10

Parental Education and the Rising Transmission of Income between Generations

Marie Connolly, Catherine Haeck, and Jean-William Laliberté

10.1 Introduction

Understanding and ensuring equality of opportunity is a priority for many public policy decision makers and citizens alike. The potential mechanisms through which income is transmitted across generations are many. Identifying which of these factors matter most for equality of opportunity is key to designing public policies aimed at fostering intergenerational mobility.

Chetty et al. (2014), Connolly, Corak, and Haeck (2019), and Corak (2020) show that intergenerational income mobility varies greatly across locations within the US and Canada. These spatial differences in mobility
tend to correlate strongly with segregation, income inequality, school quality, social capital, family stability, and educational attainment. Other work suggests that income mobility also varies over time, in the US (Chetty et al. 2017; Davis and Mazumder 2019; Olivetti and Paserman 2015), as well as in Canada (Connolly, Haeck, and Lapierre 2019; Ostrovsky 2017) and in other countries (see Güell, Rodríguez Mora, and Telmer 2015; Pekkarinen, Salvanes, and Sarvimäki 2017; among others).

In this chapter, we start by documenting the evolution of intergenerational mobility in Canada using tax data that cover the universe of children born during a period spanning over 20 years, allowing us to track changes in income mobility over two decades with a high degree of precision. We show that the transmission of income across generations has strengthened over time, with the correlation of income ranks between parents and children increasing by just under 20 percent.1

Second, we examine the interplay between educational attainment of parents, more specifically of mothers, and income rank mobility. To do so, we develop a novel data linkage between Canadian tax data and census data. Using this combined data set, we are able to provide the first-ever detailed picture of the evolution of mobility across Canada by parental education level. Here, we show that the economic returns to maternal education have gone up—for the mothers themselves as well as for their children. In tandem with decreasing income mobility, this phenomenon has contributed to exacerbating income gaps in adulthood between children of parents with and without secondary education. On average, children of educated mothers attain higher incomes than children of less educated mothers at every point in the parental income distribution. In other words, parental education boosts children income ranks above and beyond what would be expected on the basis of parental income alone. This relative advantage is stronger for children whose parents are in the bottom half of the income distribution.

Third, we implement two accounting analyses to quantify the role played by changes in maternal education for the evolution of income mobility in Canada. Mobility was greater for cohorts of children born in the early 1960s than for those born in the 1980s, and this reduction in mobility was particularly pronounced for families in which the mother did not hold a high school diploma. A naïve simulation exercise indicates that increases in average parental education over the study period have attenuated the observed reduction in relative mobility, which suggests that aggregate education may fuel relative intergenerational income mobility. In addition, we show that the rank-rank relationship between child and parent income conditional on maternal education has increased at a faster rate than the unconditional relationship did. This pattern suggests that, if anything, observed changes

1. See also Connolly, Haeck, and Lapierre (2019) for a detailed account of changes in mobility over the same time period.
Parental Education and Transmission of Income

in maternal education have helped slow down the reduction in intergenerational income mobility in Canada.

Fourth, we turn to province-level estimates of mobility to further examine the relationship between maternal education and mobility. Here, we use variation over time and space to estimate the relationship between province-level aggregate maternal education and relative income mobility. Changes in overall levels of education can affect mobility in several ways. For instance, increasing the supply of educated parents can reduce the returns to education in the parent generation, thereby partly closing the gap in parental financial resources between children of low- and high-education parents. It can also reduce the relative value of the human capital benefits that children of educated parents enjoy above and beyond the extra financial resources. Finally, aggregate maternal education could directly modulate the importance of parental financial resources for children outcomes, conditional on individual parental education.

Our results show that income mobility has shrunk less in communities that have experienced greater increases in maternal high school completion rates over time. We find that a 1 percentage point increase in the fraction of mothers with a high school diploma reduces the parent-child rank-rank slope (the intergenerational income correlation) by 2.3 percent, thus increasing socioeconomic mobility. There is less evidence of a significant relationship between the fraction of mothers holding a bachelor’s degree and mobility. A decomposition analysis suggests that maternal education mostly affects mobility by shaping the strength of the conditional parent-child income link within education groups rather than by decreasing the relative value of the benefits children of educated parents individually enjoy.

Our work builds on a long line of research on intergenerational mobility in economics that traces its roots back to Becker and Tomes (1979, 1986) and Loury (1981); sociologists go even further back, with Blau and Duncan (1967), Featherman, Jones, and Hauser (1975), Goldthorpe (1980), Goldthorpe and Hope (1974), and Sewell and Hauser (1975), contributions that focus on the intergenerational transmission of social status as proxied by occupational prestige. Parental education is also commonly used as a measure of social origins, by economists and sociologists alike (Blanden 2013; Bradbury et al. 2015; Bukodi and Goldthorpe 2013; Goldthorpe 2013).

The development of large longitudinal administrative data, particularly intergenerationally linked tax data, has placed the focus of recent literature on the intergenerational transmission of income, especially the correlation between parental income rank and child income rank (Chetty et al. 2014). Chetty et al. (2014) show that there are important differences within the US in terms of rank mobility and the opportunities available to children from different socioeconomic backgrounds. Corak (2020) does the same for Canada, while Connolly, Corak, and Haeck (2019) highlight the fact that high-mobility and low-mobility areas exist in both countries, but that the
population residing in low-mobility areas is much larger in the US, leading to much lower nationwide mobility rates. Another important finding is that mobility rates appear to be on a decline when comparing successive birth cohorts, both in Canada (Connolly, Haeck, and Lapierre 2019) and in the US (Chetty et al. 2017; Davis and Mazumder 2019), a decline that correlates with increasing income inequality. This correlation between high inequality and high intergenerational transmission rates, dubbed the Great Gatsby Curve, has now been documented in a variety of settings, such as a cross-country, cross-sectional one (Corak 2013) and a within-country, over-time one (Connolly, Corak, and Haeck 2019). Yet the quantification of the role played by specific factors or policies for intergenerational mobility is still an area that demands further research. Recent examples in this emergent line of research include Biasi (forthcoming) and Rothstein (2019).

Several previous studies have examined how education, or human capital more broadly, is individually transmitted from parents to children—the intergenerational private returns to education (Black, Devereux, and Salvanes 2005; Carneiro, Meghir, and Parey 2013; Currie and Moretti 2003; Holmlund, Lindahl, and Plug 2011; Oreopoulos, Page, and Stevens 2006). A parallel stream of research has quantified the magnitude of social returns to education within a generation (Acemoglu and Angrist 2000; Aryal, Bhuller, and Lange 2019; Lange and Topel 2006; Moretti 2004a, 2004b). Our contribution is more general, as the province-level, reduced-form relationship between parental education and intergenerational mobility we estimate implicitly captures both private and social, intragenerational and intergenerational, returns to education.

The remainder of this chapter is structured as follows. In section 10.2 we present the new data linkage prepared for this project. Descriptive statistics on the evolution of intergenerational income transmission in Canada over time are presented in section 10.3. In section 10.4, we break down national relationships between child and parent income ranks by groups of education, and conduct accounting analyses using these data in section 10.5. In section 10.6, we exploit variation over time and across provinces to quantify the relationship between changes in maternal educational attainment and income mobility. Section 10.7 concludes.

10.2 Data

10.2.1 Sample Selection

Most existing estimates of intergenerational income transmission in Canada are based on administrative tax files from Statistics Canada’s Intergenerational Income Database (IID) (Chen, Ostrovsky, and Piraino 2017; Connolly, Corak, and Haeck 2019; Corak and Heisz 1999). The IID provides tax data for all Canadians born between 1963 and 1985 (except for
those born in 1971, 1976, and 1981) and their parents from 1978 onward. It contains detailed tax data on close to six million individuals filing their tax returns in Canada and their parents. The IID is based on Statistics Canada’s T1 Family File (T1FF), which is a compilation of all T1 forms (the forms that Canadians use to submit their annual tax return to the Canada Revenue Agency) submitted each year, for which family links between individuals have been identified by Statistics Canada.

One drawback of tax data, however rich they are in terms of coverage, is the limited number of sociodemographic variables available on tax returns. This can be overcome by linking tax data to other sources, such as census data. Rare examples of such linkages include work exploiting register data from Scandinavian countries such as Denmark (Landersø and Heckman 2017), Norway (Fagereng, Mogstad, and Ronning 2021), and Sweden (Black et al. 2019), as well as recent work by Chetty et al. (2020), in which US federal income tax returns were linked to deidentified data from the Census and the American Community Survey, in order to study race and economic opportunity in the US.

To obtain information on parental education, this project relies on a new data linkage between the IID and deidentified Canadian Census data. In partnership with Statistics Canada, we have developed this new linkage that we call the IID+. Statistics Canada has, over recent years, been promoting a new approach to the generation of data, based on existing administrative data files that can be coupled with one another (and with other survey data) using keys that are generated from record IDs and stored in a key registry. The program, known as the Social Data Linkage Environment, opens up new possibilities, in this case by supplementing the IID with data from the Canadian Census of Population. The Census contains information on the respondent’s place of birth, immigration status, and educational attainment, among others. One in five Canadians is asked to complete the so-called long-form Census, so the merge with the IID does not capture all individuals in the IID data. However, the link with the Census is attempted for six Census waves: the 1991, 1996, 2001, 2006, 2011, and 2016 Censuses, each time trying to find a match with either the children or each of the parents in the IID.

Table 10.1 summarizes the number of (weighted) observations by birth years. The last column of the table shows the share of families for which a link to Census data for the mother was made. The overall match rate is 68 percent, but is slightly lower (62 percent) for children born from 1963.

3. In 2011, the National Household Survey replaced the Census. Potential issues about representativeness of this survey do not affect the quality of our linkage.
Several validity tests were conducted to validate that the matched sample was representative of the overall IID. Those tests cannot be disclosed for confidentiality reasons, but they show that the families in our matched data are extremely similar to those of the overall IID. Our final sample includes over 4 million parent-child pairs, including the longitudinal tax records of the father, the mother, and the child once adult, and the sociodemographic information of the mother from one of the six Censuses.

Variables Definitions

From the IID, we have information on the child’s year of birth and sex, the mother’s year of birth, whether there are two parents in the family at the moment of the parent-child link or only a single parent, and the province of residence at the time of the link. From the Census, we obtain information on the mother’s educational attainment and the mother’s province of birth. The detailed tax records allow us to compute various income measures pertaining to both the (adult) child and the parents. Our measures are all based on total pretax income, as defined by the Canada Revenue Agency. Total income thus includes market income (income from all sources, including earnings, self-employment income, and investment income) and government transfers (including pensions, employment insurance benefits, and social assistance payments).

We measure child income as the average pretax total income over a given number of years based on the child’s age. For our main analyses, child income is the average annual total income when the child is between the ages of 30 and 36 (inclusively), which better captures lifetime income. However,

<table>
<thead>
<tr>
<th>Birth years</th>
<th>IID weighted count</th>
<th>Share linked to Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963–66</td>
<td>1,566,240</td>
<td>0.62</td>
</tr>
<tr>
<td>1967–70</td>
<td>1,555,280</td>
<td>0.63</td>
</tr>
<tr>
<td>1972–75</td>
<td>1,474,140</td>
<td>0.68</td>
</tr>
<tr>
<td>1977–80</td>
<td>1,557,800</td>
<td>0.69</td>
</tr>
<tr>
<td>1982–85</td>
<td>1,633,270</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Note: This table shows the weighted counts of children by group of birth years. The weighted counts use the IID weights. The last column shows the share of families for which mothers were successfully matched to at least one of the six Censuses between 1991 and 2016.

Source: Authors’ calculations based on the IID+.

4. See the online appendix (http://www.nber.org/data-appendix/c14433/appendix.pdf) for more information on the representativeness of the IID+.

5. The parent-child pairs in the IID are identified when the child is between 16 to 19 years old, so the time of the link corresponds to the child’s late teenage years. See Chen, Ostrovsky, and Piraino (2017), Connolly, Corak, and Haeck (2019), Corak (2020), and Corak and Heisz (1999) for more on the construction of the IID and the parent-child linkages in the Canadian tax files.
since the youngest individuals in our data are observed only up until age 31 (birth year is 1985 and last tax year available is 2016), we have also produced sensitivity analyses using different measures of income. The patterns documented in this chapter are robust to alternative definitions.6

We define parental income as the total family pretax income (the sum of both the mother’s and the father’s income), and calculate the average over several years. We compute average annual parental income when the child is aged 15 to 19. This ensures that we capture the parental financial resources available to children growing up with an equal degree of accuracy across children birth years. For robustness, we also produced average parental income when the child is aged 10 to 19. Since income varies over the life cycle and parents may be at different points in their own life cycle when their child is 15 to 19 years old, we also compute family income when the mother is aged 40–49 and 45–49.7

Finally, we measure maternal education using three broad, mutually exclusive categories of educational attainment: the mother does not have a high school diploma, she obtained her high school diploma but does not have a bachelor’s degree, or she completed both her high school education and a bachelor’s degree. This coding ensures that educational attainment is comparable across provinces and over time. For instance, reforms to provincial educational systems that took place in the late 1960s make it difficult to compare college enrollment rates across time and space. In Canada, education is a provincial jurisdiction. While all provinces grant high school diplomas, there is a myriad of technical programs between high school and university that cannot be easily compared, neither across provinces nor over time. For instance, one of the ten provinces (Quebec) requires two years of college education (called Cégep) after high school prior to entering university, whereas students in other provinces can enter four-year university programs right after high school. This heterogeneity in educational systems across provinces renders any comparisons of other types of diplomas extremely challenging. As a result, we stick to the diplomas that are comparable across provinces and across time, namely the high school diploma and the bachelor’s degree. Further details on the coding of the education variables are provided in the online appendix (http://www.nber.org/data-appendix/cl4433/appendix.pdf).

Online table B1 (http://www.nber.org/data-appendix/cl4433/appendix.pdf) presents descriptive statistics on the parent-child pairs in our sample.8 Just under 16 percent of our parent-child pairs consist of a single mother and a child. The average mother’s age at childbirth is 26.6. Three-quarters

6. Estimates based on average income between the ages of 25 and 29, 27 and 31, and 30 and 34, are available upon request.
7. Our results are extremely robust to these changes and are available upon request.
of the mothers have at least a high school diploma, and 10.6 percent have a bachelor’s degree in addition to a high school diploma.

10.3 National Trends in Intergenerational Mobility

As in Connolly, Corak, and Haeck (2019) and Chetty et al. (2014), we measure intergenerational mobility using a rank-rank specification. Let \(y_{it} \) denote the percentile rank of children \(i \) born in year \(t \) in their birth year-specific income distribution. Similarly, \(x_{it} \) is the percentile rank of child \(i \)'s parents in the parental income distribution. We then estimate

\[
y_{it} = \alpha_i + \beta_t x_{it} + \epsilon_{it}
\]

separately for each child birth year \(t \). As is customary in the literature, we refer to the rank-rank slope \(\beta_t \) as relative mobility. In all of our analyses, we restrict our sample to observations for which the average total income (of both the child and the parents) is greater than or equal to $500, a standard practice in work using the IID.

Figure 10.1 shows the evolution of the intergenerational rank mobility coefficient \((\beta_t) \) by year of birth of the child for three samples: our complete sample of linked IID-Census data, the subsample of children of immigrant mothers, and the subsample of Canadian-born mothers. In previous analyses based on the IID, children of immigrants could not be distinguished from

Fig. 10.1 Intergenerational rank mobility by birth year and immigrant status of the mother

Notes: This figure shows the evolution of intergenerational rank mobility \((\beta) \) in Canada across child birth year. Child income is measured at ages 30–36 and parental income is average annual family income when the child is aged 15–19. Income ranks are calculated using birth year–specific national income distributions. The rank-rank coefficients are estimated separately for the full sample of children born between 1963 and 1985 (black dots), the subsample of children of Canadian-born mothers (diamonds), and the subsample of children born to immigrant mothers (squares). Mothers’ place of residence is extracted from the Census. The dashed lines denote 95 percent confidence intervals.

Source: Authors’ calculations based on the IID+.
those of Canadian-born parents, so the series represented by the black dots (full sample) is the one that most closely resembles previous estimates, for example those of Connolly, Haeck, and Lapierre (2019).

The gradual rise in the intergenerational rank correlation—thus a drop in mobility—is apparent, with a particularly steep increase between the children born in the late 60s and those of the mid-70s. For the full sample, the rank-rank slope rises from 0.211 for children born in 1963 to 0.243 for those born in 1985, a 15 percent increase in just over two decades.

The squares pertain to children of immigrants. While all series follow a similar upward trend over time, children of immigrant mothers have much higher rates of intergenerational mobility, with a β_t coefficient of 0.187 for the latest cohort of children, compared to 0.268 for the children of Canadian-born mothers.\(^9\)

Estimates for the subsample of children from mothers born in Canada correspond to the series represented by diamonds. For this subgroup, the rank-rank slope increases from 0.221 in 1963 to 0.268 in 1985, a 21 percent increase. The drop in mobility for children of nonimmigrant mothers is somewhat more dramatic than for the full sample that includes immigrant mothers, in part because the fraction of immigrant mothers has been increasing over time. In the remaining part of the chapter, given our focus on maternal education, we draw our attention to the subsample of children of Canadian-born mothers who likely completed their education in Canada.

10.4 Individual Maternal Education and Children’s Income

In table 10.2, we first summarize the formidable growth in mothers’ educational attainment that occurred between the 1960s and the 1980s in Canada. The fraction of children born to a mother with no high school diploma drops from 40 percent in 1963 to 24 percent by the midpoint of our sample period (1974), and further down to 15 percent for the 1985 birth cohort. Correspondingly, the percentage of children whose mother has high school qualifications but no postsecondary degree goes from 54 percent to 70 percent over the same time period, while the figures for mothers with a bachelor’s degree or more have increased from 6 percent to 15 percent. Overall, the percentage of mothers with only a high school diploma increased by 16 percentage points and the percentage with at least a bachelor’s degree by 9 percentage points in just two decades.

Average maternal age at childbirth for the children in our sample has not changed drastically between the 1963 and the 1985 birth cohorts, going from 26.5 to 27.7. It is worth noting here that we consider all children born in

9. Chetty et al. (2014) document a similar pattern in the US. Studying the differential patterns between immigrant and nonimmigrant mothers in Canada is the subject of a companion paper currently in preparation.
those years, not just firstborns. Hence, these numbers may be influenced by both changes in the timing of fertility as well as in the number of children per mother.

To examine the association between income mobility and maternal education, we first reestimate rank-rank slopes separately for children of nonimmigrant mothers with different levels of educational attainment. Results are shown in figure 10.2. Again, all three series follow a similar pattern of increasing rank-rank slopes over time, but the rise is much more pronounced for parent-child pairs in which the mother has no high school diploma. This group consistently displays higher rank-rank correlations, meaning lower intergenerational mobility, relative to children of mothers with a high school diploma or more. In other words, among children of mothers with no high school diploma, parental income is more predictive of the child’s income in adulthood than it is among children of university-educated mothers. In the early years of our sample, most differences in rank-rank slopes across

<table>
<thead>
<tr>
<th>Birth cohort</th>
<th>Maternal educational attainment (%)</th>
<th>Mother’s age at childbirth (mean, in years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No high school</td>
<td>High school</td>
</tr>
<tr>
<td>1963</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>1964</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>1965</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>1966</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>1967</td>
<td>35</td>
<td>58</td>
</tr>
<tr>
<td>1968</td>
<td>33</td>
<td>59</td>
</tr>
<tr>
<td>1969</td>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>1970</td>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>1972</td>
<td>26</td>
<td>64</td>
</tr>
<tr>
<td>1973</td>
<td>25</td>
<td>65</td>
</tr>
<tr>
<td>1974</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>1975</td>
<td>22</td>
<td>67</td>
</tr>
<tr>
<td>1977</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>1978</td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>1979</td>
<td>19</td>
<td>69</td>
</tr>
<tr>
<td>1980</td>
<td>18</td>
<td>69</td>
</tr>
<tr>
<td>1982</td>
<td>16</td>
<td>69</td>
</tr>
<tr>
<td>1983</td>
<td>16</td>
<td>69</td>
</tr>
<tr>
<td>1984</td>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>1985</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>Variation 1963 to 1985</td>
<td>−25</td>
<td>+16</td>
</tr>
</tbody>
</table>

Note: These statistics are computed using the IID weights. Weighted number of observations is 3,051,485.

Source: Authors’ calculations based on the IID+
education groups are not statistically significant at conventional levels. By the mid-70s, differences between children of mothers with no high school diploma and children of university-educated mothers had become statistically significant at the 5 percent level. This is partly because estimates of β, for university-educated mothers become more precise over time with increasing educational attainment.

To examine potential nonlinearities in the intergenerational transmission of income, table 10.3 presents quintile transition matrices for three birth cohorts, situated at the beginning, the middle, and the end of our sample, separately by the mother’s education category. The distribution of the education categories within a birth cohort are given just above the matrices themselves as a reminder. The probability of remaining in the bottom quintile for children of parents who were themselves in the bottom quintile has increased in families with mothers who do not have a high school diploma (top panel). It starts at 33 percent, and increases to 39 percent in 1974 then to 42 percent in 1985, for an overall increase of 9 percentage points. The probability they reach the third or fourth quintile of the income distribution has also declined over the period. The overall weight of this group has
Table 10.3 Transition matrices, 1963, 1974, and 1985 birth cohorts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Child quintile</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Mother has no high school diploma and no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bachelor's degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of cohort</td>
<td>40.4</td>
<td>23.8</td>
<td>15.1</td>
</tr>
<tr>
<td>1</td>
<td>0.33 0.25 0.22 0.20 0.16</td>
<td>0.39 0.26 0.22 0.19 0.18</td>
<td>0.42 0.25 0.21 0.19 0.15</td>
</tr>
<tr>
<td>2</td>
<td>0.25 0.25 0.23 0.20 0.19</td>
<td>0.26 0.27 0.24 0.20 0.17</td>
<td>0.25 0.27 0.25 0.23 0.16</td>
</tr>
<tr>
<td>3</td>
<td>0.20 0.22 0.22 0.21 0.18</td>
<td>0.16 0.21 0.23 0.23 0.19</td>
<td>0.15 0.22 0.21 0.21 0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.14 0.17 0.19 0.21 0.22</td>
<td>0.11 0.15 0.18 0.20 0.20</td>
<td>0.10 0.15 0.19 0.19 0.21</td>
</tr>
<tr>
<td>5</td>
<td>0.08 0.11 0.14 0.18 0.25</td>
<td>0.08 0.10 0.14 0.18 0.26</td>
<td>0.07 0.11 0.14 0.17 0.28</td>
</tr>
<tr>
<td>Mother has a high school diploma but no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bachelor's degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of cohort</td>
<td>53.6</td>
<td>66.1</td>
<td>70.3</td>
</tr>
<tr>
<td>1</td>
<td>0.26 0.22 0.19 0.17 0.14</td>
<td>0.31 0.21 0.19 0.15 0.13</td>
<td>0.32 0.21 0.17 0.15 0.12</td>
</tr>
<tr>
<td>2</td>
<td>0.23 0.22 0.21 0.18 0.15</td>
<td>0.23 0.24 0.21 0.18 0.15</td>
<td>0.24 0.23 0.22 0.19 0.15</td>
</tr>
<tr>
<td>3</td>
<td>0.21 0.21 0.21 0.20 0.18</td>
<td>0.19 0.21 0.22 0.21 0.19</td>
<td>0.17 0.21 0.23 0.22 0.19</td>
</tr>
<tr>
<td>4</td>
<td>0.17 0.20 0.20 0.22 0.22</td>
<td>0.15 0.19 0.21 0.24 0.23</td>
<td>0.14 0.19 0.21 0.23 0.24</td>
</tr>
<tr>
<td>5</td>
<td>0.13 0.16 0.19 0.22 0.30</td>
<td>0.12 0.15 0.17 0.21 0.29</td>
<td>0.12 0.15 0.17 0.21 0.29</td>
</tr>
<tr>
<td>Mother has a high school diploma and a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bachelor's degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of cohort</td>
<td>6.1</td>
<td>10.1</td>
<td>14.7</td>
</tr>
<tr>
<td>1</td>
<td>0.27 0.19 0.15 0.17 0.13</td>
<td>0.38 0.18 0.18 0.15 0.12</td>
<td>0.37 0.21 0.18 0.17 0.13</td>
</tr>
<tr>
<td>2</td>
<td>0.18 0.18 0.20 0.17 0.14</td>
<td>0.17 0.21 0.18 0.17 0.14</td>
<td>0.20 0.22 0.19 0.16 0.14</td>
</tr>
<tr>
<td>3</td>
<td>0.16 0.19 0.16 0.19 0.16</td>
<td>0.19 0.21 0.21 0.18 0.16</td>
<td>0.14 0.18 0.20 0.20 0.17</td>
</tr>
<tr>
<td>4</td>
<td>0.19 0.25 0.26 0.20 0.21</td>
<td>0.12 0.20 0.22 0.25 0.23</td>
<td>0.15 0.20 0.22 0.23 0.24</td>
</tr>
<tr>
<td>5</td>
<td>0.20 0.20 0.22 0.27 0.36</td>
<td>0.14 0.20 0.22 0.25 0.35</td>
<td>0.14 0.19 0.21 0.23 0.32</td>
</tr>
</tbody>
</table>

Note: The child income quintiles are based on average annual total income between the ages of 30 and 36 and are computed within a given birth cohort. Each cell shows the conditional probability for the child to be in a given income quintile given the income quintile of their parents. The percentages show the distribution of the educational attainment categories of the mother for a given birth cohort.

Source: Authors’ calculations based on the IID+.
decreased over time since mothers are becoming more educated on average, and their upward mobility has deteriorated. This decline reflects the fact that these children are increasingly trapped at the bottom of the income distribution and are unable to reach higher rungs of the income distribution. For children of mothers with a high school diploma only (middle panel) and children of mothers with at least a bachelor’s degree (bottom panel), we also observe increasing stickiness at the bottom, from 26 percent to 32 percent, and from 27 percent to 37 percent, respectively. Poverty traps are becoming more prevalent in all groups, but the phenomenon is most important for mothers without a high school diploma. For children of highly educated mothers, the probability to remain at the top of the ladder has declined over the period. This has contributed to an increase in relative mobility within that group, all the while its share of the population has increased over time as mothers gained education.

We then document the distribution and evolution of income gaps between children of mothers with different levels of education. Figure 10.3 presents a series of binned scatterplots, where each dot is the mean child percentile rank for a given parental income rank. Rank-rank coefficients correspond to a lin-
ear fit going through those dots. There are three panels, one for each broad maternal education group, and to emphasize changes over time, each panel has two series: one for the 1963 to 1966 birth cohorts combined (the gray triangles) and one for the 1982 to 1985 birth cohorts (the circles). The size of markers represents the relative weight of each parental income percentile within education groups. Group-specific rank-rank slopes have increased over time for each group, but much more so for children of mothers with no high school diploma. These children are not only more overrepresented at the bottom of the parental income distribution in later years, but their own income ranks have declined dramatically for parental income ranks below the 20th percentile. Put differently, children of mothers with no high school diploma are increasingly left behind, suffering a double penalty of now growing up in relatively poorer households and achieving less upward mobility conditional on parental income being below the 20th percentile.

Figure 10.4 presents the same data but instead focuses on differences across education groups within time periods. Again, the size of the markers represents the relative number of observations in each cell within educational categories. The vertical dashed lines indicate the average parental income rank of each education group. Private intragenerational returns to education (for parents) are large: the mass is dramatically shifted to the right for university-educated parents, and somewhat to the left for parents with no high school diploma in 1963–66. For these birth cohorts, the average parental income percentile is 41 for mothers with no high school diploma, 58 for mothers with at most a high school diploma, and 77 for university-educated mothers. In the later cohorts (1982–85), the weight is more evenly distributed across parental income percentiles for university-educated parents given large increases in the number of people completing bachelor’s degrees. Yet, private returns to education have increased. The difference in average parental income ranks between mothers with a bachelor’s degree and mothers with no high school diploma has increased from 36 to 38 percentiles. This is because the income distribution of parents with no high school diploma is now highly concentrated at lower income ranks.

In both periods, the average income ranks of children of educated parents lie above those from less-educated families throughout the entire parental income distribution. That is, children benefit from their parents’ human capital directly, above and beyond what would be expected on the basis of parental financial resources alone. This is particularly true for families in the bottom 80 percent of the parental income distribution. In contrast, among

10. We focus our analysis on the rank-rank coefficient from a linear regression, a measure that facilitates the comparisons with other studies, and that summarizes the intergenerational relationship in a compact fashion. We do note however that the relationship is not perfectly linear, as is evident from figure 10.3. Connolly, Haeck, and Lapierre (2019) further investigate this nonlinearity in the Canadian context. Why nonlinearities are more apparent in Canada than in the US is a question that merits further research.
families at the top of the income distribution (the top 20 percent of parental income), children of high school– and university-educated mothers have similar outcomes on average. Overall, children of university-educated mothers have a double advantage: they have access to more financial resources growing up in relatively richer families, and also achieve higher income ranks conditional on parental income.

Over time, income gaps between children of parents with and without secondary education have increased in Canada. Increasing income inequality between mothers of different levels of education and decreasing relative intergenerational income mobility have both contributed to this situation. As a result, children of mothers with no high school diploma are falling further behind over time.

10.5 Can National Changes in Maternal Education Account for Changes in Income Mobility?

In this section, we undertake two accounting analyses to document the role changes in maternal education may have played in the evolution of intergenerational mobility in Canada.
First, to quantify the mechanical association between maternal education and intergenerational mobility, we ask what the distribution of children’s outcomes would look like for the 1982–85 cohorts combined had the distribution of maternal education groups across parental income percentiles remained at its 1963–66 levels. More precisely, to construct this counterfactual we take the educational attainment distribution of the mothers of the 1963–66 birth cohorts at each parental income percentile and apply those weights to the education-specific child income percentiles of the 1982–85 cohorts. This is equivalent to fixing both overall educational attainment and the private returns to education (for parents) to their 1963–66 levels. For consistency, we recenter the resulting distribution of child outcomes to ensure that the national mean is 50.11

Results are shown in figure 10.5. The left panel shows the actual rank-rank relationships for children born in 1963–66 and those born in 1982–85, separately. The right panel plots the actual 1982–85 binned scatter plot against the counterfactual distribution, here indicated by plus signs. The two distri-

Fig. 10.5 Intergenerational rank mobility, 1963–66 and 1982–85 birth cohorts and counterfactual

Note: This figure shows actual and counterfactual rank-rank relationships between child and parental income. Each point in these graphs represents the mean child percentile rank for a given parental income rank, where child income is measured at ages 30–36 and parental income is average annual family income when the child is aged 15–19. The slopes are from linear rank-rank regressions. The counterfactual series is constructed by taking a weighted average of child income ranks across maternal education categories within each parental income percentile, applying 1963–66 maternal education weights to 1982–85 child outcomes. The series is then recentered so that the overall average child income rank is equal to 50.

Source: Authors’ calculations based on the IID+.

11. One caveat to keep in mind is that under this naïve accounting method the number of children in each percentile of their income distribution need not be equal across percentiles.
butions look fairly similar, with some relatively pronounced deviations from the true distribution in the bottom half of the parental income distribution. As a result, the rank-rank slope of the counterfactual distribution is slightly higher than the actual value: 0.281 compared to 0.270. Our conclusion from this exercise is that the observed increases in maternal education brought forward a decrease in the rank-rank slope of 0.011, equivalent to 27 percent of the observed increase of 0.04 points. In other words, the decline in income mobility would have been considerably larger had changes in parental education not exerted a downward pressure on the rank-rank slope.

Second, we examine the evolution of the relationship between child and parent income ranks conditional on the level of education of the mother. We find that the overall decrease in relative income mobility between the 1963–66 and 1982–85 birth cohorts is largely accounted for by changes in rank-rank slopes within education groups. Including education dummies in equation (10.1) reduces the rank-rank slope to 0.203 for the 1963–66 birth cohorts and to 0.249 for the 1982–85 birth cohorts. Over time, this conditional rank-rank slope therefore increased by 0.046 points (23 percent), that is at a faster rate that the unconditional rank-rank slope did (an increase of 0.04 points [18 percent] from 0.229 to 0.270). This implies that observed changes in the private intergenerational returns to education and in the fraction of educated parents helped attenuate the overall decrease in relative mobility over time.

The role of maternal education for income mobility might not be linear. To examine whether this is the case, we further decompose the unconditional rank-rank relationship into (1) the conditional, within-group, rank-rank coefficient, and (2) additional terms reflecting changes in the intergenerational returns to maternal education and in educational attainment, separately for high school completion and bachelor’s degree completion. More precisely, the unconditional rank-rank slope can be written

\[\beta_j = \lambda_t + \sum_j \pi_{j,t} R_{j,t}, \]

where \(\lambda_t \) is the conditional rank-rank coefficient, \(\pi_{j,t} \) is the increase in child outcomes associated with maternal education level \(j \in \{\text{HighSchool, Bachelor’s}\} \) (relative to not completing high school) conditional on parental income, and \(R_{j,t} \) is the regression coefficient from the projection of maternal education \(e_{it} \) onto \(x_{it} \) (the “reverse” of a standard returns to education estimating equation).

Detailed decomposition results are shown in table 10.4, and some components of this decomposition exercise are shown graphically in online appen-

13. For instance, \(\lambda_t \) and \(\pi_{j,t} \) are obtained from the “long” regression of children income on parental income and parental education: \(y_{it} = \alpha + \lambda_t x_{it} + \sum_j \pi_{j,t} I(e_{it} = j) + \epsilon_{it}. \)
We find that for the early cohorts (1963–66), the terms π_j, R_j are positive for both high school completion (0.015) and bachelor’s degree completion (0.012). In contrast, for later cohorts (1982–85), the term for high school completion has effectively shrunk to zero, while it increased to 0.021 for bachelor’s degree completion. These results suggest that overall changes in high school completion and in their economic returns have contributed to slowing down the decrease in intergenerational income mobility. Changes to bachelor’s degree completion rates and to their returns pushed in the other direction, further reinforcing the decrease in mobility. In an accounting sense, this is largely due to the fact that increases in high school completion rates contribute to reducing the variance of that educational outcome (moving away from 50 percent and toward 100 percent), whereas increases in bachelor’s degree completion rates tend to increase educational variance (moving away from 0 percent and toward 50 percent).
10.6 Income Mobility and Maternal Education over Time and Space

In this section, we investigate whether provinces that experienced faster growth in educational attainment over our study period saw different changes in relative intergenerational mobility. To do so, we estimate rank-rank slopes β_{pt} separately for children born in different provinces and in different years. With 10 provinces and 20 birth cohorts, we recover 200 estimates of β_{pt}.\footnote{The percentile ranks are still defined over the national distribution of income.}

We plot these coefficient estimates in online figure A3 (http://www.nber.org/data-appendix/c14433/appendix.pdf).

Relative mobility decreases across the board over the two decades we consider, but does so at different rates across provinces. For instance, Alberta and Saskatchewan saw large increases in rank-rank slopes β_{pt} between 1963 and 1985—from 0.165 to 0.273 and from 0.172 to 0.339, respectively—whereas it barely changed in Newfoundland and Labrador (increase from 0.267 to 0.290). There is also substantial cross-sectional variation, with Manitoba exhibiting the lowest rates of relative mobility in the country over the entire period. The two sources of variation—over time and across provinces—are quantitatively important. Average differences across provinces account for 50 percent of the variance of β_{pt} in our data, and average differences across birth years account for 30 percent.

With time-varying provincial estimates of β_{pt} in hand, we then examine the relationship between relative mobility and aggregate parental education using the following two-way fixed effects model:

\[
\beta_{pt} = \theta_{HS} \bar{HighSchool}_{pt} + \theta_{BA} \bar{Bachelor}_{pt} + \delta_t + \delta_p + \nu_{pt},
\]

where $\bar{HighSchool}_{pt}$ is the fraction of mothers of children born in province p in year t who completed high school (including those that further pursued higher education), and $\bar{Bachelor}_{pt}$ is the fraction that completed a bachelor’s degree or more. Hence, θ_{BA} represents the incremental effect of increasing university completion rates, over and above that of increasing high school completion. We include province fixed effects to account for any fixed institutional and sociological differences between provinces, as well as birth-year fixed effects to account for common trends in relative income mobility.

We begin with a visualization of the relationship between relative rank mobility β_{pt} and average mother’s education. Figure 10.6 plots in light gray residual mobility against residual parental education, where circle size indicates the relative number of observations (children) in each cell. To generate this plot, we first residualize all variables on province and birth-year fixed effects. On top we show a binscatter plot (in solid black) of these residuals using optimally chosen bins via the method developed by Cattaneo et al. (2019). To mimic multiple regression analysis, variables for one level of education are also residualized on the other level. While a negative
Marie Connolly, Catherine Haeck, and Jean-William Laliberté

The relationship between the fraction of mothers holding a high school diploma and the rank-rank measure is quite apparent, there is much less of an association with the fraction of mothers holding a bachelor’s degree.

Regression estimates of the relationship between aggregate maternal education and relative mobility are presented in table 10.5. Throughout, standard errors are clustered at the province level to account for serial correlation and we report p-values for wild cluster bootstrap F-tests to address the issue of a small number of clusters. Column 1 reports ordinary least square results from a specification that includes only province and birth-year fixed effects as controls. These estimates correspond to the relationships shown in figure 10.6. The point estimate for the coefficient on high school implies that a 1 percentage point increase in high school completion rates among mothers is associated with a 0.0058 reduction in the rank-rank income relationship (a 2.3 percent decrease at the mean). To put this magnitude in context, the reported coefficient suggests that a 1 standard deviation increase in high school completion rates reduces the provincial rank-rank slope by 0.0587, roughly equivalent to the 1985 cross-sectional difference in rank-rank slopes between the seventh-ranked (Newfoundland and Labrador) and lowest-ranked (Manitoba) provinces. This relationship is statistically significant at

Fig. 10.6 Intergenerational rank mobility and maternal education across time and space

Note: This figure shows in light gray a scatter plot of relative income mobility (β_{pt}) at the province-by-birth-year level, against the average education of mothers in each cell. Variables on both axes are first residualized from province and birth-year fixed effects, and each education dummy is also residualized on each other. The size of markers reflects the number of children in each cell. Black dots show a binscatter of the underlying data, where bins are selected using the procedure proposed by Cattaneo et al. (2019) and implemented using the associated binsreg Stata command.

Source: Authors’ calculations based on the IID+.

relationship between the fraction of mothers holding a high school diploma and the rank-rank measure is quite apparent, there is much less of an association with the fraction of mothers holding a bachelor’s degree.

Regression estimates of the relationship between aggregate maternal education and relative mobility are presented in table 10.5. Throughout, standard errors are clustered at the province level to account for serial correlation and we report p-values for wild cluster bootstrap F-tests to address the issue of a small number of clusters. Column 1 reports ordinary least square results from a specification that includes only province and birth-year fixed effects as controls. These estimates correspond to the relationships shown in figure 10.6. The point estimate for the coefficient on high school implies that a 1 percentage point increase in high school completion rates among mothers is associated with a 0.0058 reduction in the rank-rank income relationship (a 2.3 percent decrease at the mean). To put this magnitude in context, the reported coefficient suggests that a 1 standard deviation increase in high school completion rates reduces the provincial rank-rank slope by 0.0587, roughly equivalent to the 1985 cross-sectional difference in rank-rank slopes between the seventh-ranked (Newfoundland and Labrador) and lowest-ranked (Manitoba) provinces. This relationship is statistically significant at
Table 10.5 Association between maternal educational attainment and relative mobility

<table>
<thead>
<tr>
<th></th>
<th>Unconditional rank-rank slope (β)</th>
<th>Conditional rank-rank slope (λ)</th>
<th>High school returns ($\pi_{HS}R_{HS}$)</th>
<th>Bachelor’s returns ($\pi_{BA}R_{BA}$)</th>
<th>Unconditional rank-rank slope (β)</th>
<th>Conditional rank-rank slope (λ)</th>
<th>High school returns ($\pi_{HS}R_{HS}$)</th>
<th>Bachelor’s returns ($\pi_{BA}R_{BA}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% high school diploma</td>
<td>-0.0058</td>
<td>-0.0045</td>
<td>-0.0014</td>
<td>0.0001</td>
<td>-0.0028</td>
<td>-0.0024</td>
<td>-0.0008</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0012)</td>
<td>(0.0005)</td>
<td>(0.0001)</td>
<td>(0.0009)</td>
<td>(0.0012)</td>
<td>(0.0005)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>% bachelor’s degree</td>
<td>-0.0026</td>
<td>-0.0054</td>
<td>0.0012</td>
<td>0.0016</td>
<td>0.0014</td>
<td>0.0015</td>
<td>0.0008</td>
<td>-0.0009</td>
</tr>
<tr>
<td></td>
<td>(0.0044)</td>
<td>(0.0042)</td>
<td>(0.0007)</td>
<td>(0.0006)</td>
<td>(0.0038)</td>
<td>(0.0030)</td>
<td>(0.0008)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td></td>
<td>[0.6176]</td>
<td>[0.2753]</td>
<td>[0.2292]</td>
<td>[0.1672]</td>
<td>[0.8028]</td>
<td>[0.7257]</td>
<td>[0.3373]</td>
<td>[0.5175]</td>
</tr>
<tr>
<td>N</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.840</td>
<td>0.827</td>
<td>0.790</td>
<td>0.627</td>
<td>0.910</td>
<td>0.900</td>
<td>0.822</td>
<td>0.689</td>
</tr>
<tr>
<td>Mean dependent variable</td>
<td>0.252</td>
<td>0.227</td>
<td>0.021</td>
<td>0.005</td>
<td>0.252</td>
<td>0.227</td>
<td>0.021</td>
<td>0.005</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Province fixed effects</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Birth-year fixed effects</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Province-specific linear trends</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Notes: This table reports ordinary least square regression estimates of the relationship between intergenerational income mobility parameters and maternal education. One observation is a province-by-birth-year cell, and observations are weighted by the number of children in each cell. The dependent variable is the unconditional rank-rank slope in columns 1 and 5, the conditional rank-rank slope in columns 2 and 6, the component associated with returns to high school completion in columns 3 and 7, and the component associated with returns to bachelor’s degree completion in columns 4 and 8. All models include province fixed effects and birth-year fixed effects. Columns 5–8 further include province-specific linear time trends. Standard errors are clustered at the province level and reported in parentheses. p-values from wild cluster bootstrap F-tests are reported in square brackets.

Source: Authors’ calculations based on the IID+.
conventional levels. Consistent with the visual evidence, the coefficient on the share of mothers with a bachelor’s degree is small and not statistically significant (−0.0026, s.e. 0.0044). In column 5, we add province-specific linear time trends. The coefficient on the share of high school-educated mothers drops by half but remains statistically significant at the 5 percent level, whereas the coefficient on the fraction of bachelor’s degree holders flips sign and remains not statistically significant.

Next, we examine whether the relationship between relative mobility and maternal education works through (1) provincial and time differences in the intergenerational private returns to education, which govern child income gaps between parental education groups, or via (2) external effects of aggregate education that shape the transmission of income within education groups.

As a first step, we decompose the variance of the rank-rank slopes β_{pt} to examine whether differences in relative mobility are mostly due to how individual differences in parental education affect child outcomes ($\pi_{HS,pt} R_{HS,pt}$ and $\pi_{BA,pt} R_{BA,pt}$), or to differences in the conditional income rank-rank relationship (λ_{pt}). We find that a whopping 94 percent of the variance in β_{pt} is accounted for by variation in rank-rank slopes within education groups (λ_{pt}). That is, differences in mobility across provinces and over time are largely accounted for by differences in mobility conditional on individual maternal education. Differences in the intergenerational private returns to education account for less than 10 percent of the unconditional variation in β_{pt}.

In columns 2–4 of table 10.5, we decompose the relationship between aggregate maternal education and relative mobility by using the components λ_{pt}, $\pi_{HS,pt} R_{HS,pt}$ and $\pi_{BA,pt} R_{BA,pt}$ as dependent variables in our two-way fixed-effects regressions. By construction, the coefficients reported in columns 2, 3, and 4 sum up to the ones reported in column 1. Interestingly, both levels of education are positively associated with conditional rank mobility (negatively associated with λ_{pt}), though the coefficient on fraction of bachelor’s degree holders is not precisely estimated.

The association between the supply of high school-educated mothers and the component $\pi_{HS,pt} R_{HS,pt}$ (−0.0014, s.e. 0.0005), which captures educational inequality and the private intergenerational returns to a high school education, reinforces the observed relationship with conditional rank mobility λ_{pt}, thereby resulting into a larger total effect on unconditional relative income mobility. That is, provinces that experienced faster growth in maternal high school completion rates saw slower deterioration of (unconditional) relative mobility because both their conditional rank-rank slopes and their intergenerational private returns to high school completion were increasing at

15. Conditional on province and birth-cohort fixed effects, this percentage is 92.8 percent.
a slower pace. These patterns are qualitatively robust to the inclusion of province-specific linear time trends (columns 6–8).

In contrast, the fraction of university-educated mothers is positively associated with educational inequality and private intergenerational returns to college education $\pi_{BA,pt} R_{BA,pt}$ (0.0016, s.e. 0.0006), which contributes to steepening the unconditional rank-rank relationship. Naturally, since few mothers have a bachelor’s degree, any increase in the supply of college-educated mothers increases the variance in education attainment, and thereby tends to reduce mobility. These relationships are not significant at conventional levels, however, and the point estimates are not robust to the inclusion of province-specific time trends.

10.7 Conclusion

Just as rising socioeconomic inequalities over the last few decades have garnered attention, so has now the increasing rate of transmission of those inequalities from one generation to the next. Across a variety of countries, settings, and measures, children from low socioeconomic backgrounds find it harder to move up the income distribution in adulthood. While the development of administrative data, in particular tax data, has allowed researchers to paint very detailed portraits of intergenerational mobility and its distribution, few studies have examined the mechanisms driving changes in mobility. In this chapter, we assessed the role maternal education plays in the intergenerational correlation between parental income rank and child income rank. We leveraged a new data linkage to present novel facts regarding the interplay between the evolution of rank mobility for cohorts for children born between 1963 and 1985 in Canada and the educational attainment of their mothers.

First, we show that at the national level, increases in maternal education over time likely have contributed to slowing down the decrease in relative intergenerational mobility. In particular, a simple accounting exercise suggests that if the distribution of maternal education across parental income percentiles had remained at its 1963–66 levels, the observed increase in the rank-rank slope would have been 27 percent greater. We also find that the overall decrease in relative income mobility between the early 60s and the mid-80s is largely accounted for by changes in rank-rank slopes within maternal education groups. In fact, the conditional rank-rank slope (controlling for maternal education dummies) increased faster than the unconditional rank-rank slope did, suggesting that changes in mobility differences between groups have helped attenuate the overall decrease in relative mobility within education groups.

Second, we leverage variation over time and across provinces to investigate the link between aggregate maternal education and rank mobility.
This allows us to move beyond micro relationships of how more educated parents individually influence their children’s outcomes, and consider aggregate effects of educational attainment on a society (encompassing both the private and the social returns to education). Here, we treat the unconditional rank-rank slope—an inherently aggregate measure that characterizes the joint distribution of the parental and child income ranks—as our dependent variable in a two-way fixed-effects regression framework. Our estimates indicate that a 1 percentage point increase in the share of high school graduates among mothers is associated with a 0.0058 reduction in the intergenerational rank-rank income relationship (a 2.3 percent decrease at the mean). This result is due to maternal high school completion rates being (1) negatively associated with the conditional (within-group) rank-rank slope and (2) negatively associated with overall educational inequality, and therefore due to how returns to maternal educational are distributed among children. In fact, increasing high school completion rates have been an equalizing force, as the fraction of mothers without a high school diploma has shrunk from 40 percent to 15 percent in just over two decades. In contrast, we find no evidence that bachelor’s degree completion among mothers affects intergenerational income mobility.

Our results are informative in a historical perspective: the generations of parents in our data lived through a time of rapidly rising educational attainment, a consequence of which appears to be the mitigation of other forces driving up the intergenerational transmission of socioeconomic status. Yet our findings can be useful in other settings, including in developing countries which have yet to experience this rising tide of education, whether it is brought forward through compulsory schooling laws or other advancements. Our findings also turn the spotlight on a segment of the current population for whom the opportunities are ever more dire than before: those who leave school before obtaining a high school diploma. Not only will their own labor market earnings reflect their low level of education, their children will also on average stay on lower rungs of the income distribution, suffering a double penalty of lower parental financial resources combined with lower upward mobility conditional on parental income rank.

This leads us to conclude that policies aimed at increasing the educational attainment of today’s youth should have the long-run consequence of improving the overall equality of opportunities. A high school diploma should be seen as a minimum level of education necessary to promote mobility. Policies that seek to boost school perseverance, particularly for children from low socioeconomic background, are most likely to raise the rate of high school completion. Also linked to those are the upstream interventions that take place in early childhood, such as access to early childhood education, and especially high-quality early childhood education. Some of the gains of such education policies will be felt more quickly, and more privately, but
our research suggests that there are also longer-term and aggregate benefits for the society as whole.

References

Chetty, Raj, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca,

