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Abstract:

Venture capital (VC) investments in privately held startup companies that are intensively
engaged in agricultural research and development (R&D) has increased substantially in recent
years, from just tens of millions of dollars annually in the early 2000s to reportedly several
billions of dollars by 2018. These investments are important for several reasons. First, while such
VC investments used to be negligible relative to overall levels of private-sector agricultural
R&D, they are no longer, yet they have not typically been accounted for in estimates of
agricultural R&D spending. Second, these investments are supporting R&D being conducted by
new entrants in markets that have been highly concentrated and where incumbents may have
been taking relatively incremental approaches to R&D strategy. Third, R&D by technology-
based startups represent an important channel for diffusion of results from public sector
agricultural research, in both developed and developing countries. This chapter analyses recent
trends in agricultural technology startups and VVC investments made in those startups. It seeks to
answer guestions about what accounts for the upturn in VC investments in agricultural
technology startups in recent years. To do so, a dataset of more than 4,500 startups, located in
125 countries, is constructed. For a subset of these startups, information on investment and exit
deals from 1981 to 2018 allows for detailed analysis of investment life cycles and exit outcomes.
Results indicate that the overall supply of venture capital in the economy, the growth in
agricultural commaodity prices, and previous successful exits—including initial public offerings
(IPOs) and mergers and acquisitions (M&As)— lead to higher VC investments. The broader
implications of the surge in VC investments in agricultural technology startups are explored and
discussed.
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Introduction

Innovation in the agricultural and food system has been fundamental in enabling it to feed the
world. Developments in mechanical, chemical, and biological technologies have contributed to
productivity gains that have more than doubled outputs of agricultural production over the last 50
years while scarcely changing the aggregate quantity of inputs (Alston et al., 2010). Innovations
in harvesting, processing, and other post-harvest steps have also increased the capacity and
efficiency of the food system, helping to improve food security and nutritional quality of diets
for a growing global population (FAO, 2019).

Some innovation occurs in the course of ongoing production, processing, and marketing
activities. “Learning by doing” by farmers, input providers, and commodity processors improves
upon their existing routines and practices. But, increasingly, innovation occurs as a result of
formal research and development (R&D) activities. Historically, agricultural R&D has been
highly managed. First it was led by governments supporting agricultural research stations and
research at agricultural colleges and universities, in order to increase farmer productivity,
increase food supply, and reduce food prices for consumers while helping to shift labor from
agriculture to manufacturing. National government efforts were, by the mid-20th century,
augmented by an international agricultural research system supported by philanthropic
foundations and international organizations. Corporate agribusiness and food firms have also
increasingly conducted R&D with the objective of increasing the profitability of their production
and marketing activities. While government investments in agricultural R&D have been
declining in real terms in high income countries over the last several decades, industry
investments in agricultural R&D have increased steadily (Fuglie et al, 2012; Pardey et al, 2016).
Globally, annual industry expenditures on agricultural R&D in 2009 were somewhere in the
range of $10 billion (Fuglie et al, 2011) to $16 billion (Pardey et al, 2015), with differences in
estimates depending largely upon which subsectors of the agricultural and food system are
included and how R&D by small and medium sized enterprises (SMESs) are counted. The most
recent available global estimate of industry’s agricultural R&D was $15.6 billion in 2014
(Fuglie, 2016). However, all such estimates largely (or exclusively) count publicly listed
companies that are subject to public disclosure requirements by securities regulators.

In recent years, there has been a surge in the founding and financing of startup companies
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companies are privately-held and have raised significant amounts of equity-based investment
from venture capital funds and related private sources such as seed, angel, and private equity
investors. According to industry reports, in recent years up to several billion dollars annually
have been invested into such agricultural technology (agtech) startup companies (AgFunder,
2015, 2019; CBInsights, 2017; Finistere, 2019; KPMG, 2018). While the phenomenon of startup
companies or new technology-based firms (NTBFs) introducing new technologies to agriculture
is itself not new, recent rates appear to be unprecedented, both in terms of the numbers of
startups and the amounts being invested in them. We present evidence that until 2006, the
amounts invested in agtech startups globally were relatively negligible, typically less than $200
million per year, then grew steadily for several years, and following 2012 exploded, exceeding
several billion annually in recent years. Industry sources, drawing upon a range of different
private data sources and industry sector definitions, claim that venture investments in agricultural
technology may have been as high as $7 billion in 2018 (AgFunder, 2019). In other words,
venture capital could be putting about half as much toward agricultural R&D today as are the
corporate members of the industry.

Yet, accounts vary in term of how prevalent such startups are and how much in venture
capital is being invested across industry subsectors and across countries. This is due in part to the
inherent challenges of industry classifications. Established industry categories for agriculture
reflect the structure of incumbent industry sectors—such as seeds, agricultural chemicals, or
agricultural machinery. However, many startups span these traditional industry categories. For
example, a firm may have its primary industry classification in software while the main
application of that software is for farm management. Historically, private investments in
agricultural R&D have been quite low in developing countries (Pardey & Beintema 2001; Pardey
et al, 2006). Yet, recent reports indicate that robust startup activity can be found in middle- and
lower-income countries, especially in the larger emerging economies like India (AgFunder,
2018a), China (AgFunder, 2018b; Gooch & Gale, 2018) and Brazil (Mondin & Tome, 2019;
Dias, Jardim, & Sakuda, 2019). It is not clear why this surge in venture investment in agricultural
technology has occurred now. What factors account for this recent and dramatic upturn?

The entry and financing of a large number of startups can be expected to impact existing
agricultural technology and industry structure in a number of ways. Startups are tapping new
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organizations, in both the public sector and the private sector, venture-backed startups are subject
to different incentives and constraints and are connected to different professional networks. This
allows them, collectively, to pursue a larger and more diverse range of R&D projects. Some of
the R&D conducted by startups may be complementary to R&D by established organizations.
Some startups are building upon discoveries made at established R&D organizations, working to
transfer or translate those discoveries into market applications. Other startups are contributing
new research tools—such as artificial intelligence algorithms or genome editing technologies—
that could improve the research productivity of all agricultural R&D organizations. Still, other
startups may be directly competing with long established public-sector or corporate R&D
programs.

The VC-backed startup is, in essence, a mechanism to contain the financial risks of
prospecting and to reduce the technical and market uncertainties of an innovation. While many
startups fail in the process, some do prevail in bringing innovation to the market. This may help
to counter recent trends of increased concentration in agribusiness, in which fewer larger firms
are accounting for ever greater shares of private sector R&D (Fuglie, 2016). Venture-backed
startups bring Schumpeter’s “gale of creative destruction”, supplanting some current
technologies and companies. Without innovation, concentration leads to exploitative monopolies,
but with innovation, new competition can erode monopoly power.

Venture capital investors expect a net return on their investments, thus it stands to reason that
conditions in agricultural markets must have shifted in recent years in ways that revised or
awoke venture investor expectations. This paper addresses the question of what has characterized
the increase in the number of new agricultural technology startups. What is behind the recent
growth in private investments in them? It is not yet clear the extent to which this is merely a
transient phenomenon, potentially an investment “bubble”, or if it constitutes a more enduring
shift in the composition and dynamics of agricultural R&D. We explore several explanations for
the observed upturn and empirically test the factors that may be correlated with measures of the
increase in investment in agricultural technology startups. Indeed, other industries, such as
software, internet services, and pharmaceuticals, have endured downturns in venture investment,
most famously with the bursting of the tech bubble circa 1999-2000. Yet those sectors continue

to exhibit an innovation ecosystem that is routinely refreshed by new startups funded by venture



capital in an ongoing cycle. A major question is whether the R&D and innovation system of
agriculture may be shifting to look more like other high-tech industries in the long run.

To investigate these questions, we compile a global dataset of 4,552 startups in agriculture
with 11,998 financial transactions, including investments into and exits from these startups. We
draw primarily from the proprietary data source of PitchBook (by Morningstar), augmented with
additional startups and investment transaction data from other, competing, data sources including
VentureSource (DowJones) and Crunchbase. These compiled data give us a global view of
agtech startup activity. The largest share of the startups (33 percent) are in the United States,
followed by the European Union (23 percent), with the remainder (44 percent) located elsewhere
in the world, of which significant numbers are in emerging and developing economies. The
financial transactions data are available for only a subset of the firms, but include a range of
venture capital, seed, and angel investments, as well as private equity and debt financing. The
financial transactions data also include investment exits, such as via initial public offerings
(IPOs), mergers and acquisitions (M&AS), as well as other types of buyouts. While the
transactions data indicate some bankruptcies and closures of the startup firms, these are
incomplete. The transactions data also span from 1977 to 2017, allowing us to explore the startup
life cycles and exit outcomes over time and across multiple technologies (e.g. biotech vs
software) and subsectors of agriculture (e.g. inputs vs outputs, or crops vs livestock).

This paper looks first at the separate economic literatures on agricultural R&D and on venture
capital investments. We then introduce the data set on agricultural technology startups. The
broader sample is used to track overall trends, such as founding rates, startup locations globally,
and startups by industry or technology categories. The narrower subset with associated
investment data is used to analyze factors associated with the growth in investments, both at the
firm level and at the industry level. Results suggest that recent surges in agricultural commodity
prices together with higher amounts of venture capital being invested overall, facilitated by

signals from successful exits, have led to the surge in venture capital investments in agriculture.



Literature Review

Financing of R&D in Agriculture

There is a robust agricultural economics literature on the institutional and financing aspects of
agricultural R&D (Alston et al, 2010; Huffman & Evenson, 2006; Pardey, Alson, & Ruttan,
2010; Sunding & Zilberman, 2002). Relative to other industries, agriculture has long had a high
ratio of public sector to private sector R&D. Pardey and Bientema (2001) tracked spending over
several decades and estimate that in 1995, total global agricultural R&D was $33.2 billion, of
which 65 percent ($21.7 billion) was by public sector sources (defined as research conducted by
or funded by governments, academics, or non-profit organizations) while 35 percent ($11.5
billion) was by the private sector (defined as profit-motivated R&D by privately or publicly held,
as well as state-owned companies). Five years later, in 2000, global total spending on
agricultural R&D was only slightly higher, at $33.7 billion, and the sectoral shares had adjusted
slightly, with approximately 60 percent conducted by public sector and 40 percent conducted by
private sector (Pardey, et al, 2006).

Several key trends have been observed in the composition of agricultural R&D globally. The
share of global agricultural R&D conducted in middle- and low-income countries is about 45
percent (versus 55 percent conducted in high-income countries), which is a much higher share
than overall R&D conducted in low- and middle-income countries, which is 22 percent versus 78
percent in high-income countries (Pardey et al 2015). However, of the agricultural R&D
conducted in low- and middle-income countries, very little of it is in the private sector.
Historically, private sector R&D in developing countries was very low. In 1995 of the
agricultural R&D conducted in developing countries, only 5.5 percent was by the private sector
(Pardey & Bientema, 2001).

Over the last two decades, agricultural R&D has grown steadily but unevenly both by sector
and by geography. In the United States and other high-income countries, public sector spending
is growing only very slowly in nominal terms, and has declined in real terms (Pardey et al,
2016). At the same time, public-sector spending has surged in middle-income countries,
particularly in China (Hu et al, 2011). Private-sector R&D has grown steadily, both in high-
income and middle-income countries. Private expenditures on agricultural R&D in 2009 were
on the order of $10 billion (Fuglie et al, 2011) to $16 billion (Pardey et al, 2015), with

differences in the estimates depending largely upon which industry subsectors of the agricultural



and food system are included or how data for unobserved spending by small and medium sized
enterprises (SMEs) is estimated (Fuglie, 2016). The most recent available global estimate of
private sector agricultural R&D was $15.6 billion in 2014 (Fuglie, 2016). At the same time,
private sector agricultural R&D has become increasingly concentrated in the hands of fewer
larger companies (Fuglie et al, 2011).

Such accounts, however, have been based primarily on R&D spending by publicly listed
companies. It has not been feasible nor, frankly, relevant to be concerned about R&D spending
by small or medium enterprises, including venture capital backed companies. While
biotechnology startups were observed to have contributed significantly to the rise of genetic
engineering in agriculture in the 1980s and 1990s (Fuglie et al 2011; Fuglie 2016; Graff,
Rausser, & Small, 2003) levels of R&D spending and other financial data on such privately-held
companies are relatively inaccessible, as they are not subject to the same reporting requirements
as publicly traded firms. Moreover, the relative amounts of R&D spending contributed by SMEs

have historically been negligible (Fuglie 2016).

Venture Capital Investments

Dixit and Pindyk (1994) developed the standard methodology used to assess investment
decisions taking uncertainty and irreversibility into account. They argued that while the net
present value approach is meaningful when considering whether to make an investment at a
given moment in time, in most realistic situations, investors also have to decide about the timing
of their investment and therefore have to take into account the randomness of key variables such
as cost. The timing of an investment is triggered when the key random variable exceeds a certain
threshold, also known as a hurdle rate. A good example of this approach in agriculture is the
uncertainty around investing in new irrigation technologies due to agricultural prices and weather
uncertainty (Carey and Zilberman, 2002). Farmers only adopt new irrigation technologies when
prices exceed a certain threshold.

The same basic logic applies to VC investments in agricultural technology startups. Even
though venture capital investments have been feasible for decades, it was only after 2010 that
they increased significantly (see Figure 4). Several factors may have affected the hurdle rate,
such as an increase in the ratio of agricultural prices to non-agricultural commodity prices, the

occurrence of large exit events in highly visible ag technologies, the emergence of new



technological opportunities based on advances in enabling technologies (such as cheaper genome
sequencing, genome editing, or data capacity of sensors and networks), as well as changes in
(agricultural) labor markets both in high income and middle income countries.

In general, it has been shown that the dynamics of venture capital markets are driven by
several measurable factors, including expected investment returns, the overall health of the
economy, industry characteristics, and company financial performance variables (Gompers and
Lerner, 2004). Venture capital funds that invest in agriculture are no different. Fundamentally,
they are seeking returns on investment. Investors compare performance across industries,
aspiring to identify high expected returns. Large positive swings in agricultural commodity
prices would be expected to shift the supply of venture capital investments towards startups in
this industry. Changes in commaodity prices such as observed between 2007 and 2014 might have
played a role in the increase of the supply of venture capital investments in agriculture. Even
though Deloof and Vanacker (2018) observe that Belgian startups founded during the 2007 crisis
had greater chance of facing bankruptcy.

Gompers and Lerner (2004) point out the greater number of rounds and larger amounts of
investments go into high-tech industries, such as computers and biotechnology, compared to
other more traditional industries. Even though agriculture, broadly speaking, may be considered
a traditional industry, most venture capital investments in the sector are targeting high
technologies, such as geospatial technologies, digital sensors, or robotics for precision
agriculture, agricultural biotechnology, vertical farming, alternative protein products, artificial
intelligence driven decision-making tools, and big data for supply chain management (AgFunder
2014; Graff et al, 2014; Rausser et al., 2015). Regulations influence investments in agricultural
technologies as well. For example, regulations imposed by different countries or regions (such as
the Europe Union) on gene editing might lead to big changes in agbiotech investments, with
potential market uptake depending on whether other countries will follow European or American
standards towards this technology (Rausser et al., 2015).

There is also a large literature examining exit outcomes as a key factor in the functioning of
venture capital markets. Large exit events, including initial public offerings (IPOs) and mergers
and acquisitions (M&As) of startups may foment further investments. There is evidence on the
positive effect of the size of IPO (Jeng and Wells, 2000) and M&A (Felix et al., 2013; Groh and
Wallmeroth, 2016) on subsequent venture capital investments. In agriculture, the acquisition of



the Climate Corporation by Monsanto in 2013 for $930 million and of Blue River Technology by
the John Deere in 2017 for $305 million may have stimulated subsequent investments in other
agricultural technology startups (Rausser et al. 2015).

The literature investigating startup exits identifies key factors that affect both new company
starts and existing companies’ survival, such as real interest rates, other macroeconomic
variables, company sizes, and industry-specific variables (Homes et al., 2010; Giovannett et al.,
2011). Audretsch (1994; 1995) also show that such variables can determine the exit outcome,
finding, for example, that startup size is related to chance of exit while industry growth rate is
not. Yuri and Zarutskie (2012) compare VC-backed companies and non-VC-backed companies
using a matching technique and a multinomial logit model. They find evidence that companies
with venture capital investors have a higher likelihood of resulting in an M&A or IPO exit and
lower likelihood of a failed exit, all compared to the base category of firms with no exit,
controlling for industry-specific characteristics and year fixed effects. Gompers and Lerner
(2004) present extensive discussion on the likelihood of going public (IPO), showing that
generally better industry conditions, as captured in an industry equity index (e.g. biotechnology
index), are positively associated with the number of IPOs.

On the determinants of venture capital funding, the main goal this paper, Groh and
Wallmeroth (2016) and Jeng and Wells (2000) investigate both developed countries and
emerging markets. Groh and Wallmeroth (2016) show that the share of venture capital
investments in emerging markets increased from 2.4 percent in 2000 to 20.8 percent in 2013.
Previous and contemporaneous exit outcomes are directly associated to VC investments. While
Groh and Wallmeroth (2016) find evidence that M&A impact positively venture capital funding,
Jeng and Wells (2000) find that IPOs play a role on determining venture capital investments at
the later stages of the startup lifecycle. These investments into technologies that may be related
to the agricultural industry are also location-specific (Kolympiris and Kalaitzandonakes, 2013;
Pe'er and Keil, 2013; Kolympiris et al., 2015; Kolympiris et al., 2017). This—combined with the
observation above that overall agricultural R&D activities have shifted toward emerging
markets—makes it reasonable to expect that the share of venture capital investments in

agriculture has shifted towards emerging markets as well.



Data on Venture Capital Investments in Agriculture
The data for this “first look” analysis of venture capital investment in agriculture is drawn

from proprietary business databases. Of these, the industry standard is generally regarded to be
PitchBook, a financial database focused on venture capital and private equity investing, owned
by MorningStar. This analysis is based on data from PitchBook, augmented with data from two
other sources: VentureSource and Crunchbase, From each, two types of data are available, linked
in a one-to-many relationship: one set of data for companies and a second set of data for
transactions or deals involving (at least some of) those companies. Our initial sampling, drawn
from PitchBook, included 2,005 companies founded in the 40 years from 1977 to 2017, and their
corresponding 3,667 deals, as designated by PitchBook’s “AgTech vertical” industry category .*

A comparison of agtech company data listings across these data sources was undertaken with
an expectation that overlap among the data sources would allow for cross-validation of firms and
deals. However, as Figure 1 illustrates, we found only minimal overlap of ag tech company
listings across data sources. Just 557 (12 percent) of the total companies identified are listed in
more than one data source, and only 90 (2 percent) of the total companies identified were listed
in all three data sources. VentureSource, by DowJones, had an additional 680 companies with
1,759 additional deals—from their “Agriculture and Forestry” industry category—that were not
included in PitchBook. Crunchbase—from their “Agriculture” industry category—had an
additional 1,885 companies beyond those listed in either PitchBook or VentureSource, and had
data on 2,170 additional deals for a subset of those companies. This pattern of data availability
suggests that industry reports based upon one primary data source (such as AgFunder, 2015,
2019; CBInsights; Finistere; KPMG; etc) each provide only a limited and separate sampling of

overall venture investments in agriculture.

! PitchBook defines an “industry vertical” or “vertical market” as “a more specific industry classification” that
“identifies companies that offer niche products or fit into multiple industries” or that represent “new fields with
promising companies that attract investors.” PitchBook defines the AgTech vertical to consist of “Companies that
provide services, engage in scientific research, or develop technology which has the express purpose of enhancing
the sustainability of agriculture. This includes wireless sensors to monitor soil, air and animal health; hydroponic
and aquaponic systems; remote-controlled irrigation systems; aerial photo technology to analyze field conditions;
biotech platforms for crop yields; data-analysis software to augment planting, herd, poultry and livestock
management; automation software to manage farm task workflows; and accounting software to track and manage
facility and task expenses.” (PitchBook, 2019)
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Figure 1. Data on new venture-funded startups in agriculture:

Primary source is PitchBook, augmented by VentureSource and Crunchbase

1. PitchBook
2,005 startups (44 percent)
with 3,667 deals (48 percent)

(1,524)

2. VentureSource
680 additional startups (15 percent)
with 1,759 additional deals (23 percent)

3. Crunchbase
1,885 additional startups (41 percent)
with 2,170 additional deals (29 percent)

The company data from these sources provide such basic information as founding date,
physical and virtual addresses, current number of employees, a company description, and other
firm-specific variables. However, not all companies provide full information for each of the data
fields within any one of the data sources, and, moreover, each data source has its own approach
to certain pieces of information—such as key dates, addresses, or how they categorize companies
by industry, market, or technology.

The deals data from these sources contain information such as the target company’s name, the
type of investment, the announcement and/or closing date of investment, and, for a subset of the
deals, the amount transacted. Variation in reporting across the three data sources includes
variation in dates, currencies, and how they categorize deal type.

After considerable data cleaning and harmonization, our combined data set contains 4,552
companies and 7,596 unique reported deals, including investments or “money-in” deals,
successful exits or “money-out” deals, plus closures or bankruptcies. We derive about half of the
data on companies and deals from PitchBook, and the other half from VentureSource and
Crunchbase. Of these, Crunchbase was helpful in identifying a wider range of startups
companies, particularly internationally, but was not able to provide as much coverage of deal
information for the identified firms. Overall, deals data are associated with only 1,584 (35

percent) of the companies in the combined data set. Of the subset of companies with deal
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information, 1,366 (29 percent of the total) report at least one investment with the amount
disclosed (others report deals that occurred, but do not disclose amounts), and 1,092 (24 percent)
have an identified exit deal. Given these discrepancies in the availability of deal information the
analysis is undertaken in in two parts.

First, we summarize major industry trends using the full data set of 4,552 companies. Second,
we summarize investments and exits for the 1,584 companies with accompanying deals data and
analyze the economic factors that may have led to the recent growth in those investments.
Arguably, given the skewed nature of valuations and investments in venture capital markets
generally, together with a natural propensity to report information on larger, more significant
investments and exits, it stands to reason that the 29 percent of companies with disclosed deals
represent a considerably greater share of the overall financial activity in the industry. Regardless,
this data is necessarily an underrepresentation of the overall financial activity in the industry.
Yet, drawing from a variety of of available data sources, the following analyses are based on a

broad, representative sampling of private investment activity across agriculture globally.

Full combined data set of companies: global summary statistics

For most of the 4,552 companies in the combined sample, founding date is available for most.
For those companies with founding date missing but for which deal information is available, the
date of the first deal is used as a proxy for the start year. Figure 2 plots the number of new
venture-funded startups by founding year.

Qualitatively, there appears to have been three phases of growth in agtech startups. First, from
1977 to 1991 we see steady, slow growth, with between 20 to 50 agtech startups globally each
year, although, this time period precedes the full data coverage for some of the countries and/or
data sources on which this data set draws. In the second phase, from 1992 to 2008, the growth
rate appears to have increased, yet it also appears to be more volatile—characteristic of the wider
tech sector during this period—with a downturn for several years following the bursting of the
tech bubble in 2000. Third, starting in 2009, growth in agtech startups experienced a sharp
increase that, arguably, continues until the end of the time frame of this analysis despite the

right-hand truncation seen here.?

2 The apparent decline in startups after 2014 is, arguably, due to truncation in the data. New companies generally get
reported to these data sources upon their first formal equity-based investment, which can occur up to several years
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Figure 2. New venture-funded startups in agriculture, 1977-2017
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The overall sample of 4,552 companies also includes data on physical address, which enables
analysis of the geographical distribution of agtech entrepreneurship globally. We find 1,483
startups in the United States, which accounts for about 33 percent of the global sample (Figure
3). Within the United States, by far the most are in the state of California (348), with other
leading states including Colorado, New York, Texas, Massachusetts, and Illinois. Of the U.S.
startups, 320 were located across the 11 Midwestern states that encompass the highly fertile U.S.
“corn belt” region. The European Union has 1,063 agtech startups, accounting for about 23
percent of the global total, led by United Kingdom (with 261), France (173), and Spain (102).
Canada is home to 228 startups (5 percent of the global total). Among the emerging markets,
India stands out with 210 startups, followed by China with 172. South American countries have
144 agtech startups in the sample, led by Brazil with 88. Venture-backed agtech startups are even
found in Africa, with the most in South Africa (41), followed by Kenya (31) and Nigeria (27).
Thus, the pattern of VC-funded startups follows the growth pattern of VC in developing
countries identified by Groh and Wallmeroth (2016). Also, this global distribution of agtech
startups appears to track somewhat more closely with the pattern of public sector agricultural

following the founding of the company. Industry reports, such as AgFunder (2019) show steady continued growth in
startup activity through 2018.
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R&D, with a significant share in emerging and developing economies (Pardey et al, 2016),
compared to the pattern of private sector agricultural R&D, which is more heavily concentrated
in high income countries (Fuglie, 2016).
Figure 3. The global scope of new venture-capital-funded startups in agriculture, 1977-2018:
(a) global density mapping, by city and/or postal code, and (b) global share, by country/region.
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Categorization of startup companies by industry—or of innovations by technology field—has
long been a fraught exercise. Of the three data sources, each provides several data fields
describing the company, its market activities, and the technologies it is developing. However, the
descriptions of companies are very heterogeneous, even within the same data field from the same
source. Even standardized industry category variables, which are more consistently reported
within each data source, are not readily comparable across the three data sources. We therefore
construct a common categorization for the startups in the combined sample, drawing upon the
full range of these descriptive data fields across all three data sources, based upon industry
observations (see Graff et al, 2014, and AgFunder, 2019), as detailed in the Appendix.

Table 1. Industry and technology categories describing agtech startups

Number of startups

Category with activities described
by each category

Agricultural input technologies or services 2,482
Software, data, and IT 942
Devices or sensors 430
Biotech, genetics, or health 918
Chemicals 230
Equipment or machinery 302

Ag input distributors, dealers, or co-operatives 678

Ag producers or farms 467

Marketing, processing, manufacturing 730

Consumer products or services 105

Business and financial services 539

Online services and content 471

Other 1,165

N=4,552 firms, of which 1,226 are identified with two or more categories

It is important to note that the categories we develop are not exclusive. By their very nature,

startups often span more than one industry or technology. Of the 4,552 startups in the data set,
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1,226 (27 percent) are categorized in more than one category: of these 1,048 are categorized in
two categories, 161 are categorized in three, and 15 startups are assigned four. For example, we
have a startup that is developing sensors with specialized data management tools to conduct
high-throughput phenotyping to decipher crop genetics: such a firm would be labelled with three
of these categories: (1) devices or sensors, (2) software, data, and IT, and (3) biotech, genetics,
and health. While such an approach does result in multi-counting of firms by categories, it is not
an uncommon practice.®

Table 1 displays the number of startups described by each of the categories we developed.
Just over half of the startups in the data set are involved in some form of agricultural input
technology or service, which in turn encompasses a number of different technology-based sub
categories. The two largest of these are software and data (which describes 942 startups) and
biotech, genetics, or health (which describes 918 startups). Companies identified by one or both
of these categories—software and biotech—attracted more than 60 percent of the venture

investments made in the industry in 2016.

Subsample of companies with reported deals

Of the 4,552 companies in the overall data set only 1,584 (35 percent) are associated with the
7,596 reported deals (which, again, include investments, successful exits, and reported closures
or bankruptcies). Moreover, of these reported deals, many do not disclose the amount of the deal.
To analyze investment and exit trends, we narrow to a sub-sample of just those 1,367 startups
(29 percent of the overall data set) that report at least one venture-type money-in investment with
a disclosed amount. This means that we are therefore underestimating the number of startups, the
values of investments, as well as the numbers and values of exits for the industry.

This analysis considers, however, the full profile of investments received by those startups
that receive any investment from venture capital. If a company received at least one venture-type
investment, then all additional money-in investments received by that same startup are
considered in this analysis, including grants, angel and seed stage investments, early stage VC,
late stage VVC, debt, and private equity investments. (Companies with only private equity

3 For example, under the International Patent Classification (IPC) system, multiple patent classifications can be
assigned to a single patent.
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investments were dropped from the sample). Figure 3 displays the total money in investments by

type and year for those firms.

Figure 4. Investments into agricultural technology startups 1981 to 2018, by type of investment
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Note: PE=private equity; VC=venture capital

Following the sharp increase in new startups in 2009 (Figure 2) investments exhibited a sharp
increase starting in 2011 (Figure 4). Given that these are all firms that receive at least some
venture capital, these data suggest that venture capital in fact represents most of the money
raised. Even though absolute amounts increased substantially, the composition of investments
has been stable between early-stage and late-stage VVC. This data series also most certainly
exhibits right hand truncation, as some of the data downloads occurred in the middle of 2018.
Industry sources indicate that 2018 was a record high year for agtech venture investments
(Agfunder, 2019).

The growth in investing the agriculture industry may have been driven by high commodities
prices during the downturn in the economy around the 2007-8 financial crisis. Figure 5 displays

an index of agricultural commodity prices and crude oil prices over time, each plotted against our
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data on total investments into agtech startups (from Figure 4). There appears to be a direct (albeit

lagged) relationship between these prices and agtech investments.

Figure 5. Investments in agricultural technology startups plotted against:
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Analysis of factors associated with increased venture capital investments in agriculture
There are several possible explanations for the sharp increase in agricultural technology

startups beginning in 2009 (Figure 2) and the sharp increase in private investments into those
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companies beginning in 2011 (Figure 4). The simplest hypothesis, following the logic of Dixit
and Pindyk (1994), is that prices pushed potential return above a critical threshold. Agricultural
commodity prices, indeed, increased strongly in 2007 and 2008 and then, after a correction in
2009, surged to even higher levels from 2011 through 2014 (Figure 5.a).

A more nuanced hypothesis is that the ratio of commodity prices in agriculture to prices in
other sectors of the economy, particularly energy, may have diverted investments toward
agriculture. “Cleantech” investment funds—which had focused primarily in the energy sector,
encouraged by high energy prices—may have discovered agriculture when investing in biofuel
innovators. Crude oil prices faced a sharp increase in 2007 and 2008, turned down in 2009, and
rebounded and remained around US$100/barrel from 2011 through 2014, at which point they fell
back to less than US$50/barrel within a year. As oil prices dropped, investors in clean-tech may
have pivoted toward opportunities in agriculture as agricultural commodity prices may have been

expected to remain high longer than energy prices.

Figure 6. Investments in agricultural technology startups plotted against total VC investments in
the United States
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There is also likely a supply side factor, as overall VC investments in the economy increased
steadily during this time period. Figure 6 shows that growth in investment in agtech plotted
against total VC investment in the United States (as according to PWC, 2019). Investment in

agtech is correlated with total VC investments, yet growth in agtech investment grew at a faster
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rate, particularly in the pivotal years of 2010-2016. Thus, an additional hypothesis is that a
greater supply of VC and lower costs of early stage investing in this time period pushed VC
investing into adjacent industries from its traditional core of software, computer/networking
equipment, online businesses, and biotechnology (Ewens, Nanda, & Rhodes-Kropf.2018).
Figure 7. (a) Exit events by agricultural technology startups, 1981-2018
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(b) Money out from IPO and M&A exits by agricultural technology startups, 1981-2018
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Finally, market signals from successful exits may have played a role. The returns for VC are
realized upon exiting from initial investment in startups. The most desired outcomes for VC
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investors are an initial public offering (IPO) or a merger or acquisition (M&A), as these types of
exits generate the largest payoffs. Other exit outcomes, such as a management buyouts or asset
acquisitions, might merely return the initial investment via sale of the startup’s assets. Gompers
and Lerner (2004), Jeng and Wells (2000), and a literature spawned by such studies, present
evidence that successful exits influence subsequent investments.

Anecdotally, there were several large exits from agtech companies in the years around the
upturn in venture investment—including the US$283 million IPO of Agria in 2007, the EUR 1.9
billion private-equity buyout of Arysta LifeScience in 2008, and the US$279 million IPO of
Digital Globe in 2009, and the US$980 million acquisition of Climate Corp by Monsanto in
2013. According to the data, a regular rhythm of IPOs and M&As began in 2006, with
significant returns first logged in 2008 (Figure 7) coinciding with the sharp increase in the
numbers of new startups (Figure 2) and investments (Figure 4). In agtech, it appears that M&As
have generated much larger returns for VC investors than IPOs (Figure 7.b). These patterns
corroborate the idea that the occurrence of IPOs and M&As signal returns being made in the

industry, thus helping to attract new investors and investments to the industry.

Methods
A preliminary test of these hypotheses is conducted at both the firm level and the industry

level. The regression framework used to test at the firm level is describe by Equation (1):
Yie =&+ B1Pe i + B2Poi + B3VC + 5133?—1%(1 + azeetizz(;)c + X0 +u; 1)

where the dependent variable is the sum of realized investments received by a startup i within
year t. If a startup received more than one investment in a given year, those investments are
summed, but if a startup did not exist or simply received no investment in a given year (yi=0) the
observation is dropped. In Equation (1), the P;;. are agricultural commodity prices, lagged k
years, for which World Bank and FAO agricultural commodity price indices as well as nominal
soybean prices were used. The P,, are nominal oil prices. VC; is total annual venture capital
investments in the United States. The exit variables, ee/"¥* and eeti’f‘,’( measure the IPO and
M&A exits, k years prior to year t. The X; are control variables. The sample is very

heterogenous, including firms of different sizes, at different stages in the startup lifecycle, across
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different countries and industry categories. To control for these, dummy variables are added for
the United States and Europe. Firm size is accounted for with an ordinal variable based on
numbers employees ranging from 0O for “very small” to 5 for “very large”. Company age controls
for stage in the startup lifecycle. Finally, u;; is the random error term clustered at the firm level.

The sample incorporates investment activity from 1995 to 2018, since data for the
independent variables of oil prices and total VC investments were available only after 1995. We
build an unbalanced panel that consists of 2,364 observations involving 1,348 startups. A
balanced panel of 1,348 startups over this 24-year time period would consist of 32,352
observations with positive values for only about seven percent of those observations. Yet, most
of the firms were founded after 1995, with the frequency of firms entering the dataset increasing
toward the end of the time period, according to the trend illustrated in Figure 2.

There are reasons to believe that factors affecting investment may vary across industry or
technology. As already noted, 60 percent of agtech investments in 2018 were made in either the
software/data or biotech/genetics categories. To test hypotheses regarding venture investments at
a more aggregated industry level (as described in Table 1) a similar model is estimated
where the dependent variable, instead, is y.;, the annual sum of investments for all startups in
industry category c for year t. Some of the startups in the sample are categorized in more than
one industry, due to the interdisciplinary nature of the technologies being developed or due to
integration across markets. We therefore split such startups’ investment amounts across the
relevant categories (e.g. if startup A appears in two categories, we multiply its investments in
year t by 0.5 and allocate to both categories for year t). All other dependent variables are the
same as defined for Equation (1). We build a balanced panel of 11 industry categories over 24
years from 1995 to 2018 and estimate a fixed effects model.

Regression results

Table 3 resents regression results for four versions of the firm level analysis described by
Equation (1). The first set of regressors examines the relationship between investments and
commaodity prices, using, in this case, nominal soybean prices and nominal crude oil prices. Both
contemporaneous and lagged prices are considered, expecting investors may be responding to

cumulative market trends over several years, not just immediate price fluctuations. We also focus
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the analysis on the differential effect of these price variables in the period after 2000 by
interacting each with a date range dummy variable.

The estimation results in Table 3 corroborate observations from the summary statistics in
Figures 5.a and 5.b that agricultural and energy prices are positively associated with investments
in agtech startups, especially after 2000. The fact that investments become more responsive to
prices after 2000 suggest that growing commaodity prices may have shifted attention of venture
capital investors. Results are robust across versions of the model, even when prices are lagged.
Although oil prices are statistically significant only when added contemporaneously, the negative
sign persists across estimations. It suggests that an increase in oil prices lead to lower
investments in startups in agriculture, or conversely, investments in agtech startups may have
been stimulated when oil prices fell.*

In three of the four models in Table 3 the coefficient on agricultural prices (both
contemporaneous and lagged) is negative. However, these coefficients are either not significantly
different from zero, or only weakly significant at a 10 percent confidence level. The apparently
negative effect of oil prices diminishes or disappears when the variable of total VC investments
in the United States is added to the model. This later variable captures the effect of overall health
of the VC markets and implies that the greater availability of VC investments is associated with
increased investments in startups in agriculture regardless of energy prices®.

The second set of regressors in Table 3 examine the influence of exits as a signaling
mechanism. The results indicate that the higher amounts realized in previous IPO and M&A
exits by agricultural technology startups (lagged one year) are associated with higher investments
in agtech startups today®. IPOs appear to have a stronger effect compared to M&As, but both are
statistically significant in some of our models. Both types of exits can be interpreted as playing a
role in attracting investments into agtech startups, in line with previous observations in the
literature (Gompers and Lerner, 2006; Jeng and Wells, 2000).

4 In additional regressions not included in Table 3, we tested the effect of the ratio of agricultural commodity prices
to oil prices, with a larger ratio indicating a potentially greater return in agriculture compared to energy. We find a
strong positive effect of the price ratio on the size of investments when limited to the 2000-2018 window. The
coefficient on the price ratio over the entire timeframe is, however, not significant.

> We also separately estimate adding an interaction between the total VC investments variable and a 2000-2018
dummy, and the resulting coefficient indicates no greater effect during this limited time period

® Test regressions find that exits in the same year are not significantly related to investments.
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Table 3. The effect of commaodity prices, exits, and total VC supply on agtech investments made
annually over the period 1995-2018 at the firm level, with fixed effects

Dependent variable: Amount invested in firm in a given year

Models
Independent Variables: 1 2 3 4
. -0.0075 0.0155
ag prices
(0.0274) (0.0297)
ag prices*dummy[2000+=1] 0.0458 0.0244
(0.0142) (0.0153)
. -0.0331* -0.0192
lag(ag prices)
(0.0177) (0.0184)
lag(ag prices)*dummy[2000+=1] 0.0323 0.0193
(0.0133) (0.0133)
I -0.1804** -0.1010
oil prices
(0.0832) (0.0823)
. -0.0092 0.0255
lag(oil prices)
(0.0548) (0.0531)
*k*k * **% **k
lag(IPO amounts) 0.0083 0.0053 0.0112 0.0106
(0.0032) (0.0030) (0.0047) (0.0047
**
lag(M&A amounts) 0.0011 0.0002 0.0006 0.0001
(0.0005) (0.0005) (0.0004) (0.0004)
total VC 0.0001*** 0.0001***
(0.00003) (0.00003)
R? 0.11 0.11 0.11 0.11
N 2364 2364 2364 2364

Note: Standard errors in parenthesis. *** for 1% significance, ** for 5% and * for 10%. All lagged variables are
lagged only one period. IPO, M&A and Total VVC for the United States are in US$ million; Ag. Price is the Soy price
and it is nominal prices in US$/metric tons; The Oil Price is the West Texas Intermediate (WTI) - Cushing,
Oklahoma, Dollars per Barrel, Annual, Not Seasonally Adjusted available at FRED. Dependent variable ($ deals
size) is in US$ million. All regressions include industry and location fixed effects.

24



Table 4. The effect of commaodity prices, exits, and total VC supply on agtech investments made
annually over the period 1995-2018 at the industry level, with fixed effects

Dependent variable: Amount invested in industry category in a given year

Models
Independent Variable: 8 9 11 12
. 0.3951* 0.5351**
ag prices
(0.2047) (0.2297)
. 0.3469* 0.2634*
ag prices*dummy[2000+=1]
(0.1656) (0.1444)
lag( ices) 0.2735* 0.3184*
ag(ag prices
glagp (0.1546) (0.1658)
lag( ice)*d [2000+=1] 0.2133* 0.1217
ag(ag price)*dumm +=
glagp Y (0.1213) (0.0941)
L -3.1985* -2.9255*
oil prices
(1.5481) (1.4775)
o -1.6126 -1.0554
lag(oil prices)
(1.0735 (0.9004)
0.1335** 0.0853** 0.1635*** 0.1372***
lag(IPO amounts)
(0.0502) (0.0363) (0.0497 (0.0427)
0.0178** 0.0097 0.0093 0.0019
lag(M&A amounts)
(0.0074) (0.0061) (0.0078 (0.0077)
0.0008** 0.0007**
total VC
(0.0003) (0.0003)
R? 0.31 0.32 0.29 0.30
N 288 288 288 288

Note: Standard errors in parenthesis. *** for 1% significance, ** for 5% and * for 10%. All lagged variables are
lagged only one period. IPO, M&A and Total VVC for the United States are in US$ million; Ag. Price is the Soy price
and it is nominal prices in US$/metric tons; The Oil Price is the West Texas Intermediate (WT]I) - Cushing,
Oklahoma, Dollars per Barrel, Annual, Not Seasonally Adjusted available at FRED. Dependent variable ($ deals
size) is in US$ million. All regressions include industry fixed effects.

Additional insights arise from the control variables in Equation (1). It appears that location
plays an important role. The estimated coefficient on the U.S. dummy variable is consistently
positive and significant throughout these regressions, while the estimated coefficient on the E.U.
dummy is consistently negative but only occasionally significant. This corroborates common
observations that startups in the United States receive greater VC investments compared to non-
US startups. The estimated coefficient on the company age variable indicates the positive effect
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of age on investments: Companies that have been in the market longer tend to receive greater
investments. Results also indicate that larger startups, in terms of number of employees, receive
greater investments. These results, all consistent with expectations based on previous studies,
suggest that these estimations reasonably reflect the determinants of investments.

Table 4 presents estimation results for investments aggregated at the industry or technology
category. In general, at this level of aggregation, more of the variation in investments is
accounted for overall, and the coefficients on the independent variables are greater. Results
regarding the price effects are much more robust than in the firm-level regressions. Agricultural
prices have a significant positive effect on investments overall. Oil prices are negatively related
to investments in agriculture, and this relationship persists even when including the variable on
total VC investments, which is again found to be positive and significant.

At the industry level of aggregation, we do not have control variables available as in the
models with startups—such as age, number of employees, and country. Even though fixed
effects for industry categories are jointly statistically significant, some individual categories are
not. A few of these have larger values including (in this order): (i) Online Services and Content;
(i) Software, Data and IT; (iii) Marketing, Processing and Distribution; and (iv) Agricultural

Input Distribution and Sales.

Preliminary conclusions

The venture-capital backed startup is, in essence, a mechanism to contain the financial risks
of prospecting and thereby manage the technical and market uncertainties of innovation. The
population of such startups developing innovations for agriculture has increased substantially in
the last decade, not only in high income countries, but also in emerging and developing
countries. Venture investments in such startups has grown sharply as well, reaching 25 to 50
percent of the estimated levels of global private-sector (corporate) agriculture R&D
expenditures. This first look has explored several factors likely to have driven this sharp increase
in private venture investment in agricultural R&D.

Simple tests of several hypotheses suggest that the positive swings in agricultural commodity
prices and exits have led increased investments in agtech startup companies. The sharp increase
in agricultural prices after 2000 have an even greater effect on investments. Both

contemporaneous and lagged IPO and M&A exits increase investments at both the firm and
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industry level. IPOs appear to have a stronger effect on new investments than M&As, even
though a much larger share of the returns realized from exits come from M&As. Investments in
agricultural startups are to some extent technology specific, favoring online businesses, software,
commaodity processing, and agricultural input dealers. There is also evidence that startups in the
United States receive more venture investments than startups in other countries, all else being
equal.

This analysis sheds some light in an important new source of R&D expenditure that has the
potential to transform many aspects of private R&D for agriculture, altering the risk profile of
innovations being pursued, the human capital networks being accessed, and the market power of
those introducing innovations to agriculture. Much is needed in the way of further economic
analysis of this phenomenon, to improve upon current models, explore additional factors
potentially driving such investments (such as public sector research, increased labor costs, or
shifts in consumer demand), and the determinants and impacts of different types of exits (with
IPOs creating independent competitors but M&As putting new technologies under the control of
industry incumbents). Venture capital has discovered agriculture, but it has only begun to have

an impact.
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