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14.1  Introduction

A mindboggling amount of data is now available for economists to ana-
lyze. This is made possible by improved technology in data collection and 
storage. Modern data diff er from conventional data in at least two impor-
tant ways: they tend not to be provided by government agencies, and they 
have what data scientists refer to as the “three V” characteristics: volume, 
variety, and velocity. Econometricians may think of them as short panels 
of big, often unbalanced, high- frequency, highly heterogeneous data. Such 
granular data can potentially allow new analyses of  economic behavior. 
However, a full analysis of the data comes with unique challenges. A case in 
point is the weekly Nielsen Retail Scanner dataset, which has been collected 
since 2006 and has added roughly half  a terabyte of data each year, reaching 
a size of about fi ve terabytes in 2016.
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The Nielsen dataset has three features of  interest. First, it consists of 
real- time sales and unit prices recorded at the store/UPC- code level. Such 
transactions data are distinctly diff erent from offi  cial price indices that are 
survey based. Second, the data are not subject to revisions once a trans-
action is completed; they are also less susceptible to measurement errors 
because the data are digitally recorded. Third, the data are available for 
the major metropolitan areas and thus provide spatial information distinct 
from the offi  cial monthly retail sales data. The weekly data also provide 
higher frequency information than in quarterly and annual surveys. Fourth, 
many memorable events have occurred over the span of the sample: a big 
recession, destructive hurricanes, several elections, new tax initiatives, and 
a government shutdown. Though the weekly aspect of the data seems like it 
should appeal to researchers, work thus far has mostly aggregated the data 
to a monthly or quarterly frequency without taking advantage of the weekly 
information. With just a peek at the data, one understands why: the data 
exhibit strong seasonal patterns that are highly heterogeneous in the product 
and spatial dimensions. As will be shown below, this is true not only in our 
base case analysis for the four most populous states, but also in extended 
analyses that include more regions and states. The weekly data have limited 
use for business cycle analysis without a way to deconvolve the seasonal 
variations from the cyclical ones.1

The obvious solution is to seasonally adjust one series at a time. Unfor-
tunately, there are few satisfactory methods for seasonally adjusting weekly 
data, let alone for a massive number of series. We argue below that the short 
span and the quasiperiodic nature of the Nielsen data make perfect adjust-
ment of each series highly unlikely. This is problematic because in our data, 
counties within a state are likely to share common seasonal patterns. Even if  
the residual seasonal eff ects are negligible at the individual series level, they 
can become nontrivial when aggregated across counties.

This paper develops a framework for seasonally adjusting a large panel 
of  data in which common and idiosyncratic seasonal variations coexist. 
We suggest complementing univariate seasonal adjustments with a second 
step that pools counties within a state to remove the within- year common 
seasonal variations, one year at a time. Our premise is that a good deal of 
the within- year variations are highly predictable ex ante. Hence, we treat 
within- year seasonal adjustment as a prediction problem. To fi nd the predic-
tion model of unknown functional form in the face of a large set of potential 
predictors, we use machine learning methods to perform estimation and 
variable selection. This bypasses the need to specify a single data- generating 
process, which is a diffi  cult task when the data are so highly heterogeneous. 
Though our approach is rather model- agnostic, the adjusted data are no lon-

1. With some abuse of terminology, holiday eff ects will also be treated as seasonal variations.
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ger dominated by seasonal eff ects so that insights about consumer behavior 
can be learned from analysis of demand systems.

In theory, Engel curves should be spanned by functions of  prices and 
income that are common across product groups. Traditional demand analy-
ses indirectly parameterize these latent processes by fl exible functions. Con-
sistent estimation of the underlying parameters is possible when T (the num-
ber of time periods) tend to infi nity with Ng (the number of product groups) 
fi xed. Given that Ng= 108 and T = 469 are reasonably large in our data, we 
can take advantage of results developed in large dimensional factor anal-
ysis to estimate the latent functions of prices and income directly. Big Data 
therefore provide a perspective of demand analysis that was not possible in 
the conventional small Ng large T setting.

Our demand analysis of the seasonally adjusted data leads to four conclu-
sions. First, the demand systems are well described by three common factors 
relating to the trend, level, and curvature of  Engel curves. Second, even 
though the data are primarily based on sales at grocery and mass merchan-
dise stores, there is surprisingly clear evidence of cyclical spending patterns. 
The cyclical components move closely with measures of consumer sentiment 
and consumer confi dence, indicating that the actions and “feelings” of con-
sumers are aligned. Third, an analysis of the loadings on the cyclical factor 
yields a “distribution” of recession sensitivity across product groups. The 
budget share of a FOOD- IN basket, which collects goods related to home 
production of food, tends to be strongly countercyclical, while that of  a 
LUXURY basket is procyclical, consistent with evidence from the monthly 
Consumer Price Index (CPI) weights. Fourth, recession sensitivity has a 
spatial dimension as cyclical changes in spending on the FOOD- IN basket 
are larger in metropolitan than rural areas. We use heatmaps to illustrate the 
changes in FOOD- IN as the economy moves through the business cycle. The 
data also reveal how consumers in the New York area adapted to changes in 
spending due to Hurricane Sandy. Overall, the business cycle information in 
the scanner data seems roughly consistent with the less granular offi  cial data. 
This is good news because it suggests that there is valuable higher- frequency 
information about consumer spending at the aggregate and local levels once 
the seasonal variations are removed. The proposed two- step procedure can 
be adapted to other panels so long as the variations to be removed are suf-
fi ciently pervasive for pooling to be eff ective.

The rest of the paper proceeds as follows. We begin in section 14.2 with a 
description of the data and highlight the presence of common seasonality. 
Section 14.3 discusses the challenges posed by cross- section dependence that 
seasonal adjustments must overcome. Section 14.4 presents our two- step 
approach and elaborates how the second step is formulated as a prediction 
problem. Section 14.5 analyzes the properties of the seasonally adjusted data 
and documents how the diff erent products and regions react to changing 
economic conditions. Section 14.6 concludes.
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14.2  The Data

The Nielsen Retail Scanner data are collected by the Nielsen marketing 
group and managed by the Kilts Center for Marketing at the University of 
Chicago. The data have over 1,000 products belonging to over 115 product 
groups (e.g., beer, wine, eggs) that can in turn be organized into 10 categories: 
dry groceries, frozen, dairy, deli meat, fresh food, nonfood, alcoholic bever-
age, general merchandise, health, and beauty. The data are heavily weighted 
toward groceries and mass- merchandise goods, with limited coverage of 
consumer durables. Specifi cally, the products cover over 3 million universal 
product codes (UPCs) collected from over 35,000 participating stores in 55 
MSAs (Metropolitan Statistical Areas) across the United States. Each store 
reports weekly data for every UPC code that had any sales volume during 
the week. Nielsen uses a Saturday week- ending label to identify the week in 
which the data are reported. We have information about the location of the 
retailer (but not the name), the units sold, and the volume weighted average 
of the product for that week. Following Nielsen’s documentation, a week’s 
total dollar sales is calculated as

sales =
price

prmult
units.

The movement fi les of  the database provide data for UNITS (the number of 
units sold), PRICE (the volume weighted average price of the product for the 
week), PRMULT (a price multiplier to indicate deals such as three for $1).

We analyze the total sales of products within a product group (hereafter 
simply referred to as “groups”). The sales data are constructed as follows. 
For each state, s, we fi rst compile a list of stores that report a sale in at least 
one of the 115 groups in each of the 469 weeks between Saturday, January 
7, 2006, and Saturday, December 27, 2014. Restricting attention to groups 
with data in every week reduces the number of groups from 115 to Ng = 108. 
This gives a balanced panel of stores. Throughout, we will use “county” to 
reference a specifi c geographic county (e.g., New York County, New York). 
We let s(i) denote the state containing county i.

The variables are indexed as shown in table 14.1.
Group by group, we construct a measure of  weekly total sales at the 

county level by aggregating over all stores located in each county within the 
compiled list. The variable of interest is log(salesgct), the log sales of group g 

Table 14.1 Index variables 

   County  Group  Week  Year  

Index 𝑐𝑐 𝑔𝑔 𝑡𝑡 𝜏𝜏
 Total  𝑁𝑁𝑐𝑐  𝑁𝑁𝑔𝑔 = 108  𝑇𝑇 = 469  𝑁𝑁yr = 9  
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in county c(s) in week t. Since a county is state- specifi c, the state index s will 
be suppressed when the context is clear. At each week t, the budget share of 
an arbitrary group g ∈[1, Ng ] is

sharegt
s = c(s) salesgc(s)t

s

g c(s) salesgc(s)t
s

=
sales of group g in state s at week t

total sales in state s at week t
.

Our base case analysis uses data from the four most populated states in 
the US: California (CA), Florida (FL), New York (NY), and Texas (TX). We 
also construct a measure of total sales, labeled FOUR, that aggregates sales 
over the four states. Our extended case adds states from the Midwest (Illi-
nois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, 
North Dakota, South Dakota, Ohio, Wisconsin), Mid- Atlantic (Delaware, 
Maryland, New Jersey, Pennsylvania, Virginia, and Washington DC), and 
Southwest (Arizona, Nevada, and New Mexico). This sample encompasses 
a total of 24 states (plus DC) covering about 70 percent of the population 
in the US with sales in 15,631 stores in 1,147 counties. Results that pool 
over all states in this extended dataset will be labeled SEVEN. The most 
comprehensive analysis groups the remaining states into MOUNTAIN, 
PACIFIC NORTHWEST, NEW ENGLAND, and SOUTH for a total of 
nine regions. The pooled results will be labeled ALL and cover 24,280 stores 
in 2,095 counties.

The 10 product groups with the largest sales in FOUR are listed in table 
14.2 below. The relative importance of  the groups is reasonably similar 
across states, with bread, beer, juice, carbonated beverages, medication, and 
snacks making the list in each of the four states.2

A more systematic analysis of the data requires a framework. We appeal 
to demand theory, which also forms the basis of price indexes and measures 

2. We work with shares instead of sales, which tend to have even stronger seasonal eff ects.

Table 14.2 Budget shares (%): Most- purchased product groups

CA: 𝑁𝑁𝑐𝑐 = 53 FL: 𝑁𝑁𝑐𝑐 = 58 NY: 𝑁𝑁𝑐𝑐 = 58 TX: 𝑁𝑁𝑐𝑐 = 161

Share Description   Share Description   Share Description   Share Description

3.4 bread 4.5 medications 4.2 medications 3.8 carbon. bev.
3.4 beer 4.3 tobacco 3.3 fresh produce 3.7 medications
3.3 juice 3.1 carbon. bev. 3.2 bread 3.4 snacks
3.2 wine 2.9 liquor 3.1 candy 3.0 bread
3.1 fresh produce 2.8 beer 2.9 snacks 2.8 tobacco
3.1 carbon. bev. 2.7 juice 2.8 juice 2.7 packaged meat
3.0 snacks 2.7 candy 2.6 tobacco 2.6 candy
2.8 packaged meat 2.5 snacks 2.6 beer 2.6 fresh produce
2.7 salad dressing 2.3 milk 2.4 carbon. bev. 2.6 juice
2.7  medication   2.3  bread   2.3  milk   2.5  beer
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of cost of living. A (product group based) demand system expresses Ng bud-
get shares in terms of r functions of prices p = ( p1,. . ., pNg

) , and income Y. 
Hence, we may write shareg

s = k=1
r

gk
s (log p)Fk

s(log p,logY ). Importantly, 
the functions F = (F1, …, Fr) are common across groups. The adding- up 
constraint requires that F1

s is a constant.3 The value r is the dimension of 
the space spanned by Engel curves and is known in the literature as the 
rank of a demand system. A rank- one system occurs when budget shares 
are independent of the level of income, in which case all income elastici-
ties equal one. Rank- two demand systems are linear in log prices but not 
in log income. Examples include the translog and the linear expenditure 
system. Many rank- two systems belong to the PIGLOG class discussed in 
Muellbauer (1975). Quadratic Engel curves can be rank two or rank three. 
Gorman (1981) shows that exactly aggregable demand systems must have 
rank no larger than three.

Product- based demand systems were commonly estimated in the 1970s 
and 1980s to obtain price elasticities and to understand substitutability 
across products until characteristic- based demand systems became popu-
lar. A demand analysis typically proceeds by using fl exible functions to 
approximate the expenditure function. Imposing the axioms of  demand 
theory then allows the shares or sales to be expressed as linear functions 
of  prices, income, and a theoretical price index, say P. Under two- stage 
budgeting, income can be replaced by total expenditure on the Ng groups. 
In empirical work, a proxy variable P* that can be constructed prior to 
estimation is often used to bypass the cross- equation restrictions imposed 
by the ideal price index P. For example, the Almost Ideal Demand System 
(AIDS) of Deaton and Muellbauer (1980) uses Stone’s price index defi ned 
by logPt* = g=1

Ng sharegt log(pgt). Given data for Ng shares and prices, the 
AIDS regression model is

sharegt
s = 0g

s +
j=1

Ng

jg
s log pgt

s + g
s log(Yt

s /Pt
s*) + egt

s , t = 1,. . .,T.

The term eg
s can be due to measurement error or anything that shifts spend-

ing for reasons other than changes in prices and income, such as omitted time 
variation in preferences. In cross- section analysis, T would be the number of 
households whose spending patterns are recorded. In time series analysis, 
T would be the number of observations on aggregate spending over long 
periods of time. With panel data, the same household may be observed more 
than once. Using data with Ng small and T large, the rank of demand systems 
is typically estimated to be two or three, and at most four.4

We are interested in analyzing all product groups in the Nielsen data 
available, which is well over 100 in number, not fi ve or six. A large Ng may 

3. For a discussion on the rank of demand systems, see Lewbel (1991).
4. See, for example, Lewbel (1997, 2003); Banks, Blundell, and Lewbel (1997).



Seasonal and Cyclical Sales in Weekly Scanner Data    409

appear to hinder analysis at fi rst glance because the number of parameters 
in a demand system is quadratic in Ng. But because Ng and T are both large, 
we may deviate from traditional demand analysis and let the shares data 
identify the space spanned by the latent functions and its dimensionality 
without directly using data on prices or of P*, or make approximations of 
the expenditure function. To do so, consider the factor representation 
of the budget shares:

share gt
s = g

s Ft
s + egt

s ,

where Ft
s is a r × 1 vector of latent factors and g

s  is the corresponding vec-
tor of factor loadings. Appealing to theoretical results in the literature for 
large dimensional factor analysis, we estimate the factors and the loadings 
by applying the method of principal components to the shares data alone. 
For a survey of the literature, see Bai and Ng (2008).

In implementation, we take a three- week rolling average of budget shares 
to smooth out the variations due to temporary promotional sales. Principal 
components are then estimated from the standardized data.5 In s= (NY, 
TX, and FOUR), the largest factor F̂1

s explains over 0.9 of the variations 
of PACKAGED- MILK. As eggnog is one of the products in the group, we 
may think of F̂1

s as a Christmas factor. Other product groups also exhibit 
recurring patterns toward the end of the year. In California, for example, 
the share of juice takes a big dip in week 51, while in Florida, the share of 
haircare products bottoms around week 51.

Figure 14.1 plots the fi rst four factors from the pooled data FOUR. The 
factors are only identifi ed up to sign, so they are plotted to be procyclical. 
Recalling that the factors are mutually orthogonal by construction, fi gure 
14.1 indicates the presence of a multitude of seasonal eff ects. Though all 
four factors have spikes around week 48, the exact week of the spike is dif-
ferent over years and across factors. Indeed, the spectrum of these factors 
peaks around but not exactly at the seasonal frequency of (2πj / 52)208j for 
j ≥ 1. Though the fi rst two factors are strongly periodic, F̂3 and F̂4 appear 
somewhat cyclical. Evidently, cyclical and seasonal common factors coexist.

The criterion of Bai and Ng (2019)6 fi nds fi ve factors in CA, FL, NY, four 
factors in TX, and fi ve factors in FOUR. In all cases, the fi rst factor explains 
about one third of the variations in the data, the fi rst two factors together 
explain just under 60 percent, while four factors explain around 75 percent 
of the variations in budget shares. Taking into account that we demeaned 
the data before estimation by principal components, the actual rank is one 

5. Since our data are demeaned, the constant factor is controlled for prior to estimation.
6. The criterion is defi ned as r s = mink=0, …,rmaxlog (1 – j =1

k ( j
s – )+2) + k ∙ penalty (N, T ), 

where penalty (N, T ) = (N + T ) /NT log [NT / (N + T )] and σj is the j- largest eigenvalue in a T × 
N panel Z = X / NT , where X is the given panel of standardized budget shares. A regularization 
parameter of γ = 0.05 is used to penalize common variations due to outliers. The maximum 
number of factors is set to 10.
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larger than reported above, making the rank of the demand systems in the 
Nielsen data about twice as large as the estimates typically reported in the 
literature. In the next section, we show that this fi nding can be attributed 
to seasonality.

14.3  Seasonality and Cross- Section Dependence

Consumer theory suggests that it is desirable to smooth consumption over 
time. But in reality, spending is uneven over the course of a year. It tends 
to be concentrated around holidays, special events, and toward the last six 
weeks of  the year. In addition to eggnog sales that peak around Christ-
mas, sales of  stationery and school supplies peak around week 36. Sales 
of “cough and cold” products are higher during the winter months, while 
ice- cream sales are higher in the summer months. Flower sales are higher 
around Valentine’s Day and Mother’s Day than the rest of the year. Beer 
sales tend to be highest around July 4th, while wine sales are higher around 
Thanksgiving and Christmas. The point to highlight is that such seasonal 
sales tend to recur every year, though not necessarily on the same day or even 

Fig. 14.1 Factors estimated from raw shares: FOUR states
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the same week. Furthermore, for many of the product groups, the seasonal 
pattern is similar irrespective of location.

The challenge that seasonality poses for factor analysis is that principal 
components can identify pervasive variations but are blind to the source of 
pervasiveness. Hence in the presence of strong common seasonality across 
product groups, the dominant principal components can be unrelated to 
cyclical economic conditions. This being the case in our data, a natural 
approach would be to seasonally adjust each series prior to demand esti-
mation. A variety of  univariate methods are available to de- seasonalize 
monthly and quarterly data, the most notable being X13ARIMA- SEATS 
and TRAMO- SEATS. However, these methods do not seem appropriate 
for data with the three V features. For one thing, although we have 469 
weekly observations, they only span nine years, meaning that we only have 
nine data points from a seasonal perspective. Time series seasonal adjust-
ment methods typically assume that we have a large number of observations 
at the seasonal frequency of interest. Even if  an ideal seasonal fi lter were 
available, fi nite sample bias is unavoidable because the span of our data is 
reasonably short.

Weekly data pose an additional challenge because weekly variations are 
not exactly periodic. For example, Thanksgiving and Christmas do not 
always fall on the same numbered week of the year, and July 4th is sometimes 
in week 26 and sometimes 27. This is a consequence of the fact that we are 
on a Gregorian calendar. We cannot “diff erence away” the seasonal eff ects 
like we could with monthly and quarterly data. Week- of- year and day- of- 
year diff erencing mitigate the problem to some extent, but it cannot capture 
events that occur on diff erent days of the year, the most diffi  cult to handle 
being Easter. In our sample, Easter was as late as April 24 in 2011, and as 
early as March 23 in 2008. Further complicating the problem is that these 
events have diff erential impact depending on the product in question and 
location of the sale. A “one size fi ts all” seasonal fi lter is unlikely to ever exist.

The literature for adjusting weekly data is quite sparse. Notable excep-
tions are the fully parametric state- space analysis of  Harvey, Koopman, 
and Riana (1997) and the nonparametric approach of Pierce, Grupe, and 
Cleveland (1984), Cleveland and Scott (2007), and Cleveland, Evans, and 
Scott (2014). Structural time series modeling requires careful specifi cation 
of the model for the series under investigation. The nonparametric approach 
is to approximate the seasonal component by basis functions such as trigo-
nometric series. Cleveland, Evans, and Scott (2014) suggest to control for 
weekly eff ects, holiday eff ects, and outliers using locally weighted regressions 
and apply the method to unemployment income claims and steel production 
data. But our data have several features that are distinct from these series.

First, the Nielsen sales data tend to be “spiky.” For many groups, the 
spikes only occur once per year, usually around Black Friday. For other 
series, the spikes can be observed a few times a year and can be attributed 
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to temporary sales. Spikes are problematic because they tend not to be well 
approximated by nonparametric regressions that are smooth by design. As 
noted above, we use a three- week rolling average of  the data in demand 
estimation, but this may not be enough to annihilate the problem. Second, 
some variations do not repeat over the course of  the year. Instead, they 
repeat in reference to a date t’s position within the month. As an example, 
consider sales increases around food stamp distributions, or end- of- month 
price changes. Strictly periodic functions based on fi xed positions within the 
year may be too restrictive for these variations.

A third characteristic of  our data is the volume. We have not one, but 
a large number of  heterogeneous and short time series that need to be 
adjusted. It seems unrealistic to expect any statistical procedure to be able 
to completely de- seasonalize every series in the panel.

The possibility that a conventionally adjusted series will likely have some 
residual seasonality has implications for any analysis that involves aggrega-
tion of the individually adjusted series. Consider an arbitrary variable Z that 
has a seasonal and a nonseasonal component:

Zgct = Zgct
nseas + Zgct

seas .

In our case, Zgct is normalized sales of product group g in county c at t. Let 
Ẑgct

seas be some T  consistent univariate estimate of the seasonal component 
of Zgct. The seasonal adjustment error can be decomposed into a term êgct

seas 
that is uncorrelated across counties c, and a term ˆgct that is correlated across 
c; namely,

Ẑgct
seas Zgct

seas = ˆ
gct
seas + êgct

seas .

Aggregating the data over counties, we have

Ẑgt
nseas =

c=1

Nc

Zgct
nseas +

c=1

Nc
ˆ

gct
seas +

c=1

Nc

êgct
seas .

While c=1
Nc êgct

seas tends to zero as Nc , the sum of ˆ
gct
seas over c may not be 

mean zero. Chamberlain (1984) pointed out that Euler equation errors that 
are mean zero over time need not be mean zero in the cross- section dimen-
sion if  the units face common shocks. For a similar reason, the seasonal 
variations left over from an imperfect univariate adjustment can survive 
aggregation in the presence of common seasonality. This is relevant because 
we aggregate over counties to obtain total sales for the product group in the 
state. Since sales in neighboring counties will likely have similar seasonal 
patterns, aggregation will likely preserve the common seasonal component. 
Univariate seasonal adjustments yield group- level sales data that may be 
better characterized by a model with two distinct types of common factors, 
seasonal and nonseasonal. Figure 14.1 suggests that the seasonal factors 
dominate.

This is also consistent with the fi nding in Ng (2017) that the principal 
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components of budget shares constructed from data adjusted from the bot-
tom up continue to exhibit seasonal variations.

14.4  Seasonal Adjustment as a Prediction Problem

Aggregation of the seasonally adjusted data will not, in general, be the 
same as seasonal adjustment of the aggregate data. If  we are only interested 
in the aggregate series, direct seasonal adjustment of the aggregate series 
might well be the simplest approach. But when the county-  and group- level 
seasonally adjusted information are both of interest, as is the case here, there 
is no choice but to perform seasonal adjustment from the bottom up, one 
(county, group) pair at a time. But the foregoing discussion suggests that 
existing fi lters will likely leave residual seasonal variations in the adjusted 
data. Our proposed approach is to complement the univariate adjustments 
with an additional step to “mob up” the residual seasonality prior to aggre-
gate analysis.

To motivate our approach, note fi rst that if  there is commonality in sea-
sonal patterns, it would seem ineffi  cient to seasonally adjust each series in 
isolation. Seasonality is in fact a common feature in the sense of Engle and 
Kozicki (1993), but there is little work in this dimension. Geweke (1978) 
suggests that a multivariate adjustment might dominate a univariate adjust-
ment in a mean- squared error sense, but the population analysis assumes 
that the model is correctly specifi ed and abstracts from model and sampling 
uncertainty. McElroy (2017) considers a multivariate procedure in a large 
T, small Ng setting. Fok, Franses, and Paap (2007) consider a large T, large 
Ng panel of data and use a hierarchical Bayes method to avoid the prolifera-
tion of dummy variables needed to control for seasonal fi xed eff ects. Like 
Fok, Franses, and Paap (2007), we also pool information across counties 
and over time. But instead of treating all dummy predictors as relevant, we 
train machine learning algorithms to determine which ones to use, and how 
they are to be used. In other words, we treat a large Ng as a big data blessing. 
Furthermore, we pool the data across counties and perform adjustment year 
by year while allowing the prediction model to diff er every year.

14.4.1  A Two- Step Panel Approach

In time series analysis, seasonal variations are those that recur with sea-
sonal periodicities. For example, monthly variations are those that recur 
every twelve months. However, as discussed above, weekly variations are 
not strictly periodic. This motivates us to use a defi nition of seasonality that 
does not depend on periodicity.

Recall that for each state s, we have county- level data over 469 weeks, 
and group- level sales is the sum over sales in the counties. Our maintained 
assumption is that sales in the same group g collected in diff erent counties c 
share common seasonal patterns over the course of a year. In other words, 
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two neighboring counties share seasonal patterns even if  one county has 
10 times as many sales as the other. As some counties are much larger than 
others, we demean the data year by year to remove the size eff ect. We further 
standardize the data to ensure scale independence across years and loca-
tions. Normalized sales within each year and each county are defi ned as:

ygct =
log(Zgct) pc

gc

, = yr(t),

where μpcτ denotes the mean of log sales of group g in county c over the year 
τ containing week t, and μpcτ is the corresponding standard deviation. The 
within- year normalization isolates within- year seasonal patterns while pre-
serving long- term trends in aggregate sales and volatility, which the econo-
metrician can model separately. The normalization also allows us to pool 
observations across counties in subsequent estimation. Pooling county- level 
data compensates for the relatively short time span of data for each county.

Next, we posit that ygct has three components: a group- specifi c seasonal 
component, a common seasonal component, and a cyclical component:

ygct = (countyspecificseasonalsales) + (commonseasonalsales)

+ (non seasonalsales)

= dgct + qgct + ugct.

In this decomposition, the seasonal component of sales is dgct + qgct. The goal 
is to extract ugct when only ygct is observed. An overview of the estimation 
methodology is as follows:

Step 1: Estimation of dgct : For each (g, c) pair, perform time series estima-
tion of

ygct = gc
0 + Fouriergct( gc, gc) + gct ,

where using strictly periodic predictors δtj = 2πj(dayofyeart /daysinyear) and 
mtj = 2πj(Dayofmontht / daysinmount),

Fouriergct =
j=1

pd

1,gcj sin( tj) + 2,gcj cos( tj) +
j=1

pm

1,gcj sin(mtj)

+ 2,gcj cos(mtj).

The regression only includes an intercept and will preserve any trends in sales 
that might be in the data. Hereafter, we will refer to step 1 as the Fourier 
regression.

We use a simple Fourier regression to fi t the seasonal variations at the (g, c) 
level in step 1 because least squares regression is simple to implement, espe-
cially when the predictors are the same across (g, c) pairs. Furthermore, there 
is a history in using Fourier regressions to fi rst remove deterministic weekly 
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seasonality, followed by ARMA modeling or local regressions to remove the 
stochastic seasonality one series at a time. But this approach is not practical 
when the number of series to fi t is large. We use machine learning methods 
in the second step, and we pool information in the spatial dimension.7

Step 2: Estimation of qgct from ˆgct : Let ˆ gct = qgct + ugct be the least squares 
residuals from step 1. Because this step is based on estimation of a smooth 
regression, these residuals will have spikes and can be cross- sectionally cor-
related. To proceed, we assume that (i) dgct and qgct are partially predictable 
over the course of a year, and (ii) qgct has variations that are common across 
counties. This allows us to exploit cross- section dependence among coun-
ties to remove the within- year seasonal variation. In a nutshell, we pool 
information across counties to predict the common seasonal component 
qgct using a large number of predictors, which are mostly dummy variables. 
To alleviate the problem of overfi tting, we use machine learning algorithms 
to pick out the most important predictors, leaving the functional form of 
the model unspecifi ed. Details will be explained in the next subsection.

To complete the seasonal adjustment, let q̂gct be the prediction of the com-
mon seasonality in ˆ gct obtained from step 2. From these, we can obtain ûgct , 
an estimate of ugct. A seasonally adjusted value of log sales is obtained by 
plugging the estimated residual ûgct into

(1) ygct
sa ûgct g + g .

The log seasonally adjusted series has the intuitive interpretation of being 
the unpredictable part of the series’ variation around its overall mean for the 
year. An estimate of seasonally adjusted sales is exp(ygct

sa + adjgc) where adjgc 
= σgτ / 2 is a Jensen’s inequality adjustment for going from log- levels to levels.

An optional step that we use in the application is to let the relative impor-
tance of q̂gct and d̂gct vary across products, using the method of least squares 
to determine the weights of the two predictable components on ygct:

(2) ygct = g0 + g1 d̂gct + g2 q̂gct + ugct .

Inserting ûgct into (1) and inverting gives an alternative estimate of  log- 
adjusted sales. We now elaborate on step 2.

14.4.1.1  Predictors ℤgct

Regardless of the method used in step 1, we are limited to nine seasonal 
observations for both training and validation, so the seasonal adjustment is 
likely imperfect. To more thoroughly remove the seasonal eff ects, we need 
to fi rst understand the nature of the seasonal variations in the data. Con-

7. Cleveland and Devlin (1980) suggest using the spectrum to detect preidentifi ed calendar 
and holiday eff ects in monthly data. For use of Fourier regressions in seasonal adjustment of 
weekly data, see Pierce, Grupe, and Cleveland (1984), Cleveland and Scott (2007), and Cleve-
land, Evans, and Scott (2014).
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sider the event Cinco de Mayo. It occurs on a fi xed calendar date, and so is 
not strictly periodic with respect to the weeks within a year. The seasonal 
eff ects of Cinco de Mayo may be more important for counties with a higher 
Hispanic population. Another example is the event of Thanksgiving, which 
is always on the fourth Thursday in November and is celebrated across the 
country. The day in the year on which Thanksgiving falls shifts over time.

We need a fl exible methodology to capture not just the week of the year 
and location eff ects, but also the day- of- the- year eff ects. The last consider-
ation may seem surprising because our data are weekly. But a major chal-
lenge is precisely that many of our seasonal events occur at diff erent days of 
the year that cannot be parametrically modeled. With this in mind, we con-
sider date-  and week- specifi c dummies as well as demographic and spatial 
predictors collected into ℤgct. These are defi ned as follows: let startt denote 
the date on which week t starts, and endt denote the date on which week t 
ends.

A.  Date- specifi c predictors: a dummy variable for each potential calendar 
date (MM- DD) which is 1 if  that date is contained in [startt, endt] and 
0 otherwise. As an example, if  t = Feb 4, 2006, the date- specifi c predic-
tors ℤgct

A  is as follows:

01/01 ⋯ 01/29 ⋯ 02/04 ⋯ 12/31
0 ⋯ 1 ⋯ 1 ⋯ 0

B.  Week specifi c predictors.
(i)  startt and endt’s positions within the year (out of 366)
(ii)  startt and endt’s position within the months (out of 31)
(iii)  startt’s position within the month containing endt (this will be a 

negative number, and diff er from the previous column, if  and only 
if  the week ending on t crosses two diff erent months)

(iv)  A dummy variable that is 1 if  Easter is in the week ending on t, 
and 0 otherwise

(v)  A dummy variable encoding the month in which endt falls
For example, for t = Feb 4, 2006, the week - based predictors Zgct

B  
will be

(i) (i) (ii) (ii) (iii) (iv) (v) Jan (v) Feb ⋯ (v) Dec
28 34 29 4 –2 0 0 1 ⋯ 0

C.  Demographic predictors depend only on county c. These variables are 
drawn from the 2013 American Community Survey, and held constant 
across time:
(i)  the percentage of the county that is Black, Hispanic, White, and 

Asian
(ii)  the percentage of the county on SNAP, in poverty, and median 

household income
(iii)  the percentage of the county c over 60 and under 18
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(iv)  Centroid latitude, and centroid longitude for the county
(v)  NOAA’s 30- year estimates of average rainfall and temperature for 

county c during the week of t (which depend on c and t)

The predictors in list A are day- of- the- year dummies. As distinct from list 
A, the predictors in list B capture the Gregorian calendar eff ects at the week 
level. For example, some months have four Saturdays but other months may 
have fi ve; a week may begin in one month and end in the other. The inter-
action of the three sets of predictors generates as many as 400 potentially 
relevant predictors. Ex- post, the 366 date- based predictors are the most 
important. Results will be reported treating these predictors as the base case.

14.4.1.2  The Prediction Model

Generically denote data with N cases by D = Y,Z( ) where Y is the response 
variable and Z is a set of observed predictors. To make predictions for all 
weeks in year τ, we partition D into D = (D1 ,D2 ) where D1  collects data for 
all weeks t yr( ), and D2  collects all data not in year . The N1  cases in D1  
will be used for training, and the N2  cases in D2  will be used for validation, 
with N = N1  + N2 . The goal is prediction of points z* in D2 .

Since we are interested in predicting the common seasonal variations in 
the composite error that emerges from the Fourier regression in step 1, the 
mapping into D notation is

D = ({ˆ gct},{Zgct}) = (ˆ g
s ,Zg

s ), t : yr(t) =

D1 = ({ˆ gct},{Zgct}) = (ˆ g
s ,Zg

s ), t : yr(t) ,

where ˆ gt
s  is a stacked vector of ˆ gct for all c in state s, and Zg

s  is similarly 
defi ned. In words, the training data D1  consist of observations for all coun-
ties in state s over all 469 weeks, less those weeks in year τ (which is 52 except 
in a leap year). Thus, the training data are indexed by the triplet (g, s, τ).

State by state, we train algorithms to fi t a prediction model for each prod-
uct group in each of the nine years. Thus, for each state the exercise involves 
training Ng × Nyr models. For a given predictor set Z, we use training data D1 
to estimate several models:

1. Linear panel model using all predictors by POOLED OLS.
2. Linear panel model using LARS- type methods to perform variable 

selection.
3. Regression trees using RANDOM FOREST- type methods to deter-

mine the tree size.

We have close to 400 potential predictors, but we also have (469 – 52) weeks 
of data for each county. Though a pooled least- squares regression that uses 
all predictors (method 1) is possible, it will unlikely be effi  cient. Hence, we 
consider two machine learning procedures.
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Introduced in Efron et al. (2004), the least angle regression estimator 
LARS is a functional gradient descent method that repeatedly fi ts a model 
to the residuals of the previous step. LASSO, forward stagewise regressions, 
and boosting can be obtained as special cases of LARS. Under the boost-
ing view, each model (also known as learner) is individually weak but is 
“boosted” to produce a strong learner via averaging. Averaging in this case 
reduces bias. Our implementation of LARS- type methods is actually based 
on LASSO because it requires fewer choices of tuning parameters. The base 
learner is thus a linear model rather than a regression tree. The LARS per-
spective helps understand the diff erence with random forests.

The random forest (RF), attributable to Breiman (2001), is an ensemble 
method that builds a prediction from a collection of regression trees. Each 
tree is fi tted to a randomly selected subset of predictors in a bootstrapped 
sample. Like LARS- type estimators, the fi nal model is also an average over 
trees. But unlike LARS, these trees are built either separately or in parallel 
rather than sequentially. Regression trees can uncover complex relations and 
are strong learners, but they tend to have high variance. Averaging in the 
case of random forests reduces the variance of models that have low bias. 
One advantage of regression trees over nonparametric regressions is that the 
smoothness condition on the regression function can be relaxed. Random 
forest is an extension of BAGGING, which averages over trees grown on 
bootstrapped samples using all predictors.

The prediction provided by LARS or random forest is implicitly formed 
by averaging over the predictions of models that use only a subset of avail-
able predictors. Hence, they are more resistant to overfi tting. Though these 
methods have been widely applied to i.i.d data, applications to time series 
data are more limited. Success of these algorithms in the present setting is 
very much an empirical matter. Of the three methods, the random forest is 
the most fl exible because it does not impose linearity or smoothness. We 
use it as a benchmark in the discussion of results. We implement random 
forests using the R package RANGER with default parameter settings.8 
We fi nd that the LARS- type methods do not uncover sparse models as our 
trained estimators have nonzero loadings on over 80 percent of the included 
variables, with worse performance than the random forest. By contrast, 
variable- importance tests for the random forest show that a small number 
of predictors (mostly having to do with a week’s position within the year) 
are being used in highly nonlinear ways. This suggests that the underlying 
seasonal process is highly nonlinear, and a better fi t for the random forest 
algorithm than the LARS algorithm.

8. The default size of forest is ntree = 500 trees, and the default value of mtry (the number 
of independent variables considered for each split) is the square root of the total number of 
independent variables. The min node size parameter, which controls the depth of each tree 
grown, is set to 5 by default. It is possible that fi ne- tuning the parameters can yield improved 
results.
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14.5  The Seasonally Adjusted Data

The crux of our two- step procedure is to fi rst remove deterministic sea-
sonal eff ects using univariate Fourier regressions, and then exploit cross- 
section dependence to remove the residual common seasonal/holiday eff ects. 
Once this is accomplished, the seasonally adjusted budget shares can be 
computed as the ratio of seasonally adjusted sales for the group to total 
adjusted sales summed across groups. The largest diff erences between the 
unadjusted and adjusted shares are in groups like fl oral, insecticides, can-
ning, ice, fragrances, toys, stationery, and candies. These results make sense 
because eff ects due to seasonal holiday events are precisely what we want 
to remove.

Table 14.3 uses two products to contrast the seasonal patterns in the raw 
and adjusted data. Consider fi rst beer sales, which tend to be higher in the 
summer and peak around July 4th. In 2009, July 4th (week 183) fell on a Sat-
urday when the Nielsen data were collected. As July 4th is a common event, 
high beer sales likely occurred across counties. Our step 2 should smooth 
out this holiday eff ect. As shown at the top of table 14.3, the adjusted data 
are indeed smoother and exhibit a smaller spike than the raw data. Take the 
case of New York as an example. The share of beer computed from the raw 
data is 3.8 for the week ending July 4 but is 2.4 for the week ending Febru-
ary 7. The adjusted data exhibit smaller diff erences, being 2.5 and 2.7 for 
the two weeks in question. Beer sales nonetheless spike each winter around 
the fi rst week of February because of the Superbowl. This is illustrated for 
2009, when the Superbowl took place on Sunday, February 1. The adjusted 
shares are smoother within and between months.

It is also important that the second step adjustment does not remove 

Table 14.3 Eff ects of seasonal adjustment on selected series’ share (%)

Adjusted data Raw data

Week Ending CA  FL  NY  TX  CA  FL  NY  TX

The 2009 July 4th eff ect on beer spending
June 27 3.5 2.9 2.5 2.6 4.1 3.3 3.2 3.0
July 4 3.5 2.8 2.5 2.7 4.9 3.2 3.8 3.6
July 11 3.2 2.8 2.4 2.2 3.8 3.5 3.3 2.8

The 2009 Superbowl eff ect on beer spending
Jan 31 3.3 2.6 2.6 2.5 3.3 2.4 2.2 2.1
Feb 7 3.7 2.7 2.7 2.6 3.3 2.7 2.4 2.3
Feb 14 3.0 2.5 2.3 2.3 2.5 2.2 1.9 1.9

The April 1, 2009 cigarette tax hike
April 4 1.2 4.4 2.7 3.2 1.2 4.8 2.6 3.2
April 11 1.1 4.1 2.4 2.7 1.0 4.1 2.3 2.7
April 18  1.3  4.4  2.8  3.3  1.3  4.3  2.8  3.3
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spikes and variations that are nonseasonal. To check this, we consider the 
62- cent federal tax hike on cigarettes on April 1, 2009, which corresponds 
to week 171 in our data. Recall that the data for 2009 are adjusted using 
training data for all years except 2009. Since the tax hike is a one- time event, 
nothing in the training data should predict the tax hike specifi c to 2009. The 
bottom panel of table 14.3 reports the share of tobacco for the week before, 
during, and after the tax hike. According to the raw data, the tax hike led to 
a temporary decline in sales and hence in the budget share of tobacco. The 
seasonal adjustment preserves this feature. In results not reported, we fi nd 
that as in the raw data, the average share of tobacco is generally higher in 
the 170 weeks after the tax hike than the 170 weeks before the tax hike, sug-
gesting that the tax did little to discourage cigarette consumption.

The premise of our analysis is that the residuals from the univariate Fou-
rier regressions in step 1 have comovements that are predictable. To evaluate 
the incremental predictive power provided by diff erent adjustment meth-
ods, we consider the R2 corresponding to (2), which is a regression of log 
sales ygct on the two estimated seasonal components: d̂gct and q̂gct. Table 14.4 
summarizes the distribution of R2 over all groups and states. A little over 
50 percent of the variations in log sales are seasonal and predictable. The 
degree of predictability varies across groups, ranging from 14 percent to over 
90 percent. Notably, step 2 improves upon the univariate Fourier regressions 
implemented in step 1 alone. The highest and lowest quantiles of the R2 do 
not depend on the procedure. This suggests that the improvements apply not 
to a few groups with extreme seasonality, but to a large number of groups.

Figure 14.2 illustrates the diff erence between using step 1 alone and the 
two- step procedure by plotting the R2 of random forest results against those 
based on the Fourier method. If  the random forest estimator provides rela-
tively little additional information, the optional step regression after step 2 
will push λg toward zero. In such cases, the R2 values will be bunched along 
the 45- degree line. Figure 14.2 indicates such groups do exist. However, 
many other groups have values in the scatterplot located above the 45- degree 

Table 14.4 Importance of the seasonal component

Average of R2 in equation (2)

Sample  Method  Mean  Median  Max  q75  q25  Min

FOUR Fourier 0.52 0.53 0.95 0.63 0.40 0.14
RF 0.58 0.59 0.95 0.70 0.44 0.14

SEVEN Fourier 0.52 0.51 0.95 0.62 0.40 0.14
RF 0.57 0.57 0.95 0.70 0.44 0.14

ALL Fourier 0.53 0.52 0.96 0.63 0.41 0.14
  RF  0.57  0.57  0.96  0.70  0.44  0.14



Seasonal and Cyclical Sales in Weekly Scanner Data    421

line. For some of these groups, the improvement in fi t from adding the panel 
data step is quite signifi cant. A quarter of  groups see increases in R2 of 
13 percent or greater.

At face value, it may seem that the improvement of  a few percentage 
points in predictability over the univariate Fourier regression is trivial. How-
ever, the adjusted data have far fewer spikes than those adjusted using the 
Fourier regressions alone. This diff erence has direct implications for demand 
estimation.

Fig. 14.2 Incremental predictive power of random forests
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14.5.1  The Factor Estimates

A main fi nding in the demand analysis of the raw data is that the fi rst 
few factors exhibit strong seasonal patterns. We now explore features of the 
common factors obtained from the fi rst step alone, and from the two- step 
procedure. We fi nd four factors in the data adjusted by the Fourier step 
alone. The fi rst two factors explain over 68 percent of the variation in the 
data and consist of  a trend and a cyclical component. However, factors 
three and four remain spiky and quasiperiodic, indicating that the Fourier 
regressions by themselves leave nontrivial seasonal variations unexplained. 
In contrast, we fi nd either three or four factors depending on the state in 
the shares data adjusted by our two- step procedure, whether it is based on 
LASSO or RANDOM FOREST. Compared to factors estimated from no 
adjustment and step 1 alone, the most notable diff erence is the absence of 
large spikes.

Figure 14.3 plots the three factors in FOUR using data adjusted by ran-
dom forests. These factors, denoted F̂RF, are to be distinguished from the 
ones estimated from the unadjusted data, now denoted F̂NSA . Though not 
immediately evident, F̂2,RF is strongly correlated with F̂4,NSA. A regression of 

Fig. 14.3 Factors estimated from seasonally adjusted shares: FOUR states
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F̂4,NSA on F̂2,RF yields an R2 of 0.6. The largest residuals of that regression are 
precisely spikes between weeks 46 and 50, indicating that step 2 is picking 
up the spikes not accounted for in step 1.

The fi rst three factors together explain about 80 percent of the variations 
of the adjusted shares, with F̂1,RF explaining 56 percent, and F̂2,RF explaining 
15 percent. As can be seen from fi gure 14.3, F̂1,RF has a trend component. 
An investigation into the factor loadings fi nds that F̂1,RF always loads heavily 
on books and magazines, ethnic hair treatment, and photographic supplies. 
These product groups appear to have experienced secular trends during our 
sample.

Even though the Nielsen data are concentrated on grocery store sales with 
few consumer durables that are traditionally known to be cyclical, F̂2,RF is 
visually cyclical and warrants further investigation. We use two measures 
of consumer confi dence as benchmarks of cyclicality: the Rasmussen RCCI 
index and the Bloomberg index of consumer confi dence. The former is a 
daily national survey collected by the Rasmussen group that tracks 1,500 
consumers concerning their confi dence, expectations, and sentiment about 
the US economy. The latter started as the ABC News consumer comfort 
index and has been under the control of the Bloomberg Corporation since 
2011. Figure 14.4 plots F̂2,RF (thick solid line), RCCI (thin solid line), along 
with BLOOMBERG (dotted line). It is evident that spending moves posi-

Fig. 14.4 The level factor: F̂2,RF
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tively with consumer sentiment. These confi dence measures have absolute 
correlation with F̂2,RF of  about 0.8. In this regard, consumers’ actions are 
aligned with how they feel. Because our data cover a very large sample of 
stores, which is distinct from the much smaller set of consumers surveyed 
by Bloomberg and Rasmussen, we are able to correlate beliefs with purchas-
ing actions without worrying about the confounding infl uence of “mere- 
measurement” eff ects studied in Morwitz and Fitzsimons (2004), by which 
asking consumers about their beliefs might aff ect their ensuing purchasing 
decisions.

Turning now to F̂3,RF , it takes a big dip in the week ending March 22, 2008. 
As a point of reference, JP Morgan purchased Bear Stearns on March 17, 
2008. Furthermore, oil prices spiked up to nearly $110 per barrel a few 
days earlier. Upon examination, the factor is actually highly correlated with 
the 52- week change in consumer confi dence. Figure 14.5 plots F̂3,RF esti-
mated using data for four states along with the 52- week change in RCCI 
and BLOOMBERG. Their correlation with F̂3,RF are 0.74 and 0.68, respec-
tively. If  F̂2,RF indicates the level of economic activity, F̂3,RF indicates direc-
tion of change. We may think of the three factors in the seasonally adjusted 
demand system as characterizing the trend, level, and curvature of Engel 
curves. These estimates of the latent functions are interesting in their own 

Fig. 14.5 The curvature factor: F̂3,RF
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right because the classical estimation of demand system cannot consistently 
estimate the latent functions of prices and income.

It remains to check how our aggregate weekly adjusted sales data compare 
to the offi  cial monthly retail sales. The US Census Bureau releases both the 
raw and seasonally adjusted data for retail sales each month.9 To compare 
with our weekly series, we interpolate values for the weeks in a month to the 
offi  cially released sales for the month. Figure 14.6 plots both series along 
with F̂2,RF. The top panel shows that our F̂2,RF has a correlation of 0.65 with 
the offi  cially adjusted series. The bottom panel plots the 52- week change in 
the series. The correlation of the adjusted series is 0.74. The most notable 
diff erence is seen around the 2008 fi nancial crisis, during which the F̂2,RF 
shows a steeper decline than the offi  cial data. But the weekly series gener-
ally tracks the monthly series reasonably well. Some discrepancy is to be 
expected because our weekly data do not cleanly line up with the monthly 
calendar.

The results so far have focused on four states: CA, FL, NY, TX. How-

9. The series are RETAILSMNSA and RETAILSMSA in FRED.

Fig. 14.6 Comparison with monthly retail series
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ever, similar results are obtained in an extended analysis that groups addi-
tional states into three regions: the Midwest (IL, IN, MI, OH, WI), the 
Mid- Atlantic (DC, DE, MD, VA), and the Southwest (AZ, NM, NV). In 
each of  the three regions, F̂1 is a trend, F̂2 is correlated with the level of 
consumer confi dence, while F̂3 is correlated with the 52- week change in con-
sumer confi dence. Not surprisingly, pooling data for the four states and three 
regions also gives three factors with very similar properties. Hereafter, we use 
the extended data when appropriate. These results will be labeled SEVEN 
and ALL.

14.6  Cyclical Sensitivity

A unique feature of the Nielsen scanner data is the availability of weekly 
information at the spatial and product group levels. This presents an oppor-
tunity to study the timing of the response of spending to economic condi-
tions at a disaggregated level. Subsection 14.6.1 considers cyclical sensitivity 
of product groups, while subsection 14.6.2 considers spatial variations in 
spending.

14.6.1  Variation across Product Groups

We fi rst turn to the sensitivity of  the product groups to business cycle 
conditions. Since F̂2,RF

s  is positively correlated with RCCI, a positive loading 
indicates that the share of product j is procyclical, while a negative value 
means that the share of product j is high when F̂2,RF

s  is low. The dispersion of 
sensitivity to aggregate conditions across product groups is best seen from 
the distribution of SGNRsj

2. This is defi ned as the signed fraction of vari-
ance of SHAREj

s explained by F̂2,RF
s , where SGN is the sign of the loading 

of F̂2,RF
s  on SHAREj

s. Though there are some minor diff erences across states 
and regions, the pattern across states is broadly similar. Figure 14.7 presents 
results for SEVEN. The distribution is noticeably asymmetric because there 
are more countercyclical product groups and the magnitude of the absolute 
loadings are larger (top) than procyclical ones (bottom). Product groups 
little aff ected by F̂2,RF, plotted in the middle of fi gure 14.7, are disposable 
diapers, shaving products, cold and cough remedies, and somewhat surpris-
ingly, beer.

The eff ect of the cyclical factors on the shares is highly heterogeneous. 
According to the factor loadings, a decrease in F̂2,RF has the largest marginal 
impact on the share of frozen vegetables, canned vegetables, and pasta. The 
impact of an increase in F̂3,RF is most adverse (i.e., most negative) on eggs 
and most positive on dried fruit, which is often marketed as a snack. These 
results suggest less eating out during downturns in favor of preparing meals 
at home. There is increasing evidence for adaptive changes in the pattern 
of  food consumption during the Great Recession. The USDA fi nds not 
only that total food spending fell during the Great Recession, but also that 



Fig. 14.7 R2 from regression of adjusted shares on F̂2: FOUR states 



428    Rishab Guha & Serena Ng

recovery was slow.10 Cha, Chintagunta, and Dar (2015) aggregate the weekly 
Homescan data to annual level and fi nd that food consumed at home is 
countercyclical. Grittith, O’Connell, and Smith (2015) fi nd that households 
also adjusted food spending in the UK. Our results reinforce these fi ndings 
using a completely diff erent approach.

To further explore this phenomenon at a more granular level, state by 
state we aggregate spending on the fi ve product groups with large nega-
tive loadings. These are frozen vegetables, canned vegetables, pasta, bread, 
and condiments/sauces. Because these products all seem related to home 
cooking, we designate them the FOOD- IN group. We also identify the fi ve 
products with large positive loadings on F̂2,RF

s : liquor, prepared food, milk, 
hair care, and cosmetics. These fi ve products are then aggregated to form a 
LUXURY good basket, one for each state. Note that because our data are 
restricted to grocery- store goods, our LUXURY goods are relatively less 
“luxurious” than conventionally defi ned.

Next, we use a fi ve- variable VAR to evaluate the dynamic response of 
FOOD- IN and LUXURY to an unanticipated increase in the two cyclical 
factors F̂2,RF, F̂3,RF, and to RCCI. We report results for FOUR, but results 
for SEVEN and ALL are similar. The dynamic responses to one- standard- 
deviation shocks are shown in fi gure 14.8. A positive F2,RF shock, which is an 
increase in economic activity, has a negative eff ect on FOOD- IN that peaks 
after two weeks and nearly recovers after fi ve weeks. This negative eff ect on 

10. See https:// ageconsearch .umn .edu /bitstream /120969 /2 /10FoodSpending .pdf.

Fig. 14.8 Response of FOOD- IN to shock in F̂2
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FOOD- IN is mirrored by an opposite eff ect on LUXURY. The absolute 
impact on LUXURY is actually larger than that on FOOD- IN. The eff ect of 
a F̂3,RF shock is mainly on LUXURY; the impact on FOOD- IN is negligible. 
In terms of decomposition of variance, about 55 percent of the variations 
in FOOD- IN are explained by its own lag, 35 percent explained by F̂2,RF, 
7 percent by F̂3,RF, with little attributed to RCCI. About 37 percent of the 
variations in LUXURY are explained by its own lag, 28 percent by F̂2,RF and 
32 percent by F̂3,RF. It thus appears that FOOD- IN is primarily aff ected by 
the level factor, while LUXURY is aff ected by both the level and the curva-
ture factors (i.e., where the economy is and where it is going). The results are 
robust to whether RCCI is ordered second or last. Interestingly, even though 
the correlation between RCCI and FOOD- IN is well over 0.75, shocks to 
RCCI account for little of the variations in FOOD- IN and LUXURY once 
conditioned on F̂2,RF and F̂3,RF.

14.6.2  Variation across Regions

According to the NBER’s business cycle chronology, the downturn in eco-
nomic activity leading to the Great Recession began in December 2007 when 
the last business cycle peaked, and continued to decline until it reached a 
trough in June 2009. This subsection looks at the spatial aspect of the change 
in food spending before, during, and after the Great Recession.

The CPI is based on a comprehensive consumer expenditure survey con-
ducted by the Bureau of Labor Statistics (BLS) every two years. The CPI 
weights refl ect the relative importance of the particular good in the con-
sumption basket. The top panel of table 14.5 reports the CPI weights for 
food consumed at home and luxury as defi ned by the BLS. In their own study 

Table 14.5 Spending over the business cycle

  Dec 2007  Dec 2009  Dec 2011  Dec 2013

CPI weights (%)
FOOD- IN 7.6 — 8.6 8.1
FOOD- OUT 6.1 — 5.6 5.7

Seasonally adjusted Nielsen shares (%)
FOOD- IN:FOUR 5.6 6.0 5.8 5.6
FOOD- IN:SEVEN 6.0 6.5 6.2 6.1
FOOD- IN:ALL 6.3 6.7 6.6 6.4
FOOD- IN:FLORIDA 4.3 5.0 4.7 4.6
FOOD- IN:MIDATL 6.9 7.4 7.2 7.0

LUXURY:FOUR 8.3 8.6 8.8 9.0
LUXURY:SEVEN 7.9 8.2 8.3 8.5
LUXURY:ALL 7.8 8.2 8.1 8.3
LUXURY:MIDATL 6.6 6.5 6.5 6.6
LUXURY:NY  7.3  7.3  8.1  8.1
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on how consumer spending changes during boom, recession, and recovery, 
2007 was used as a boom year, 2011 as recession, and 2013 a year of recov-
ery.11 The CPI weights indicate an increased importance of FOOD- IN and 
a reduced importance of LUXURY items during recessions.

How well do our adjusted shares corroborate with the CPI weights? The 
bottom panel of table 14.5 reports the shares of FOOD- IN and LUXURY 
averaged over the weeks in December for four years that represent diff erent 
stages of the business cycle. Notably, FOOD- IN is much higher in 2009 and 
2011 than in 2007 and 2013, while LUXURY is lower in 2009 than in 2013. 
Even though our defi nitions of FOOD- IN and LUXURY are data driven, 
factor based, and restricted to grocery- store nondurables, the Nielsen data 
also indicate an increased importance of FOOD- IN and reduced impor-
tance of LUXURY items during recessions, similar to the more compre-
hensive CPI weights.

An appeal of the Nielsen data is that they provide granular information 
in both the time series and cross- section dimensions. The share of FOOD-
 IN ranges between 5 percent in Florida to 7.8 percent in the Mid- Atlantic 
regions, with an average of 6.6 percent over the entire sample. The series is 
most persistent in California and least persistent in the Midwest, with fi rst 
order autocorrelation coeffi  cients of 0.83 and 0.50, respectively. The share of 
LUXURY ranges between 6.6 percent in the Mid- Atlantic regions to 12 per-
cent in Florida, with an average of 8.9 percent over the full sample. The series 
is most persistent for the Midwest and least persistent in the Southwest, with 
autocorrelation coeffi  cients of 0.86 and 0.5, respectively. The contemporane-
ous correlation between FOOD- IN and LUXURY is strongly negative in 
California, New York, and the Midwest, with cross- correlations in excess 
of 0.6 in absolute value. The correlation is much weaker in the Southwest 
and even positive in Florida. The heterogeneity across states in spending 
behavior underscores the diffi  culty in designing policies that would satisfy 
all consumers.

To analyze local sensitivity to (aggregate) business cycle fl uctuations, we 
also estimate for each county in each state, the regression

(3) food-inct = ac1 + a2F̂2,RF,t + a3cF̂3,RF,t + errorct .

The R2 provides a measure exposure of county c to the two common factors. 
Upon ranking the R2s, the urban and densely populated counties are found 
to be more exposed to aggregate shocks. Take the state of New York as an 
example. The counties of Rockland, Nassau, and Kings have a combined 
population of over 4 million according to the 2010 census. Each of these 
counties has an R2 above 0.45. In contrast, the counties Seneca, Lewis, and 
Broome, with a combined population of under 300,000, each have an R2s 
of at most 0.01.

11. See https:// www .bls .gov /opub /btn /volume -  3 /how -  does -  consumer -  spending -  change 
-  during -  boom -  recession -  and -  recovery .htm.
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Heatmaps provide a more compact way to see how diff erent regions are 
aff ected by economic conditions. The top panel of  fi gure 14.9 plots the 
change in FOOD- IN between 2006 and 2007. Regions with dotted gray 
shading indicate larger reductions in FOOD- IN. With the exception of iso-
lated regions in Michigan, this boom episode was associated with reduc-
tions in FOOD- IN. The reductions were largest in Nevada and Arizona, one 
possible explanation being the housing boom in those regions. The bottom 
panel presents the change in FOOD- IN from 2008 to 2009, an episode of 

Fig. 14.9 Regional changes in FOOD- IN
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economic downturn. Darker solid gray indicates larger increases in FOOD-
 IN share. Now there are more regions shaded solid gray than dotted gray, 
with Arizona and Florida witnessing the largest increase in FOOD- IN. This 
shows that the Great Recession diff erentially aff ected regional purchasing 
behavior of FOOD- IN goods.

14.6.3  Sandy Regression

The regressions based on equation (3) help understand the impact of 
aggregate economic conditions on weekly spending. It is also of interest to 
learn about the impact of local rather than aggregate economic conditions. 
To illustrate, we take advantage of the weekly and spatial information in the 
Nielsen data to examine purchasing behavior in New York around landfall 
of Hurricane Sandy on Monday, October 29, 2012.

In hindsight, Sandy was a much bigger storm than expected and consum-
ers were caught somewhat unprepared. Figure 14.10 shows little evidence 
of stocking up during the week prior to Sandy, but that there was a distinct 
increase in FOOD- IN share during the week containing the storm. One 
might be concerned that the increase in the raw data shown in the top panel 
is an artifact of seasonality as the week ending November 3rd was close to 
the beginning of  the Thanksgiving and Christmas shopping season. But 
the bottom panel shows that when using the seasonally adjusted data, there 
is a clear post- Sandy spike in 2012, which brings the seasonally adjusted 
FOOD- IN share to its highest value for the year.

To quantify the impact of Sandy, we estimate a simple panel data model. 
Let yi,t be the share of FOOD- IN in county i and week t, normalized to have 
standard- deviation 1 within each county. Let sandy – countyi be a dummy 
variable that indicates if  i is a coastal county that was hit by Hurricane 
Sandy. Let landfallt be a dummy variable that indicates if  t is the week con-
taining the landfall of Hurricane Sandy, which is the week ending Novem-
ber 3, 2012. We estimate the regression

yit = i + t +
j=0

5

j sandy countyi landfallt j + error.

Our results show that FOOD- IN consumption increases by about 2.5 
standard deviations during the week that Sandy made landfall. The eff ects of 
Sandy on FOOD- IN purchases persisted for about one month. Figure 14.11 
shows that the eff ects of Sandy were localized to the counties near New York 
City and Long Island, which were most exposed to the hurricane. Other 
counties in the state of New York were nearly unaff ected by the storm.

14.7  Conclusion

Large volumes of highly heterogeneous data are increasingly available, but 
they are often not immediately useful for economic analysis without remov-



Fig. 14.10 Unadjusted and adjusted FOOD- IN share in Manhattan for 2011–2013
Note: Vertical line denotes October 29 (the date of Hurricane Sandy’s landfall).

Table 14.6 Consumption increases 

j  0  1  2  3  4  5

ˆ 𝑗 2.541*** 0.318 0.152 0.323** –0.606*** –0.123
  (0.242)  (0.203) (0.202) (0.153)  (0.166)  (0.197)
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ing some nuisance variations and performing some form of aggregation. In 
this paper, the nuisance variations in question are the seasonal and holiday 
eff ects. As they cannot be adequately removed by conventional procedures, 
the adjusted data continue to exhibit seasonal patterns when aggregated 
over counties. We propose to augment univariate seasonal adjustments with 
a machine learning step that pools information across counties. The valid-
ity of this second step relies on the presence of common seasonal patterns 
across counties.

There is no shortage of examples in which common seasonality would 
be a feature of the raw data. For example, employment and output of fi rms 
in a given sector will likely be correlated. Unless we can perfectly remove 
seasonality at the fi rm level, the sectoral data obtained by aggregating over 
fi rms will likely exhibit seasonality. Informal discussions with staff  research-
ers at the Bureau of Economic Analysis confi rm such experiences. Our anal-
ysis provides an explanation for why a bottom- up approach to seasonality 
might be inadequate. In a Big Data setting, it is possible to improve upon 
the conventional way of removing nuisance variations one series at a time 
by taking advantage of cross- sectional dependence. Though our focus has 
been on handling seasonal eff ects, the procedure can be adapted to remove 
other nuisance variations. A limitation of our analysis is the lack of a way 

Fig. 14.11 Diff erence between yi,landfall the FOOD- IN share for the week containing 
Hurricane Sandy’s landfall, and yi,2012, the average FOOD- IN share for 2012, by 
county in New York state
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to assess sampling uncertainty of the two- step procedure. This is left for 
future research.
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