Valuing Housing Services in the Era of Big Data:
A User Cost Approach Leveraging Zillow Microdata

Marina Gindelskya
*U.S. Bureau of Economic Analysis*

Jeremy G. Moultonb
*University of North Carolina – Chapel Hill*

Scott A. Wentlandc
*U.S. Bureau of Economic Analysis*

**Abstract**

Historically, residential housing services or “space rent” has made up a substantial portion (approximately 10%) of U.S. GDP final expenditures. In this study, we develop estimates valuing housing services based on a user cost approach and detailed microdata from Zillow (ZTRAX), a “big data” set that contains detailed information on hundreds of millions of market transactions. This approach directly incorporates market prices into the estimates and uses these prices for hedonic imputations based on rich property-level information, leveraging detailed data for markets that vary extensively by region and locality. We compare our estimates to the corresponding BEA series, which is based on a rental-equivalence method and traditional, survey-based data sources. Since 2002, initial results (from our default user cost specification) track aggregate home price indices more closely than the current BEA estimates, yielding much higher estimates of housing services during the housing boom with more similar estimates during the subsequent recovery. The study demonstrates the potential benefits of large data sources, highlights challenges associated with the user cost approach, and identifies ways that detailed microdata can improve detail in regional estimates.

**Keywords:** residential housing, Big Data, housing services, owner-occupied, space rent, home prices, user cost

**JEL Classifications:** E01, C80, R00

**Acknowledgements:** We would like to thank the organizing committee and participants of the 2018 NBER-CRIW Pre-Conference and corresponding 2019 Conference on Big Data for 21st Century Economic Statistics as well as the following individuals for their valuable input: Katharine Abraham, Erwin Diewert, Dennis Fixler, Kyle Hood, Kurt Kunze, Han Liu, Raven Molloy, Brent Moulton, Mick Silver, Dylan Rassier, Matthew Shapiro, Brian Smith, and Randal Verbrugge for their helpful comments. All errors are our own.

Draft date: December 18, 2020

+Disclaimer: Any views expressed here are those of the authors and not necessarily those of the Bureau of Economic Analysis or the U.S. Department of Commerce. Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors and do not reflect the position of Zillow Group.

---

a Office of the Chief Economist 4600 Silver Hill Rd, Suitland, MD 20746; marina.gindelsky@bea.gov
b Department of Public Policy, Abernethy Hall, CB 3435, Chapel Hill, NC 27599; moulton@email.unc.edu
c Contact Author. Office of the Chief Economist 4600 Silver Hill Rd, Suitland, MD 20746; scott.wentland@bea.gov
1. Introduction

Housing is an important part of the economy and the national economic accounts. As part of the tabulation of Personal Consumption Expenditures (PCE) within Gross Domestic Product (GDP), the Bureau of Economic Analysis (BEA) estimates aggregate expenditure on housing, measuring what households in the United States spend on housing services. Because a house is generally a long-lasting asset and the flow of its services is not consumed in its entirety in a single year, housing is not measured like many other consumption expenditures as simply the aggregate of home prices and quantities.\(^1\) The flow of housing services in GDP is, as a result, measured as conceptually most similar to rent for these services in a given period. For renters (tenant-occupied housing), this tabulation is straightforward, both intuitively and from an economic measurement standpoint, as it amounts to the aggregate sum of rents paid for all residential units over a given period. The analogous calculation for homeowners imputes market rents (also called “space rent”) for the owner-occupied housing stock as if owners “rent” to themselves. The 2008 System of National Accounts (SNA) recommends this imputation for owner-occupied housing so that the estimate of housing services is not arbitrarily distorted based on the decision to rent versus own a home, which can vary substantially across time and space.\(^2\) Historically, both tenant and owner-occupied housing have accounted for a substantial proportion of overall consumer expenditures and the economy more generally (approximately 16% of PCE, or about 10% of GDP final expenditures), and have been relatively stable over recent decades as shown in Figure 1 below.

---

\(^1\) Housing is included in both consumption and investment expenditures in GDP statistics, where new construction is accounted for in Residential Fixed Investment. The focus of this paper is on Housing Services within Personal Consumption Expenditures.

\(^2\) Specifically, the 2008 SNA states: “The production of housing services for their own final consumption by owner occupiers has always been included within the production boundary in national accounts, although it constitutes an exception to the general exclusion of own-account service production. The ratio of owner-occupied to rented dwellings can vary significantly between countries, between regions of a country and even over short periods of time within a single country or region, so that both international and inter-temporal comparisons of the production and consumption of housing services could be distorted if no imputation were made for the value of own-account housing services.” (SNA 2008, 6.35, p. 99).
The PCE housing series has risen steadily over the last couple decades, congruent with other official series like the CPI Rent Index and the CPI Owners’ Equivalent Rent Index, both depicted in Figure 2 below. A common element among these statistics is that they rely on reported rents from survey data, as the BEA’s current method follows a rental-equivalence approach leveraging survey data. Moreover, the BEA’s housing estimates were adjusted over this time period using the owner-occupied rent series directly (for reasons we discuss in more depth in the next section). Recently, however, the academic literature has begun to reexamine the rental market over this period using “big data” sources, finding that using alternative data and methods reveal a different picture. For example, when rents are measured using different data, as shown by the Ambrose-Coulson-Yoshida (ACY) Repeat Rent Index (also depicted in Figure 2) using market transaction data from Experian RentBureau, a conflicting story emerges as rents flatten out earlier.
than the CPI series and even fall in absolute terms in 2008-09.\textsuperscript{3} This drop in rents, while less dramatic in magnitude, was more consistent with the free fall in home prices as shown by the Case-Shiller National Home Price Index amid the (in)famous boom-bust-recovery in home prices over the broader period.

The divergence among these series stems from the underlying data and method.\textsuperscript{4} Ambrose et al.’s (2015) finding, where market data and an alternative method paint a different picture of the rental market, motivates further research into other housing statistics and whether “big data” can

---

\textsuperscript{3} This index is derived from Ambrose, Coulson, and Yoshida’s (2015) recent work constructing a rent index more similar to Case-Shiller’s repeat sales method using “big data,” although the series only goes through 2010 at the time of this draft.

\textsuperscript{4} Critiques of the BLS’s rental series, which fall outside the scope of our paper, are the subject of numerous papers, including Ambrose et al. (2015). This topic is covered in an earlier review of this literature by Lebow and Rudd (2003). Ambrose et al. (2015) argue that the CPI method and underlying data sources understated the extent to which the rental market prices fell during the housing bust. See also Gordon and Todd van Goethem (2007), McCarthy and Peach (2010), and Ozimek (2014) for related critiques.
find a similar pattern of divergence or whether this phenomenon is unique to the rental market they study.

The purpose of this paper is to explore the extent to which alternative data sources, namely “big data” from Zillow containing information on hundreds of millions of home transactions, can be used to construct an estimate of housing services. The data are suited to a user-cost approach, which we use to construct a time series and compare it to the BEA’s current rental equivalence-based estimates since the early 2000s. The goal of this paper is not to construct an official account or argue for a particular method; rather, we investigate the implications of a new “big data” source, and compare the results of associated methods to current nominal estimates.5

This paper also contributes to literature on user cost methods that are both well-suited to big data sources and commonly used in academic literatures beyond national accounts. This is particularly true in cases where rental market data is inadequate (as in many countries).6 For example, Himmelberg, Mayer, and Sinai (2005) employ a user cost approach to assess price fundamentals of the housing market, while others have used housing user costs in a number of applications from evaluating tax policy to interest deductions (e.g., Poterba, Weil, and Shiller 1991; Poterba 1992; Albouy and Hanson 2014).7 We provide a transparent method for constructing

---

5 Constructing user cost estimates is also a prerequisite for a statistical agency to consider constructing a hybrid series that blends rental-equivalence and user cost estimates like the opportunity cost approach proposed by Diewert (2009), as part of a comprehensive look at competing methods from the literature. A nominal series is also a necessary first step to take prior to constructing a real series based on this data, which we leave for future research.

6 A number of European and African countries have employed a user cost approach (or a variant thereof) for measuring housing services, often as a result of data limitations of thin unsubsidized rental markets (Katz 2009). A (non-exhaustive) list of such countries includes: Botswana, Central African Republic, Croatia, Estonia, Ghana, Hungary, Latvia, Lithuania, Malta, Montenegro, Nigeria, Poland, São Tomé, Serbia, Slovak Republic, Slovenia, Tunisia, Uganda, Zambia, Zimbabwe. According to Eurostat in 2016, nearly 70% of the population in EU28 countries own their own homes, with a sizable fraction of households living in subsidized or rent-free housing (e.g., over 80% in Lithuania, Malta, Bulgaria, and Croatia), limiting the representativeness of market rents in many countries (Komolafe 2018).

7 Poterba and Sinai (2008) note: “the neoclassical investment model, which focuses on the user cost of capital, is a standard tool for studying housing demand and for analyzing the equilibrium value of the imputed rental income accruing to homeowners under various tax regimes” (p. 86).
a nominal user cost-based series that can be built from the bottom-up with similar microdata (e.g.,
data from vendors like CoreLogic) and could be replicated for a variety of uses in the literature.

2. Rental-equivalence vs. User Cost

2.A. Background

A central problem for statistical agencies is finding the right data; and, this is particularly true for
imputing owner-occupied housing (OOH) statistics where the challenge emanates from accounting
for transactions that are not directly measurable or observable. Statistical agencies like the BEA
measure the value of housing services for OOH indirectly by using data that should closely
approximate market rent that homeowners would expend. The two approaches briefly mentioned
above are the two approaches recommended by the 2008 SNA statistical framework: rental-equivalence
and user cost.8 The former estimates what market rent would be for a given owner-occupied home if it were rented, while the latter focuses on the cost to the homeowner.9 Conceptually, absent transaction costs and other market frictions, basic economic principles predict that market rents should approximately equal average cost (in the long run) if markets are
competitive. The underpinning theory of this (approximate) equality can be derived from capital
theory, which is based on Jorgenson’s (1963, 1967) theory of capital and investment, where the
rental cost of capital will equal its ex ante user cost (Katz 2009).10 For example, if rent for an

---

8 Specifically, the SNA states that, “This approach can take either a user-cost formulation that attempts to measure the changes in the cost to owner-occupiers of using the dwelling, or a rental-equivalence formulation based on how much owner-occupiers would have to pay to rent their dwellings. The latter method is more generally adopted for CPIs” (SNA2008, §15.141). However, some countries have adopted a variant of the user cost approach for their CPI measurement, including Canada, Estonia, Iceland, Slovakia, and Sweden (Baldwin, Nakamura, and Prud’homme 2009).

9 More generally, the OECD Manual, Measuring Capital, summarizes the broader concept for the user cost of capital as follows: “Suppose the owner of an asset wants to determine the minimum price (before adding on costs of associated labour and overheads) at which he is willing to rent the asset during one period of time. In the simplest case, three main cost elements have to be considered: (i) the cost of financing or the opportunity cost of the financial capital tied up through the purchase of the asset; (ii) depreciation, i.e. the value loss due to ageing; (iii) revaluation, i.e. the expected price change of the class of assets under consideration.” (OECD 2009, p.65)

10 As a thought experiment, one can think of user cost in this context as measuring the net expenditure associated with purchasing a home at the beginning of a period, incurring cost during the period, and selling the home at the end of the period, abstracting
identical home was much higher than its user cost incurred by a homeowner, then more people
would buy this preferred capital asset and fewer would rent, bidding down rents and bidding up
home prices to the point where rents and costs are approximately equal.11

2.B. **Current Approach of the BEA**

The BEA’s current approach, based on a rental-equivalence method, is the most common
method used by national statistical agencies around the world (Katz 2017), in part due to the fact
that countries collect high quality data on rents from nationally representative, specifically
designed surveys of tenants and other sources. Specifically, the BEA’s current method uses the
Residential Finance Survey (RFS, Census Bureau) to benchmark rent-to-value ratios for different
value classes of properties, which is then used to impute average contract rent for owner-occupied
properties across similar dimensions. This weighted rental imputation constitutes what is often
referred to as “space rent,” which is then multiplied by corresponding aggregate housing unit
counts to obtain the aggregate estimate of the total imputed rent of owner-occupied housing.12

During benchmark years, BEA used Decennial Census for quantity counts, while in non-
benchmark years either American Housing Survey (available bi-annually) or Current Population
Survey data from the Census Bureau were used. The BEA last benchmarked the rent-to-value
ratios used to derive space rent using the 2001 RFS, the last time the requisite data from this survey

---

11 Of course, this abstracts from risk, market imperfections, and transaction costs, which are particularly significant in housing (Bian, Waller, Wentland 2016). Thus, some gap might persist, but generally rents and user costs should move together over longer periods of time. In fact, recent empirical work by Goeyvaerts and Buyst (2019) has found a “strong correspondence” between rents and user costs using detailed microdata.

12 For a more detailed discussion of the BEA’s current method, refer to Mayerhauser and McBride (2007) and Katz (2017). To summarize, the 2001 method assumed OOH homes with comparable values as tenant-occupied homes also have comparable rent-to-value ratios, so the method takes weighted-average rent-to-value ratios by value class for tenant units from the RFS and applies the mid-point market value to owner-occupied units within the corresponding value classes reported in the American Housing Survey. This imputed total rental value is then weighted by the number of owner-occupied units reported in the American Housing Survey in each class to calculate an average annual rental value (AARV), which is then used to generate a total value of aggregate OONFP housing services by multiplying AARV by the number of owner-occupied housing units reported in the decennial Census.
was available. Since then, the BEA has made quality adjustments and price adjustments, with the latter based on data from the BLS’s CPI Owners’ Equivalent Rent Index (which also relies on a rental-equivalence method). This method is generally regarded as the preferred method for this imputation since most countries have relatively thick rental markets with substantial data on market rents. Indeed, more than one-third of all housing units in the U.S. are rented to tenants.

2.C. Methodology: A Comparison

The rental equivalence approach, however, is not without its limitations due to the nature of the data. While a sizable fraction of homes are tenant occupied, rental data is not necessarily representative of the entire housing stock. Specifically, the distribution of rental units is not the same as owner-occupied units (Glaeser and Gyourko 2009); the share of detached single-family residences (SFRs) is higher for owner-occupied units as is the share of higher value homes, as the market for rental units thins out and quality and home value increase. Coulson and Li (2013) review the voluminous literature regarding these differences and provide additional evidence of homeowners taking better care of (and investing more in) their homes, resulting in difficult to measure qualitative differences between owner-occupied and tenant occupied homes. Also, because surveys record a snapshot of the market, rent surveys may over-represent renewal rent for existing tenants and under-represent new leases – a problem which may be exacerbated by business

---

13 BEA’s weighting adjustment based on rent-to-value introduces a measure of home value into the imputation of owner-occupied space rent, as does the housing quality adjustment used since 2001. However, since 2001, the rent-to-value ratios have not changed due to the expiration of the underlying survey data, which is why the series has primarily moved with the CPI Owners’ Equivalent Rent Index. Because the CPI for OOH is a constant-quality index, the purpose of the additional quality adjustment is "to account for changes in the real value of housing per unit," which is the percent change in the "real dollar stocks of owner-occupied structures, of additions and alterations, and of major replacements" using values from BEA’s fixed assets accounts divided by the number of owner-occupied units" (Mayerhauser and McBride 2007).

14 For additional discussion of this point and an illustration of these differences using recent Census data, see Aten (2018).

15 Crone et al. (2000) cite a number of reasons that complicate the BLS’s attempts to compensate for the differences in owner-occupied vs. tenant units by oversampling rental units that have characteristics like rentals: “First, these units are often temporary rentals that drop out of the sample in a short time, so that reporting is spotty. Second, the market for these units is very thin, so that the observed rents may not be good proxies for the implicit value of the unit’s service flow if it were an owner-occupied unit. Third, rental units are subject to double-sided moral hazard, which leads to long-term contracts and price regulation. Fourth, rental units are professionally managed while owner-occupied units are not.”
cycle fluctuations (Ambrose et al. 2015). Verbrugge (2008) argues that this may over-smooth the series as someone surveyed in December may have signed their lease earlier in the year (in, say, February), reflecting lagged market conditions in the rental market.\(^{16}\)

While subject to its own limitations (as we discuss below), the user cost approach relies on different data than the rental equivalence approach, which has led researchers and some statistical agencies to explore it as an alternative for estimating housing services. This approach instead utilizes data on the cost to the user of owning a home (e.g., interest, taxes, maintenance/depreciation, etc.) which varies directly with the price of a home, rather than rents of different, possibly unrepresentative tenant-occupied homes.\(^{17}\) Detailed microdata on home sales and corresponding home characteristics are primarily recorded by local municipalities; and, because reporting often differs by locale, this has previously made a national effort to collect this data quite costly. Indeed, only in recent decades have most localities digitized these records, making rental survey data the most practical data source prior to the era of “big data.” But, in the modern era companies like Zillow have privately collected, compiled, and organized a massive database of public data from local tax assessors’ offices across the U.S. for the purposes of providing this information to users of their website. Zillow has recently provided much of their microdata to researchers free of charge, including those at BEA, which makes it feasible to implement a user cost approach based on fine-level price and home characteristic data to compare with current methods.

---

\(^{16}\) In addition, because the BEA has used the CPI Owners’ Equivalent Rent Index to make adjustments to space rent, this also introduces potential measurement issues associated with the CPI. See Lebow and Rudd (2003) for a review of the literature on mismeasurement in the CPI, and Crone et al. (2000) and Crone at al. (2009) for more on mismeasurement of CPI rents in particular.

\(^{17}\) For an instructive review of this voluminous literature and novel examples of developing user cost estimates, see Diewert (2008a, 2008b), Katz (2004), Verbrugge (2008), Davis, Lehnert, and Martin (2008), Haffner and Heylen (2011), Hill and Syed (2016), Aten (2018) and numerous other papers on this topic.
One benefit of the approach we are assessing is that it relies on directly observable data that cover a significant share of the housing market. While rents are not directly observable for owner-occupied homes, transaction prices, the backbone of the user cost method,\(^{18}\) are readily available for virtually all strata of the housing market, both tenant-occupied and owner-occupied homes. As a result, given the differences in rental and owner-occupied housing units documented in the literature discussed above, the user cost method does not suffer from the same selection issues as rent-based approaches. Indeed, when rental markets are thin, the SNA recommends “other means of estimating the value of housing services,” (SNA 2008, p. 109) like a user cost approach that does not rely on rent data.

There is, however, a sizable literature noting potential weaknesses of a user cost approach or conceptual departures that fundamentally differ from rental equivalence. For example, Gillingham (1983), Verbrugge (2008) and Diewert, Nakamura, and Nakamura (2009) and others have noted that the user cost approach often has greater volatility, sensitivity to interest rates, and introduces deeper conceptual issues with the role of asset prices in this estimate with ex ante and ex post measurement. For instance, the degree of volatility of Verbrugge’s (2008) user cost estimates largely hinged on how he estimated expected (\textit{ex ante}) appreciation/depreciation, which can vary substantially depending on the assumptions used to construct this component. This literature also voices disagreements on precisely what parameter values should be used in the computation, including which interest rate is most appropriate or whether to include expected appreciation/depreciation at all. Small changes to these parameter values can change the estimates substantially, as we document in more detail below in our discussion of Figure 8 and the alternative

\(^{18}\) Despite transaction costs and substantial frictions in the housing market, a thick literature has documented that home prices respond relatively quickly to a host of different types of shocks to demand, whether they are very local, neighborhood level shocks (e.g., Anenberg and Kung (2014), Linden, L. and Rockoff (2008), Wentland, Waller, and Brastow (2014)) or aggregate-level or informational shocks (e.g., Moulton, J.G., and Wentland (2019), Bernstein, Gustafson, and Lewis (2019), Bui and Mayer (2003)).
user cost estimates we produce by varying these parameters. Finally, as a more general conceptual point, by tying estimates of housing services more closely to the asset value of a home and interest rates, the user cost approach begs the question: to what extent should a measure of housing services vary with interest rates and asset prices? We return to this point in the Discussion section below.

3. Data

The novelty of this paper primarily arises from usage of new data, specifically residential housing microdata from Zillow’s ZTRAX data set. It contains transaction data as well as a large set of individual property characteristics for sales recorded from local tax assessor’s data.\(^\text{19}\) The data coverage is generally representative of the United States’ national housing market, comprising 374 million detailed records of transactions across more than 2,750 counties.\(^\text{20}\) This includes information regarding each home’s sale price, sale date, mortgage information, foreclosure status, and other information commonly disclosed by a local tax assessor’s office. We link each transaction to each home’s property characteristics into a single dataset. The assessment data includes an array of characteristics one would find on Zillow’s website or a local tax assessor’s office describing the home, namely the size of the home (in square feet), number of bedrooms and bathrooms, year built, and a variety of other characteristics.\(^\text{21}\) We received all of this data in a somewhat raw form, requiring significant cleaning for research purposes.

\(^\text{19}\) Data are provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors and do not reflect the position of Zillow Group. Nonproprietary code used to generate the results for this paper is available upon request of the authors.

\(^\text{20}\) Because some states do not require mandatory disclosure of the sale price, we currently do not have price data for the following states: Idaho, Indiana, Kansas, Mississippi, Missouri, Montana, New Mexico, North Dakota, South Dakota, Texas, Utah, and Wyoming. In addition, Maine has a substantial share of missing data in our current sample and is accordingly omitted. Our method aggregates to the Census Division level by using housing unit counts from the ACS at the regional level. As a result, we assume that the states with data within a Census Division are reasonably representative of a state left out, which is an assumption we hope to explore in further research with supplemental data.

\(^\text{21}\) Zillow’s ZTRAX data contains separate transaction and assessment files by state, i.e., all transactions need to be linked to corresponding assessment records. With guidance from Zillow, we were able to merge the bulk of the data, but not without some data loss (which figures into the size of our final sample).
We carefully scrutinized missing data and extreme values as part of our initial culling of outliers and general cleaning. The initial data set from Zillow contains sales of empty plots of land, some commercial property transactions, agricultural sales, and other types of properties that are outside the scope of the housing services estimates we aim to measure. Therefore, we limit the sample to single family homes, townhouses, rowhomes, apartments, condos, and properties that are most closely associated with the current estimates. While we estimate rural properties separately (properties with 1 to 100 acres), we drop homes that have greater than 100 acres (limiting the influence of large farms) and winsorize homes that are in the upper tail of the distribution (i.e. are larger than 10,000 square feet or have more than five bedrooms, more than three bathrooms). When we construct our final user cost estimates we also drop homes that sold for less than 30,000 dollars for SFRs (15,000 for non-SFRs), homes in the top percentile of predicted price, or had a price that was ten times the county median.\textsuperscript{22} We cull homes that report a negative age of home (i.e. sale year – year built). While the Zillow data set contains a vast number of property characteristics, in our initial analysis we primarily rely on the variables above that have the most coverage nationally to limit how much data we would effectively discard.\textsuperscript{23} We limit the results to the years from 2002 through 2015, when the data is most complete for the vast majority of the states in our sample.

To assess the quality of the final sample, we compared our cleaned Zillow sample to the ACS to ensure that this administrative data aligned with carefully collected (albeit more limited) data.

\textsuperscript{22} To limit the influence of outliers or measurement error on model coefficients in our regressions, we drop homes that sold for less than $1,000 and extreme outliers at the top end (10 times the county median), and then the tails of the distribution for sale price at the 2.5 and 97.5 percentiles within each county within each quarter. This is a more restrictive culling at the regression stage because the main objective of the regressions is to obtain coefficients that provide the most reasonable price predictions, whereas when we construct the final user cost estimates we aim to exploit a somewhat less restrictive sample to maintain better representativeness (while still drawing a line to cull suspicious outliers).

\textsuperscript{23} In untabulated regressions, we conducted a sensitivity analysis for subsets of the sample that employed more property characteristics to determine whether the results are sensitive to omitted variables for which we can control. Our results were generally robust to omitting variables that have more limited coverage.
survey data provided by the Census Bureau. Generally, there is only a limited set of home characteristics that were in both the ZTRAX data and the ACS (e.g., number of bedrooms, year built, number of rooms, tax amount, and an indicator for whether the property has more than 10 acres). When we compare them in aggregate, we find that they are quite similar in terms of their summary statistics. In untabulated results, we found that these shared variables across data sets had median and mean values that fell within a few percentage points of one another.

4. Methodology – An Idiosyncratic User Cost Approach

4.A. Overview

Generally, our approach using the Zillow microdata is motivated by constructing estimates from the bottom-up, as we estimate a user cost for each individual property in our data set for each quarter and then aggregate upward to produce a weighted national-level estimate. We begin by estimating a simplified user cost of housing services for each home in the data set based on the formula:

$$U_{it} = P_{it}(r_{it}^{rf} + \delta_i + \tau_{it} + \gamma_i - \varphi^m(r_{it}^{m}) - \varphi^r(\tau_{it}) - E[\pi_i])$$

where for a given property (i) in quarter (t) \(P\) is the price of an individual home, \(r^{rf}\) is the owner’s discount rate or financial opportunity cost for a long-term asset like a home (we use the nominal interest rate on a 10-year Treasury note for an appropriate risk free rate in quarter \(t\)),\(^{24}\) \(\delta\) is a

\(^{24}\) While the data set includes individual interest rates for transacted properties, the coverage is not as universal as other variables. However, it is customary for user cost estimates to use a single market interest rate to reflect the financial opportunity cost of the long-term asset (e.g., see Aten 2018 for a recent example, among numerous others). Conceptually, if a homeowner purchased a home when rates were at 4%, but rates have since risen to 7%, the latter rate more closely represents the opportunity cost in that time period, as the homeowner could alternatively be earning a return on that equity of a similar long-term asset. The time series dynamics are similar if we use average 30-year mortgage rates, which we show later in the paper for robustness.
constant 3.5% representing depreciation and maintenance costs, and \( \tau \) is the individual property’s effective tax rate, \( \gamma \) is a constant 2% risk premium associated with owning relative to renting.

The latter three terms consist of potential offsetting benefits to homeownership, which are subtracted from the preceding costs such that user cost represents the net cost to the homeowner. Mortgage interest and property taxes are tax deductible in the U.S. (to a point) regardless of occupancy status. Himmelberg, Mayer, and Sinai (2005) use a constant average marginal tax rate (MTR) for all homes, which they multiply by the average 30-year mortgage rate (\( r_{it}^m \)) in period \( t \). However, their approach assumes 1) all homeowners itemize their tax returns, 2) the interest is on the entire principal of the home, and 3) there is little variation in income across regions of the United States. Instead, we construct a multiplier, \( \varphi \), to allow variation in our approximation of the average benefit to mortgage interest and property taxes, using the ACS to determine the average household income for homeowners by home type (SFR vs. non-SFR) and home size (number of bedrooms) by each Census Division. Based on average household income, we assign a marginal tax rate and a probability that the homeowner itemizes based on the percent of people who itemize in their income stratum. This allows a five-bedroom home in a high-income region like New England or the Pacific region to have a proportionately higher tax benefit than a two bedroom home in a poorer region.

---

25 A depreciation rate of 1.5% is common to the literature (e.g., Aten (2018) and Verbrugge (2008)), and Gill and Haurin (1991) use a constant of \((1.5\% + 2\% =) 3.5\%\) for the combined maintenance and depreciation term. Conceptually, there is wear and tear on a home that would be similar to what a renter would incur in the analogous tenant-occupied counterfactual, but primarily this is structural depreciation due to the property itself aging. Because these costs (on average) would be priced into a tenant’s rent, it is logical to factor this into the imputation for owner-occupied properties. Given that homes depreciate at different rates depending on age and other maintenance costs may vary by region and home type, we acknowledge that a constant rate is a simplification.

26 This risk premium was used by Himmelberg, Mayer, and Sinai (2005) “to compensate homeowners for the higher risk of owning versus renting” (p.75). While a risk premium was used as early as Poterba (1992), the constant of 2% was used by Flavin and Yamashita (2002) and Poterba and Sinai (2008). The latter study argues that this accounts for the fact that, “homeowners bear both asset-class risk and idiosyncratic, house-specific risk” (p. 86). Himmelberg et al. (2005) also use a 2% constant, but point out that a more sophisticated model would allow this premium to vary over time as the risk of owning relative to renting changes over time.

27 This risk, however, is separate from rental risk, which, as Sinai and Souleles (2005) point out, is hedged with homeownership. Sinai and Souleles (2005) find that this rental risk is directly capitalized in home prices.

28 We use data from the IRS’s Statistics of Income (Table 1.2) and the following adjusted gross income strata: under $30,000; $30-$49,999; $50-$99,999; $100-$499,999; above $500,000 (where the percent who itemize are: 7, 21, 44, 80, and 93, respectively).
The $\phi^r$ multiplier consists of this MTR and itemization probability, while the $\phi^m$ multiplier incorporates an additional product of the average loan-to-value (LTV) ratio by Census region to account for the fact that a homeowner can only write off interest on an outstanding loan amount (i.e., if the LTV ratio was zero for all homes, there would be no realized mortgage interest tax benefit). Finally, $E[\pi]$ is expected appreciation (revaluation) for a given year. We set this to 2%, which assumes homeowners have a very long-term view of home prices appreciating approximately the same as overall inflation in the economy. While (approx.) 2% is common to the user cost literature (e.g., Himmelberg, Mayer, and Sinai (2005), Poterba and Sinai (2008)), we vary this assumption in a second user cost calculation we discuss later in the paper, where price expectations are based on recent home price appreciation/depreciation in one’s local area. Overall, our primary contribution to the literature is estimating national property-level user costs using idiosyncratic price and property tax data, which we describe in more detail below. While we simplify this method using some constants in our calculation that follow the literature, we return to a discussion of these simplifications and ways to possibly create a more precise estimate in section 6.

4.B Idiosyncratic $P$ – Actual and Predicted

---

29 We use data from the Federal Reserve’s Survey of Consumer Finance (SCF), which contains information on the average mean value of mortgages and home equity/home value from 2002 to 2015 for each Census region.

30 Verbrugge (2008) rigorously considered a variety of measures of $E[\pi]$ using different forecast techniques, concluding that, “a very long horizon appreciation forecast (such as a long moving average), or an inflation forecast, should be used in the user cost formula” (p. 694). Preference for an ex ante long-horizon measure is consistent with Diewert’s (2006) argument that, “it is unlikely that landlords use econometric forecasts of housing price appreciation one year away and adjust rents for their tenants every year based on these forecasts. Tenants do not like tremendous volatility in their rents and any landlord that attempted to set such volatile rents would soon have very high vacancy rates on his or her properties. It is, however, possible that landlords may have some idea of the long run average rate of property inflation for the type of property that they manage and this long run average annual rate of price appreciation could be inserted into the user cost formula.” During the period we study, the Federal Reserve had maintained either an explicit or implicit target of 2% inflation over the long run (e.g., see their policy statements on their website regarding 2%; https://www.federalreserve.gov/faqs/money_12848.htm). Ex post, inflation, particularly in the housing market, departed from this target; but, use as an ex ante measure of inflation may not be unreasonable. For robustness, we consider alternative expectations of price later in the paper.
While Zillow already constructs property-level valuation estimates (Zestimates) using their propriety automated valuation model (AVM), for transparency we rely on a combination of actual transaction prices and, for homes that did not transact during our sample period, our own hedonic valuations based on the Zillow microdata. Because we have fine, transaction-level price data, we are able to first use actual market prices for $P$ (when available and when it does not fail the outlier criteria discussed above). For example, if property $i$ was purchased in the first quarter of 2010, then for that quarter the *actual* price was used for the transacted property ($P$ in the formula above).\(^{31}\) Turnover varies considerably by state and locality; approximately one-third of properties in our dataset sold at least once within the window we study (from 2002-2015). For the value of the home in the following quarter we posit that the price is simply the transacted price adjusted by the predicted price’s appreciation/depreciation (discussed below). We use the same logic for the quarters proceeding that sale until there is a new sale of that property.\(^{32}\) Broadly, using more direct price data conforms most closely to the principles of valuation laid out by the System of National Accounts (SNA), where market prices are “the basic reference for valuation in the SNA” (SNA 2008, p. 22), and thus much of our aggregate calculation flows directly from millions of observed market prices underlying the housing stock.

As a more general principle of valuation, the SNA recommends that statistical agencies use market prices when market prices are available, but “in the absence of market transactions, valuation is made according to costs incurred (for example, non-market services produced by

---

\(^{31}\) The ACS has home price data with reasonably good coverage; however, this data comes from asking survey respondents to place a value on their own home. An advantage of the Zillow data is that we have actual market transactions and predictions based on market data. Ideally, with linked microdata, eventually we would like to explore the differences between these data sets for use in the national accounts.

\(^{32}\) This method would likely be altered if it were implemented in national accounts over a longer time-series, as a single transaction price adjusted for inflation may be less predictive of the actual price in other years as the time series becomes much longer. For example, we may limit interpolations to a single five or ten year window; but, because our time series here only covers fifteen years we take this simplified approach.
government) or by reference to market prices for analogous goods or services (for example, services of owner-occupied dwellings)” (SNA 2008, p. 22). Hence, for homes that did not sell during our sample period, we predict their prices based on transactions of similar homes that sold in each quarter using a hedonic model.\(^\text{33}\) Conceptually, most of a home’s value can be explained by its physical characteristics, location, and time (Rosen 1974); hence, our hedonic model uses sale prices of similar homes along these dimensions to estimate an imputed market valuation for each home in our data set.\(^\text{34}\) While this approach is somewhat simplified compared to more complex machine learning techniques as used by Zillow’s proprietary AVM, an advantage of this hedonic approach is transparency, an important pillar of national accounting methods, where the model can be fully described to the public or users of the accounts if an approach like this were to be formally adopted. Therefore, we impute a predicted sale price, \(\hat{P}\), based on a hedonic model for each state by quarter separately for home \(i\) in quarter \(t\) in location \(j\):

\[
Sale\ Price_{ijt} = \alpha + \sum \beta X_{ilt} + \gamma LOCATION_{jt} + \sum \delta sqft_{ilt} \ast LOCATION_{jt} + \sum \varphi acreage_{ilt} \ast LOCATION_{jt} + \varepsilon_{lt}
\]

where \(X\) is a set of physical characteristics (bedrooms, bathrooms, age of the structure, living area measured by square feet, lot size measured by the natural log of acreage, whether the home was a single story, whether it had a pool, whether the home had a basement, whether it had a porch, and whether the home was new construction), location fixed effects, and interaction of location fixed effects with square footage and the natural log of acreage, respectively.\(^\text{35}\) For practicality in

\(^{33}\) Within-quarter hedonic regressions allow for all coefficients in the model to change across quarters, accounting for changing tastes and preferences for location or for each housing attribute in the model.

\(^{34}\) Aside from the voluminous literature in real estate, hedonic valuation is not uncommon in the national accounts and price index literatures. For example, see Pakes (2003) or Bajari and Benkard (2005) for applications with personal computers.

\(^{35}\) While the Zillow ZTRAX data contains a lot more information about individual properties that would help with valuation, we chose the variables with extensive coverage across all states in the data set. When compared to a fuller model that includes many more home characteristics, the marginal gain in precision was small compared to the potential loss in observations due to missing data in states/localities that do not regularly report certain variables. When one of the key characteristics (e.g. bedrooms, bathrooms) was missing, we imputed the number based on the size of the home, based on the rest of our sample. For SFRs with missing
estimation, we initially use Census tract fixed effects, although we obtain similar estimates using finer-level geographic fixed effects like Census block groups or blocks. To avoid making predictions with thin cells, we specify that a given tract have at least ten sales in the quarter of estimation. If this condition is not met within a given tract in a given quarter, we then estimate the same model only for observations that do not meet this threshold using county (FIPS) fixed effects.

While intensive for processing, allowing square footage and acreage to vary by location encapsulates the idea that valuation of these attributes varies widely across areas. For example, an additional 500 square feet in a home in New York City, will be valued much differently than the same addition upstate in Syracuse. For non-single family residencies (non-SFRs), which we estimate separately from detached single family residencies (SFRs), we omit acreage and other SFR-specific characteristics from the hedonic model. In addition, we estimate price predictions for urban single family homes with very small lots (less than one tenth of an acre) with non-SFRs; and, we separately estimate rural homes, which we define as having between 1 and 100 acres. In both cases, we do this only to generate better price predictions for these properties, as we

bedrooms, we replaced 1, 2, 3, 4, and 5 bedrooms for the following square footage buckets: <500, 500-999, 1000-1999, 2000-3000, and 3000+. For non-SFRs and urban properties with missing bedrooms, we replaced 1, 2, and 3 bedrooms for the following square footage buckets: <600, 600-999, 1000+. For all units, we replaced missing bathrooms with a full bathroom per each 1,000 square feet up to 3 bathrooms. Overall, the results are not sensitive to dropping these observations with missing characteristics entirely, but our coverage in some states/counties where this is more systematic would raise issues of representativeness if we drop them.

36 Smaller geographic units like block groups and blocks have fewer sales, which we found to be less ideal for quarterly predictions. In a previous draft, we had similar (albeit somewhat less precise) results to tracts using zip code fixed effects. We have also explored a variety of other specifications to improve model fit and predictions, including a semi-log specification, where sale price is logged.

37 This approach is used commonly in the hedonic valuation literature for housing and land. See, for example, Kuminoff and Pope (2013). For some of the larger states like California, this approach yields too many interaction terms that bump up against the limit for number of variables that can be used in a single regression for many statistical software packages, which required us to run sub-state samples (Northern CA vs. Southern CA, for example). This allows non-interacted coefficients to vary within states.

38 Despite this relatively simple hedonic model construction, for most states and most quarters, the model fit (R²) fell within 0.8 and 0.9 for our models using census tract fixed effects, producing errors that stack up quite reasonably compared to more sophisticated techniques. In order to assess the accuracy of our model’s price predictions, we constructed a measure of error for each record for which we have an observed price as follows:

\[
\text{Average Percent Error (APE)} = \frac{\text{Predicted Price} - \text{Actual Price}}{\text{Actual Price}} \times 100
\]

Then, to obtain an aggregate error, the median of all APEs in a state in a given time quarter is multiplied by the share of the observations in that state in the total observations. Overall, APE fell with +/- 5 percent for the vast majority of quarters, with only a handful of quarters in the +/- 5-10 range.
eventually aggregate all SFRs together by number of bedrooms by Census Division, which we discuss more below in section 4.D.

4.C. Property Taxes

Property taxes vary widely across states and municipalities. As of 2017, the highest property tax state was New Jersey with an average effective tax rate of 2.31%, whereas Hawaii and Alabama have average rates of 0.32% and 0.48%, respectively. Even within states there is considerable variation. Hence, for accurate estimates of user cost we attempt to account for the idiosyncratic nature of a property’s taxes. Because the Zillow data is collected primarily from local tax assessor office databases, the coverage of property taxes is quite good. We use individual tax data to determine a property’s effective tax rate based on a denominator of \( P \) (actual or predicted price) rather than the corresponding assessment value associated with each property in the data.

We made this choice for a couple reasons. First, regarding the denominator, the assessment value is often much lower than the market value, so applying the rate based on the assessed value to the market value of \( P \) in the user cost calculation would overestimate the amount homeowners pay in our calculation. The degree of mis-assessment of value varies considerably by locale, and in some cases it is by design of local policies for states like California to have assessments tied to historical values for longer tenured homeowners. Second, this approach better reflects the average effective tax rate, because like other elements of the tax code, homeowners do not all pay the same

---

39 Variation in property taxes across states gained attention during the national coverage of the Tax Cuts and Jobs Act of 2017. For example, USA Today ran a story comparing effective property tax rates across the U.S.: https://www.usatoday.com/story/money/personalfinance/2017/04/16/comparing-average-property-taxes-all-50-states-and-dc/100314754/

40 We currently have one year of tax amount data from Zillow, but updating this data more often (preferably annually) may be required if this method is to be used for national accounts measurement. In rare cases where our computed tax rate estimates far exceeded the average tax rate of the state (by a factor of 3), with winsorize these observations to the state average. When they were much smaller (by a factor of 1/3), we also replaced them with the state average.
posted rate due to local property tax relief exemptions and relief for special groups (Moulton, Waller, and Wentland 2018).

Finally, in the present study we are unable to accurately determine the net tax bill for each homeowner or precisely consider the full range of offsetting tax benefits that come with homeownership (namely, mortgage interest deductions and state/local tax deductions); but, as we describe in section 4.A above, we allow an estimated average benefit varying by home type, region, and home size, as household income (and therefore marginal tax rate and likelihood of itemization) has tremendous variation across the US, which we capture to some extent with this approach. \(^4\)

4.D. **Quantity, Housing Counts, and Aggregation**

Once we obtain user-cost estimates for millions of individual properties across the United States, we then aggregate to a weighted national estimate of housing services based on the corresponding quantities of the housing stock by location/region, type of home (single family residence (SFR) vs. non-SFR), and number of bedrooms. We use the weighted unit counts of the housing stock from the ACS for each year of our sample, which provides a yearly count of the aggregate number of residential housing units by Census Division, depicted in Figure 3. Because the BEA’s current method treats vacant homes differently than (tenant or owner) occupied homes, we omit these from our aggregation, reconstructing estimates according to the BEA’s current method and using the same quantity of homes from the ACS such that the difference between the two series is independent of quantities used (labeling this “Quantity Adjusted PCE Housing” to

---

\(^4\) Our ambition is to eventually use linked administrative data to back out a more precise, idiosyncratic estimate of the tax benefits to owning a home. In addition, linkages to Census administrative data records, for example, would also allow us to better estimate maintenance and other costs for households (or, at least regionally – where wear and tear from climate and other factors may contribute to households reporting systematically different levels of maintenance expenditures) and to better understand housing market dynamics of populations of homeowners vs. renters. We return to this point in section 6.
Figure 3: Census Divisions

Source: https://www.census.gov/geo/reference/webatlas/divisions.html

reflect this difference from the official series). For illustrative purposes, refer to Table 1 below, where we show the calculation of our national estimate for Q4 of 2015. For each Census Division or region of the U.S., we multiply the average user cost for each type of home (SFR vs. non-SFR) for each bedroom category.42

This method of aggregation assumes that the non-missing data is reasonably representative of the missing data. For example, Indiana’s sale prices are missing from the ZTRAX data set, as it is among the non-disclosure states that does not ordinarily record sale prices in public use tax assessor data. Hence, our final aggregate estimates must assume that the average user costs imputed from sales in its Census region (Illinois, Michigan, Ohio, and Wisconsin) reflect the Indiana market.43 Missing data itself is not a prohibitive limitation for constructing national accounts (statistical agencies always have limited data); the issue is rather the representativeness of the data we do have. While many of these states are reasonably represented by their neighboring

42 We use bedrooms as a proxy for size of the home to create categorical differences that more accurately reflect the weighted total. The bins are numbered 1 through 5+ in Table 1. However, for states that did not have good coverage of the number of bedrooms, we assumed that the distribution of user cost approximately aligned with the distribution of bedrooms and assigned homes to corresponding bins of bedrooms. In future work, we will explore using county-level quantity counts, as finer location averages could be more relevant than averages by physical characteristics.

43 Recall that one of the limitations of this data set is that there is no price data from the following states: Idaho, Indiana, Kansas, Mississippi, Missouri, Montana, New Mexico, North Dakota, South Dakota, Texas, Utah, and Wyoming. Maine is also excluded due to limited data in a number of quarters of our sample period.
states’ housing markets (e.g., Indiana), one exception might be Texas (the largest state for which we have missing price data).\textsuperscript{44}

4.5 Varying Ex Ante Expected Price Appreciation/Depreciation

Finally, for robustness, we vary the $E[\pi]$ term of ex ante expected price appreciation. Our default specification assumes a very long-run view of home price inflation of a constant 2% per year, despite the fact that homeowners during this period may very well have perceived price appreciation quite differently, particularly for some regions that experienced steep price fluctuations. Rather than assuming that homeowners take a \textit{constant long-run, national} view of price expectations, we can instead consider that that they take a \textit{variable short-run, local} view of price expectations. Thus, our alternative specification supposes that homeowners expect ex ante price appreciation to be their local (county-level) average yearly price inflation from the prior two years (quarter $t-8$ to $t-5$ and $t-4$ to $t-1$). This is calculated by taking the average percent change of the median predicted price by county over the previous eight quarters from our hedonic model estimates discussed above.\textsuperscript{45}

In this alternative specification, we also limit appreciation (depreciation) expectations to 5% (-5%) to avoid substantially negative user costs and excessive volatility based on expectations. One can think of this specification as price appreciation being expected to cover or offset (approximately) the maintenance, physical deterioration of the property, and owner risk premium

\textsuperscript{44} If this method (or similar) were to be adopted by the BEA or others, supplemental data would be required to verify these assumptions or to re-weight the estimates to better represent the missing states’ housing markets. The scope of this study, however, is to explore how far this particular “big data” set can go toward developing alternative housing estimates. The American Housing Survey (AHS) also has high quality data on the unit counts of the housing stock, but the survey is only available every other year and is a significantly smaller sample.

\textsuperscript{45} Note that this is not seasonally adjusted. Some of the volatility in prices will be from purely seasonal factors. This can be augmented by applying a standard seasonal adjustment. For now, we are reporting the raw, unadjusted nominal results.
Table 1: User Cost Aggregation – Example Quarter

Total User Cost Calculation (Default Specification) for 2015 Quarter 4

<table>
<thead>
<tr>
<th>Division</th>
<th>bedrooms</th>
<th>Ave. User Cost</th>
<th>Q</th>
<th>P*Q (billions)</th>
<th>Ave. User Cost</th>
<th>Q</th>
<th>P*Q (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 or 1</td>
<td>14,565</td>
<td>79,713</td>
<td>1</td>
<td>30,133</td>
<td>761,608</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16,669</td>
<td>491,998</td>
<td>8</td>
<td>32,612</td>
<td>1,006,532</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20,603</td>
<td>1,603,041</td>
<td>33</td>
<td>23,622</td>
<td>533,706</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>29,814</td>
<td>838,816</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>41,131</td>
<td>204,366</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 or 1</td>
<td>11,749</td>
<td>142,736</td>
<td>2</td>
<td>17,386</td>
<td>2,599,754</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10,635</td>
<td>1,027,587</td>
<td>11</td>
<td>17,580</td>
<td>2,624,879</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15,848</td>
<td>3,614,253</td>
<td>57</td>
<td>28,243</td>
<td>2,174,197</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24,420</td>
<td>2,234,490</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>38,896</td>
<td>579,746</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 or 1</td>
<td>7,239</td>
<td>220,172</td>
<td>2</td>
<td>7,245</td>
<td>1,751,404</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6,887</td>
<td>1,946,805</td>
<td>13</td>
<td>10,839</td>
<td>2,480,621</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10,251</td>
<td>6,553,425</td>
<td>57</td>
<td>17,576</td>
<td>351,747</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16,547</td>
<td>2,979,940</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20,061</td>
<td>668,551</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0 or 1</td>
<td>9,682</td>
<td>143,659</td>
<td>1</td>
<td>10,554</td>
<td>769,223</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9,749</td>
<td>1,051,504</td>
<td>10</td>
<td>12,062</td>
<td>952,057</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12,754</td>
<td>2,678,916</td>
<td>34</td>
<td>14,576</td>
<td>351,747</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16,547</td>
<td>2,979,940</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20,061</td>
<td>668,551</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 or 1</td>
<td>9,631</td>
<td>197,364</td>
<td>2</td>
<td>7,303</td>
<td>2,037,536</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8,813</td>
<td>1,922,406</td>
<td>17</td>
<td>9,670</td>
<td>3,258,601</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11,897</td>
<td>7,526,960</td>
<td>90</td>
<td>15,778</td>
<td>1,869,658</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20,120</td>
<td>3,739,500</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>29,923</td>
<td>1,091,405</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 or 1</td>
<td>7,300</td>
<td>94,430</td>
<td>1</td>
<td>6,881</td>
<td>443,190</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6,123</td>
<td>739,063</td>
<td>5</td>
<td>7,384</td>
<td>691,375</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7,685</td>
<td>2,895,377</td>
<td>22</td>
<td>10,281</td>
<td>246,935</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12,386</td>
<td>1,059,573</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18,240</td>
<td>243,589</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 or 1</td>
<td>11,302</td>
<td>212,743</td>
<td>2</td>
<td>4,329</td>
<td>1,461,312</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5,616</td>
<td>1,315,520</td>
<td>7</td>
<td>7,323</td>
<td>1,449,698</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8,589</td>
<td>5,129,666</td>
<td>44</td>
<td>8,339</td>
<td>475,987</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13,350</td>
<td>2,283,730</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18,331</td>
<td>435,305</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0 or 1</td>
<td>15,553</td>
<td>127,213</td>
<td>2</td>
<td>10,601</td>
<td>779,253</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14,278</td>
<td>759,204</td>
<td>11</td>
<td>10,698</td>
<td>1,068,443</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14,736</td>
<td>2,597,256</td>
<td>38</td>
<td>13,958</td>
<td>428,687</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>21,199</td>
<td>1,580,893</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>28,338</td>
<td>623,233</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0 or 1</td>
<td>17,924</td>
<td>314,491</td>
<td>6</td>
<td>23,344</td>
<td>2,515,810</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23,840</td>
<td>1,575,736</td>
<td>38</td>
<td>31,575</td>
<td>2,884,457</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25,817</td>
<td>5,077,243</td>
<td>131</td>
<td>36,109</td>
<td>1,132,319</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34,382</td>
<td>2,928,474</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>43,812</td>
<td>755,755</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Subtotal (SFR)** | 1,216 | **Subtotal (non-SFR)** | 618  

**Total User Cost:** 1,216 + 618 = 1,834
(which itself may fluctuate in proportion to price expectations). While this is somewhat simplistic, our goal is to provide a sense of a reasonable range of possible estimates, as a more moderate moving average (as in Verbrugge (2008)) may produce an estimate somewhere in between this range of results, albeit closer to the long-run default specification.46

5. Results

Our full set of results for all years and quarters in our sample appear in Table 2, which shows both the total and average user cost estimates of housing services as well as the corresponding estimates by housing type (SFR vs. non-SFR) by quarter. A visual of this data is shown in Figures 5 and 6. Specifically, Figure 5 illustrates the default specification graphically over time, broken out by housing type using the default user cost specification, showing similar time series dynamics and that the total user costs of detached SFRs are consistently higher than non-SFRs, as one would expect.

The key figure of the paper is Figure 6, where we compare our average yearly user cost measure of housing services with the BEA’s yearly estimate of housing services from PCE, using the ACS to adjust the quantity of the stock of housing in each year to be equal across both series. Note that we compare the full estimates of aggregate housing services because we are estimating the user cost for all residential homes in our sample, applying the same method to all homes whether they are owner-occupied or not.47 Our default aggregate measure of housing was initially

46 Generally, countries that employ a user cost method for housing omit the \( \mathbb{E}[\pi] \) term entirely, simplifying the calculation (Diewert and Nakamura 2009). One way of thinking about this simplification involves referring back to the reason why the \( \mathbb{E}[\pi] \) term is factored in the calculation in the first place. As a thought experiment, the user cost method is often pitched as calculating the cost of an owner who purchases a home at the beginning of a period and sells it at the end (assuming away transactions costs). The \( \mathbb{E}[\pi] \) term in that case would simply be the capital gain/loss during a given period; but, if the next period begins with repurchasing the same home at the price from the end of the last period, then the capital gain/loss is essentially erased immediately. For now, we remain somewhat agnostic to the different approaches by offering results for multiple ways of incorporating \( \mathbb{E}[\pi] \) into user cost; our default specification comes at the suggestion of feedback we received from the NBER-CRIW Pre-Conference in 2018 and is not uncommon in the academic literature.

47 Also note that aside from methodology, there are other small differences that remain. For example, we do not include the imputed rent for farm dwellings, as we cull properties zoned for agriculture and we do not have separate estimates for group homes, nor do we include vacant dwellings. But, these estimates are small and relatively constant over time, so they would not account for much
much higher than the BEA’s estimate in 2002, but this gap widened precisely when home prices throughout much of the U.S. appreciated considerably during the run up to the financial crisis and Great Recession.

![Figure 5: Total Quarterly User Costs by SFR/Non-SFR (Default Specification)](image)

Finally, some states and municipalities had limited data in the early few years of this sample, which may not have been random, as richer counties may have digitized these records earlier and more consistently, possibly explaining some of this difference in the first couple years.
<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2002q1</td>
<td>1,489</td>
<td>14,876</td>
<td>1,051</td>
<td>15,773</td>
</tr>
<tr>
<td>2002q2</td>
<td>1,577</td>
<td>15,711</td>
<td>1,114</td>
<td>16,653</td>
</tr>
<tr>
<td>2002q3</td>
<td>1,498</td>
<td>14,884</td>
<td>1,051</td>
<td>15,665</td>
</tr>
<tr>
<td>2002q4</td>
<td>1,461</td>
<td>14,476</td>
<td>1,022</td>
<td>15,172</td>
</tr>
<tr>
<td>2003q1</td>
<td>1,481</td>
<td>14,638</td>
<td>1,032</td>
<td>15,261</td>
</tr>
<tr>
<td>2003q2</td>
<td>1,505</td>
<td>14,813</td>
<td>1,052</td>
<td>15,486</td>
</tr>
<tr>
<td>2003q3</td>
<td>1,677</td>
<td>16,445</td>
<td>1,169</td>
<td>17,119</td>
</tr>
<tr>
<td>2003q4</td>
<td>1,712</td>
<td>16,727</td>
<td>1,183</td>
<td>17,247</td>
</tr>
<tr>
<td>2004q1</td>
<td>1,711</td>
<td>16,657</td>
<td>1,184</td>
<td>17,177</td>
</tr>
<tr>
<td>2004q2</td>
<td>1,957</td>
<td>19,001</td>
<td>1,354</td>
<td>19,587</td>
</tr>
<tr>
<td>2004q3</td>
<td>1,947</td>
<td>18,848</td>
<td>1,340</td>
<td>19,345</td>
</tr>
<tr>
<td>2004q4</td>
<td>1,961</td>
<td>18,885</td>
<td>1,322</td>
<td>18,980</td>
</tr>
<tr>
<td>2005q1</td>
<td>2,048</td>
<td>19,698</td>
<td>1,382</td>
<td>19,799</td>
</tr>
<tr>
<td>2005q2</td>
<td>2,139</td>
<td>20,545</td>
<td>1,446</td>
<td>20,655</td>
</tr>
<tr>
<td>2005q3</td>
<td>2,217</td>
<td>21,272</td>
<td>1,492</td>
<td>21,271</td>
</tr>
<tr>
<td>2005q4</td>
<td>2,280</td>
<td>21,848</td>
<td>1,533</td>
<td>21,800</td>
</tr>
<tr>
<td>2006q1</td>
<td>2,489</td>
<td>23,799</td>
<td>1,683</td>
<td>23,851</td>
</tr>
<tr>
<td>2006q2</td>
<td>2,458</td>
<td>23,440</td>
<td>1,659</td>
<td>23,451</td>
</tr>
<tr>
<td>2006q3</td>
<td>2,381</td>
<td>22,654</td>
<td>1,596</td>
<td>22,498</td>
</tr>
<tr>
<td>2007q1</td>
<td>2,415</td>
<td>22,922</td>
<td>1,624</td>
<td>22,821</td>
</tr>
<tr>
<td>2007q2</td>
<td>2,513</td>
<td>23,816</td>
<td>1,693</td>
<td>23,755</td>
</tr>
<tr>
<td>2007q3</td>
<td>2,460</td>
<td>23,263</td>
<td>1,662</td>
<td>23,277</td>
</tr>
<tr>
<td>2007q4</td>
<td>2,256</td>
<td>21,294</td>
<td>1,517</td>
<td>21,210</td>
</tr>
<tr>
<td>2008q1</td>
<td>2,083</td>
<td>19,606</td>
<td>1,409</td>
<td>19,652</td>
</tr>
<tr>
<td>2008q2</td>
<td>2,027</td>
<td>19,051</td>
<td>1,374</td>
<td>19,153</td>
</tr>
<tr>
<td>2008q3</td>
<td>1,779</td>
<td>16,697</td>
<td>1,202</td>
<td>16,743</td>
</tr>
<tr>
<td>2009q1</td>
<td>1,591</td>
<td>14,912</td>
<td>1,078</td>
<td>15,006</td>
</tr>
<tr>
<td>2009q2</td>
<td>1,742</td>
<td>16,296</td>
<td>1,189</td>
<td>16,526</td>
</tr>
<tr>
<td>2009q3</td>
<td>1,786</td>
<td>16,666</td>
<td>1,221</td>
<td>16,942</td>
</tr>
<tr>
<td>2009q4</td>
<td>1,741</td>
<td>16,216</td>
<td>1,189</td>
<td>16,472</td>
</tr>
<tr>
<td>2010q1</td>
<td>1,771</td>
<td>16,461</td>
<td>1,209</td>
<td>16,720</td>
</tr>
<tr>
<td>2010q2</td>
<td>1,747</td>
<td>16,221</td>
<td>1,202</td>
<td>16,608</td>
</tr>
<tr>
<td>2010q3</td>
<td>1,572</td>
<td>14,578</td>
<td>1,083</td>
<td>14,956</td>
</tr>
<tr>
<td>2010q4</td>
<td>1,566</td>
<td>14,501</td>
<td>1,073</td>
<td>14,817</td>
</tr>
<tr>
<td>2011q1</td>
<td>1,651</td>
<td>15,278</td>
<td>1,132</td>
<td>15,631</td>
</tr>
<tr>
<td>2011q2</td>
<td>1,633</td>
<td>15,076</td>
<td>1,125</td>
<td>15,503</td>
</tr>
<tr>
<td>2011q3</td>
<td>1,461</td>
<td>13,455</td>
<td>1,006</td>
<td>13,832</td>
</tr>
<tr>
<td>2011q4</td>
<td>1,355</td>
<td>12,451</td>
<td>928</td>
<td>12,735</td>
</tr>
<tr>
<td>2012q1</td>
<td>1,344</td>
<td>12,318</td>
<td>922</td>
<td>12,627</td>
</tr>
<tr>
<td>2012q2</td>
<td>1,353</td>
<td>12,395</td>
<td>929</td>
<td>12,726</td>
</tr>
<tr>
<td>2012q3</td>
<td>1,332</td>
<td>12,189</td>
<td>916</td>
<td>12,542</td>
</tr>
<tr>
<td>2012q4</td>
<td>1,353</td>
<td>12,376</td>
<td>921</td>
<td>12,614</td>
</tr>
<tr>
<td>2013q1</td>
<td>1,407</td>
<td>12,853</td>
<td>956</td>
<td>13,086</td>
</tr>
<tr>
<td>2013q2</td>
<td>1,488</td>
<td>13,561</td>
<td>1,015</td>
<td>13,875</td>
</tr>
<tr>
<td>2013q3</td>
<td>1,687</td>
<td>15,339</td>
<td>1,146</td>
<td>15,632</td>
</tr>
<tr>
<td>2013q4</td>
<td>1,697</td>
<td>15,394</td>
<td>1,150</td>
<td>15,662</td>
</tr>
<tr>
<td>2014q1</td>
<td>1,729</td>
<td>15,656</td>
<td>1,162</td>
<td>15,813</td>
</tr>
<tr>
<td>2014q2</td>
<td>1,776</td>
<td>16,041</td>
<td>1,196</td>
<td>16,247</td>
</tr>
<tr>
<td>2014q3</td>
<td>1,773</td>
<td>15,979</td>
<td>1,190</td>
<td>16,149</td>
</tr>
<tr>
<td>2014q4</td>
<td>1,723</td>
<td>15,493</td>
<td>1,150</td>
<td>15,575</td>
</tr>
<tr>
<td>2015q1</td>
<td>1,675</td>
<td>15,030</td>
<td>1,111</td>
<td>15,027</td>
</tr>
<tr>
<td>2015q2</td>
<td>1,793</td>
<td>16,066</td>
<td>1,195</td>
<td>16,143</td>
</tr>
<tr>
<td>2015q3</td>
<td>1,832</td>
<td>16,390</td>
<td>1,220</td>
<td>16,456</td>
</tr>
<tr>
<td>2015q4</td>
<td>1,834</td>
<td>16,380</td>
<td>1,216</td>
<td>16,369</td>
</tr>
</tbody>
</table>
The more pronounced fluctuations in the path of the user cost-based estimate from 2002 through 2010, during the infamous bubble-bust years, bear a striking resemblance to national house price indices like Case-Shiller’s, rising about $1 trillion from 2002 to the peak in 2006, with a similarly precipitous fall in the several years that followed. Broadly, this result is consistent with other recent work like Braga and Lerman (2019) who assess the divergence in consumer price index (CPI) measures using a user cost vs. rental-equivalence approach. Indeed, this result is consistent with Ambrose et al. (2015) in that a notable drop occurs in the latter part of the decade. However, beginning around 2010, the user cost-based estimate of housing services using Zillow data has tracked much more closely to the housing estimate based on the BEA’s current rental-equivalence method, consistent with the time series dynamics of the price indices in the figure we discussed in the introduction (Figure 2).
One alternative specification of the user cost method, factoring in recent (eight quarters) and very local (county-level) price expectations, depicts a more pronounced bubble and bust in its measurement of housing services of the same time period. Figure 7 shows a user cost closer to the rental equivalence estimates early in the 2000s, but also shows price expectations producing a much sharper peak and trough with the alternative specification, with the level in recent years being considerably smaller than current BEA estimates of housing. However, given that this specification is more aggressive in its price expectations assumption, this result should be interpreted with care, as it incorporates greater volatility into the series based on a very simple model of price expectations. Indeed, this is one reason why most countries that actually employ the user cost method for housing in their national accounts or price indices often simplify this method further by omitting the price appreciation term in the user cost calculation (Diewert and Nakamura 2009).

![Figure 7: Total Alternative User Cost Compared to PCE Housing](image-url)
For robustness, we vary some of the assumptions underlying the user cost formula, which we show in Figure 8. First, rather than incorporate a fixed homeownership risk premium of 2%, one alternative would be to use the average 30-year fixed mortgage rate as a stand-in for the 10-year treasury rate and this 2% constant. The 30-year mortgage rate generally tracks the time-series dynamics of other long-term interest rates like the 10-year Treasury, but it contains this additional risk premium that can vary slightly over time due to market conditions. Not surprisingly, this specification produces very similar results to our default specification, due to the stability of this premium over our sample period. Second, if we omit the $E[\pi]$ term entirely, a practice that some countries have elected to do when implementing a user cost approach, this shifts the series upward, effectively reflecting more costly housing services across the entire time series. Third, if we omit the risk premium entirely, we see an analogous downward shift in the series. Finally, note that

![Figure 8: Comparing Different User Cost Methods with PCE](image)
because our $E[\pi]$ term and risk premium term are both constants, one can also think of our default specification as simply including offsetting terms (where, even if one disagrees with the precise constant we use, if asset risk changes directly with price expectations, the choice of the constant becomes less relevant if they offset).

An important benefit to calculating user cost estimates with microdata is that there is greater scope for separating estimates geographically or by housing type. More generally, national statistical offices face increasing demands by users for finer partitions of the national accounts, which is a key advantage of “big data” over traditional designed survey data that suffers to a greater extent from a thin cell problem. As an example, Figures 9 and 10 show average user cost by region (Census Division) for single family residences (SFR) and non-SFR’s respectively, although the

![Figure 9: Average Yearly User Costs for SFR by Census Division](image-url)
Figure 10: Average Yearly User Costs for Non-SFR by Census Division

Figure 11: Average User Costs and PCE Average Rent
data easily allows us to provide measures at the county or tract level (except, of course, for states with missing price data). The estimates produce the expected result – that the Pacific region and New England have the highest average user costs of housing, with several regions at the bottom experiencing mild, if any, bubble-bust market dynamics. This is consistent with numerous other regional metrics of the housing market over this same period.

Finally, while large aggregate estimates are often the focus of NIPA estimates, many users prefer per unit averages. Figure 11 depicts average user cost per residential unit for three different specifications and the corresponding per unit space rent estimate (BEA). While the shape is identical to Figure 8, the magnitudes may be helpful for assessing reasonability of the estimates, with the nominal average user cost and space rent both near $15,000 per year in the final couple years of our sample period.

6. Discussion

Though for reasons discussed below the BEA is not adopting the user cost method, it is worth discussing a few caveats when comparing it to the current method and potential avenues for future research. We find that a user cost method using fine-microdata from Zillow can produce estimates of housing services comparable to the BEA’s current method only for the most recent years we estimate, but the series behaves very differently over the bubble-bust period of the 2000s. Indeed, the departure from the rental-equivalence method during the first decade of this century (and, extended periods prior to that, based on other studies using different data) shows that the theoretically predicted convergence of these estimates is far from guaranteed. And, if there are systematic divergences, particularly when the housing sector is experiencing a pronounced boom-bust cycle, a central question for national statistical offices will be: to what extent should housing
estimates reflect underlying asset appreciation (that does not appear in rental data), which may or may not be temporary? And, which conception of aggregate housing is more relevant to users of the data and policymakers? These are foundational conceptual questions in the economic measurement literature (e.g., Alchian and Klein (1973), Goodhart (2001), and Gilchrist and Leahy (2002)), which this paper does not attempt to settle.

We made a number of methodological simplifications and assumptions which, if adopted by a national statistical office at some point, would need to be explored further as some (likely small portion) of the differences may be attributed to these choices. Additional precision gained from refining these estimates may, at least in part, help bridge the aforementioned gap between user cost and rental-equivalence estimates (particularly in the post-bubble/bust years when the gap was not as large). For example, the mortgage interest and property tax deductions are highly idiosyncratic depending on a number of factors, such as income where the probability of itemization and marginal tax rates could be higher during the boom (lowering user costs) and lower during the bust, potentially accounting for some of the cyclical departure of user cost from the rental equivalence estimates. Or, insofar as maintenance and depreciation vary idiosyncratically or by region, a more sophisticated approach could exacerbate user cost differences if high price areas experienced relatively higher costs during the boom period. In either case, linked administrative data could help us answer these questions by creating idiosyncratic, property-specific estimates of the tax benefits, maintenance and depreciation costs, and a host of other refinements that could generate even more precise estimates. Finally, linked administrative data may also help bridge the gap of our understanding of which user cost assumptions most directly

48 There is evidence that the economic decisions of homeowners are, in fact, influenced by price appreciation/depreciation of their homes and housing wealth. See, for example, Mian and Sufi (2011), Mian, Rao, and Sufi (2013), Campbell and Cocco (2007), and Lowenstein (2018). Further, a related question would be: which conception of aggregate housing would be the most useful to monetary policymakers? We leave this, however, to future research.
compare to market rents, particularly for tenant-occupied homes for which we have rental data and user cost estimates based on Zillow data, as this comparison would show the most direct apples-to-apples comparison of the two methodological approaches. This linked data could also help us test or even construct better sample weights to ensure the composition of the sample accurately represents the characteristics of the entire stock of housing in the United States.

After considering a number of options, the BEA does not plan to adopt the user cost approach, as it plans to modify its rent-based approach by incorporating new source data (Census ACS data) and updating its method to include a new owner-premium adjustment (see Aten 2018). The proposed modified rental-equivalence approach would be less volatile and more incremental compared to user cost-based estimates. Nevertheless, this research demonstrates the potential upside to incorporating new data and exploring new methods in the national accounts more generally and housing in particular. Statistical agencies are continuously seeking ways to lower response burden for survey respondents, which is of increasing concern in an era of falling response rates more generally, and to find more cost-effective means for delivering statistics to users. For example, survey respondents are asked to place a value on their own home. The kind of microdata used in this study could be used to update or even replace statistics that use this data (e.g., rent-to-value ratios or the housing stock quality measure used to make adjustments to the BEA’s current rental-equivalence method for owner-occupied housing). Linked Zillow-ACS data could provide an estimate for calculating an owner-premium for owner-occupied housing, supplementing the (adapted) rental-equivalence method proposed by Aten (2018) by using market transaction values as opposed to survey-based values, which is currently being explored by BEA researchers. As another example, “big data” sources could also substantially improve precision for regional and type stratification, as linked data could provide additional detail about individual
homes (e.g., number of bathrooms, size of the home in square feet, etc.) that is not reported in a survey like the ACS, providing further potential for improving the economic measurement of housing services.
References


