2009-14 Monthly, 

Scanner Data 

from IRI 

FreshLook 

Perishable 

Service 

-0.998 Beef, Total US 

  -0.830 Ground beef, Total US 

  -0.700 Other beef, Total US 

Taylor and 

Tonsor (2013) 

2007-11 Monthly, 

Scanner Data 

collected by 

Fresh Look 

Marketing Group 

-1.274 Beef, Uncompensated, Meat 

separable 

  -0.944 Beef, Uncompensated, Food 

separable 

  -2.011 Beef loin, Uncompensated, 

Meat separable 

  -1.242 Ground beef, Uncompensated, 

Meat separable 

  -1.254 Other beef, Uncompensated, 

Meat separable 

Tonsor et al. 

(2018) 

1970-2017 Quarterly, 

USDA/ERS 

-0.479 Beef, All-Fresh, 1988-2017 

  -0.645 Beef, All-Fresh, 1988-2007 

  -0.450 Beef, All-Fresh, 2008-2017 

  -0.593 Beef, Choice, 1970-2017 

  -0.490 Beef, Choice, 1988-2017 

  -0.594 Beef, Choice, 1970-1994 

  -0.468 Beef, Choice, 1995-2017 

Tonsor et al. 

(2010) 

1982-2007 Quarterly, 

USDA/ERS 

-0.420 Beef, Compensated 

Tonsor and 

Olynk (2011) 

1982-2008 Quarterly, 

USDA/ERS 

-0.493 Beef, Compensated 
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Shang, Xia, and Glynn T. Tonsor. 2017. Food Safety Recall Effects across Meat Products and 

Regions. Food Policy 69:145-53. 

Taylor, Mykel R., and Glynn T. Tonsor. 2013. Revealed Demand for Country-of-Origin Labeling 

of Meat in the United States. Journal of Agricultural and Resource Economics 38(2):235-

47. 

Tonsor, Glynn T., Jayson L. Lusk, and Ted C. Schroeder. 2018. Assessing Beef Demand 

Determinants. Report for Cattlemen’s Beef Board. 

Tonsor, Glynn T., James R. Mintert, and Ted C. Schroeder. 2010. U.S. Meat Demand: Household 

Dynamics and Media Information Impacts. Journal of Agricultural and Resource 

Economics 35(1):1-17. 

Tonsor, Glynn T., and Nicole J. Olynk. 2011. Impacts of Animal Well‐Being and Welfare Media 

on Meat Demand. Journal of Agricultural Economics 62(1):59-72. 
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Table A3: Supply Elasticities of U.S. Cattle in Recent Studies 

 

Marsh, John M. 2003. Impacts of Declining U.S. Retail Beef Demand on Farm-Level Beef Prices 

and Production. American Journal of Agricultural Economics 85(4):902-13. 

McKendree, Melissa GS, Glynn T. Tonsor, Ted C. Schroeder, and Nathan P. Hendricks. 2020. 

Impacts of Retail and Export Demand on United States Cattle Producers. American Journal 

of Agricultural Economics 102(3):866-83. 

Suh, Dong Hee, and Charles B. Moss. 2017. Decompositions of Corn Price Effects: Implications 

for Feed Grain Demand and Livestock Supply. Agricultural Economics 48(4):491-500. 

 

Source Data 

period 

Data frequency/type Supply 

elasticities  

Note for demand elasticities 

Marsh (2003) 1970-99 Annual, USDA’s red 

meats yearbook 

0.26 Short-run elasticity of 

slaughter supply 

  0.59 Long-run elasticity of 

slaughter supply 

  0.22 Short-run price elasticity of 

feeder supply 

  2.82 Long-run price elasticity of 

feeder supply 

McKendree 

(2020) 

1996-2016 Quarterly, Livestock 

marketing information 

center (LMIC) 

0.10 Short-run fed cattle supply 

elasticity 

  0.24 Long-run fed cattle supply 

elasticity 

  0.17 Short-run feeder cattle 

supply elasticity 

  0.24 Long-run feeder cattle 

supply elasticity 

Suh and 

Moss (2017) 

1981-2011 Annual, FAOSTAT, 

USDA/ERS 

0.12 Supply elasticity of cattle 


