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Abstract

We carry out a comparative analysis of inequality of opportunity (I0p) for long-run income in
Denmark and the United States. We adopt a luck-egalitarian understanding of 10p, use high-
quality administrative data, and rely on highly improved methods. These include novel
identification assumptions that allow us to produce set estimates of 10p in the United States
relative to Denmark rather than just lower-bound estimates of 10p in the two countries. There
are five main results. First, with types based only on gender and parental income rank as the
circumstances beyond people’s control, measured 10p for income is high in the United States
and far from negligible in Denmark: before taxes and transfers, the lower-bound Gini
coefficients for individual earnings and family income opportunities are in the 0.21-024 range in
the United States and in the 0.08-0.12 range in Denmark. Second, the tax system and the
welfare state reduce measured 10p in both countries, but they do so by more than twice as much
in Denmark. Third, our analyses in terms of disposable family income per adult—which factor
in taxes and transfers and purge the effect of the association between parental income and the
probability of marriage—entail that there is more 10p for income in the United States than
overall income inequality in Denmark. Fourth, 10p for income is substantially higher in the
United States than in Denmark. With opportunities defined in terms of disposable family
income per adult, 10p is at the very least 68 percent higher in the United States, and this result
is very robust to the inequality index employed in the analysis. Fifth, our lower-bound estimates
of the unfair inequality as a share of overall inequality are much larger in both countries than
typically reported for advanced economies. When we account for race and ethnicity as
circumstances beyond people’s control (in addition to gender and parental income), our lower-
bound estimate of that share for the U.S. reaches almost 58 percent. We conclude that the
distribution of economic opportunities—and not just of economic outcomes—is substantially
less unequal in Denmark than in the U.S., and that a very large share of U.S. income inequality
may be tracked back to circumstances beyond people’s control.



Introduction

For a long time, social scientists only studied inequality in economic opportunities within countries
and its variation across countries indirectly, by focusing on economic mobility across generations (for
reviews, see Blanden 2013; Corak 2006; Mitnik et al. 2018; Solon 1999). The study of economic mobility—
in particular, the estimation of intergenerational income and earnings elasticities (IGEs)—was motivated,
explicitly or implicitly, by the notion that (im)mobility rates provide information on how (un)equal
opportunities are, something that is still the case today.* At least in part, this focus on mobility resulted from
the greater conceptual, methodological and practical difficulties involved in theorizing and measuring
inequality of opportunity compared to mobility.

Over the last 15 years, however, things have changed significantly, as a large, sophisticated, and
influential empirical literature on inequality of opportunity (I0Op) has developed quite independently from the
mobility literature. In terms of philosophical foundations, this new literature has mostly adopted the “luck
egalitarian” understanding of 10p (e.g., Dworkin1981a, 1981b; Arneson 1989; Cohen 1989; Roemer 1998),
which puts individual responsibility front and center in the normative assessment of inequality. The various
theories of justice in the luck-egalitarian family stress the ethical imperative of counteracting the distributive
effects of luck on people’s incomes and other outcomes (e.g., health status, educational attainment) that have
a large impact on their chances of achieving their life plans. As luck is often interpreted as the opposite of
what individuals are responsible for (e.g., Cohen 2006:442), luck egalitarianism has also been called
“responsibility-sensitive egalitarianism.”?

Luck egalitarians argue that income and other consequential outcomes are determined by factors that
are beyond individuals’ responsibility, usually referred as “circumstances” (e.g., gender, race,
socioeconomic background), and by factors for which individuals should be held responsible, often referred
as “effort” (e.g., number of hours worked, educational attainment, occupational choice). Inequalities due to
differences in circumstances are deemed ethically unacceptable or unfair whereas those arising from
differences in effort are considered just, but only as long as the differences in effort cannot be traced back to
differences in circumstances.® Thus, for any outcome of interest, the luck-egalitarian normative ideal is an
outcome distribution that satisfies two principles: the reward principle, that is, the principle that efforts
should be rewarded adequately; and the compensation principle, that is, the principle that the effects of
circumstances should be fully compensated for. In this ideal context, all existing disparities are due to effort

1 An exact account of the relationship between those two pairs of complementary concepts in the context of
IGE-based research, however, has only been provided very recently (Mitnik, Bryant and Weber 2019:387-
388).

2 This characterization glosses over important qualifications regarding the notion of luck that is relevant here.
For a detailed analysis of this notion and its role in luck-egalitarianism, see Lippert-Rasmussen (2018).

% This position, which requires that effort be “cleaned from any contamination coming from circumstances”
(Jusot, Tubeuf and Trannoy 2013), is due to Roemer (e.g., 1998) and is the one dominant in empirical work.
For alternative philosophical positions on this matter, see Barry (2005) and Swift (2005).



differentials not accounted by circumstances. As we explain next, the empirical literature has focused on the
latter principle.

There are two different interpretations of the compensation principle. In the ex-post view, the
principle requires equalizing outcomes among people exerting the same level of effort but subject to different
circumstances. In the ex-ante view, it requires equalizing people’s opportunity sets. IOp has typically been
measured by establishing how far a society is from satisfying the compensation principle. This has involved
(a) measuring and suitably aggregating into one index of overall 10p the inequalities that exist across people
with the same levels of effort, or (b) measuring the inequality in the value of the opportunity sets of people
with different circumstances. Most studies in the empirical literature on 10p for income (10pl) have
implemented a specific version of the ex-ante view, first proposed in the theoretical literature by Van de gaer
(1993), in which the value of an individual’s opportunity set is measured by the average income of all
individuals with the same circumstances. Using this approach, the 10pl literature has produced estimates for
many countries and—Ilike the economic mobility literature—has made comparing countries in terms of their
IOpl levels a central goal (e.g., Bjorklund, Jantti and Roemer 2012; Brunori, Ferreira and Peragine 2013;
Checchi, Peragine, and Serlenga 2010; Ferreyra and Gignoux 2011; Hufe et al. 2017; Marrero and Rodriguez
2012; Pistolesi 2009; Suarez Alvarez and L6pez Menéndez 2019).

How much variation in 10pl exists across highly advanced economies that differ in terms of their
labor market, education, job training, welfare, and tax policies? Do 10pl levels vary systematically across
countries representing different “varieties of capitalism” (Hall and Soskice 2001; Amable 2003) and different
“worlds of welfare” (Esping-Anderson 1990, 1999), in the same way in which income inequality does? And
more specifically, how do social-democratic countries like Denmark, Finland, Norway, and Sweden compare
with the U.S., which is the prototypical case of a country with a liberal market economy and a liberal welfare
regime? Most comparative research on economic mobility suggests that the former countries have achieved
substantially lower levels of 10pl in addition to substantially lower levels of inequality in economic
outcomes (e.g., Bjorklund and Jantti 1997; Bratsberg et al. 2007; Corak 2006; Esping-Anderson 2015; Helsg
2018, forthcoming; Mitnik, Bryant and Grusky 2018).% However, the direct evidence that is available,
especially on the question of the magnitude (and not just the sign) of the differences in IOpl between the U.S.
and the social-democratic countries, is far from compelling.

Indeed, although existing 10pl estimates and international comparisons provide information on the
guestions posed above, the literature has been affected by a series of suboptimal methodological decisions,
the widespread use of an incorrect estimation approach, and the fundamental methodological difficulty
generated by the all-encompassing nature of the theoretical notion of circumstances (which includes all

* In opposition to a very extensive literature, Landersg and Heckman (2017) recently claimed that the low
level of intergenerational persistence in Denmark is a “fantasy,” mainly because (a) intergenerational
educational mobility in Denmark and the United States are similar, and (b) the difference in intergenerational
economic persistence across the two countries is very sensitive to the income measure used to compute it
(and, in particular, is small when computed with a measure of pre-tax-and-transfers income). Andrade and
Thomsen (2018) and Helsg (2018, forthcoming) have shown that these arguments are seriously flawed (see
also Mitnik, Bryant and Grusky 2018).



factors beyond people’s control). Equally important, the studies on which a comparison between the U.S. and
the social-democratic countries could be based have important empirical limitations.

Suboptimal methodological decisions. 10pl scholars have not focused on the 10p in long-run income
(for a notable exception, see Bjorklund, Jantti and Roemer 2012), which is the income of interest from a
normative point of view.® In addition, when selecting the inequality measure to be used in their analyses, 10p
scholars have tended to prioritize attractive theoretical properties over pragmatic properties like
interpretability. Thus, the mean logarithmic deviation (MLD), the inequality index most often used in the
literature, does not have an upper bound; this makes it difficult to attach an interpretation to absolute levels
of 10pl (AIOpl) measured with that index. Perhaps due to those interpretative difficulties, 10p scholars have
given at least as much attention in their analyses (and often much more) to results pertaining to relative 10pl
(RIOpl)—that is, AlOpl as a share of overall income inequality—as to their AlOpl results. However, AlOpl
is the relevant quantity for cross-country normative assessments. Moreover, as discussed in detail by Mitnik
(2020b), once the focus is on long-run income, the denominator of R1Opl, overall long-run income
inequality, is affected by an upward bias when estimated with the same data that produce consistent estimates
of AlOpl. And, as we explain later, one additional and rather serious methodological difficulty will most
likely arise when trying to estimate overall income inequality if the inequality measure is the MLD.

Incorrect estimation approach. In direct analogy to what has been the case with the estimation of the
IGE in the economic mobility literature (Mitnik and Grusky 2020), the approach typically used to produce
I0pl estimates is inconsistent with the interpretations attached to those estimates. Indeed, the so-called
“parametric approach” (e.g., Ferreira and Gignou 2011), which can be more precisely characterized as a
“parametric log-linear approach” (Mitnik 2020c), does not do what it is supposed to do even if its functional
form assumptions hold. Although the approach is supposed to index opportunity sets by the expected income
of people with the same circumstances, it indexes them by the geometric mean of those people’s incomes; as
a result, it estimates something other than what it is trying to estimate (Mitnik 2020c). A corollary of this
“wrong-estimand problem” is that estimates based on the parametric log-linear approach are not really
comparable to estimates produced with the more sparingly used “nonparametric approach” for 10pl
estimation (e.g., Checchi and Peragine 2010).

Partially observed circumstances. The fundamental methodological difficulty, well understood in the
literature, is that in empirical studies AlOpl is always measured with respect to an incomplete set of
circumstances, which entails that AIOpl estimates are always lower-bound estimates (for a general formal
proof that applies to any Lorenz-consistent inequality measure, see Luongo 2011: Prop. 1). Comparisons of
AlOpl estimates across countries are therefore very complicated affairs, and not nearly enough attention has
been paid to the conditions under which those comparisons may be informative. These difficulties are
compounded if the goal is to conduct comparisons of RIOp for long-run income, as in this case the estimates
are pulled down not only by the underestimation of AlOpl but also by the overestimation of long-run income
inequality mentioned above.

® This has long been well understood in the mobility literature (e.g., Jenkins 1987; Black and Devereux 2011;
Solon 1992; Solon 1999).



Empirical limitations. Beyond these general methodological problems, IOpl in the U.S. and the
social-democratic countries has most often been measured using different circumstances and income
concepts, relying on different estimation approaches, or using samples representing very different cohorts,
periods and (sometimes, quite selective) populations; all of this reduces our confidence on the conclusions
about cross-country differences that may be obtained. Also problematic, some estimates are based on survey
data that do not cover well the upper tail of income distributions; this can be expected to distort, perhaps
greatly, the measurement of 10pl. When, further, country results based on these survey data are compared
with country results based on register or other administrative data (which cover well the full income
distributions), there is a good chance that any conclusions that are drawn will be misleading.

In this article, we make both substantive and methodological contributions to the literature on 10pl.
We start to address the all-important empirical questions posed above by focusing on Denmark and the U.S.
while simultaneously tackling all the data issues and methodological problems just discussed. We avoid the
pitfalls involved in comparing estimates based on survey and administrative data by using high-quality
administrative data for both countries: register data for Denmark and the Statistics of Income Mobility (SOI-
M) Panel for the U.S. Further, in our analyses we focus on the same birth cohorts (1972-1975) and time
period (2010) and use the same sample selection rules, income concepts (individual earnings, total and
disposable family income) and nonparametric estimation method for both countries. To the best of our
knowledge, this is the first cross-country IOpl comparison based on administrative data—and where, in
addition, methods, cohorts, period, and income notions are all well aligned. And because we use the
nonparametric approach for 10pl estimation, our results are immune to the wrong-estimand problem
affecting the many estimates generated with the parametric log-linear approach.

Unlike almost all previous estimates in the literature, our estimates pertain to long-run income; we
provide a clear justification—based on an empirically-validated measurement-error model developed by
Mitnik (2020b)—for why this is the case despite the fact that we use annual income measures to compute the
mean income of people with the same circumstances. We report both AIOpl and RIOpl estimates but we
dedicate much more attention to the former. We compute AlOpl estimates based on the MLD, in part
because it is a theoretically attractive measure (e.g., Ferreira and Gignoux 2011) but mostly because this
allows direct comparison with a large share of the estimates previously reported in the literature. But we use
the Gini coefficient much more extensively. The Gini coefficient is double bounded and therefore much
easier to interpret than the MLD and other indices with no upper bound and, unlike the MLD, it can always
be unproblematically estimated. To assess how robust our comparative results are to the inequality measure
employed, we carry out complementary analyses with several other inequality measures.

In our main analyses, we use a very sparse set of variables, gender and parental-income rank, to
define circumstances. Nevertheless, with our data and methodological approach, the computation of AlOpl
with respect to this very incomplete set of circumstances produces highly informative lower-bound estimates.
We also discuss, for the first time in the literature, explicit identification assumptions under which point and
set estimates of AlOpl ratios between countries—that is, ratios of AIOpl in one country relative to another—
can be obtained with an incomplete set of circumstances. We show that an assumption that leads to the point
identification of this ratio—and which, arguably, has been implicitly relied upon in the empirical research on
cross-country comparisons of AlOpl—is very difficult to justify. We further argue that two identification



assumptions that lead to large improvements in the set estimation of ratios of AIOpl in the U.S. relative to
Denmark—compared to the situation in which such set estimation is based on “the data alone” (Manski
2003)—are most likely correct. By relying on these identification assumptions, we are able to generate
highly informative lower-bound estimates of how much AlOpl there is in the U.S. compared to Denmark
(i.e., of AlOpl ratios between the U.S. and Denmark). Thus, we provide a comparison of inequality of
opportunity between the U.S. and a social-democratic country that is valid even though it is based on an
incomplete set of circumstances. In an extension of our analyses, only for the U.S., we report approximate
estimates of how much larger AIOpl and RIOpI are when race and ethnicity are added to the set of
considered circumstances.

What are our main findings? With respect to AlOpl, we will show that (a) measured 10p for long-
run income is large in the U.S. and far from negligible in Denmark; (b) although tax and transfers reduce this
inequality in both countries, they do so by more than twice as much in Denmark; (c) in terms of disposable
family income per adult—which factors in taxes and transfers and purges the effect of the association
between parental income and the probability of marriage— there is more 10p for income in the U.S. than
overall income inequality in Denmark; and (d) with the same income notion, IOp for long-run income is at
the very least 68 percent higher in the U.S. than in Denmark. These results indicate that the distribution of
economic opportunities—and not just of economic outcomes—is substantially less unequal in Denmark than
in the U.S. With respect to RIOpl, we will show that, even with types based only on gender and parental
income rank as the circumstances beyond people’s control, the lower-bound shares of the unfair inequality
are much larger in both countries than typically reported for advanced economies. And that when race and
ethnicity are also accounted for in the analysis, the lower-bound estimate of that share for the U.S. reaches
almost 58 percent.

The structure of the rest of the article is as follows. We lead off with a detailed analysis of the many
methodological difficulties involved in transforming a sophisticated philosophical understanding of
inequality of opportunity into a solid empirical research program, what the previous literature has done in
this regard, and the various improvements introduced in this article. Next, we address the thorny problem of
how to compare lower-bound estimates across countries (as well as other issues related to the interpretation
of results) and stress the need for explicit identification assumptions. This is followed by a description of our
data, variables, and approach to estimation and statistical inference, and by the presentation of our empirical
results. The last section discusses those results and distills the article’s main conclusions.

From theorical principles to measurement

Most empirical studies in the literature have adopted a notion of 10pl that is based on a specific
variant of the ex-ante interpretation of the compensation principle. This notion posits that (a) circumstances
are all the things that account for people’s incomes and are beyond their control (and for which, therefore,
they cannot be held responsible), (b) types are groups of individuals who share the same circumstances, (c)
the individuals belonging to a type share a common opportunity set, i.e., a set of income prospects, (d) the
value of each opportunity set is measured by the mean of the realized incomes of those belonging to the type,
and (e) inequality of opportunity is the inequality in opportunity-set values across individuals. This is the
understanding of 10pl to which we subscribe in this article.



Transforming this understanding into empirical measures of 10pl requires making several
consequential methodological decisions; the quality and relevance of the resulting measures is affected by
these decisions and by the data used to produce the estimates. We examine in this section the methodological
approaches and data used in the previous literature, paying special attention to the studies that have produced
IOpl estimates for Denmark and the U.S. We also explain how we improve on those data and approaches in
this article.

Previous results for Denmark and the United States

Table 1 summarizes the nine studies we know about that have produced AlOpl and RIOpl estimates
for Denmark or the U.S. using the MLD as inequality measure. Putting aside studies based on pre-2000
income data, AlOpl estimates for Denmark are in the 0.001-0.020 range while those for the U.S. are in the
0.01-0.329 range (and in the 0.01-0.07 range if we exclude the estimates from Hufe et al. 2017, on which
more later). Although the U.S. estimates tend to be larger, given the wide diversity of periods, cohorts,
income concepts, measured circumstances, methods and represented populations across studies, there is no
pair of estimates in this table that could reliably be used as the basis for a comparative assessment of AlOpl
in Denmark and the U.S.

Table 2 summarizes the three studies we know about that have produced estimates for Denmark or
the U.S. and relied on the Gini coefficient instead or in addition to the MLD. The AIOpl estimates for
Denmark are in the 0.03-0.10 range while those for the U.S. are in the 0.12-0.17 range. The disposable-
income estimates for Denmark and the U.S. due to the Equalchances Project were produced with the explicit
goal of allowing cross-national comparisons, and therefore standardized procedures were used to obtain
them.® Focusing on the most recent estimates that can be used for a comparison, the AlOp for household
equivalent disposable income is put by this project at 0.03 and 0.13 for Denmark in 2010 and the U.S. in
2008, respectively.” If we ignore for now that these are lower-bound estimates, these results suggest
substantially higher AlOpl in the U.S. than in Denmark but are not inconsistent with the existence of very
low (Denmark) or relatively low (U.S.) levels of AlOpl in both countries. Moreover, as we explain below,
although these estimates are not affected by several of the methodological problems impacting the other
studies listed in Tables 1 and 2, they are still affected by some important methodological shortcomings and
by the limitations of the data on which they are based.

Data limitations

All estimates in Tables 1 and 2 were produced with survey data: the European Union Survey on
Income, Social Inclusion and Living conditions (EU-SILC), on which all estimates for Denmark are based:;
the Panel Study of Income Dynamics (PSID), on which nearly all U.S. estimates are based; and the National
Longitudinal Survey of Youth 1979 (NLSY79) and its Child and Young Adults supplement, which Hufe et

® For the Equalchances Project, see equalchances.org. Several other studies included in Tables 1 and 2 used
standardized procedures for the same reason, but they only included European countries in their analyses.

"1t could be argued that the 2008 estimate for the U.S. is affected by the income compression and very high
unemployment rates of the Great Recession, and therefore may not reflect the typical level of AlOpl in the
country. The fact that the estimates for 2002-2006 are very similar provides reassurance.



al. (2017) used to produce their estimates. None of these surveys covers the institutionalized population (e.g.,
people in prison or in residences for the disabled or mentally ill), the homeless, or the geographically mobile;
given the evidence (e.g., Pettit 2012; Western, 2006) about U.S. statistics on related topics (e.g., educational
attainment, labor force participation, earnings), the biasing effects of excluding people in prison can be
expected to be particularly consequential for the measurement of 10pl in the U.S. In addition, it is well-
known that in surveys like the PSID and the NLSY79, where income information is provided by respondents,
the income questions are affected by high nonresponse rates, deliberate underreporting, and inaccurate
reporting due to recall failures and other problems (e.g., Moore et al. 1997). It is also well-known that
surveys of this type do not cover well the upper tail of income distributions (e.g., Fixler and Johnson 2014;
Tormalehto 2017).8 Another limitation, exclusive to the PSID data, is that this survey only makes available
full income information for household heads and their spouses (or cohabiting partners) rather than for the full
adult non-institutionalized population. Lastly, the PSID and NLSY79 are long-running longitudinal surveys
affected by substantial attrition, while the EU-SILC data are affected by high unit nonresponse rates (e.g.,
44.4 percent for Denmark in the 2011 wave used to produce the 2010 estimates shown in Tables 1 and 2
[Hlasny and Verme 2018:Table 2]); neither of these two problems can be fully countered by adjusting
sampling weights.®

The administrative data we use in this article are essentially immune to all the limitations just
discussed. Although they have other limitations (which we discuss below), they nevertheless provide a better
foundation for carrying out a comparative assessment of 10pl in Denmark and the U.S. than the data used
before.

The parametric log-linear approach: Wrong estimand and represented populations

The nonparametric approach for estimating AlOpl (e.g., Chechi and Peragine 2010) is very simple.

Once the types are defined in terms of measured categorical circumstances, the mean income of each type is
estimated and assigned to all individuals belonging to that type, and the chosen inequality measure (e.g., the
MLD or the Gini coefficient) is computed over this “smoothed distribution” (Foster and Shneyerov 2000).
Unfortunately, even with a few circumstances and a few categories in each circumstance, most often the data
demands of this strategy cannot be satisfied by the available samples. To address this problem, the literature
has relied on what it has been referred as the “parametric approach.” For reasons we explain next, following
Mitnik (2020c) we refer to this approach as the “parametric log-linear approach.” It involves (a) running a
linear regression of log income on indicator variables for the categorical circumstances defining the types
(e.g., gender, race, parental education), often without any interactions, (b) computing predicted values for all

8 The EU-SILC income information for Denmark comes from administrative sources, and there is some
evidence suggesting that it represents the full income distribution well (Bartels and Metzing 2019:138).

® Attrition, for instance, is addressed by adjusting the weights of the remaining respondents. When these
adjusted weights are used to compute IOpl measures, the implicit (and strong) assumption is that attrition is
independent of people’s earnings or income (after controlling for the variables on which the weights are
based). Against this assumption, Shoeni and Wiemers (2015) have shown that, in intergenerational analyses,
the PSID is affected by selective attrition.



individuals, (c) exponentiating these predicted values to obtain (what is interpreted as) opportunity-set
values, and (d) computing the chosen inequality measure over the resulting smoothed distribution.

Using Z and D to denote income and the inequality measure, respectively, this means that, if the
functional form of the regression model is correct, D is computed over the distribution of exp(E(an |C)) =
GM(Z|C), where C is a variable indexing the types under consideration and GM is the geometric mean
operator. In the general case, however, D(GM(Z|C)) # D(E(Z|C)) because, within types, the geometric
mean of income is smaller than expected income and the proportional difference between the two varies
across types. It then follows (Mitnik 2020c) that (a) the estimates do not pertain to 10pl as defined in the
literature but, rather, to a different notion of 10pl (where the value of an opportunity set is measured by the
geometric mean of the realized incomes of those belonging to the corresponding type), and (b) the estimates
produced by the parametric log-linear approach are not directly comparable to those produced by the
nonparametric approach. Moreover, because the geometric mean is undefined when a variable includes zero
in its support, explicitly or implicitly the reference populations in studies using the parametric log-linear
approach get restricted to people with positive incomes. These selected populations are very unlikely to be
the populations of interest. This is a particularly serious problem if the goal is to estimate AlOp for
individual earnings since many people do not receive any earnings (due to unemployment and other forms of
nonemployment). But focusing instead on family- or household-based income measures—as sometimes has
been suggested precisely to address the problem of a substantial number of people with zero earnings in
countries with high unemployment rates (e.g., Suarez Alvarez and Lopez Menéndez 2019:152)—does not
necessarily provide a solution. For the U.S., for instance, Chetty et al. (2014: Online Appendix Table 1V)
report that, in 2011-2012, 5.4 to 8.0 percent of 29 to 32 year-olds had zero family income (depending on the
data set), while 9.2 to 12.6 percent had zero earned family income (again depending on the data set).°

As in the 10pl literature more generally, most estimates in Tables 1 and 2 are based on the
parametric log-linear approach, either in its original formulation (e.g., Ferreira and Grignou 2011) or an
extension of it proposed by Bjorklund, Jantti and Roemer (2012) that aims to account not just for mean effort
heterogeneity but for heterogeneity in effort distributions between types (Hufe and Peichl 2015). The
foregoing entails that most available estimates for Denmark and the U.S. do not pertain to the right estimand
and populations of interest.

Better parametric approaches exist. An obvious alternative is to substitute income for log income in
the left hand of the estimated model, which is how the estimates in Table 2 that we highlighted above
(Equalchances Project 2018) were generated. But this has the shortcoming that the predicted values may be
negative. For this reason, Mitnik (2020b) argues that a better solution is to estimate an exponential regression
model using the Poisson Pseudo-Maximum Likelihood estimator (Santos Silva and Tenreyro 2006). Here we
circumvent the problems just discussed, and the substantial risk of not getting the functional form (at least
approximately) right with any parametric model, by relying on the straightforward nonparametric approach
to produce our 1Opl estimates.

10 The datasets in question are the Current Population Survey and the American Community Survey.



More on selected samples

Besides the unjustified exclusion of people with zero income or earnings from analyses, 10pl studies
have often used samples where, for separate reasons, the represented populations are not as relevant as they
would ideally be for assessments of 10pl (in many cases, markedly so). Sometimes sample restrictions are
plausibly justified and involve trading off relevance for precision. For instance, Suarez Alvarez and L6pez
Menéndez (2019) excluded the self-employed because, they argued, income from self-employment is not
well measured in the EU-SILC. Sometimes the restrictions are imposed by the data or the methods used.
Thus, as explained earlier, any study of 10p for individual earning based on PSID data can only cover
household heads and their spouses. As being a household head (or their spouse) is endogenous to own
income, the resulting sample does not represent well the full adult population of interest. Similarly, in order
to take advantage of a dataset with very rich information on circumstances, Hufe et al. (2017) worked with a
sample representing individuals (a) aged 25-30 and with positive earnings in 2010-2012, and (b) born to
mothers aged 14-21 in 1978. It follows that the people in the sample were born between 1980 and 1987. But
their outcomes in 2010-2012 are not likely to represent well the outcomes of the full 1980-1987 cohorts in
their late twenties, because those in the sample were born when their mothers were quite young compared to
what is the case for the full cohorts.™ Lastly, the unusual populations represented in the PSID samples used
by Niehues and Peichl (2014; see our Table 1) are a byproduct of the stringent requirements of the novel
methods for the (upper-bond) estimation of 10pl that they introduced in their study.

In other cases, however, the reduced relevance of the populations represented by the samples
employed seems completely self-inflicted. For instance, several studies in Table 1 that estimate 10p for
household equivalent disposable income (or for household disposable income per adult) only include
household heads in their samples when they could have also included their spouses (or all adults, depending
on the survey). Of course, if all household heads were married, excluding spouses from the sample would not
make any difference for estimates given that (a) the income measure is based on household income and (b)
all standard inequality measures, including the MLD, satisfy the axiom of “population independence”.*? But
many household heads are not married and therefore we can expect that including spouses in the analysis
would in fact make a (possibly substantial) difference.

By contrast, the samples for Denmark and the U.S. we use in this article are hardly affected by the
type of issues just discussed. As it will be clear after we describe those samples, they represent well the birth
cohorts 1972-1975.

The unsettled status of age

Nearly all previous studies of 10pl have computed 10pl measures by taking as outcome variable the
annual income (or some other short-run income measure) of a large number of cohorts, e.g., people 25-55

111n the sample, those from the 1980 cohort were born to mothers 16-23 years old, those from the 1981
cohort to mothers 17-24 years old . . . and those from the 1987 cohort to mothers 23-30 years old.

12 This axiom allows comparing inequality in societies of different sizes. It requires that “replicating a
society” X times so that it becomes X times as large, does not change its level of inequality (e.g., Cowell
2011).
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years old in the one year (or in the few years) their incomes are measured (see Tables 1 and 2 for examples).
This is a very problematic practice. If one could legitimately assume away the existence of age-income
profiles, then the fact that different cohorts are observed at very different ages could be simply ignored and
the results would pertain to the average 10pl across all cohorts in the population represented by the sample.
Assuming away age-income profiles, however, is indefensible, even as a first-order approximation, and the
problem arises of how to treat age in the analysis.

Indeed, age is clearly beyond people’s control but there are good reasons for not treating it as a
circumstance whose effects ought to be compensated for. The reason is that most people experience all ages
in question in their lives, so that the effects of age tend to be automatically compensated for over time (more
on this below). Of course, with year fixed, age may also be interpreted as indexing cohorts, or groups of
cohorts, which have been shown to differ in terms of their opportunities (e.g., Carlson 2008). However,
taking the full inequality due to age as reflecting these cohort effects clearly overestimates what a society
may need to compensate for. Nevertheless, 10pl scholars have often chosen to include people’s age in
defining types (e.g. Checchi, Peragine and Sarlenga 2010, 2015; Pistolesi 2009; Suarez Alvarez and L6pez
Menéndez 2019), which should tend to overstate 10pl. Unfortunately, the alternative of just ignoring age is
also unsatisfactory, as this would still tend to overestimate 10pl if age is correlated with circumstances
included in the analyses. This is very likely. For instance, immigration status, an oft-included circumstance,
is typically correlated with age, as immigrants are younger than the native population in many countries.

Our solution here is very simple: we make age inconsequential by focusing on four contiguous
cohorts observed in the same year (when they are in their late 30s) rather than on a broad population (in
terms of cohorts), as most previous studies have done.

Long-run income and lifecycle biases in the estimation of absolute inequality of opportunity

What is the “temporal scope” of the income relevant for empirical analyses of 10pl? In the
philosophical literature, it is typically held that “the subject of an egalitarian principle is not the distribution
of particular rewards to individuals at some time, but the prospective quality of their lives as a whole, from
birth to death” (Nagel 1991:69). Consistent with this position, mobility scholars have long focused on
obtaining estimates of long-run economic mobility (e.g., Jenkins 1987; Black and Devereux 2011; Solon
1992; Solon 1999). For this reason, they have put a lot of effort into developing empirical strategies aimed at
making this possible given that long-run income measures are typically unavailable and need to be replaced
by proxy short-run measures (e.g., Haider and Solon 2006; Nybom and Stuhler 2016; Mitnik 2019, 2020a).
In stark contrast, in the vast majority of empirical studies of 10pl, scholars have simply used short-run (e.g.,
annual) income measures in their analyses, without worrying about the relationship between their estimates
and those that would be obtained with long-run (e.g., lifetime) income measures or, alternatively, advancing
a positive argument to justify the intrinsic interest of their “short-run estimates.”

Our premise here is that empirical studies of 10pl should primarily aim at assessing 10p for long-run
income. This requires paying careful attention to the difficulties involved in achieving this goal with the
short-run income measures typically available. The methodological research on how to measure economic
mobility of the last 30 years offers important clues in this regard. Indeed, this research has developed and
empirically validated models of nonclassical measurement error in the short-run income variable with respect
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to the long-run variable (e.g., Haider and Solon 2006; Nybom and Stuhler 2016; Mitnik 2019, 2020a). In
these models, IGE estimates based on short-run income measures taken when children are young are affected
by a downward bias whereas those based on measures taken when children are old are affected by an upward
bias. The models entail, however, that these “lifecycle biases” tend to disappear when the short-run income
measures pertain to specific ages; in addition, the available empirical evidence indicates that this is indeed
the case when short-run income is measured close to age 40.

Mitnik (2020b) shows that using a short-run income measure to proxy for long-run income when
producing AlOpl estimates leads to similar lifecycle biases. He advances the following nonclassical
measurement-error model. Let Z = o Y™ + V be a “multiplicative projection” of Zon Y, where Z and Y are
short- and long-run income, respectively.®® As before, let D be the inequality measure used to compute
AlOpl, which is assumed to satisfy the very basic axiom of scale independence (which requires it to be
invariant to equi-proportional changes of the income variable). The quantity of interest is D(E(Y|C)), where
C is as defined earlier. Mitnik (2020b) shows that, under the empirical assumption E(V|c) = 0, for all c,
D(E(Z|C)) = D(E(YIC)) when mry = 1. It follows that AlOpl estimated with the short-run income variable
is not affected by lifecycle bias when that is the case. Further, using PSID family-income data for men and
women pooled and the same circumstances and estimation method we use in our analyses here, Mitnik
(2020b) provides evidence that (a) m; ~ 1 close to age 40, (b) E (V|c) is not much different from zero at all
values of C when r; = 1, consistent with the model’s empirical assumption, (c) measures of AlOpl based on
various inequality measures (including those we use here) and short-run income obtained around age 40 are
very close to the corresponding AlOpl measures computed with long-run income, and (d) long-run AIOpl is
underestimated when income is measured at younger ages and overestimated when measured at older ages.

Our focus in this article on a few contiguous cohorts observed in their late 30s is not due to an
intrinsic interest on what happens at those ages. Rather, it is motivated by the analysis of measurement error
just summarized, which suggests that our estimates of AlOpl, based on income measures obtained close to
age 40, should not be much affected by lifecycle bias.

Lifecycle biases and other issues in the estimation of relative inequality of opportunity

Inequality in long-run income is much lower than what the standard cross-sectional estimates of
inequality suggest (e.g., Aaberge and Mogstad 2015; Bjorklund, 1993; Lillard 1977). As the bias varies with
the age at which income is measured, following Aaberge and Mogstad (2015) we may also refer to these age-
specific biases as lifecycle biases. Using Norwegian register data for men, Aaberge and Mogstad (2015)
provide evidence on these biases. They show that computing the Gini coefficient and two other related
inequality measures with income measured at younger ages (between 24 and 35) approximates well or
overestimates somewhat the corresponding long-run inequality measures (i.e., the same measures but
computed with long-run income). However, at older ages the bias is positive and increases monotonically
with the measurement age. Similarly, using the same PSID data mentioned above, Mitnik (2020b) finds that,
with a large array of inequality measures (although not all he considers), lifecycle bias starts off somewhat
negative in the mid-20s, crosses zero soon after that (between ages 27 and 33, depending on the measure),

13 1n direct analogy with a linear projection, the parameters , and 7r; of a multiplicative projection are such
that E(V) = 0 and Cov(Y,V) = 0 (Mitnik 2020b).
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and is then positive and increases monotonically with age. He reports, in particular, that the bias crosses zero
around ages 32-33 with the Gini coefficient and three Gini-type indices, and around ages 28-29 with the
MLD. With other inequality measures the bias is positive at all ages.

The foregoing entails that the estimation of RIOp for long-run income with a short-run income
measure is impacted by not fewer than two, and possibly three, biases. The first is the negative bias affecting
estimation of AIOpl with partially observed circumstances. The second is the negative (positive) bias
affecting estimation of AIOpl when the income measure is obtained earlier (later) than age 37 (age 43),
approximately. And the third is the positive (negative) bias affecting estimation of overall income inequality
when the income measure is obtained too late (too early) in the lifecycle; in this case, the cutoff age at which
the bias becomes positive varies across inequality measures but appears to be always earlier than the range of
ages at which lifecycle bias in the estimation of AlOpl can be (mostly) avoided. Therefore, it is not possible
to eliminate the last two biases simultaneously by carefully selecting the ages at which income is measured.
For instance, estimating RIOpl close to age 40, as we do here, would still produce lower-bound estimates of
long-run RIOplI, but the estimates would be pushed down by two biases rather than one: the downward bias
affecting the estimation of AIOpl (the numerator of RIOpl) due to the fact that circumstances are partially
observed, and the upward lifecycle bias affecting the estimation of overall income inequality (the
denominator of RIOplI) too late in the lifecycle (i.e., close to age 40). As we explain later, in our empirical
analyses we address the latter bias by introducing post-estimation corrections to our estimates of overall
inequality (where the correction factors are computed from an auxiliary dataset).

Producing RIOpl estimates based on the MLD is also affected by an additional, and rather serious,
methodological problem. If inequality is measured with this index and the available (i.e., short-run) income
measure includes a nonnegligible share of zeros, then (a) overall income inequality, the denominator of
RIOpl, cannot be consistently estimated by direct computation on the sample even in the absence of any
lifecycle bias (due to the selection bias that results if those with zero income are dropped), and (b) the
estimand simply does not exist if the long-run income variable also includes zeros.'* Moreover, replacing
zeros by a “small amount”—e.g., by the value 1, as Checchi et al. (2015) do in some of their analyses—is not
a good strategy, as the MLD is very sensitive to the exact amount that is substituted.'®> As our income
measures all include a nonnegligible share of zeros, we do not use the MLD to estimate RIOpl.

14 The MLD is equal to the difference between the logarithm of the expectation and the logarithm of the
geometric mean of a distribution. Given that the latter is undefined in the presence of zeros, the MLD is
undefined as well when this is the case. Importantly, this means that this problem is relevant even when the
goal is to estimate RIOp for income at some particular age rather than RIOp for long-run income. At the
same time, the MLD may be unproblematically used to estimate AlOp for either short-run or long-run
income because, empirically, mean income within types can be expected to be positive for all types.

15 Empirical evidence that this is the case, based on the data used in this article, is available from the authors.
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From measurement to interpretation
Absolute versus relative inequality of opportunity

As we pointed out in the introduction, IOp scholars have given too much attention in their analyses
to results pertaining to RIOpl—sometimes, and most surprisingly, even when conducting cross-country
comparisons. Indeed, AlOpl estimates are the ones that are relevant for comparative normative assessments.
Let’s say we want to compare how countries A and B are doing in terms of 10p for income, and we are
shown the MLD-based figures in Table 3 (which we assume are true values rather than estimates). The
distribution of income opportunity-set values, or income opportunities for short, in country A is much more
egalitarian than in country B (the MLD for the latter country is five times larger). According to the theory of
distribute justice motivating the analyses conducted in the 10pl literature, this inequality, the ethically
unacceptable or unfair inequality, is the one that needs to be minimized. It immediately follows that country
A is doing substantially better (i.e., five times better) than country B in this regard. The fact that RI1Opl is
twice as large in country A is literally irrelevant for this assessment.

Of course, RIOpI, which tells us what share of overall income inequality in a country is unjust, is an
interesting and important descriptive quantity, even if it is not that relevant for cross-country normative
assessments. In large part, its importance comes from the fact that arguments positing that a high level of
income inequality is normatively unproblematic often imply that this is the case because such inequality is
(mainly) the result of differences in effort. Thus, in any given country, RIOpl estimates provide evidence that
is relevant for such an argument.*® For this reason, we do report RIOplI results in this article, although more
briefly.

We suspect, however, that RIOpl’s intrinsic interest has not always been the main reason for its
popularity in the literature. Rather, its appeal has often been that, for analyses relying on the MLD, they add
an intuitive way of interpreting individual estimates. The problem is that this interpretation does not pertain
to what the normative theory motivating the empirical research is all about but to something else. If
providing individual estimates of AlOpl that are easy to interpret is important—and we do think that this is
the case—that can be immediately achieved by using the Gini coefficient or other double-bounded measures.
Indeed, all double-bounded measures provide an intuitive way of assessing how much unfair inequality there
is.’

16 A high RIOpl estimate should count as evidence against such an argument. However, given that RIOpl
estimates are lower-bound estimates, the converse is not (necessarily) true, that is, a low R1Opl estimate
would not support the argument unless the low estimate is based on a very rich set of very precisely
measured circumstances.

17 With the Gini coefficient, AIOpl can be further interpreted. For instance, it can be interpreted (a)
graphically, in terms of the underlying Lorentz curve, and (b) as half the ratio between the mean absolute
difference in income opportunities between pairs of randomly chosen people and the average income
opportunity in the population.
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Inequality of opportunity and cross-country comparisons: Identification assumptions

We have stressed that the fundamental methodological problem of the empirical research on 10p is
that AIOp is measured with respect to an incomplete set of circumstances; and that, as a result, empirical
estimates of AIOp are lower-bound estimates. Although individual AlOpl estimates may still be informative,
comparing estimates across countries and times becomes very challenging. Studies conducting cross-country
comparisons and trend analyses have all explained that their estimates are lower-bound estimates. They have
not tried, however, to advance explicit identification assumptions that would justify stronger conclusions
than that fact alone allows—even though they typically have at the very least flirted with such stronger
conclusions.

As in Mitnik et al. (2019), let’s stipulate that “modulo W” means “computed with respect to the
incomplete set of circumstances W.” Denoting AIOpl modulo W by AlOpl (W), an identification assumption
that would justify the type of analyses found and the conclusions often suggested in empirical studies is this:

Fixed-ratio assumption (FRA): The ratio of AlOpl to AlOpl (W) is (approximately) the same
across the countries or periods under consideration.

FRA is a very powerful identification assumption. To start, it makes it possible to construe any ranking of
countries in terms of AlOpl (W) as a ranking in terms of AlOpl. But it allows for much more than this. For
instance, it makes it possible to conclude that in country A, AlOpl in 2010 is (approximately) p percent
higher than in 2004, or that the ratio of AlOpl between countries A and B is (approximately) g, where p and
g are computed directly from the AlOpl (W) estimates. FRA also allows for unproblematically interpreting
linear correlations and nonlinear associations between AIOpl (W) and other variables (e.g., overall
inequality, GDP per capita) as if they pertained to AlOpl. Lastly, it justifies using AIOpl (W) measures in
regression models—for instance, models aimed at explaining variation in inequality of opportunity across
countries and/or times in terms of institutional factors and fixed effects—and interpreting the qualitative
results as pertaining to AlOpl tout court. Unfortunately, FRA is very unlikely to be correct (more on this
below).

A weaker identification assumption, meant to be used when AlOpl (W) is larger in country or
period A than in country or period B, is this:

Ratio-inequality assumption (RIA). The ratio of AIOpl to AIOpl (W) in A is not smaller than the
ratio of AlOp to AlOp (W) in B.

Although less powerful than FRA, RIA is still quite powerful. Let’s say that it holds for countries A and B.
Then, the AlOpl (W) ratio between A and B is a lower-bound estimate of the AlOpl ratio between A and B.*®
Because AlOpl (W) is larger in A ex hypothesi, it follows that AlOpl is also larger in A. Moreover, if the
estimated AlOpl (W) ratio is g, RIA allows us to conclude that AlOpl in country A is at least g times AlOpl
in country B (rather than g, as is the case under FRA). Although RIA might seem prima facie plausible in

18 With subscripts indexing countries, from AIOpl,/AIOpl,(W) = AlOplg /AIOpIg(W) it immediately
follows that AIOpl,/AIOply = AIOpL,(W)/AIOplz(W).
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some contexts, it will generally be very difficult to make a case that it applies based on empirical evidence
(more on this below).®

A still weaker identification assumption, which nevertheless makes it possible to rank countries or
periods and to carry out comparative quantitative assessments, is the following:

Inequality assumption for the lower bound (IALB).? The difference between AlOpl and AlOpI (W)
in country or period A is not smaller than the difference between AlOpl and AlOpl (W) in country
or period B.

Let’s say that IALB holds for countries A and B. If AlOpl (W) is larger in A, then AlOpl is larger in A as
well, that is, like the previous identification assumptions, IALB also allows to rank countries; moreover, the
difference in AlIOpl (W) between A and B is a lower-bound estimate of the AlOpl difference between those
countries.?

Although it is useful to know the lower bound of the difference in AIOpl between two countries or
times, the meaning of such a difference varies depending on the AlOpl levels in those countries. Whereas an
AlOpl difference of 0.1 may be unimpressive if AlOpl is 0.9 in country A and 0.8 in country B, it may be
quite impressive if AlOpl is 0.1 and 0.2, respectively. Fortunately, IALB also allows researchers to generate
a lower bound estimate of the proportional difference in AIOpl between the two countries. In fact, in
contexts in which overall income inequality and AlOpl (W) are both larger in country or period A than in
country or period B, IALB may be combined with a second identification assumption to generate a proper
(i.e., finite-length) set estimate of the proportional difference in AlOpl—or, equivalently, of the AlOpl
ratio—between A and B. So, rather than explaining how AIOpl may be used to generate a lower-bound
estimate of such proportional difference, we will subsume that explanation in our explanation of how to
generate a proper set estimate of it.

The identification assumption just mentioned is the following:

Inequality assumption for the upper bound (IAUB). The difference in overall income inequality
between countries or periods A and B is not smaller than the corresponding difference in AlOpl.

If IAUB holds for countries A and B, the difference in overall income inequality between A and B is an
upper-bound estimate of the AlOpl difference between those countries. So, if IALB and IAUB both hold, we
may use estimates of income inequality and AlOpl (W) in A and B to generate a set estimate of the additive
difference in AlOpl between A and B. But this will not do if what we are after is an estimate of a
proportional difference, that is, an estimate of the AlOpl ratio between two countries.

191n some cases, it may be possible to show that RIA does not apply (more on this below as well).
20 The reason why we chose this name for the assumption becomes fully clear below.

2L From AIOpl, — AIOpl,(W) = AlOply — AIOplg(W) it immediately follows that AIOpl, — AlOplg =
AlOpl,(W) — AIOplg(W). IALB is weaker than RIA because RIA entails (AIOpl, — AlOplg) | AlOply >
(AIOpl,(W) — AlOpIz(W)) | AlOpIz(W)) and AIOplg > AlOpIz(W). So, RIA entails IALB.
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Without any identification assumption, point estimation of the AlOpl ratio between two countries is
impossible. Nevertheless, the ratio is partially identified even in this context. We may set estimate it by (a)
using the AlOpl (W) estimate in each country as its lower-bound estimate of AlOpl, (b) using the estimate of
overall income inequality in each country as its upper-bound estimate of AlOpl, and (¢) computing a set
estimate of the AlOpl ratio between the two countries by combining the previous estimates in an appropriate
way. However, even with large samples, this set estimate based “on the data alone” (e.g., Manski 2003) may
be very wide and even fully uninformative (if it covers the value 1). When applicable, IALB and IAUB will
allow 10pl scholars to produce not just an informative but, typically, also a much tighter set estimate of the
ratio of interest.

Figure 1 shows why this is the case. In the example represented in the figure, the true overall income
inequality and AlIOpl (W) are, respectively, 0.5 and 0.2 in country A and 0.3 and 0.1 in country B. The left
panel of the figure shows what is identified without any identification assumption. For the AIOpl of each
country, the set of values consistent with the population data, or “identified set” (e.g., Manski 2003), is
indicated by the thicker line segment in the corresponding country axis. The light-gray rectangle represents
all pairs of AlOpl values (one for country A and one for country B) consistent with the identified sets for
both countries. As each such pair maps into one AlOpl ratio, the same area also represents the identified set
of AlOpl ratios. The minimum and maximum values of this latter set are at the upper-left and bottom-right
vertices of the rectangle. Set estimating the AIOpl ratio without making any identification assumption is
straightforward. The upper-bound estimate is the upper-bound AlOpl estimate for country A divided by the
lower-bound AIOpl estimate for country B, whereas the lower-bound estimate is the lower-bound AlOpl
estimate for country A divided by the upper-bound AIOpl estimate for country B. In the example, and
assuming that the four underlying estimates are based on consistent estimators, the probability limit of the set
estimator is [0.67, 5]. In this context, and regardless of sample size, set estimates will be fully uninformative
in the sense that they will not tell us even whether AlOpl is larger in country A or B. Empirically, this is a
very common situation.

The right panel of Figure 1 incorporates the information provided by IALB by adding an “IALB
line”: the locus of the pairs of AlOpl values (for countries A and B) whose difference is equal to the AlOpl
(W) in country A minus the AlOpl (W) in country B. It also incorporates the information provided by IAUB
by adding an “IAUB line”: the locus of the pairs of AlOpl values (for countries A and B) whose difference is
equal to the overall income inequality in country A minus the overall income inequality in country B. Under
IALB and IAUB, the pairs of AIOpl values below the IALB line and the pairs of AlOpl values above the
IAUB line are not part of the identified set because they do not satisfy IALB and IAUB, respectively. The
AlOpl ratio remains only partially identified. But the identified set of AlOpl ratios is substantially smaller
than (and a proper subset of) the corresponding identified set in the left panel. In the example, the new
identified set is still a parallelogram (although no longer a rectangle) and its minimum and maximum values
are again at the upper-left and bottom-right vertices.?? The probability limit of the set estimator is now [1.33,
3], compared to [0.67, 5] with no identification assumption. This means that, asymptotically, a set estimate

22 Under IALB and IAUB, the identified set may not be a parallelogram. This happens, for instance, if the
IALB and IAUB lines cross the top horizontal dashed line between the two vertical dashed lines.
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will be highly informative: it will indicate that AlOpl is no less than 33 percent higher in country A than in
country B, and 200 percent higher at most.?

Our analysis of how to generate proper set estimates has assumed consistent estimation of overall
income inequality. This is unproblematic if the focus is on the AlOp in short-run income (as it has implicitly
been the case in almost all the literature). In this article, however, our focus is on the AIOp in long-run
income. As we pointed out earlier, the estimation of long-run inequality will be typically subject to an
upward lifecycle bias. When this is the case, the analysis above is still correct if the proportional asymptotic
bias of the estimator of inequality is not smaller for country A than for country B. This follows directly from
the fact that the bias is upward. Nevertheless, there is a cost to substituting upward-biased estimators for
consistent estimators of long-run inequality: the probability limit of the set estimator of the AlOpl ratio is
wider than what would be the case with consistent estimators. If information about the size of the biases is
available from previous empirical studies or can be obtained from auxiliary data, it becomes possible to
correct the estimates of long-run inequality so as to approximate the (maximally informative) set estimates
that would be obtained with consistent estimators of overall inequality.

A two-circumstance model of partial-observability bias

We contend that, given the circumstances we include in our analyses, IALB and IAUB apply with
the U.S. as country A and Denmark as country B. The simple two-circumstance model we introduce next
identifies the factors generating asymptotic bias in the estimation of AlOpl due to the partial observability of
circumstances and provides a decomposition of overall income inequality into AlOpl and ethically
acceptable inequality. We use this analysis in the next section to articulate our empirical argument for the
applicability of IALB and IAUB. The model also helps understand why RIA is very difficult to assess
empirically and, further, why FRA is very likely to be false (regardless of context).

Let the true income generating process be:
Qi =Yo+v1iXy +V2 X2 + & (D
Yi=wq, (2)

where X, is an indicator variable for high parental income, X, is an indicator variable for high parental
education, ¢ is effort, Y is individual earnings or family income (before or after taxes and transfers), and Q is
an univariate index of people’s capitals, that is, an index of their human, social, and cultural capitals as well
as any other personal attribute or relationship that is valued or provides an advantage in the labor market
(when Y is earnings) or in both the labor and marriage markets (when Y is family income). The parameters
y, and y, are the partial effects of the circumstances on people’s capitals, w is the return to people’s capitals

23 The fact that the set estimate is informative (or, equivalently, that the difference in AlOpl across countries
A and B is positive) is, as we explained earlier, entailed by IALB itself. In other words, IALB guarantees that
the set estimate will be informative. How informative it is, however, is still an empirical matter).
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(in terms of individual earnings or family income), € has mean zero and is mean independent of X; and X,
(jointly), and we assume without loss of generality that E(Y) = 1.%
Substituting equation (1) into equation (2) and relying on the squared coefficient of variation to
measure AlOpl, the true AlOpl is:
Var(E(Y|Xy,X5)) X X X
AlOpl = > = (wy)Var(Xy) + (0 yz)Var(Xy) + 2 (w)* y172.Cov(Xy, X3), 3)
[E(E(Y1X1, X2))]

where we have used that E(E(YI. )) = E(Y) =1 (here the dot represents any set of conditioning variables).

Parental education is not observed. The expected income of the two observed types (people with high and
low parental income) may be written as:

E(lel) = 90 + 91x1, (4)
where x; = 0 or 1. The measured AlOpl, AlOpl (W), with W = {X;}, is then:

AlOpI (W) = Var(E(rIXy) (0.)2Var(X,). (5)

[E(ErIx))]

Using the omitted-variable formula, equations (1), (2) and (4) entail 6; = wy; + wy; Covi¥,¥z)

X2) T
Var ) Substituting

this expression into equation (5) yields:
AIOpI (W) = (wy1)?Var(Xy) + (wy2)*( Corr(Xl,Xz))zVar(Xz) + 2 (w)?y172 Cov(Xy,Xy).  (6)
Subtracting equation (6) from equation (3), we obtain:
AIOpI — AIOpI (W) = (w)2(r2)? Var(Xy) [1 - (Corr(Xl,Xz))z]. (7)

Equation (7) provides a very simple expression for the difference between AIOpI and AIOpI (W),
that is, the additive asymptotic bias in the estimation of AIOpl due to the partial observability of
circumstances. The equation shows that this bias is larger when (a) the return to people’s capitals, w, is
larger, (b) the partial effect of the unobserved circumstance on people’s capitals, y,, is larger, (c) the
dispersion of the unobserved circumstance, Var(X,), is larger, and (d) the correlation between the observed
and unobserved circumstances, Corr (X, X3), is smaller. Importantly, with indicator variables the variance is
largest when the prevalence of the indicated attribute in the population is 50 percent (i.e., the indicator
variable has mean 0.5), and falls monotonically for both larger and smaller prevalence rates. In the next
section we use these results heuristically, to help us make the case for why IALB applies to the comparison
between the U.S. and Denmark.

Dividing now equation (6) by equation (3) gives an expression for the proportional asymptotic bias
in the estimation of AlOpl due to the partial observability of circumstances:
AlOpl F+GCorr(X,,X,) +H
AIOpI (W) F 4+ G Corr(Xy, X,) + H (Corr(Xl,Xz))Z ,

)

24 This entails no loss of generality because it can always be achieved by changing the monetary units used to
measure income.
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where F = (y1)?Var(X,), G = 2y,y, SD(X;) SD(X,), H = (y,)*Var(X,) and SD is the standard-deviation
operator. FRA assumes that the ratio on the right hand of equation (8) is (approximately) the same for the
countries or periods A and B being compared, which seems exceedingly unlikely regardless of context. RIA
assumes the ratio is larger in country or period A than in country or period B. Equation (8) suggests that
making an empirical case that RIA applies in any specific comparison will be, at best, a daunting task. In
addition to the fact that the equation does not lend itself to any straightforward analysis (because of its
structure), the return to people’s capitals (w) plays no role in it; this means that well-known differences in
returns across countries cannot be part of the case for RIA.

Finally, from (1), (2) and (3):
Var(Y)

[E()]2 = (w y1)*Var(Xy) + (wy2)*Var(Xy) + 2 (w)? y1y2Cov(Xy, X3) + (w)?*Var(e)

= AlIOpl + (w)?*Var(e). (9)

Equation (9) shows that total income inequality may be additively decomposed into two terms: (a)
AlOpl, and (b) the product of the dispersion of effort and the square of people’s returns to capitals. The
second term is the inequality deemed ethically acceptable by the luck-egalitarian approach when the
inequality measure is the squared coefficient of variation. In the next section we use this result heuristically,
to help us make the case for why IAUB applies to the comparison between the U.S. and Denmark.

The case for the applicability of IALB and IAUB to the comparison between the U.S. and Denmark

Equation (7) motivates a general and crucial argument for the applicability of IALB to the
comparison at hand: the additive bias will be larger in the U.S. than in Denmark because the returns to
people’s capitals, both in terms of individual earnings and family income, are substantially larger in the U.S.

Earnings. It is well known that Denmark’s labor-market institutions compress the earnings
distribution—in particular, by propping up pay in low-skill and mid-skill jobs—much more than their U.S.
counterparts (e.g., Jaumotte and Osorio Buitron 2015; Pontusson et al. 2002; Rueda 2015). The fact that
public-sector employment as a share of all employment is nearly twice as large in Denmark than in the
U.S.—28 percent compared to 15 percent in 2017 (OECD 2019a:85 )—further enhances this effect of labor-
market institutions (e.g., Oesch 2014; Pontusson et al. 2002). Cross-country differentials in the returns to
people’s capitals are the micro-level concomitants of the dispersion differential at the level of overall
earnings distributions. Thus, human-capital premiums are substantially larger in the U.S. than in Denmark
(Broecke 2016: Figure 2; OECD 2017: Chart A6.1; Peracchi 2006: Table 6; Hanushek and Woessmann
2011: Figure 2.10). The earnings returns to social and cultural capital may also be expected to be larger in the
U.S. because Denmark’s compressed earnings distribution and much lower between-workplace inequality
(Tomaskovic-Devey et al. 2020: Fig. 1) strongly suggest that the monetary rewards for the winners in the
competition for better jobs at different skill levels are lower in Denmark.?

%5 On average across the economy, social and cultural capital are also likely to be somewhat less
consequential for the competition for jobs itself in Denmark. This is so because of (a) Denmark’s larger share
of public-sector employment, and (b) the fact that hiring, compensation and promotion are governed to a
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Family income. Earnings are, by far, the main source of income for our populations of interest, and
people with similar capitals tend to marry each other. Unless there is much less association between spouses’
capitals in the U.S. than in Denmark, the family-income returns, before taxes and transfers, to people’s
capitals should also be substantially larger in the U.S. Theoretical arguments and empirical evidence show
that spouses’ similarity increases with wage and income inequality (see Fernandez et al. 2005 and the
literature reviewed by Schwartz 2013:455-456), and there is direct evidence that educational homogamy is
higher in the U.S. than in Denmark (Eika et al. 2014: Figure 2; Fernandez et al. 2005: Table 1; Monaghan
2015: Table 2).26 We may then conclude that the returns to people’s capitals in terms of pre-tax-and-transfers
family income are indeed larger in the U.S.?” Moreover, these cross-country differentials will be much
greater with after-tax-and-transfers family income. This is the case because the welfare state is substantially
more expansive and generous in Denmark than in the U.S. (e.g., Kenworthy 2020d) and taxes and transfers
reduce household income inequality by 66 percent more in Denmark than in the U.S. (see Gornick and
Milanovic 2015: Figure 1).

Equation (7) and the much larger U.S. earnings and family-income returns to people’s capitals
justifies our general presumption that IALB applies in the comparison between the U.S. and Denmark. As we
explain next, other differences across the two countries further strengthen the case for the applicability of
IALB.

The literature has considered four main types of circumstances: (a) gender; (b) race, ethnicity,
immigration status and other “origin circumstances”; (c) circumstances concerning the characteristics of the
families where people are raised, like parental income, parental education, parental class, and family
structure; and (d) circumstances concerning the place of residence when growing up. Let’s call these
circumstances “primary.” There are, of course, many circumstances that do not belong to any of those four
groups. But they may be expected to have quite small partial effects, to vary little within types defined by all
primary circumstances (the conceptual equivalent, when there are many circumstances, to the squared

larger extent in this sector than in the private sector by bureaucratic provisions—formal rules, regulations,
and standards—that reduce managerial autonomy and constrain discretionary decision-making (compared to
what is the case in private organizations).

26 Note that what is relevant for our argument is the actual similarity across spouses rather than underlying
preference parameters (e.g., Logan et al. 2008) or assortative-mating measures that “net out” differences in
marginal distributions (e.g., Eika et al. 2014).

21 Other, less central, factors to consider are differences across the two countries in (a) the association
between the probability of marriage and people’s capitals, and (b) the probability that married women will
drop out of the labor force when spousal earnings are high. Analyses by Helsg (forthcoming) and Mitnik et
al. (2015) suggest a larger association between capitals and marriage probability in the U.S., which reinforces
our argument. They also suggest that although a larger share of U.S. married women drop out of the labor
force when spousal earnings are high, this is largely driven by much higher spousal earnings at the top of the
U.S. distribution, so our conclusion should not be affected.
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correlation being close to 1 in the two-circumstance model), or both. For this reason, in what follows we
focus on the primary circumstances alone.

In our empirical analyses, we only use gender and one family-level circumstance, parental-income
rank, to define types. We advance three arguments regarding the remaining primary circumstances. The first
argument is that excluding place of residence (when growing up) from the analysis biases down AlOpl
estimates for the U.S. more than for Denmark. Measures of intergenerational income mobility and
persistence, defined in terms of national-level income ranks, vary substantially more across places in the U.S.
than in Denmark (Eriksen and Munk 2020).28 For instance, the average income rank of people raised by
families at the 25™ percentile of the parental income distribution is much more geographically heterogenous
in the U.S. One key reason is that the importance of place of residence for adult outcomes increases with
socioeconomic residential segregation (e.g., Durlauf 1996), which is lower in Denmark.?® Also important for
our argument, not only does average income rank (conditional on parental-income rank) vary more across
places in the U.S. but, in agreement with our earlier analyses of the returns to people’s capitals, the
differences are more consequential for monetary economic outcomes. This is the case because the income
distribution is more unequal in the U.S., so that monetary differences between any two ranks are larger in the
U.S. than in Denmark.

The second argument is that excluding origin circumstances from the analysis biases down AlOpl
estimates for the U.S. more than for Denmark. Race (e.g., Alexander 2010) as well as immigration and
ethnicity (e.g., National Academies 2017: Ch. 2) have played an extraordinarily central role throughout U.S.
history, and there are extensive present-day differences in economic outcomes across racial and ethnic
groups and between natives and immigrants within the country (e.g., Chetty et al. 2020a; Duleep and
Dowhan 2008; National Academies 2017:Ch. 3; Villareal and Tamborini 2018). Moreover, substantial
differences in average income ranks between these groups are observed even after conditioning on parental-
income rank (Chetty et al. 2020a). By contrast, despite increased immigration into Denmark in more recent
times, the country is still highly homogenous in terms of its racial/ethnic composition compared to the U.S.,, a
fact reflected in various indices of ethnic fractionalization (Alesina et al. 2003; Drazanova 2019; Fearon
2003; Patsiurko et al. 2012).° Therefore, even though in Denmark there also are important differences in
economic outcomes between natives and immigrants (e.g., Brodmann and Polavieja 2011; Felbo-Kolding et
al. 2019), it seems safe to conclude that omitting origin circumstances has a larger impact on the measured
AlOpl in the U.S. In terms of the analysis in the two-circumstance model, this conclusion relies on the fact
that both the prevalence (and therefore the variance) of “minority origin” and the returns to capitals are much
larger in the U.S. while there is no reason to believe that differences in the partial effect of minority origin or

28 The same is true for the U.S compared to Sweden (Heidrich 2017).

2 Income segregation among schools, which is a good proxy for socioeconomic residential segregation, is
much lower in Denmark (Chmielewski and Reardon 2016: Figure 4).

30 For instance, the U.S. has a value of 0.53 whereas Denmark has a value of 0.18 in the Historical Index of
Ethnic Fractionalization (HIEF) for 2013 (Drazanova 2019).
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the correlation of the latter with parental-income rank across countries is an important counteracting factor
(or even a counteracting factor at all).

The third argument is that excluding all family circumstances other than parental-income rank from
the analysis biases down AlOpl estimates for the U.S. more than for Denmark. The extent to which family
circumstances contribute to the generation of inequality in people’s economic outcomes depends on a
country’s institutions and policies. As we already discussed, some of these institutions and policies affect the
earnings and family-income returns to people’s capitals. Others affect inequalities in expected capitals across
people with different circumstances.®* Compared to the U.S., Denmark reduces inequalities in people’s
expected capitals because (a) it invests much more heavily on early education and on job training, job
placement and other active labor-market policies, and (b) as already pointed out, it has put in place more
generous and more expansive public-insurance programs (e.g., Kenworthy 2020d). These policy differences
between the two countries make a large array of family-of-origin disadvantages less consequential for
people’s capitals in Denmark, their prevalence (or the prevalence of severe forms thereof) less common in
Denmark, or both. To keep the discussion manageable, we will exemplify our argument with the role played
by investments on early education and active labor-market policies with respect to two important family
circumstances: parental education and being raised by a single parent (“single parenthood” for now on).

The partial effects of parental education and single parenthood arise largely from the fact that these
circumstances affect the development during childhood of cognitive and noncognitive skills (in a broad sense
of the term) that are highly consequential for people’s school performance and adult economic outcomes
(e.g., Bloome 2017; Heckman and Mosso 2014; McLanahan and Percheski 2008). Although parenting
differences across families are unavoidable, they become less consequential the more other agents are
involved in the process of early skill formation. In Denmark, high-quality pre-school care and education are
publicly provided and there is near-universal participation; in the U.S., the system is mostly based on market-
based providers of very heterogenous quality, most care is of low or moderate quality, and participation is far
from universal and picks up speed at a later age (e.g., Esping-Andersen 2004; Esping-Anderson et al. 2012;
Kenworthy 2020a). As a result, parental education and single parenthood have larger effects on the early
formation of skills in the U.S. than in Denmark.*?

Similarly, the extent to which single parenthood and low parental education negatively affect the
amount of human capital in adulthood is not only determined by their effects on people’s early skills and
formal educational attainment but also by how likely it is that those with low educational attainment will

3t From equations (2) and (3), we may write AIOpl = w? Var(E(Qle,XZ)). Specific policies and institutions
may affect w, Var(E(Q|X,,X,)) or both.

%2 The early-education policies implemented by Denmark and other social-democratic countries appear to
dampen parenting effects mainly by improving the skills of children from disadvantaged homes (e.g.,
Kenworthy 2020a). For direct evidence for Denmark and the U.S. based on 2003 PISA scores (for students
age 15), see OECD (2004). Information on “single-parenthood score penalties” in math in the two countries
is available in Table 4.2¢; similar information on “low-maternal-education score penalties” in math, reading
and science can be read off from the figures reported in Table 4.2b. Penalties are markedly lower in Denmark
in all cases.
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have the resources and the incentives to acquire new in-high-demand skills over their working lives (and
especially when technological and industrial changes lead to extensive job destruction and creation). The
more likely this is, the smaller the negative impacts of single parenthood and low parental education on adult
human capital will be. In 2000-2017, average public spending on job training, job placement and other active
labor-market policies as a share of GDP was 13 times larger in Denmark than in the U.S., 1.7 percent versus
0.13 percent (OECD 2020).* This reinforces the conclusion that those two circumstances may be expected
to have lower partial effects in the former country than in the latter.

The variances of the two circumstances are not a counteracting factor. If anything, the opposite is the
case: when parental education is measured categorically, its distribution is very similar in the two countries
(OECD 2014: Table A4.1a), while years of parental education is more dispersed (Hertz et al. 2007) and the
prevalence of single parenthood is higher in the U.S. than in Denmark (Case and Maldonado 2012; Pew
Research Center 2019).3 Finally, there is no reason to expect cross-country differences in the correlation
between parental income rank and parental education or single parenthood to be an important countervailing
factor.

So far, we have made the case that IALB applies with the U.S. as country A and Denmark as country
B. We now make the case for why IAUB also applies to the comparison between these countries. The
argument boils down to the fact that we expect “within-type inequality”—the inequality due to differences in
effort—to be larger in the U.S than in Denmark simply because people’s returns to capitals are larger in the
U.S. The argument is easily formalized when the inequality measure is the squared coefficient of variation.
Using equation (9), we may write:

lys — Ipg = AlOplys — AlOplpk + (ﬂ)us)zVaT(Sus) - (G)DK)ZVQT(SDK)' (10)

where | is overall income inequality and the subscripts denote countries. IALB implies AIOpIy;s = AIOpIpk.
As the returns to people’s capital are substantially larger in the U.S. and there is no reason to expect the
dispersion of effort to be larger in Denmark (in fact, Landersg and Heckman [2017] have advanced
arguments entailing the opposite), we expect (wys)?Var(sys) > (wpk)?Var(epk). Therefore, Iys — Ipg >
AlOplys — AlOplpk, as posited.

3 These figures are based on spending on training, employment incentives, public employment services and
administration, and sheltered and supported employment and rehabilitation. In 2017, this spending was 1.97
percent in Denmark and 0.09 percent in the U.S., i.e., 22 times higher in Denmark.

% For people ages 20-34 in 1998 (Denmark) and 1994-2000 (U.S.), grouped in five-year cohort groups, Hertz
et al. (2007: Supplement Dataset) report standard deviations for years of parental education in the 1.82-2.01
range in Denmark and in the 2.53-2.69 range in the U.S. The share of children under age 18 living with one
parent and no other adult has been reported as 18 percent in Denmark in 2007 and 27 percent in the U.S. in
2011 (Casey and Maldonado 2012) and 17 percent in Denmark in 2014 and 23 percent in the U.S. in 2010-
2016 (Pew Research Center 2019).
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Equation (10) assumes consistent estimation of overall income inequality. When the focus is on
AIlOp in long-run rather than short-run income, we need to account for the upward lifecycle biases discussed
earlier. This may be achieved by modifying equation (10) as follows:

A +rys)lys — A+ 1pg)pg =

AlOplys — AlOplpg + (ﬂ)us)zVaT(Eus) - ((UDK)ZVC””(EDK) + ryslys — "oklpk, (11)

where 15 and rp, capture the proportional asymptotic biases in the estimators of inequality for the U.S. and
Denmark, respectively, and the left-side of the equation reflects what is actually being estimated by those
estimators. Our argument is still valid if ryg > rpx = 0. Here we assume that ryg = rpg > 0. This
assumption is based on the fact that our income measures pertain to exactly the same ages in both countries,
and that we expect the bias to be positive at those ages.

Data and variables

For Denmark, our analyses are based on administrative register data, which cover the full Danish
population in 1980-2015. For the U.S., our analyses are based on the Statistics of Income Mobility (SOI-M)
Panel (Mitnik et al. 2015), which represents all people born between 1972 and 1975 who were living in the
U.S. in 1987. The SOI-M Panel was built from U.S. tax returns, W-2 forms, and other administrative sources.
For both countries, the samples employed pertain to people who were 35-38 years old in 2010.%° We use
information on their (a) gender, (b) total and disposable family income, (c) total and disposable family
income per adult, and (d) individual earnings, all measured in 2010. We also use information on (e) the
average disposable family income of people’s parents when those in the sample were 15-23 years old.®

In the U.S. data, due to differences in data availability, the income concepts are not measured
identically for the people in the sample and their parents, but the differences are only minor. The measure of
annual parental total income in the SOI-M Panel is the sum of (a) pre-tax “total income” in Form 1040
(which includes labor earnings, capital income, unemployment insurance income, and the taxable portion of
pensions, annuities, and social security income), and (b) nontaxable interest. For people who filed taxes in
2010, total income is very similar; the only difference is that it also includes nontaxable earnings. For
nonfilers in that year, total income is the sum of earnings from the W-2 form and unemployment insurance
(UI) income from the 1099-G form, as long as at least one of them were available (see Chetty et al. 2014 for
a further discussion of this approach). For those for whom both W-2 and Ul information were unavailable,
the SOI-M Panel includes a set of imputed income variables, which we use here; these variables are based on
data from the Annual Social and Economic Supplement of the Current Population Survey (CPS-ASEC) on

% The sample for Denmark replicates as much as possible the approach used in the SOI-M Panel to assign
parents to people and to define families (for that approach, see Mitnik et al. 2015:16-19) as well as the
represented population (i.e., the sample for Denmark also excludes those not living in the country in 1987).

% For the sake of readability, in what follows we will often refer to our income concepts as “total income,”
“disposable income,” “total income per adult,” “disposable income per adult,” and “earnings.”
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likely nonfilers without Ul income or earnings (see Mitnik et al. 2015:28-31).%” After-tax income is
computed by subtracting out net federal taxes (which include refundable credits) from total income, and this
is what we use as our measure of disposable income; as state taxes are not excised from this measure, and
some non-taxable transfers are not included (e.g., Temporary Assistance for Needy Families), it follows that
this is an approximation to true disposable income.*® Total (disposable) income per adult is equal to total
(disposable) income when the person is single and total (disposable) income divided by 2 when the person is
married (where marital status is based on filing status).* Earnings are the sum of W-2 wages and 65 percent
of self-employment income when positive (the other 35 percent is assumed to be the return to capital).

In the Danish data, total income is the sum of labor earnings (including 100 percent of self-
employment income), capital income, and unemployment insurance. Disposable income is the sum of total
income, public transfers and other third-party reported income, minus taxes paid on income. As in the U.S.
data, earnings include 65 percent of self-employment income. Total and disposable income per adult are
computed as in the U.S. data.

The samples used for our analyses exclude people with (a) more than 3 years of missing parental
information, and (b) nonpositive average parental income. In analyses where total or disposable income is the
outcome of interest, the samples also exclude people with negative total or disposable income. In Table 4, we
provide demographic and income statistics for the samples. We express all income variables in 2010 dollars
using the Consumer Price Index for Denmark and the Consumer Price Index for Urban Consumers -
Research Series (CPI-U-RS) for the U.S.; we further transform Danish krones into U.S. dollars using a
purchasing power parity exchange rate computed by the Eurostat-OECD PPP Programme (see
OECD/Eurostat 2012).

For auxiliary purposes, we also use aggregate tax-based U.S. statistics that Chetty et al. (2020b) have
made publicly available. The microdata underlying those statistics represent the birth cohorts 1978-1983.
Here, people’s income is their average income in 2014-2015, when they were between 31 and 37 years old,
and their parental income is measured by averaging five years of information when they were between 11
and 22 years old. In both cases, income refers to pretax family income, which is very similar to our notion of
total income. We use information on people’s income rank in 2014-2015 by gender, parental income
percentile bin and race/ethnicity. We combine this information with a “crosswalk” provided by Chetty et al.
(2020Db) that maps income rank into real income in 2015 dollars and employ the resulting values to compute
some auxiliary quantities we use in one section of our article. The race/ethnicity categories are Hispanic,

3" In some contexts, the imputed income variables included in the dataset can be used to compute point
estimates and confidence intervals using the standard approach for multiple imputation (e.g., Little and Rubin
2002). Here, however, we only use those variables and the standard approach to compute point estimates. For
statistical inference, see below.

3 As explained in detail later, in our empirical analyses we introduce adjustments aimed at accounting for the
approximate nature of our U.S. measure of disposable income.

% For nonfilers (both with and without other administrative information), the SOI-M Panel includes a set of
imputed marriage-status variables that are also based on data from the CPS-ASEC.
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White, Black, Asian, American Indian or Alaskan Native, and Other (the last five only include non-
Hispanics).

Estimation and statistical inference

We use the nonparametric approach (e.g., Checchi and Peragine 2010) to estimate 1Opl. This simply
involves (a) defining types, (b) computing mean income within types, (c) assigning type-specific means to
people, and (d) computing an inequality measure (e.g., Gini, MLD) over the resulting distribution. We define
100 types by combining gender and parental income “fiftiles” (fiftiles are like quintiles but each includes 2
percent of the population instead of 20 percent); we compute fiftiles of parental disposable income. When we
estimate 10pl separately for men and women, types are defined exclusively in terms of parental income
fiftiles.

We use only gender and parental income to define types both because there is not much additional
information in the SOI-M Panel that could be used for this purpose, and because it is unlikely that we could
include additional variables and still rely on the nonparametric approach given the size of our SOI-M Panel
sample. With this sample, we use sampling weights to produce all estimates.

Statistical inference is based on the nonparametric bootstrap with 2,000 repetitions. With the U.S.
data, we carry out multiple imputation—of the income variables for nonfilers without any administrative
information and of marriage status for all nonfilers—within the bootstrap procedure. We use the same source
of data and approach employed in the SOI-M Panel to generate imputed variables (see Mitnik et al 2015: 28-
31) to re-impute them within each bootstrap sample. This way the reported uncertainty reflects not only
sampling variability but also the additional variability generated by multiple imputation.

When we provide point estimates, including point estimates of quantities representing lower bounds,
we report bias-corrected bootstrap confidence intervals (e.g., Efron 1987). When we provide set estimates of
partially identified quantities, we report confidence intervals for the actual quantities of interest, not for the
identified sets. To this end, we use the approach advanced by Imbens and Manski (2004).

Results
Absolute inequality of opportunity for income in the U.S. and Denmark

We present our main results about AlOpl in Denmark and the U.S. in Tables 5 and 6 and Figures 2, 3
and 4. Table 5 shows our lower-bound estimates of AIOp for individual earnings and for total and disposable
family income (overall and per adult), both for the full population and for men and women separately. In
these analyses, we use the Gini coefficient and the MLD as inequality measures. Table 6 reports Gini-based
adjusted estimates of AlOpl for disposable income in the U.S., whose discussion we will postpone to the
next subsection.

In Figures 2, 3 and 4, taking advantage of the fact that our types are defined by only two variables,
we offer graphical representations of how income opportunities (that is, the value of income opportunity sets)
vary across types in Denmark (left panel of each figure) and the U.S. (right panel of each figure).*° In Figure

0 More precisely, the figures offer graphical representations of how mean income opportunities (across true
types) vary across the types distinguished in our research (each of which includes many true types) in
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2, the 100 dots in each panel represent the earnings opportunities of men and women at different fiftiles of
parental income. To facilitate the interpretation of the figure, we have superimposed nonparametrically
estimated curves summarizing the relationship between opportunities and parental fiftiles by gender. Figures
3 and 4 each have information pertaining to two income notions rather than one. So, to avoid cluttering, we
have only included the summary nonparametric curves in those figures.

Figure 2 indicates that, in both countries, mean earnings (that is, the value of earnings opportunity
sets) increase with parental fiftile, regardless of gender. This association is more marked in the U.S. than in
Denmark, especially for men at the top and women at the bottom of the parental income distribution. In the
U.S., the difference between men’s and women’s mean earnings is very small at the bottom of the parental
income distribution but increases rapidly and becomes quite large in the top parental decile and
extraordinarily large at the very top of the distribution. By contrast, although in Denmark the curves for men
and women also diverge more at the top of the parental income distribution, the distance between them is
much closer to being constant across parental fiftiles. A useful way of summarizing how earnings
opportunities vary across types in each country is by computing the average “opportunity return” to parental
income fiftile, which comes at about $800 and $400 for Danish men and women, respectively, but is as much
as $2,000 and $600 for U.S. men and women, even when mean earnings are about 16 percent larger in
Denmark (see Table 4).%! This means that the annual-earnings opportunity set of U.S. men born at the top
fiftile is worth about $100,000 more than the opportunity set of men born at the first fiftile, while the
corresponding difference for Danish men is about $40,000.

As shown in Table 5, the patterns we just described translate into very large cross-country
differences in AlOp for earnings—or, rather, in its lower-bound estimates, a qualification that needs to be
kept in mind but we will not repeat in the rest of this subsection. As measured by the Gini coefficient, which
is less sensitive to the tails of a distribution, the AIOp for earnings is close to 0.12 in Denmark and above
0.23, or nearly twice as high, in the U.S. (for men and women pooled). Moreover, while the proportional
difference between women’s Gini values for the two countries (about 0.07 and 0.15 for Denmark and the
U.S. respectively) is similar to that for the full population, that difference is substantially larger among men,
for whom the estimates are close to 0.09 and 0.25, respectively.

The MLD is more sensitive to the tails of a distribution than the Gini coefficient. As expected from
the shapes of the curves in Figure 2, this results in cross-country differences in the estimates of AlOp for
earnings that are markedly larger than with the Gini coefficient. Thus, the earnings AlOp for U.S. men is as
much as seven times larger than for Danish men, whereas for men and women pooled, and for the latter
alone, it is between four and five times larger.

Denmark and the U.S. For simplicity, we use the less precise language everywhere. In this we follow the
practice of 10pl scholars, who do not explicitly distinguish between true types and those defined for research
purposes given the information available and other pragmatic considerations (e.g., sample size).

41 Estimates based on within-type mean income values or the smoothed values on the nonparametric curves
give very similar results. Here and later the figures we report are always based on the former.
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Figure 3 focuses on family income. Each panel includes four curves representing men’s and
women’s opportunities in terms of total and disposable family income. In contrast to what is the case with
individual earnings, within countries, and keeping the income notion fixed, there is little difference in the
shapes of the income opportunity curves across genders (although now the women’s curves are, for the most
part, a little bit above the corresponding men’s curves). This reflects a deep asymmetry across genders in
how economic advantages are transmitted from parents to their offspring. As Mitnik et al. (2015:64-68) have
shown for the U.S., whereas for men about 61 percent of that transmission “goes through” the labor market
(i.e., own earnings) and 39 percent “goes through” the marriage market (i.e., spouse’s earnings), for women
those shares are about 29 and 71 percent, respectively. The left panels of Figures 2 and 3 make apparent that
a similar, but smaller, gender asymmetry is also present in Denmark.

If the only source of income were the labor market, and if everyone were married to somebody of the
opposite sex also born in 1972-1975 and with parents in the same fiftile, the total income curves of Figure 3
would simply be the horizontal sum of the earnings curves for men and women shown in Figure 2. And
because men tend to have larger earnings than women, we would expect the total income curves to resemble
those for men’s earnings. Although these conditions obtain very imperfectly, Figure 3 shows that the total
income curves, for men and women alike, behave similarly to the men’s earnings curves in Figure 2. This
leads to very large cross-country differences in the AlOp for total income (for men and women pooled); in
fact, this AlOpl is, in both countries and regardless of inequality measure, extremely close to the AlOp for
men’s earnings. For instance, the Gini-based estimates are 0.243 (total income) and 0.234 (men’s earnings)
in the U.S. and 0.092 (total income) and 0.093 (men’s earnings) in Denmark. Also, as suggested by the
shapes of the curves, in both countries the AlOp for total income is somewhat larger for men than for
women, and more so with the MLD than with the Gini (see Table 5).

Due to the impact of income taxes (which dominate those of transfers at all levels of parental
income), the disposable income curves are below their total income counterparts in both countries. Because
of higher tax rates in Denmark, the proportional downward shift when moving from total income to
disposable income opportunities is larger in that country at all parental fiftiles; disposable income
opportunities are, on average across fiftiles and genders, 18 percent lower in Denmark compared to 13
percent lower in the U.S. Also reflecting the cross-country differences in tax-and-transfer systems, the
disposable income curves in Denmark are much flatter than their total income counterparts, whereas in the
U.S. the shapes of the disposable and total income curves are more similar. *> Thus, while in Denmark the
average income return to parental income fiftile falls from about $1,700 to $1,100 for men and from about
$1,100 to $650 for women once we move from total to disposable income—that is, it falls about 35 and 41
percent, respectively—in the U.S. it falls from about $3,800 to $2,900 for men and from about $3,600 to
$2,700 for women—that is, it falls close to 24 percent in both cases. As a result, whereas in the U.S. the
AlOp for disposable income, measured with the Gini coefficient, is only 8.4 percent smaller than with total
income, in Denmark the disposable-income Gini is 22.1 percent smaller. The mechanical effects of the
countries’ choices regarding taxation and redistribution policies are even larger when AlOpl is measured

“2 For standardized tax statistics for the two countries, see OECD (2019b). For comparative analyses of taxes
and transfers in the U.S. and various countries, including Denmark, see Kenworthy (2020b, 2020c).
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with the MLD. With this inequality measure, AlOp for disposable income is 38 percent lower than AlOp for
total income in Denmark compared to 15.5 percent lower in the U.S.

So far, we have measured people’s income (meaning here the sum of their earned and unearned
income) at the family level and without giving any consideration to family structure, which has been the
conventional approach in the intergenerational mobility literature (for an exception, see Hertz 2005). The
conventional approach in the IOpl literature has been different. Usually, 10pl scholars have also measured
income at the family level. However, they have typically divided family income by the number of adults in
the family, by the root of family size, or by some more elaborate factor that reflects both family size and
composition in terms of adults and children of different ages.

Adjusting family income so that it reflects people’s childbearing decisions does not seem an
attractive strategy. The following toy example shows why. Assume that there are only two types, DI
(disadvantaged) and AD (advantaged), which are equally frequent in the population. In type AD, people’s
family income is $60,000 and everyone is married and has two children (which is their ideal number of
children). In type DI, people’s family income is $30,000 and everyone is married. But although their
preferred number of children is the same as in type AD, they only have one child because this is what they
can afford with their income. Using the Gini coefficient, AlOpl is 0.17 when computed with unadjusted
family income but falls to 0.13 when computed with family income divided by the root of family size.
However, computing 10pl with overall income is the right approach here, as this is the income that
determines the inequality in people’s capacity to pursue life plans (regardless of their actual life-plan
choices), which is what matters in the luck-egalitarian perspective (rather than, for instance, inequality in
achieved welfare or material well-being).

In addition to showing why a family income measure that reflects people’s childbearing decisions
should be deemed unattractive in the 10pl context, the foregoing provides a good illustration of the type of
concerns with endogeneity that have led mobility scholars to ignore family structure. At the same time,
mobility scholars’ approach also seems conceptually unsatisfactory, at least when applied in that context.
One key issue is this: if what we care about is people’s ex-ante capacity to pursue life plans that income
makes possible, it follows that we should take into account that a given level of family income cannot lead to
the same level of such capacity for each of two adults that are married with each other than for one adult that
is single.*® For this reason, the approach used by some 10pl scholars (e.g., Marrero and Rodriguez 2011) of
dividing income by the number of adults in the family has a lot to recommend it. Although it is not free of
conceptual problems either, it appears as an eminently reasonable and, arguably, theoretically superior
strategy.

Figure 4 is like Figure 3 but is based on family income per adult. The shapes of the curves are similar
to those shown in Figure 3 but the normalization of family income further reduces gender differences in

3 This is the case even if we consider the economies of scale of living together (for these economies, see,
e.g., Bltikofer and Gerfin 2017), which is not at all clear we should do. After all, single people may also
enjoy such economies of scale if they choose to do so (and they often do) and, although much less common,
sometimes married people do not enjoy them.
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income opportunities, which are now of note only at the top of the parental income distribution in Denmark
and at the bottom of that distribution in the U.S. Table 5 shows that the normalization of income also leads to
an across-the-board reduction in the estimates of AlOp for family income. For instance, the U.S. Gini
coefficients for men and women pooled are now 0.213 (total income) and 0.191 (disposable income)
compared to 0.243 and 0.223, respectively, with overall income, whereas the corresponding Danish figures
are now 0.082 (total income) and 0.056 (disposable income) compared to 0.092 and 0.072, respectively. This
general reduction of the AIOpl estimates is a direct product of the fact that, in both countries, the prevalence
of marriage increases steadily with parental income (see Helsg, forthcoming; Mitnik et al. 2015); after
normalizing income, this marriage-probability gradient is no longer reflected in the AlOpl measures.

At the same time, the mechanical effects of tax and transfers on AIOpl become larger with the per-
adult income measures in both countries. When switching from total to disposable income, the U.S. AlOpl
now falls 10.2 percent (Gini) and 18.5 percent (MLD) compared to 8.4 and 15.5 percent, respectively, with
overall family income (for men and women pooled). These percentage-point differences are even larger in
Denmark, where the AlOpl now falls as much as 31.3 percent (Gini) and 49.8 percent (MLD) compared to
21.1 and 38.4 percent, respectively, with overall family income.

Importantly, the average family income returns, per adult in the family, to parental income fiftile are
still very substantial, and much more so in the U.S. For men, these returns are close to $2,200 (total income)
and $1,600 (disposable income) in the U.S. whereas they are about $1,000 (total income) and $600
(disposable income) in Denmark. For women, they are about $1,800 (total income) and $1,400 (disposable
income) in the U.S and $600 (total income) and $350 (disposable income) in Denmark. These returns entail,
for instance, that the expected difference between the disposable family incomes of married men born in the
top and first fiftiles is about $160,000 in the U.S. compared to $60,000 in Denmark.

Absolute inequality of opportunity for disposable income in the U.S.: Addressing data limitations

A limitation of our previous family-income analyses is that, as we indicated when we described our
data, our U.S. measure of disposable income is only approximate because it excludes state taxes and some
transfers. State taxes make little difference for inequality compared to federal taxes (Cooper et al. 2011,
Sammartino and Francis 2016). And our measure does include income from unemployment insurance and
the earned income tax credit, which is the largest cash transfer program for low-income families in the
country. Nevertheless, it could be argued that, because our measure of disposable income omits other
transfers as well as state taxes, our analyses have offered a misleading picture of (a) AIOp for disposable
income in the U.S., and (b) the magnitude of the mechanical effects of taxes and transfers on AlOp for
family income in the U.S compared to Denmark. Although we cannot fix the limitations of the U.S. micro
data on disposable income, we do make ex-post adjustments to our estimates to address these concerns.

We present the results in Table 6. The left panel reproduces all Gini-based estimates of disposable-
income AlOpl for the U.S. reported in Table 5 and shows adjusted estimates that account for the exclusion of
state taxes and some transfers from our analyses. We compute approximate adjustment factors with CPS-
ASEC data (Flood et al. 2020). These factors reflect the effects of state taxes as well as cash transfers from
all potentially important sources: Transitory Assistance for Needy Families, Social Security (including
disability insurance), Supplemental Security Income, the Veterans' Administration, and various disability
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programs. Our key assumption is that AIOp estimated with our measure of disposable income overstates
AlOp in true disposable income by the same proportional factor that the estimation of overall inequality with
that measure overstates overall inequality in true disposable income.** Because the MLD cannot be
computed when an income variable includes zeros, and both the SOI-M Panel sample and the CPS-ASEC
sample include a nonnegligible share of people with zero disposable income, we only compute adjusted
AIOpl estimates based on the Gini coefficient. On average across populations and disposable income notions
(i.e., overall and per adult), the adjustments reduce the U.S. AlOpl estimates by 3 percent. The largest
proportional reduction, 3.9 percent, is for women’s AlOp for disposable income per adult, which falls from
0.180to 0.173.

The right panel of Table 6 shows the absolute proportional difference between the AlOp for family
income computed before and after taxes and transfers for Denmark and the U.S., in the latter case using both
the unadjusted and the adjusted AIOpl estimates. On average across populations and disposable income
notions, the fall in measured AlOpl in the U.S. due to the effect of taxes and transfers is 2.7 percentage
points larger with the adjusted estimates; the larger difference, 3.5 percentage points, pertains to the AlOp for
women’s income per adult. These differences, however, do not alter our finding of substantially larger
impacts of taxes and transfers in Denmark than in the U.S. For instance, once the AlOpl estimate for the U.S.
is adjusted, the fall in women’s AlOp for family income per adult due to taxes and transfers is still three
times larger in Denmark than in the U.S.

Although the effects of omitting state taxes and some transfers from our U.S. measure of disposable
income are minor, they are not negligible. For this reason, we use the adjusted disposable-income estimates
in all our subsequent analyses.

Absolute inequality of opportunity for income in the U.S. relative to Denmark

So far, we have compared lower-bound AlOpl estimates for Denmark and the U.S. and have shown
that they are all substantially larger in the latter country, regardless of income notion and population.
However, we would like to say substantially more than this. Is (true) AlOpl larger in the U.S.? Combining
our results in the previous subsections and our evidence that IALB applies to the comparison between the
U.S. and Denmark, we can conclude that (true) AlOpl is indeed larger in the U.S. than in Denmark. But how
much larger?

Figure 5 starts to address this question. For men and women pooled, we present in that figure set
estimates of the ratios between AlOpl in the U.S. and Denmark, together with the corresponding confidence
intervals for the partially identified ratios. A value larger than 1 indicates how much more inequality of
opportunity there is in the U.S. compared to Denmark; for instance, a ratio of 1.4 indicates 40 percent more
inequality. The figure includes Gini-based but not MLD-based estimates. To generate set estimates of AlOpl
ratios we need both lower and upper-bound AlOpl estimates, but the latter—that is, the estimates of overall
inequality—cannot be computed with the MLD because, in both countries, all our income measures have a
nonnegligible—and in the case of earnings, very substantial—share of zeros. Importantly, here and in all
subsequent analyses we correct the estimates of overall inequality to address lifecycle bias. As explained in

4 See the note to Table 6 for additional information on the computation of the adjustment factors.
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some detail earlier, this upward bias results from estimating inequality in long-run income with a proxy
short-run income measure obtained when people are “too old.” Our correction relies on data from the PSID
(PSID 2019). We estimate overall income inequality with an approximate measure of long-run family
income and with a measure of short-run family income obtained at ages 35-38 (the ages of the people in our
samples), compute the magnitude of the upward lifecycle bias, and use this result to correct our estimates of
overall inequality in Denmark and the U.S. (see the caption of Figure 5 for more details).

The left panel of Figure 5 shows that, without any identification assumption—that is, relying only on
the data and our knowledge of the sampling process—we would not be able to make any progress with the
guestions posed above. The set estimates of AlOpl ratios based on the data alone all cover the value 1.
Therefore, they cannot even tell us whether AlOpl is larger in the U.S. or in Denmark, let alone by how
much, with any of our five income measures.

In the right panel of Figure 5, we present our set estimates of AIOpl ratios under our identification
assumptions, IALB and IAUB. Now all set estimates are not just informative but substantially tighter—on
average, 63 percent tighter. The set estimate of the earnings AlOp ratio indicates that the U.S. AlOp for long-
run earnings is at the very least 37 percent larger than its Danish counterpart, and no more than 2.8 times as
large. AlOp for long-run family income is a better normative yardstick to compare countries because it takes
into account income sources other than the labor market as well as the crucial role that marriage plays in the
intergenerational transmission of advantages. Before taxes and transfers, the AIOp for family income is at
least 47 percent larger in the U.S. than in Denmark with overall income and at least 49 percent larger with
income per adult, and the upper bounds for the percent differences are similar to that for the earnings AlOp.
Once we include taxes and transfers in the analysis, the effects of the differences between the policy choices
of the two countries manifest fully. With overall disposable income, the U.S. excess AlOp for long-run
family income compared to Denmark is at the very least 55 percent; with disposable income per adult—the
best of our income measures for carrying out a comparison of inequality of opportunity between countries—
it is at the very least 68 percent. The upper bounds of the ratios cap the differences at about 250 and 350
percent, respectively.*

We next examine whether our results are robust to the choice of inequality measure, that is, whether
our comparative findings still stand when we use inequality measures other than the Gini coefficient to
compute AlOpl ratios. For this purpose, we can only use inequality measures that may be computed in the
presence of zeros; we resort to Gini-type indices that give more weight to low incomes (Kakwani and
Mehran) and to high incomes (Piesch), and to the relative mean deviation (RMD).* For simplicity, and to

* The upper bounds of our set estimates of AlOpl ratios are all larger than the corresponding ratios of lower-
bound estimates from Tables 5 and 6. This means that the results here are not inconsistent with RIA. It is
possible, however, for results under IALB and IAUB to be inconsistent with RIA—and in fact, this is the
case with one of the inequality indices we introduce next (although only for total income estimates). This is
the reason why in note 19 we said that, in some cases, it may be possible to show that RIA does not apply.

% The computability-with-zeros constraint excludes not only the MLD but also the Theil index, another well-
known member of the class of generalized entropy (GE) indices. A third well-known member of this class,
which is not excluded by that constraint, is the GE index with sensitivity parameter equal to 2, or half the
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focus on our most important conclusions, in Figure 6 we present lower-bound estimates of AlOpl ratios
rather than (finite-length) set estimates. Therefore, here we rely on IALB alone for identification and the
uncertainty of our estimates is assessed with standard bootstrap bias-corrected confidence intervals.

The figure shows that our results are very robust across inequality measures. The lower-bound
estimates of the AlOpl ratios that rely on the four new inequality indices are very similar to those obtained
with the Gini coefficient. The average excess AlOpl in the U.S across these four indices is 38 percent with
earnings, 48 percent with total income, 56 percent with disposable income, 50 percent with total income per
adult, and 71 percent with disposable income per adult; the corresponding figures with the Gini coefficient
are very similar, that is, 37, 47, 55, 49 and 68 percent. The estimate of the ratio for disposable income per
adult is somewhat larger with the Kakwani index than with the Gini coefficient and essentially the same as
the latter with the other three indices. Moreover, the null hypothesis that the excess AIOp for disposable
income per adult in the U.S. compared to Denmark is less than 60 percent with any (i.e., at least one) of the
five inequality indices is easily rejected (p-value=0.005).%

Relative inequality of opportunity for income in the U.S. and Denmark

How much of a country’s income inequality is accounted for by circumstances beyond people’s
control? Or, equivalently, what share of a country’s income inequality can be deemed unjust? We have
argued that these questions are not relevant for comparative assessments of how countries are doing in terms
of inequality of opportunity, which need to focus on AlOpl levels and not on what shares they represent of
overall inequality. Nevertheless, we have also argued that RIOpl is an interesting and important descriptive
quantity, and for this reason we estimate it here. We present all our Gini-based RIOpl results in Table 7 and
summarize our key results for men and women pooled in Figure 7. For reasons we have already discussed,
we do not report MLD-based estimates. Our RIOpl estimates need to be interpreted as lower-bound estimates
of the share of long-run income inequality that is accounted for by circumstances beyond people’s control.

Figure 7 makes apparent that although income inequality is substantially larger in the U.S. than in
Denmark (on average across income variables, 71 percent larger), the lower bound estimates of RIOpl, the
ethically unacceptable share, are also substantially larger in the U.S. (on average, 59 percent larger). In
Denmark, RIOpl estimates are close to 29 percent for family income—across the four family-income
measures—and 38 percent for earnings. In the U.S., the family income estimates are close to 49 percent
while the earnings estimate is close to 45 percent. These are very striking figures given that we only use
gender and parental rank to define types.

The results in Table 7 indicate that, for family income, the U.S. estimates are somewhat larger for
men than for women, but the differences are minor and the estimates are similar to those for men and women
pooled. By contrast, although earnings inequality is the same among men as among women, RIOpl is almost

square of the coefficient of variation. Unfortunately, the AIOpl estimates we obtain with this index are very
imprecise. The constraint also prevents us from using another popular index, the standard deviation of log
incomes.

4" This is a “type-2 p-value,” which is computed as the proportion of bootstrap samples in which the null
hypothesis is true (Singh and Berk 1994). Type-2 p-values can be interpreted as standard p-values.
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20 percentage points larger for men, 48 percent compared to 28.5 percent. This is likely driven by the fact
that, in the U.S., married women with advantaged parental backgrounds often drop out of the labor force—
and therefore are included in the analysis with zero earnings—when spousal earnings are high enough (see
Mitnik et al. 2015). In Denmark, all RIOpl estimates are somewhat larger for men than for women (i.e.,
between 2.1 and 5.6 percentage points larger) but, unlike in the U.S., the earnings estimates for men and
women separately are much lower than for men and women pooled (29.8 and 25.6 percent compared to 37.9
percent).

An extension: Accounting for race and ethnicity in the United States

It will never be possible to estimate AIOpl with empirical types that even approach true types. But
perhaps we can aspire to obtain tight lower bounds by including in our analyses all or most circumstances
that play major roles in generating inequality in opportunities (or, at least, all circumstances that we believe
play such roles). Some such circumstances we would like to include when studying the U.S., in addition to
those we have so far considered in this article, are parental education, place of residence when growing up,
and race and ethnicity. In this section we focus on the latter. We do not have measures of race or ethnicity in
the SOI-M Panel, so we cannot carry out an analysis in which we define types in terms of gender, parental
fiftile, and race and ethnicity. Instead, we compute adjustment factors that are meant to reflect how much
larger the estimates of AlOpl for total income would be with race and ethnicity included in the analysis.
These are the “auxiliary quantities” we mentioned when describing our data and variables.

To compute the adjustment factors we need (for use with Gini-based and MLD-based AlOpl
measures, respectively), we rely on three pieces of information that Chetty et al. (2020b) have made publicly
available: (a) data on people’s average family income rank in 2014-2015, by gender and parental-income
centile bin, and by the same variables plus race/ethnicity, (b) data on the number of people in the cells
defined by gender and parental-income centile bin, and by the same variables plus race/ethnicity, and (c) a
crosswalk that maps income rank into real income in 2015 dollars. We use these data to produce a rough
approximation to within-type family income means for types defined both in terms of gender and parental
income fiftile, and in terms of gender, parental income fiftile, and race and ethnicity. Combining this
information with the information in (b), we obtain the distributions of within-type means under both
definitions of types. Figure 8 shows nonparametric estimates of the densities of these distributions. As
expected, the distribution of within-type family income means based on more disaggregated types (because
of the inclusion of race and ethnicity in defining them) is substantially more dispersed.

Our adjustment factors are simply the ratios between the Gini coefficient or MLD of the distribution
where types account for race and ethnicity and the Gini coefficient or MLD of the distribution where types
do not account for race and ethnicity. When using these adjustment factors, we make a key assumption: that
the effects of replacing true within-type income means by rough approximations in computing inequality
measures tend to cancel out, e.g., that if inequality in one approximate distribution is X percent lower than in
the corresponding true distribution, more or less the same is the case with the other approximate distribution.

As we mentioned earlier, the notion of family income used by Chetty et al. (2020b) is very similar to
our notion of total family income, so here we focus on our AlOpl estimates based on this notion. The results
of adjusting our lower-bound 10pl estimates to account for race and ethnicity in the U.S. are shown in Table
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8. An adjustment factor of almost 14 percent in the Gini-based measure of AlOp for total family income puts
it at about 0.28 (compared to about 0.24 without race and ethnicity). In the case of the MLD, the adjustment
factor is much larger, almost 52 percent, most likely reflecting (a) the higher sensitivity of this inequality
measure to the tails of a distribution, and (b) the substantial elongation of the left tail of the distribution of
within-type income means once race and ethnicity are also considered in defining types (see Figure 8). This
puts the lower bound MLD-based estimate of AIOpl at as high as 0.15.

For reasons we have already explained, we do not report RIOpl estimates based on the MLD. But
adjusting our Gini-based estimate of near 51 percent to account for race and ethnicity suggests that, in the
U.S., at the very least 58 percent of the country’s high inequality in long-run total family income is due to
circumstances beyond people’s control.

Discussion and conclusions

In this article, we have carried out the first cross-country comparative analysis of inequality of
opportunity for income based on administrative data. Our focus on Denmark and the U.S. is of great interest
given that these countries are often portrayed as quasi-ideal types in literatures dealing with the various
configurations that political economies, welfare state regimes, production systems and so forth take in highly
industrialized capitalist democracies.

While most comparative research on intergenerational economic mobility suggests that Denmark and
other social-demacratic countries are able to limit inequality of opportunity for income to a larger extent than
the U.S. does, the direct evidence produced by the burgeoning empirical literature on inequality of
opportunity is far from compelling. This has partly been the result of data limitations. But it has also been the
result of conceptual and methodological shortcomings in the way in which that literature, despite its many
contributions and achievements, has transformed the luck-egalitarian understanding of inequality of
opportunity into an empirical research program.

Our empirical analyses in this article have relied on improved data and methods. We have used data
that cover the full populations of interest and are unaffected by attrition, recall problems and other factors
that reduce the confidence one may place on empirical findings or curtail their pragmatic relevance. We have
made our evidence as informative as possible not only by using administrative data for both Denmark and the
U.S. but also by focusing on the same cohorts and time period, using the same circumstances to define types,
employing the same estimation method, and aligning as much as possible the income notions across the two
countries. We have avoided the conceptual inconsistency involved in the use of the parametric log-linear
approach, as well as the selected populations that result. Unlike nearly all the previous literature, our aim
here has been to produce estimates of inequality of opportunity for long-run income—which is the
normatively relevant notion of income for empirical analyses—and to this end we have resorted to a new,
empirically validated, nonclassical measurement-error model similar to those used by mobility scholars.
Finally, we have advanced and extensively justified two identification assumptions. These have allowed us to
go beyond the generation of lower-bound estimates of inequality of opportunity in the U.S. and Denmark to
produce the first set estimates of inequality of opportunity in the U.S. relative to Denmark.

What have we found? We will not attempt to review all our findings on absolute inequality of
opportunity here, but it is nonetheless useful to briefly discuss a few of them. Our results indicate that
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absolute inequality of opportunity for long-run individual earnings and for long-run family income (before
taxes and transfers) are both high in the U.S. Even when we only consider two circumstances in our main
analyses, gender and parental income rank, the lower-bound Gini coefficients for earnings and family-
income opportunities are in the 0.21-024 range.*® Further, the extension of our analysis to account for race
and ethnicity suggests a Gini for family-income opportunities of at least 0.28; notably, this lower-bound
estimate of inequality of opportunity in the U.S. is only somewhat smaller than our point estimate of overall
inequality in Denmark with the same income concept, which puts the latter at 0.32.

We also find that inequality of opportunity for long-run earnings and family income (again, before
taxes and transfers) is far from negligible in Denmark. Indeed, even with the very minimum set of
circumstances considered in our analysis, the Danish lower-bound Gini coefficients for earnings and family-
income opportunities are in the 0.08-0.12 range. These values are, nonetheless, much lower than the
corresponding values for the U.S. (and, in proportional terms, this is even more with the MLD as the
inequality index). The cross-country differences in our earnings and total income estimates are likely the
result of three main factors. We have already referred to two of them: (a) Denmark’s labor-market
institutions compress the earnings distribution much more than their U.S. counterparts do, and (b) Denmark
invests much more heavily on early education and job training and has put in place more generous and more
expansive public-insurance programs, all of which makes various family-of-origin disadvantages less
consequential or less prevalent in Denmark than in the U.S. The third factor is that the “welfare regimes" of
the two countries lead to employment structures with quite different job mixes, with the U.S. employment
structure including, in particular, a much larger share of low-skill personal-service jobs (Esping-Andersen
1990, 1993, 1999; Oesch 2015). Disentangling the contributions that these related factors make to the cross-
country differences in inequality of opportunity for earnings and for pre-tax-and-transfers family income is
an important topic for future research.

Taxes and transfers reduce inequality of opportunity for long-run family income in both countries.
However, due to the countries’ markedly different policies in those two domains, the effects on our lower-
bound estimates are very different in each case. In the U.S., taxes and transfers reduce measured inequality of
opportunity for family income by almost 11 percent and for family income per adult by 13 percent. In
Denmark, they reduce it by 22 percent in the case of family income and by 31 percent in the case of family
income per adult. As a result, measured inequality of opportunity with our preferred income notion,
disposable family income per adult, is less than 0.06 in Denmark but better than 0.18 in the U.S.
Remarkably, the latter lower-bound estimate of inequality of opportunity is nearly the same as our point
estimate of overall inequality in Denmark (with the same income notion). As (true) inequality of opportunity
can be expected to be significantly higher than our lower-bound estimate, it follows that, after taxes and
transfers, there is more inequality of opportunity for long-run income in the U.S. than (overall) inequality in
long-run income in Denmark.

An important contribution of our research is that it provides direct quantitative evidence that (true)
inequality of opportunity for long-run income is substantially higher in the United States than in Denmark.
Focusing again on disposable family income per adult, which takes into account taxes and transfers and

8 Here and in what follows, all results we discuss pertain to men and women pooled.
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purges the effect of the association between circumstances and the probability of marriage, absolute
inequality of opportunity in the U.S. is at the very least 68 percent higher than in Denmark (the upper bound
of our set estimate caps this difference at 355 percent). This gives a very clear response to the main question
we set out to answer in this article: the distribution of economic opportunities—not just of economic
outcomes—is substantially less unequal in Denmark than in the U.S. Moreover, it is typically argued that
results for Denmark apply more generally to the Scandinavian social-democratic countries (e.g., Landersg
and Heckman 2017:179). If this is correct—and we believe it is—then we may conclude that, compared to
the U.S., these countries have achieved a considerable measure of success in reducing the effects of
circumstances beyond people’s control on their economic opportunities.

It is also useful to provide some comments about the significance of our results on relative inequality
of opportunity. The literature has been both deeply interested in measuring the share of income inequality
that may be deemed unjust and surprised by the results. Hufe et al. (2017:499-500) explained it well: “Many
studies have estimated the effect of circumstances on income acquisition. Perhaps surprisingly, the fraction
of inequality attributable to circumstances is usually quite small—in the advanced democracies,
approximately 20%. ... Since it is this part of inequality that is ethically troubling, the conclusion might be
drawn that any existing income inequality is ethically acceptable, being largely dependent on differential
effort”.*® Hufe et al.”s response to this state of affairs was to expand considerably the set of circumstances to
be taken into account (compared to those previously considered in the literature) under the argument that “all
measurable achievements and behaviors of children, before an age of consent is attained, are the result of
their circumstances” so “children should not be held responsible for any of their accomplishments before that
age” (Hufe et al. 2017:501). Using a rich U.S. dataset and a very long list of circumstances, they reported
that their estimate of relative inequality of opportunity for gross individual income increased from 27 to 43
percent after accounting for childhood circumstances.*

In this context, the magnitude of our lower-bound estimates of relative inequality of opportunity is
very striking. Although we only consider gender and parental rank in defining types, our U.S. estimates are
in the 48 to 51 percent range with our four family-income measures whereas the corresponding figures for
Denmark are in the 27 to 31 percent range (with individual earnings, the estimates are 45 and 38 percent,

49 Of course, as Hufe et al. (2017) fully understand, drawing this conclusion would be a non sequitur, given
that all estimates are lower-bound estimates. At the same time, Kanbur and Wagstaff (2016:138) have
persuasively argued that “the fact that [a lower-bound estimate] is the number that is produced in front of the
policy makers will make it akin to a point estimate in the policy discourse, no matter how much the analyst
caveats it as a lower bound.”

% The dataset is very rich, but it does not represent well the population of interest (see Table 1 and our earlier
discussion). The larger of the two estimates is based on the following circumstances: gender, family income
at age 16, country of birth, ethnicity, cohort, mother education and occupation, height, rural/urban residence,
five indicators of the child-parent relationship at age 16, indicators of the mother’s and the individual’s
health during the individual's gestation and at age 16, indicators of the individual's ability at age 16, whether
the individual attended private or public school, the education of people in the household, psychological test
scores at age 16, and whether the mother was convicted of a crime.
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respectively). This indicates, roughly, that at least half of family income inequality in the U.S., and at least 30
percent in Denmark, are “ethically troubling,” that is, can be traced back to circumstances beyond people’s
control. Moreover, adjusting our total family income estimate for the U.S. to account for race and ethnicity
suggests that at least 58 percent of the country’s high inequality in long-run income is due to such
circumstances. Given that other circumstances that may be expected to have a noticeable impact are still
excluded from the analysis (e.g., parental education, place of residence when growing up), it is quite possible
that this lower-bound estimate still understates significantly the share of U.S. income inequality that is
ethically unacceptable from a luck-egalitarian perspective.
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Figure 1. Set estimation of ratios of absolute inequality of opportunity for income between two countries

AlOpl = absolute inequality of opportunity for income. On the left panel, estimation is based only on the data and on knowledge of the sampling process. The
identified set for the AlOpl ratio between the two countries includes all the ratios consistent with the identified sets for the AIOpl of each country. The upper bound of
this identified set is the upper-bound AlOpl for country A divided by the lower-bound AlOpl for country B, and its lower bound is the lower-bound AlOpl for country
A divided by the upper-bound AlOpl for country B. On the right panel, estimation incorporates the information provided by two identification assumptions: the
inequality assumption for the lower bound (IALB) and the inequality assumption for the upper bound (IAUB. This leads to a much smaller identified set for the AlOpl
ratio. The upper bound of this smaller set is the largest ratio on the IAUB line, and the lower bound is the smallest ratio on the IALB line.
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Figure 2. Individual earnings opportunities by parental income fiftile and gender

The 100 dots in each panel represent the earnings opportunities of men and women at different fiftiles of parental income. They are within-type mean
earnings, with types defined by gender and parental income fiftile. The superimposed nonparametric curves are based on local polynomial regressions of
degree 1, using an Epanechnikov kernel function and a bandwidth selected automatically by a rule-of-thumb estimator. They are estimated from the already-
computed mean values shown in the figure, not from the microdata.
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Figure 3. Family income opportunities by parental income fiftile and gender

For men and women separately, the curves represent the relationship between opportunities for total or disposable family income and fiftiles of parental
income. The opportunities are within-type means of total and disposable family income, with types defined by gender and parental income fiftile. The curves
are nonparametrically estimated using local polynomial regressions of degree 1, with an Epanechnikov kernel function and a bandwidth selected
automatically by a rule-of-thumb estimator. They are estimated from the pre-computed within-type mean values, not from the microdata.
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Figure 4. Per-adult family income opportunities by parental income fiftile and gender

For men and women separately, the curves represent the relationship between opportunities for total or disposable family income per adult and fiftiles of
parental income. The opportunities are within-type means of total and disposable family income per adult, with types defined by gender and parental income
fiftile. The curves are nonparametrically estimated using local polynomial regressions of degree 1, with an Epanechnikov kernel function and a bandwidth
selected automatically by a rule-of-thumb estimator. They are estimated from the pre-computed within-type mean values, not from the microdata.
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Figure 5. Set estimates of ratios of absolute inequality of opportunity for income in the United States and Denmark
(Gini coefficient, full population)

AlOpl = absolute inequality of opportunity for income; AlOpl ratio = ratio of AlOpl in the United States and Denmark. AlOpl is computed with the Gini
coefficient and for men and women pooled. A ratio larger than 1 indicates how much more inequality of opportunity there is in the U.S. compared to
Denmark; for instance, a ratio of 1.4 indicates 40 percent more inequality. Estimates of overall income inequality are used as inputs in the set estimation of
AlOpl ratios (see the text and Figure 1 for the approaches to estimation used in the left and right panels); those inequality estimates are divided by an
adjustment factor to account for the upward lifecycle bias generated by the estimation of inequality in long-run income with an annual measure of income
obtained at ages 35-38. The adjustment factor is computed with a sample from the Panel Study of Income Dynamics, “Sample I” from Mitnik (2019). A Gini
coefficient estimate for family income at ages 35-38 is divided by a Gini coefficient estimate for average income at ages 24-56. The resulting adjustment
factor is 1.11. Confidence intervals are for the partially identified AIOpl ratios, not for the identified sets. They are computed using the approach of Imbens
and Manski (2004), with bootstrap-based standard errors.
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Figure 6. Lower-bound estimates of ratios of absolute inequality of opportunity for income in the United States and Denmark
(Five inequality indices, full population)

AlOpl = absolute inequality of opportunity for income; AlOpl ratio = ratio of AlOpl in the United States and Denmark. AlOpl is computed for men and
women pooled, with the five inequality indices shown in the figure. A ratio larger than 1 indicates how much more inequality of opportunity there is in the
U.S. compared to Denmark; for instance, a ratio of 1.4 indicates 40 percent more inequality. Estimation relies on IALB, the inequality assumption for the
lower bound, so estimates of overall income inequality are used as inputs for generating the lower-bound estimates of AlOpl ratios (see the text and Figure
1). The estimates of overall income inequality are divided by an adjustment factor to account for the upward lifecycle bias generated by the estimation of
inequality in long-run income with an annual measure of income obtained at ages 35-38. The adjustment factors are computed as explained in the caption to
Figure 5. They are 1.11 (Gini), 1.22 (Kakwani), 1.12 (Piesch), 1.10 (Mehran) and 1.11 (RMD). Confidence intervals, represented by the line segments with
capped spikes, are 95 % bootstrap bias-corrected confidence intervals.
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Figure 7. Estimates of income inequality and lower-bound estimates of relative inequality of opportunity for income
(Gini coefficient, full population)

R1Opl = relative inequality of opportunity for income. RIOpl is computed by dividing absolute inequality of opportunity for income (AlOpl) by overall
income inequality. Overall inequality and AlOpl are computed with the Gini coefficient and for men and women pooled. RIOpl estimates are lower-bound
estimates because circumstances are partially observed. The estimates of overall income inequality are divided by an adjustment factor to account for the
upward lifecycle bias generated by the estimation of inequality in long-run income with an annual measure of income obtained at ages 35-38. The adjustment
factor, 1.11, is computed as explained in the caption to Figure 5. Confidence intervals, represented by the line segments with capped spikes, are 95 % bootstrap
bias-corrected confidence intervals.
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Figure 8. Probability density function of the distribution of within-type means excluding and including race and ethnicity in the definition of types

The figure shows the densities of two approximate distributions of within-type mean family incomes constructed with data from Chetty et al. (2020). In one
distribution, types are based on gender and parental income fiftiles. In the other distribution, types are based on the same circumstances plus seven race-
ethnicity categories (including one for when information on race and ethnicity is missing). See the text for how the distributions are constructed from Chetty et
al.’s (2020) data. The densities are estimated nonparametrically using an Epanechnikov kernel function and an automatic procedure to select the width of the

kernel.
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Table 1. Previous estimates of absolute and relative inequality of opportunity for income in Denmark and the United States based on the mean logarithmic deviation as inequality measure

Country Study Period Inequality ~ AlOpl RIOpl (%) Income measure Population Circumstances Estimation Data
DK Checchi, Peragineand 2004 0.083 0.012 14.2 After-tax individual earnings Individuals 25-60 year old with Gender, immigrant (yes/no), parents education and occupation, ~ Parametric log linear ~ EU-SILC
Serlenga (2010) 0.083 0.013 149 positive earnings and population density of place of residency Param. log linear (EDH)

DK Marrero and Rodriguez 2004 0.069 0.001 19 Household equivalent disposable Household heads 26-50 years old ~ Parents education, father occupation, country of birth, economic Parametric log linear EU-SILC
(2012) income difficulties during chilhood
DK Brzezinski (2015) 2004 0.068 0.001 21 Household equivalent disposable Household heads 26-50 years old  Parents education, father occupation, country of birth Parametric log linear EU-SILC
2010 0120 0.004 30 income and people 25-50 years old in the
same households
DK Suérez Alvarez and 2004 0.060 0.006 9.6 Household equivalent disposable  Individuals 25-59 years old Gender, immigrant (yes/no), parents education and occupation, ~ Parametric log linear EU-SILC
L6pez Menéndez (2019) 5910 0.140 0.020 14.7 income (excluding self-employed) age, and population density of place of residency
us Pistolesi (2009) 2000 0.220 0.041 18.6 Individual gross earnings Working male household heads 30- Age, parents education, father occupation, race (black, nonblack), Semiparametric PSID
50 years old with positive earnings born in the south (yes/no)
us Marrero and Rodriguez 2007 0.429 0.013 31 Household total income per adult Household heads 25-50 years old ~ Race, father education Parametric log linear PSID
(2011) 0.429 0.015 34 in the household Race, father education, and interactions
0.429 0.022 52 Race, father education Param. log linear (EDH)
0.429 0.025 59 Eight race-father education groups Non-parametric
us Marrero and Rodriguez  1969-1970 0.092 0.006 6.1 Potential-experience adjusted Household heads 18-65 years old  Race, father education Non-parametric PSID
(2013) 1979-1980 0.106 0.005 4.4 household total income per adult
1989-1990 0.175 0.010 57 in the household
us Niehues and Peichl 2006 0.35/0.29 0.06/0.05 17.1/17.2 Individual gross/ net earnings Household heads/spouses 25-55  Gender, race, foreign born (yes/no), born in the south (yes/no), ~ Parametric log linear PSID
(2014) 031/0.26 003/0.03 9.7/115 Mengross/ net earnings years old w/_a_t least 5_ c0n§ecutive cohor?, fa_ther education apd occupation, height, degree of (with correction)
years of positive earnings in 1981- urbanization of place of birth
0.32/0.26 0.03/0.02 9.4/7.7 Women gross/ net earnings 2006 and positive earnings in 2006
At least five 0.25/0.19 0.07/0.05 28.0/26.3 Aver. ind. gross / net earnings Household heads/spouses 25-55
conse_cutlve 0.19/0.14 0.03/0.02 15.8/14.3 Aver. men gross/ net earnings years °|d,W'th at least f'\{e_
years in consecutive years of positive
1981-2006 0-20/0.15 0.02/0.01 10.0/6.7 Aver.women gross/ netearnings earpings in 1981-2006
us Hufe et al. (2017) 2010-2012 0.597 0.162 27.1 Individual gross income (average Individuals 25-30 years old with  Gender, country of birth, ethnicity, cohort, mother educ. and Parametric log linear NLSY79
across 2010-2012) positive earnings in 2010-2012,  occ., height, rural/urban residence and fam. income at age 16
0.597 0.168 28.1 and born to mothers aged 14-21 0n pyg jndjcators of child-parent relationship at age 16.
December 31, 1978.
0.597 0.209 35.0 Plus indicators of mother and individual health during
individual's gestation and at age 16.
0.597 0.232 388 Plus indicators of individual's ability at age 16.
0.597 0.259 435 Plus priv./pub. school, educ. of people in household and
psychological test scores at age 16, mother convicted crime.
0.559 0.109 195 Circumstances in most comprehensive set above that are
measured at birth
0.559 0.25 446 Circumstances in most comprehensive set above measured at
birth or age 12
0.559 0.329 58.8 Circumstances in most comprehensive set above measured at

birth, age 12 or/and age 16 (all available)

Note: DK = Denmark; US = United States; Inequality = income inequality; AlOpl = absolute inequality of opportunity for income; RIOpl = relative inequality of opportunity for income; EU-SILC = European Union Survey on Income, Social Inclusion and Living

Conditions; PSID = Panel Study of Income Dynamics; NLSY79 = National Longitudinal Survey of Youth 1979. Parametric log linear estimation is as in Ferreira and Gignoux (2011). Parametric log linear (EDH) estimation is similar but adjusts estimates to account

for effort distribution heterogeneity (EDH) across types, as proposed by Bjorklund et al. (2012). Parametric log linear (with correction) estimation attempts to correct for modeling log income instead of income; the correction assumes the error is homos-

kedastic and normally distributed. Nonparametric estimation computes mean income within types. For semiparametric estimation, see Pistolesi (2009). Household equivalent disposable income in studies using the EU-SILC data is household disposable

income adjusted to account for household size and composition (in terms of adults and children of different ages). Pistolesi (2009) computed MLD-based annual estimates for 1967-2000, but only reported the mean, minimum and maximum values over the period.
The estimates reported in this table are from Brunori et al. (2013), who attributed them to Pistolesi (2009). Niehues and Peichl (2014) define the population in their sample as “individuals.” As in most years covered by their study the PSID only provides

individual earnings information for household heads and their spouses (including cohabiting partners), this is reflected in the corresponding cell in the table. RIOp! values reported for this study are approximate, as they are based on rounded values of AlOpl and
inequality. Marrero and Rodriguez (2011) also report annual estimates for 1969-2006 and nonparametric estimates with types based on race or father education alone. Hufe et al. (2017) also report estimates in which ability is dropped from the sets of circumstances.
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Table 2. Previous estimates of absolute and relative inequality of opportunity for income in Denmark and the United States based on the Gini coefficient as inequality measure

Country Study Period Inequality ~ AlOpl RIOpI (%) Income measure Population Circumstances Estimation Data
DK Equalchances Project 2004 0.25 0.03 0.12 Household equivalent disposable Working-age individuals Indicators of parents education and occupation, and origin (i.e., Parametric linear EU-SILC
(2018) 2010 024 003 012 income race, ethnic origin, parenta_l cu_ltur_e, parental religion, or area of
birth) selected by crossvalidation in each country-year.
DK Suérez Alvarez and 2004 0.18 0.06 0.34 Household equivalent disposable  Individuals 25-59 years old Gender, immigrant (yes/no), parents education and occupation, ~ Parametric log linear EU-SILC
Lopez Menéndez (2019) 2010 0.24 0.10 0.43 income (excluding self-employed) age, and population density of place of residency.
us Equalchances Project 2002 0.38 0.12 0.32 Household equivalent disposable Working-age individuals Indicators of parents education and occupation, and origin (i.e., Parametric linear PSID
(2018) 2004 0.40 0.12 0.30 income race, ethnic origin, parental culture, parental religion, or area of
2006 0.40 0.12 0.30 birth) selected by crossvalidation in each country-year.
2008 0.40 0.13 0.33
2010 0.39 0.17 0.43 Total gross hous. equiv. income

Note : DK = Denmark; US = United States; Inequality = income inequality; AlOpl = absolute inequality of opportunity for income; RIOpl = relative inequality of opportunity for income; EU-SILC = European Union Survey on Income, Social Inclusion and Living
Conditions; PSID = Panel Study of Income Dynamics. Parametric log linear estimation is as in Ferreira and Gignoux (2011). Parametric linear estimation relies on a model of income rather than log income. In studies using the EU-SILC data, household equivalent
disposable income is household disposable income adjusted to account for household size and composition (in terms of adults and children of different ages); in the study using PSID data (Equalchances Project 2018), the adjustment consists of dividing household
disposable income by the root of household size. In this study, disposable income is computed using a simulation model. The Equalchances Project 2010 estimate for the U.S. based on total gross household equivalent income was provided by Paolo Brunori.
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Table 3. Income inequality and inequality of opportunity in two
hypothetical countries (mean logarithmic deviation)

Country A Country B
Income inequality 0.06 0.6
Absolute 10p for income 0.006 0.03
Relative 10p for income (%) 10 5

Note : IOp = inequality of opportunity.
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Table 4. Demographic and income statistics

Denmark United States

Varibles anabysss  analyss aabysss  analys
Gender (% female) 49.5 49.4 49.0 48.9
Age

35 25.2 25.1 24.8 24.8

36 24.7 24.7 23.8 23.7

37 24.6 24.6 25.5 25.6

38 25.5 25.6 25.9 25.9
Marriage status (% married) 60.9 NA 52.9 NA
Individual earnings

Mean NA 42,273 NA 36,573

Standard deviation NA 30,594 NA 58,453
Total family income

Mean 75,581 NA 70,418 NA

Standard deviation 100,681 NA 145,278 NA
Disposable family income

Mean 61,362 NA 60,218 NA

Standard deviation 61,831 NA 120,056 NA
Total family income per adult

Mean 45,667 NA 42,475 NA

Standard deviation 59,957 NA 78,176 NA
Disposable family income per adult

Mean 37,336 NA 36,508 NA

Standard deviation 35,840 NA 63,899 NA
Average parental disposable income

Mean 50,461 50,500 64,304 64,838

Standard deviation 73,611 73,587 150,849 157,827
Sample size 262,201 263,254 12,805 13,107

Note : Monetary values are in 2010 dollars. Monetary values for Denmark were transformed into
dollars using a purchasing power parity exchange rate of 758.6 krones to 100 dollars. For the U.S.,

values are weighted and total and disposable income statistics (but not parental income statistics)

are means across multiple-imputed income variables. NA = not applicable (variable not relevant).
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Table 5. Lower bound of absolute inequality of opportunity for income

Population and income variable

Lower bound AlOpl

Gini coefficient

Mean Logarithmic Deviation

Denmark us. Denmark u.sS.
All

Individual earnings 0.118 0.234 0.021 0.090
(0.116 - 0.119) (0.217 - 0.240) (0.021 - 0.022) (0.078 - 0.093)

Total family income 0.092 0.243 0.014 0.099
(0.089 - 0.095) (0.218 - 0.254) (0.012 - 0.015) (0.081 - 0.107)

Disposable family income 0.072 0.223 0.008 0.084
(0.069 - 0.074) (0.199 - 0.236) (0.008 - 0.009) (0.067 - 0.093)

Total family income per adult 0.082 0.213 0.011 0.076
(0.078 - 0.085) (0.195 - 0.222) (0.010 - 0.013) (0.064 - 0.082)

Disposable family income per adult 0.056 0.191 0.006 0.062

Men
Individual earnings

Total family income

Disposable family income

Total family income per adult

Disposable family income per adult

Women
Individual earnings

Total family income

Disposable family income

Total family income per adult

Disposable family income per adult

(0.053 - 0.059)

0.093
(0.090 - 0.095)
0.097
(0.092 - 0.104)
0.076
(0.073 - 0.081)
0.086
(0.080 - 0.093)
0.063
(0.059 - 0.069)

0.074
(0.072 - 0.076)
0.083
(0.079 - 0.085)
0.059
(0.056 - 0.061)
0.077
(0.073 - 0.079)
0.049
(0.046 - 0.050)

(0.174 - 0.202)

0.248
(0.217 - 0.263)
0.252
(0.224 - 0.268)
0.227
(0.200 - 0.242)
0.225
(0.201 - 0.241)
0.200
(0.177 - 0.213)

0.147
(0.128 - 0.148)
0.231
(0.201 - 0.255)
0.216
(0.184 - 0.248)
0.198
(0.172 - 0.218)
0.180
(0.155 - 0.208)

(0.005 - 0.007)

0.014
(0.013 - 0.014)
0.016
(0.014 - 0.019)
0.010
(0.009 - 0.012)
0.013
(0.010 - 0.017)
0.007
(0.006 - 0.010)

0.008
(0.008 - 0.009)
0.011
(0.010 - 0.011)
0.005
(0.005 - 0.006)
0.009
(0.008 - 0.010)
0.004
(0.003 - 0.004)

(0.050 - 0.069)

0.100
(0.074 - 0.112)
0.105
(0.083 - 0.118)
0.086
(0.067 - 0.098)
0.083
(0.064 - 0.095)
0.066
(0.049 - 0.076)

0.039
(0.032 - 0.039)
0.091
(0.070 - 0.112)
0.080
(0.060 - 0.109)
0.067
(0.052 - 0.084)
0.057
(0.042 - 0.079)

Note : AlOpl = absolute inequality of opportunity for income. AlOpl estimates for the full population (“all") are basec

on 100 types defined by gender and fiftiles of parental disposable income whereas estimates for men and women are

based on types defined by fiftiles of parental disposable income. AlOpl estimates are lower-bound estimates because

circumstances are partially observed. Estimates are in bold, confidence intervals are in parentheses.

59



Table 6. Estimates of absolute inequality of opportunity for disposable income in the United States adjusted to take into account state taxes and omitted transfers
(Gini coefficient)

Absolute difference in lower-bound AlOpl

Lower-bound AlOp! before and after taxes and transfers (%)

Population and income variable Population and income notion
US e g Denmatk US gy
All All
Disposable family income 0.223 0.217 25 Family income 22.1 8.4 10.6
(0.199 - 0.236) (0.194 - 0.230) (21.6 - 22.5) (6.3-9.7) (8.5-11.9)
Disposable family income per adult 0.191 0.185 35 Family income per adult 313 10.2 133
(0.174 - 0.202) (0.167 - 0.195) (30.7 - 32.1) (8.1-11.6) (11.3-14.7)
Men Men
Disposable family income 0.227 0.222 2.2 Family income 21.5 9.9 11.8
(0.200 - 0.242) (0.195 - 0.237) (20.9-22.2)  (8.9-11.2)  (10.9-13.1)
Disposable family income per adult 0.200 0.194 3.1 Family income per adult 26.8 113 14.1
(0.177 - 0.213) (0.172 - 0.206) (26.1-27.5) (10.3-129) (13.1-15.7)
Women Women
Disposable family income 0.216 0.210 2.7 Family income 28.9 6.7 9.2
(0.184 - 0.248) (0.179 - 0.242) (28.3-29.7) (2.9-9.0) (5.5-11.4)
Disposable family income per adult 0.180 0.173 3.9 Family income per adult 36.4 8.8 12.3
(0.155 - 0.208) (0.149 - 0.200) (35.6-37.3)  (4.7-112) (8.4 -14.7)

Note : AlOpl = absolute inequality of opportunity for income. AlOpl estimates for the full population (“all") are based on 100 types defined by gender and fiftiles of parental disposable
income whereas estimates for men and women are based on types defined by fiftiles of parental disposable income. AlOpl estimates are lower-bound estimates because circumstances
are partially observed. Estimates are in bold, confidence intervals are in parentheses. The second column reproduces results from Table 5. The adjusted AlOpl estimates in the third co-
lumn are obtained by multiplying the figures in the second column by adjustment factors estimated with a sample of people ages 35-38 in 2010 (when their income is measured) from
the Annual Social and Economic Supplement of the 2011 Current Population Survey (CPS-ASEC). The factors are computed by generating approximations to the notion of disposable
family income used in the Statistiscs of Income Mobility (SOI-M) panel and to true disposable family income (overall and per adult). These approximations use as inputs information on
income from all sources and various transfers collected by the CPS-ASEC as well as information on federal and state liabilities (after credits) computed by the Census Bureau with a tax
model (and included in the CPS-ASEC). The transfers include income from Transitory Assistance for Needy Families, Social Security (including disability insurance), Supplemental Se-
curity Income, the Veterans' Administration, and various small disability programs. The Gini coefficient is computed with the two disposable income measures (separately for men, wo-
men and men and women pooled, and with overall and per-adult income). The adjustment factors are ratios of the Gini estimates based on the approximations to the SOI-M notion of
disposable income and true disposable income. The computation of the adjustment factors assumes that AlOpl estimates based on the SOI-M panel's measure of disposable income
overstate AlOpl estimates based on true disposable income by the same proportional factor that the estimation of overall inequality with that measure overstates overall inequality in true
disposable income.
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Table 7. Income inequality and lower-bound of absolute and relative inequality of opportunity for income
(Gini coefficient, adjusted U.S. disposable-income estimates of absolute inequality of opportunity)

Denmark United States
Population and income variable Lower-bound Inequality Lower-bound Lower-bound Inequality Lower-bound
AlOpl RIOpI (%) AlOpl RIOpI (%)
All
Individual earnings 0.118 0.311 37.9 0.234 0.523 44.7
(0.116 - 0.119) (0.309 - 0.312) (37.3-38.3) (0.217 - 0.240) (0.514-0.534) (41.7 - 45.4)
Total family income 0.092 0.318 28.9 0.243 0.479 50.7
(0.089 - 0.095) (0.316-0.321) (28.0-29.7) (0.218 - 0.254) (0.468 - 0.494) (47.2-51.7)
Disposable family income 0.072 0.263 27.3 0.217 0.443 49.1
(0.069 - 0.074) (0.261 - 0.265) (26.4 - 28.0) (0.194 - 0.230) (0.432-0.459) (45.4 - 50.5)
Total family income per adult 0.082 0.266 30.6 0.213 0.431 494
(0.078 - 0.085) (0.264 - 0.270) (29.6 - 31.6) (0.195 - 0.222) (0.420-0.446) (46.3-50.2)
Disposable family income per adult 0.056 0.189 29.6 0.185 0.388 47.6
(0.053 - 0.059) (0.187 -0.192) (28.5-30.7) (0.167 - 0.195) (0.378-0.404) (44.5- 48.6)
Men
Individual earnings 0.093 0.312 29.8 0.248 0.516 48.0
(0.090 - 0.095) (0.310-0.314) (28.9-30.4) (0.217 - 0.263) (0.503 - 0.532) (43.1-49.9)
Total family income 0.097 0.315 30.8 0.252 0.483 52.1
(0.092 - 0.104) (0.312-0.320) (29.5-32.5) (0.224 - 0.268) (0.469 - 0.501) (47.5-54.2)
Disposable family income 0.076 0.268 285 0.222 0.448 49.5
(0.073 - 0.081) (0.265-0.271) (27.2-30.0) (0.195 - 0.237) (0.435-0.464) (45.3-51.5)
Total family income per adult 0.086 0.272 315 0.225 0.442 51.0
(0.080 - 0.093) (0.268 - 0.278) (29.9 - 33.7) (0.201 - 0.241) (0.428 - 0.459) (46.7 - 53.0)
Disposable family income per adult 0.063 0.200 31.3 0.194 0.4 48.4
(0.059 - 0.069) (0.197 - 0.205) (29.6 - 33.5) (0.172 - 0.206) (0.387 - 0.416) (44.4-50.2)
Women
Individual earnings 0.074 0.289 25.6 0.147 0.517 28.5
(0.072 - 0.076) (0.287 - 0.290) (24.8-26.2) (0.128 - 0.148) (0.505 - 0.529) (25.0 - 28.6)
Total family income 0.083 0.320 25.9 0.231 0.474 48.8
(0.079 - 0.085) (0.317-0.324) (24.7 - 26.5) (0.201 - 0.255) (0.458 - 0.499) (43.8-51.6)
Disposable family income 0.059 0.257 22.9 0.210 0.437 48.1
(0.056 - 0.061) (0.254 - 0.260) (21.8 - 23.5) (0.179 - 0.242) (0.420 - 0.467) (42.6-52.2)
Total family income per adult 0.077 0.260 29.4 0.198 0.419 47.2
(0.073 - 0.079) (0.257 - 0.264) (28.2-30.1) (0.172 - 0.218) (0.403 - 0.444) (42.4 - 49.7)
Disposable family income per adult 0.049 0.177 27.5 0.173 0.375 46.3
(0.046 - 0.050) (0.175-0.180) (26.2-28.2) (0.149 - 0.200) (0.359 - 0.402) (40.9 - 49.8)

Note : AlOpl = absolute inequality of opportunity for income; inequality = income inequality; RIOpl = relative inequality of opportunity for income. Es-
timates for the full population ("all") are based on 100 types defined by gender and fiftiles of parental disposable income whereas estimates for men and
women are based on types defined by fiftiles of parental disposable income. AlOpl and RIOpl estimates are lower-bound estimates because circumstan-
ces are partially observed. Estimates are in bold, confidence intervals are in parentheses. AlOpl estimates for Denmark are from Table 5. AlOpl estimate
for the United States are from Table 5 (individual earnings, total family income, and total family income per adult) and Table 6 (disposable income and
disposable income per adult). The estimates of overall income inequality are divided by an adjustment factor to account for the upward lifecycle bias ge-
nerated by the estimation of inequality in long-run income with an annual measure of income obtained at ages 35-38. The adjustment factor, 1.11, is
computed as explained in the caption to Figure 5.
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Table 8. Inequality of opportunity for income in the United States: Accounting for race and ethnicity
(Total family income, full population)

Without race and ethnicity With race and ethnicity
Inequality index Lower-bound  Lower-bound Lower-bound  Lower-bound
AlOpl RIOpl (%) AlOpl RIOpl (%)
Gini coefficient 0.243 50.7 0.276 57.6
MLD 0.099 NA 0.150 NA

Note : AlOpl = absolute inequality of opportunity for income; RIOpl = relative inequality of oppor-
tunity for income; NA = not applicable (estimate not available). AlIOpl and RIOpl estimates are lo-
wer-bound estimates because circumstances are partially observed. Estimates in the left panel are
from Table 7. They are based on 100 types defined by gender and fiftiles of parental income. Esti-
mates in the right panel are obtained by multiplying the estimates in the left panel by adjustment fac-
tors specific to each inequality measure. The adjustment factors are estimates of how much larger
the AIOpI estimates would be if the types were based on gender, fiftiles of parental income, and

the race/ethnicity categories used by Chetty et al. (2020). See the text for details about their com-
putation.
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