
* All authors are based at the U.S. Bureau of Economic Analysis. Any opinions and conclusions expressed herein 
are those of the authors and do not necessarily represent the view of the U.S. Bureau of Economic Analysis or the 
U.S. Department of Commerce. The paper has benefited from insightful comments with seminar participants at BEA 
Advisory Committee meeting, the Federal Economic Statistics Advisory Committee meeting, Strata Data 
Conference, and the BigNOMICS Workshop on Big Data and Economic Forecasting. We would like to also thank 
Pat Bajari, Francis Diebold, Brian Moyer, Sally Thompson, Dennis Fixler, Gary Cornwall, and Annabel Jouard for 
useful discussions.  

 

 

 

OFF TO THE RACES: A COMPARISON OF MACHINE LEARNING AND 
ALTERNATIVE DATA FOR PREDICTING ECONOMIC INDICATORS 

Jeffrey C. Chen Abe Dunn Kyle Hood 

Alexander Driessen  Andrea Batch* 

 

July 5, 2019 

 

Abstract 

Timely alternative data sources such as credit card transactions and search query trends have 
become more readily available in recent years, while sophisticated machine learning (ML) 
techniques have enabled marked gains in predictive accuracy. These advances offer the benefit 
of revealing economic news earlier in the estimation cycle, reducing revisions, and improving 
estimate quality. But which combinations of data and ML techniques give the most accurate 
prediction of national economic activity? To answer this question, we conduct a prediction horse 
race using a one-step ahead model validation design to evaluate how each ML algorithm, data 
set, and variable selection method weighs on predictive accuracy. We test 73,884 model 
specifications, consider 1,180 variables drawn from both traditional and alternative sources, and 
predict 188 quarterly revenue and expenditure series for the services sector as published in the 
Quarterly Service Survey (QSS)—a key data set that accounts for nearly 80% of the revisions to 
Personal Consumption Expenditure for Services (PCE Services). Our results indicate that 
ensemble methods such as Random Forests afford the highest chance of reducing revisions. 
Relative to current national accounting methods, ensemble methods could reduce overall PCE 
revisions by 12% on average, with proportionally larger improvements among PCE sub-
components. While alternative data are timelier, we find evidence that traditional data such as 
employment and lagged dependent variables contain relatively greater signaling power than 
alternative data; this finding demonstrates that more data does not necessarily translate into 
significantly better predictions.  
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1. Introduction 
Gross Domestic Product (GDP) is one of the most widely used and cited measures of economic 
activity. Obtaining timely and accurate GDP estimates is essential for policymakers, the private 
sector, and individuals making a wide range of economic decisions. However, the Bureau of 
Economic Analysis (BEA), the agency responsible for producing GDP figures, must produce its 
initial estimates of GDP prior to when some critical source data are available. Thus, the 
reliability of advance estimates and the extent to which they capture news rather than noise 
hinges in part on successfully bridging data gaps. 

One approach to bridging data gaps involves working with providers of source data to accelerate 
production of their estimates. For example, the U.S. Census Bureau accelerated publication of 
the Monthly Retail Trade and Sales Survey (MRTS) as an advance publication, which has 
translated into marked reductions in GDP revisions. While effective, this solution can be costly, 
may place undue burden on respondents, and may reduce the rate of response. 

Alternatively, the breadth of timely proprietary data sources has expanded significantly in recent 
decades. The financial sector has relied on such data (including credit card transactions, e-mail 
receipts, search queries, etc.) to better forecast economic fundamentals and to anticipate financial 
performance of companies ahead of quarterly earnings reports. These data have the potential to 
do the same for official statistics. Nevertheless, these substitute data do suffer from some 
problems—non-traditional sampling, and large numbers of variables—that strain traditional 
statistical techniques. Instead, forecasters have developed sophisticated machine learning (ML) 
techniques in which non-parametric, non-linear, or otherwise computationally intensive 
algorithms yield predictions in just this type of environment. This combination of alternative data 
sources and contemporary ML techniques provides a possible bridge for the data availability 
gaps that producers of official statistics face. 

These advancements are not without challenges and the transparency of ML is often called into 
question. Some view ML as a black box, especially because the techniques may not lend 
themselves to traditional modes of linear interpretation and because modeling decisions in non-
parametric models may be too voluminous to efficiently evaluate. They also represent a 
philosophical shift: ML is aimed at producing predictions 𝑦𝑖̂ rather than parameter estimates 𝛽̂ 
(Mullainathan and Spiess 2017). Without being able to understand or interpret coefficients, there 
are some who argue that we can never fully understand the predictions given by ML models. 
Nonetheless, it is not the case that studies that use ML are devoid of economic intuition. In our 
case, the prediction target is of economic significance, and economic intuition will be preserved 
through the application of national economic accounting principles.  

On the data side, newer sources of data can be timelier, but the reliability and stability of 
alternative sources have yet to be proven for official statistical purposes as they are only a recent 
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phenomenon.1 The universe captured in alternative sources are not typically disclosed, making it 
challenging to evaluate the properties of the data. 

In this paper, we explore how ML and alternative data sources can play a role in stabilizing 
official national statistics when faced with publication lags. We focus on Personal Consumption 
Expenditures Services (PCE Services) that account for more than $9.8 trillion of the current-
dollar estimate in 2018 (> 45% of GDP). Approximately $4.2 trillion of the PCE Services is 
based on the Quarterly Service Survey (QSS), which is only fully available 75 days after the end 
of each quarter and informs the third estimate of GDP.2 The current estimate revision to 
quarterly GDP has averaged $27 billion since 2012 with an average revision of $14 billion 
attributable to PCE.3 QSS-based estimates contribute the largest share to PCE revisions, 
averaging $11 billion. Thus, by predicting the QSS, estimates using ML and alternative 
indicators can deliver economic news earlier in the estimate cycle and improve data quality.  

Our approach is not to apply an “off-the-shelf” ML algorithm, but rather to dedicate significant 
attention to the unique features of the problem at hand, while at the same time advocating broad 
principles that should apply to similar applications. For this purpose, forecasts must be both 
robust and stable, and we must carefully contemplate the way predictive accuracy should be 
defined in the national economic accounting context. More specifically, we evaluate potential 
revisions reductions, (a) for each PCE component across all modeling scenarios; (b) for each 
algorithm across all PCE components and other modeling choices (data set, inclusion criteria, 
etc.); and (c) for combinations of these concepts. 

Predicting these types of official statistics presents a unique challenge which guides the approach 
that we favor. Surveys or censuses are not conducted at high frequencies, and the intersection 
between their observations and the observations contained in alternative datasets to which we 
have access yields a rather short time series. The ML paradigm prescribes partitioning data into 
multiple parts: one for estimation, one for model selection, and one for testing. We do not have 
enough observations to subset the data into these multiple parts, so we propose a unique 
approach. Specifically, we estimate thousands of potential models for every series where each 
model applies distinct methods and data. Rather than selecting just the “best” model, which may 
overstate the improved prediction, we report and analyze the full distribution of predictions 
across model scenarios for a large cross-section of series. This approach has two distinct 
advantages. First, using the cross-section of series allows one to evaluate and identify which 

                                                        

1 Private sector data sources have been used for many components of the national accounts for decades. While the use of private 
sector data is not new, the availability and types of alternative data sources has changed dramatically (e.g., credit card data and 
search queries).  
2 The Census Bureau also publishes an advance estimate of QSS at 45 days; However, it is a limited subset of all series. 

3 The revision is calculated as the third estimate less the advance estimate. 
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modeling decisions result in poor predictions across many series. For example, we find that the 
method of using a 4-quarter moving average performs quite poorly across data series. A second 
advantage of this approach is that it avoids the over-fitting that might occur by selecting only the 
best model. Instead, using a distribution of many models for each series, we can determine which 
series show consistent improvement across a sample of model scenarios.4 

The paper is organized as follows. Section 2 places this work in the landscape of forecasting and 
nowcasting literature for macroeconomics. Section 3 describes the process of a prediction horse 
race and criteria for identifying PCE components that can be reliably improved. Section 4 
examines prediction results, placing an emphasis on producing rules of thumb for modeling and 
estimating the effects of PCE revisions. 

2. Literature Review 

Traditional forecasting typically employs linear time-series models wherein theory dictates the 
appropriate estimators, based, for example, on asymptotics and an assume class of data-
generating processes. However, a major constraint especially of linear models is that the number 
of variables that can enter the forecast must be considerably less than the number of 
observations. This reduces the amount of data that can enter the models to help inform the 
prediction. The machine learning techniques applied in this paper are not bound by this 
constraint and allow for the consideration of a much larger number of variables.5 The 
disadvantages associated with this approach are in the necessity to put one’s faith in model 
validation and testing. 

The popularity of big data and machine learning has been growing rapidly in the forecasting 
literature over the last decade. Our paper differs from many of these studies not so much in the 
techniques that are applied, but in the objects that we are forecasting. To our knowledge, 
forecasts using big data for incorporation into official statistics is a rather unique application. 
The closest application of these techniques in the recent literature has been to nowcast 
Macroeconomic aggregates. 

                                                        
4 This approach is in the spirit of Leamer (1983) who advocated reporting a broad distribution of models as he was concerned 
that researchers searching for the “correct” specification may cause a high degree of bias and more recently Athey and Imbens 
(2015), who are concerned with misspecification uncertainty.  

5 It is not impossible to approach problems with more predictors than observations using a more traditional paradigm, and many 
of the important conventions of ML, such as validation and testing, are not unique thereto. Frequentist approaches applicable to 
such problems include model selection (for a review see Kadane and Lazar, 2004), model averaging (some recent examples 
include Hansen, 2007 and Hansen and Racine, 2012) and factor models (cf. Stock and Watson, 2006). Bayesian model averaging 
may also be applied to “wide” data sets, using a dimensionality-reduction techniques or stochastic searches (Fragoso et al. 2018). 
ML is thus one among many approaches that could be applied. Nevertheless, it is particularly well-suited to this problem based 
on the sheer number of right-hand-side-variable combinations that are possible. 
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A major benefit of writing a paper in a field that is growing in popularity is the existence of 
recent, high-quality review articles. Einav and Levin (2013) provide an overview of important 
concepts, data sources, and common forecasting techniques. They note that the larger scale, 
breadth of variables, lack of structure present new opportunities, but also new problems that must 
be dealt with by the researcher. In addition, they note the need for cross-validation—a technique 
that is rarely used by economists but is essential in this context. Varian (2014) also offers an 
overview and a sort of how-to guide in applying machine learning techniques to big data, while 
identifying where these techniques originated in the broader scientific literature. Kapetanios and 
Papailias (2018) provide an extensive review of very recent studies that have used these 
techniques, organized by prediction target (unemployment, inflation, output, and financial 
variables), as well as a detailed discussion of many important techniques. 

Because in this paper we focus on near-term forecasts of the recent past, what we are doing can 
be called nowcasting. Nowcasting is a portmanteau of “now” and “forecasting,” and was defined 
by Giannone, Reichlin, and Small (2008) to comprise forecasting of the recent past, present, or 
near future. However, we are not exposed to several problems that are particular to nowcasting: 
“ragged edges” in which because of real-time data flow, the forecaster does not have access to all 
data series at all points in time, and mixed-frequency data. As such, our application has more of a 
forecasting flavor.6  

The constellation of big data, machine learning and nowcasting has spawned a literature that is 
somewhat distinct from the “traditional” nowcasting literature. This is precisely because these 
two approaches generally deal with a distinct collection of complications. Traditional approaches 
of regression and time series analysis have ready-made solutions to the ragged edge problem 
(that use, e.g., a Kalman filter), while the machine learning literature has generally ignored such 
considerations. As such, the types of “big data” that machine learning typically uses are 
somewhat different. Nevertheless, there is a recent and growing literature in this field 
summarized by Kapetanios and Papailias (2018). Biau and D’Elia (2013), for example, use 
survey data and a random forest algorithm to nowcast Euro-Area GDP, Nyman and Ormerod 
(2017) use a random forest algorithm to predict recessions, and Choi and Varian (2012) use 
Google Trends to nowcast several macroeconomic indicators such as auto sales and 
unemployment claims. Rajkumar (2017) compares various algorithms, including a Random 
Forest, to predict surprises in GDP growth. 
                                                        
6 Earlier nowcasting work relied on regression-based methods, which include what is termed “bridging” or “bridge equations” 
and MIDAS regressions (cf. Bańbura, Giannone, and Reichlin (2011) for a review). Bridging uses time aggregation of monthly 
data combined with regression analysis to produce a nowcast, while in MIDAS models (Ghysels, Santa-Clara, and Valkanov 
2004), variables of different frequencies to directly enter the regression equation. The ragged edge problem is solved with the 
application of “state-space” models in which variables that are used in the nowcast but are missing are themselves forecasted, a 
process typically implemented via a Kalman filter. Subsequent attempts to nowcast macroeconomic variables with large data sets 
involved the application of data-reduction techniques, e.g., dynamic factor models (Bańbura, Modugno, and Reichlin 2013). Bok 
et al. (2017) describe the New York Fed’s nowcasting approach, which synthesizes many of these techniques. This summary 
does not cover the whole of the recent nowcasting literature, and so we refer the reader to Kapetanios and Papailias (2018) for a 
more detailed overview. 
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Finally, the adoption of any type of nowcasting technique for “filling in” series that are not yet 
available to be used in official statistics has few examples in the literature. Cavallo et al. (2018) 
use the “billion prices project” data (Cavallo and Rigobon 2016) to produce high-frequency 
purchasing power parities (PPPs), which could be used to bridge the period between releases of 
the World Bank’s Penn World Table’s International Comparisons Program’s PPPs. Similar price 
indices might also be used to replace certain headline numbers such as Argentina’s CPI, which is 
believed to be unreliable (Cavallo and Rigobon 2016). Finally, B. Chen and Hood (2018) use 
traditional nowcasting techniques (bridge equations, bridging with factors) combined with model 
selection to nowcast detailed components of personal consumption expenditures on services that 
go into the calculation of gross domestic product, showing the potential for significant reductions 
in revisions in many of these components. 

3. Methods and Data 

3.1.  Modeling Considerations 

The objective of this study is to reduce revisions to GDP by identifying predictive approaches 
that offer consistent improvements. There are challenges in this task, particularly in how we 
account for the properties of the data and in identifying where prediction can be reliably applied. 

The properties of input data that are typically used for national economic accounts combined 
with the properties of alternative data present a unique forecasting challenge. Survey or census 
time series tend to be relatively coarse (e.g., monthly, quarterly, or annual). When used in 
conjunction with alternative data (which are a recent phenomenon, as mentioned above), the 
resulting time series tends to be short. The alternative data that we use, however, have a very 
broad cross-sectional dimension. As such, the number of variables, k, significantly exceeds the 
number of observations, n, a situation that is not a good fit for traditional statistical analysis. For 
this type of application, the problem with regression-based models is not that they are inaccurate 
(although they may be), but that they cannot even be estimated. One solution is to apply theory-
driven methods that prune the input variables so that a model can be estimated, but this has 
proven to be ineffective for many applications (Stock and Watson 2014). Methods such as step-
wise regression leave in inputs that are highly correlated with the series being predicted, but 
because pruning is based on in-sample correlations, estimation often results in overfitting and 
poor out-of-sample predictions. 

In contrast, many ML techniques are designed for just this purpose, relying on a combination of 
model validation techniques and implicit variable selection. Traditional approaches often posit a 
“true model” that will obtain with enough observations, while ML focuses on producing 
generalizable predictions, using flexible non-linear approaches such as bootstrap aggregation or 
shrinkage to overcome overfitting, and relying nearly exclusively on partitioning to assess fit and 
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select models. As mentioned above, there are some trade-offs, but these types of models are 
needed to integrate into estimates the signal coming from these timely but high-dimensional data 
sets.  

In this application, we are faced with a further problem that not only is the number of 
independent variables relatively large, but also the number of observations is small in absolute 
terms. Having a small sample size reduces power. Not only are a model’s opportunities to learn 
economic patterns limited, but it is less likely to be resilient to structural instabilities that cause 
prediction accuracy to erode (Rossi 2013). Model selection also becomes challenging. When 
applying conventional forecast comparison techniques such as the Diebold-Mariano Test 
(Diebold and Mariano 1995), the lack of power prevents crowning a winning model. One can 
imagine a scenario in which a forecast model achieves lower error than its alternatives within 
sample, but the relative performance may not persist as the sample grows. This is particularly 
problematic if researchers estimate many forecasting models and then choose to report only their 
best-fitting estimate, which results in overfitting problems and poor out-of-sample performance. 

Small sample size is not a problem that ML is specifically designed for. Standard application of 
ML algorithms might involve splitting the data into three sets: One for training (estimation), one 
for validation (in this case, model selection), and one for testing (assessment of fit). Fit (i.e., 
accuracy) cannot be assessed using any part of the sample on which estimation or model 
selection is done, and model selection cannot be done using the sample from which the models 
were estimated. If we were to divide all 30-some quarters into three distinct sets, no inferences 
could be made with reasonable statistical power.  

For this reason, we propose to run a prediction “horse-race,” in which we estimate a large 
collection of models for each series. We vary these models along several dimensions: algorithm, 
data, and variable selection. By varying the conditions and comparing their results through a 
prediction horse race, we can determine which dimensions drive accuracy for each industry. If 
one modeling choice seems to produce inaccurate predictions in most series that are being 
forecasted, or if one modeling choice seems to do the best on average, we can decide as to which 
modeling choices can be included or excluded from the final ensemble. In our analysis, model 
performance is gauged by pooling the estimates of fit (root mean squared revision, or RMSR) of 
all models and series into a single data set. A statistical analysis is then performed to assess the 
effect of each modeling choice on the expected revision. 

In the subsequent subsections, we describe the process of constructing thousands of models that 
are trained under a multitude of modeling scenarios (e.g., combinations of algorithms, data, and 
variable selection procedures). We then construct measures of revision reductions and a simple 
framework to rate PCE components that are well-suited for this prediction approach. 
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3.2.  Prediction Models 

We conduct a horse race between different algorithms, data, and variable selection procedures 
(each individual combination of the three we call a “model”) the results of which are compared 
with current BEA methodologies to evaluate the improvement. Each model can be expressed as: 

𝑦𝑖𝑖 = 𝑓𝑚[𝑔𝑘(𝑋𝑡)] 

where 𝑦𝑖𝑖 is the not seasonally adjusted (NSA) quarterly growth in percentages of a QSS 
industry 𝑖 in time 𝑡, 𝑓𝑚 is any one of nine ML algorithms (see Section 3.1.1), 𝑋𝑡 is a matrix of 
input variables and dependent lags in the form of quarterly growths at time t, and 𝑔𝑘 is the 
procedure k for variable selection that guide how input variables are included (see Section 
3.3.3).7 

3.2.1. Algorithms 

A diverse array of algorithms is selected that interact with the data in different ways. Some are 
commonly employed in the social sciences, whereas others are used in sectors that rely more 
heavily on data science techniques. We categories these techniques into two broad buckets: 
linear methods and non-parametric methods. 

To represent techniques that overlap with the traditional econometric toolkit, we consider four 
linear methods: 

Four-Quarter Moving Average (4QMA). The simplest of the linear methods is the 4QMA that 
smooths the univariate series using a one-year sliding window: 

𝑦𝑖𝑖 =
1
4
�

𝑦𝑖,𝑡−𝑗
𝑦𝑖,𝑡−𝑗−1

4

𝑗=1

 

where 𝑗 is an index of prior quarters. The effect is an extrapolation that appears to be seasonally 
adjusted. Its simplicity is also its weakness, producing predictions with the risk of carrying 
forward momentum from prior periods and ignore contemporaneous information. 

Forward Stepwise Regression (Stepwise). Forward stepwise regression is an automated variable 
selection procedure built around linear regression. The process adds variables to a regression one 
at a time, doing so based on partial F-tests. Each step of the process is computationally intensive, 
starting by estimating a null model without predictors, then adding one variable at a time starting 

                                                        

7 We model growth rates rather than trends or levels because growth rates in the QSS are applied to update PCE estimates, not 
the levels. Moreover, through the benchmarking and revision process, levels will eventually be replaced with data from more 
reliable sources. 
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with the lowest partial F-test that is below a pre-defined threshold 𝛼. This requires that a set of 
candidate models is estimated prior to adding new variables (Efroymson 1960). We set 𝛼 = 0.05 
requiring additional variables to yield partial F-test values below the threshold. In addition, given 
the small sample constraints, we place a cap on the number of parameters at 𝑘 = √𝑛. The 
technique has drawbacks, particularly that it conducts variable selection in-sample that results in 
predictions that are not generalizable (Copas 1983). In addition, the estimate is constructed on 
unconstrained least squares, so that ill-posed problems where 𝑘 > 𝑛 are non-invertible. 

Ridge Regression and Least Absolute Shrinkage and Selection Operator (LASSO). Several 
challenges with Stepwise method are addressed through regularized least squares methods, 
which introduces a constraint that forces sparse solutions in the regression coefficients. We 
consider two varieties: Ridge Regression (Hoerl and Kennard 1970) and Least Absolute 
Shrinkage and Selection Operator (LASSO) regression (Tibshirani 1996). 

Ridge regression modifies least squares by adding a pre-selected constant 𝜆 into the coefficient 
estimator: 

𝛽̂ = (𝑋′𝑋 + 𝜆𝜆)−1𝑋′𝑌 

The parameter estimates are obtained by minimizing the penalized sum of squares with a 𝑙2 norm 
penalty: 

𝑃𝑃𝑃 = �(
𝑛

𝑖=1

𝑦𝑖 −�𝑥𝑖𝑖

𝑚

𝑗=1

𝛽𝑗)2 + 𝜆�𝛽𝑗2
𝑚

𝑗=1

 

By adding the penalty, we can see that as coefficients 𝛽𝑗 grows, the cost function is penalized 
and places greater preferences for smaller coefficients. The value of 𝜆 is tuned through k-fold 
cross-validation to minimize the cost function. A more recent innovation to this method is the 
LASSO model, that makes a simple modification to the penalty—replacing the 𝑙2 norm with a 𝑙1 
norm: 

𝑃𝑃𝑃 = �(
𝑛

𝑖=1

𝑦𝑖 −�𝑥𝑖𝑖

𝑚

𝑗=1

𝛽𝑗)2 + 𝜆� |
𝑚

𝑗=1

𝛽𝑗| 

Whereas the Ridge regression forces smaller parameter estimates, LASSO conducts variable 
selection by forcing some parameters to the edge case of exactly zero. While regularized least 
squares methods is an improvement on least squares, linear methods may not capture non-
linearities and interactions that non-parametric algorithms can. We thus also consider five non-
parametric techniques that are more flexible. 

Regression Trees (CART). The building block for a number of these non-parametric techniques 
is Classification and Regression Trees (CART), more specifically the regression tree (Breiman 
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et al. 1984). The objective of CART is to recursively split a sample into smaller, more 
homogeneous partitions known as nodes. Each split yields two child nodes that are defined by a 
threshold 𝜃 along variable 𝑥𝑗: 

𝐼− = {𝑖: 𝑥𝑗 < 𝜃} 

𝐼+ = {𝑖: 𝑥𝑗 ≥ 𝜃} 

where 𝐼− and 𝐼+ are sets of observations that are below and above 𝜃. As multiple values of 𝜃 are 
considered, the best 𝜃 minimizes the sum of squares: 

𝑆𝑆 = �(
𝑖∈𝐼−

𝑦𝑖 − 𝑦−)2 + �(
𝑖∈𝐼+

𝑦𝑖 − 𝑦+)2 

in which 𝑦− and 𝑦+ are the mean of 𝑦𝑖 for candidate partitions above and below 𝜃. Each 
resulting child node (𝑋𝑖,𝑦𝑖)𝑖∈𝐼− and (𝑋𝑖,𝑦𝑖)𝑖∈𝐼+  is further partitioned until it cannot be split any 
further or when additional splits do not improve the model fit. Each terminal node is referred to 
as a leaf 𝑐. A fully-grown tree minimizes the sum of squares of tree 𝑓: 

𝑆𝑆 = ��(
𝑛

𝑖=1

𝐶

𝑐=1

𝑦𝑖 − 𝑦𝑐)2 

where 𝐶 are all leaves in the tree, 𝑛 is the number of observations within a leaf 𝑐, and 𝑦𝑐 =
1
𝑛
∑ 𝑦𝑖𝑛
𝑖=1 . 

While we can see that CART implicitly conducts variable selection by selecting split thresholds 
along variables, each node could in theory be split until all leaves are 𝑛 = 1. An overgrown, 
overly complex CART thus may overfit the data and introduce unnecessary variance into 
predictions. One remedy is to prune the tree to reduce the complexity, choosing a level of 
complexity that minimizes out-of-sample error. In small samples, however, these tuning 
strategies may have minimal effect on the quality of predictions as each leaf is an average of a 
small cell of observations that lend little statistically meaningful support. 

Random Forests. Regression trees can be improved upon by an ensemble method known as 
Random Forests (Breiman 2001). The algorithm process is simple: 

1. Construct 𝐵 number of samples with replacement with 𝑛 observations and 𝑚 randomly 
drawn variables from 𝑋. 

2. Train regression tree 𝑓𝑏 on the sample 𝑏. 
3. Average the predictions from each 𝑓𝑏 to obtain 𝑦𝑖̂ 
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𝑦𝑖̂ =
1
𝐵
�𝑓𝑏𝑏

𝐵

𝑏=1

(𝑥𝑖) 

where 𝐵 = 500 in this study and the number of variables 𝑚 per tree is determined through 
tuning. 

This technique offers a couple of gains over regression trees. First, by constructing many trees 
under similar but randomly drawn conditions minimizes model variance while keeping bias 
uniform. Second, the bootstrapping builds in a natural validation sample to calculate the out-of-
bag (OOB) error for evaluating generalizability of predictions.8 Parameter tuning can also take 
advantage of the OOB error by training Random Forest algorithms under varying conditions 
such as variables per tree, then comparing the average OOB error between models. 

Gradient Boosting (XG Boost). Another ensemble technique that has gain in popularity is 
gradient boosting. As developed in Friedman (2001), gradient boosting generates m-number of 
base learners 𝑓𝑚(𝑥) that are trained to correct errors made by prior iterations. Each base learner 
𝑓𝑚(𝑥) is a weak learner—a model that may only have slightly better than random predictive 
power. In this case, we rely on a decision stump, which is a regression tree with only one split.  
Each base learner is generated sequentially and added to produce a prediction 𝐹𝑀(𝑥)  

𝐹𝑀(𝑥) = � 𝜂𝜂𝑚(𝑥) 
𝑀

𝑚=1

 

where 𝜂 is a shrinkage parameter between 0 and 1 that controls the rate in which the boosting 
model converges and has been shown to be an effective way to mitigate overfitting. As 𝜂 
decreases, the number of iterations M required to converge needs to be increased—these 
parameters are tuned together. 

At some iteration 𝑚, the loss will have effectively converged, meaning that the addition of 
subsequent base learners may add noise to estimates and use unnecessary computational 
resources. For simplicity, we set the 𝑀 = 300 with a learning rate of 𝜂 = 0.05, but specify an 
early stopping rule that ends training if 15 consecutive iterations fail improve the model. We rely 
on XGBoost implementation of the technique as described in T. Chen and Guestrin (2016). 

Support Vector Regression (SVR). SVR fits a linear regression on input data that has been 
mapped using a non-linear function. The non-linear function can take on various functions 
𝑘(𝑥𝑖, 𝑥𝑗), such as a Gaussian radial basis function kernel: 

                                                        
8 The out-of-bag error is the error based on the observations left out of the bootstrap draw, which is a 
commonly applied in ML models. 
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𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒𝑒𝑒(|𝑥𝑖 − 𝑥𝑗|2) 

𝑘(𝑥𝑖, 𝑥𝑗) transforms the input variables x into a higher-dimensional space to better model 
patterns in the data. The linear regression yields a hyperplane in which each 𝑦𝑖 resides within a 
hard margin of error 𝜖:  (𝑦�𝑖  − 𝜖)  ≤  𝑦𝑖  ≤ (𝑦�𝑖  + 𝜖). Each prediction 𝑦�𝑖 is found on this 
hyperplane. This constrained optimization problem can be infeasible as some observations may 
lie beyond the margin, thus a cost parameter C can “soften” the margins. A soft margin of error 
allows some observations to reside beyond the margin but penalizes those observations by their 
distance from the margin (i.e., the amount of “slack” they are permitted), thereby regularizing the 
model to reduce the incidence of overfitting (Drucker et al. 1996). 

SVR may require more time to train than other algorithms, thus for cost efficiency, we tune the 
cost parameter 𝐶 along a grid for a sample of industry targets, then fix values of the parameters 
for all other industries based on the optimum. 

Multi-Adaptive Regression Splines (MARS). MARS fits k-number of basis functions that are 
combined to produce a prediction (Friedman 1991):  

𝑓 (𝑥) = �𝛼𝑖

𝑘

𝑖=1

𝑏𝑖(𝑥) 

where each basis function 𝑏𝑖 is weighted by a coefficient 𝛼𝑖 learned by minimizing the sum of 
squared errors. Each basis function 𝑏𝑖(𝑥) can take on one of three forms: a constant term—or 
intercept, a hinge function, or the interaction of hinge functions. Hinge functions fit splines to the 
data—allowing a regression line to bend at a threshold along x so that the slopes may vary on 
either side. By taking advantage of a potentially large number of splines, MARS molds to the 
non-linearities and discontinuities in even highly dimensional data sets, but a potentially large 
number of basis functions may overfit the data. The technique thus unfolds as a two-step process: 
a forward stage and a backward stage. The forward stage fits and weights candidate pairs of 
hinge functions, choosing only to add the pair to the overall model if it reduces training error by 
the largest margin. The backward pass mitigates overfitting by removing least effective terms 
subject to generalized cross validation. 

We apply MARS using an open source implementation called earth (Milborrow 2018). The 
forward pass requires tuning the degree of interaction effects among basis functions. The 
backward pass is also tuned based on the number of terms to retain. We conduct a grid search by 
considering all combinations of interaction effects for degrees 1 through 3 and number of 
retained terms (5, 10, 15). 

A summary list of the different methods is shown in Table 1 for reference. 
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TABLE 1: Algorithms consider for the prediction horse race. 

Technique Training and Tuning Procedure 

Linear Methods 

4-Quarter Moving Average 
(4QMA) 

Calculate 4-quarter moving average. 

Forward Stepwise Regression Set max number of parameters k to the square root of the sample 
size. 

LASSO Regression Leave-one-out cross validation to find value of lambda that 
minimizes mean squared error. 

Ridge Regression Leave-one-out cross validation to find value of lambda that 
minimizes mean squared error. 

Nonparametric Methods 

Regression Trees Grow tree to full depth and cross validate error in each step, then 
select tree complexity that minimizes MSE. 

Random Forests (RF) Number of trees set to 500. Select the number of variables per tree 
along a grid of possible values choosing the lowest OOB error. 

Gradient Boosting Set maximum iterations to 300, 𝜂 = 0.05, early stopping if model 
error does not improve after 15 rounds. 

Multi-Adaptive Regression 
Splines (MARS) 

Tune over a search grid of degree of interaction effects (1 to 3) and 
number of terms to retain during pruning pass (5, 10, 15). 

Support Vector Regression 
(SVR) with Radial Basis 
Function (RBF) 

Search hyperparameter 𝐶 along a grid for a sample of industry 
targets, then fix values of the parameters for all other industries 
based on the optimum. 

3.2.2. Variable Selection 

Models are only as good as their inputs. Too much information may lead to an overfit model and 
highly variable predictions. Too little information place disproportionate weight on a few 
variables, thereby introducing bias into predictions. In machine learning, a happy medium 
involves conducting dimensionality reduction to reduce the number of variables considered, 
while still extracting the key information from the variables. Sample size constraints may limit 
the effectiveness of more sophisticated variable selection techniques. 

We instead consider two contrasting approaches that represent the extremes of variable selection: 
cherry picking and kitchen sink. Economic intuition tends towards parsimonious specifications, 
including only variables that capture economic and behavioral forces. Thus, cherry picking in 
this context is defined as the inclusion of input variables that are conceptually like the left-hand 
side variable. For example, if physician offices revenue (NAICS 6211) is the target, then only 
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medical-related factors are included as input variables. However, if important information is 
omitted, then models are underfit and can miss the trend. 

Alternatively, kitchen sink models include all available data, placing no assumption on which 
variables should be included. This implies that the algorithms have the capacity to conduct 
implicit variable selection and can incorporate information without introducing excess noise. 

3.2.3. Data Sources 

National accounts are an amalgam of public and private sources. In fact, private source data are 
incorporated in various areas of economic measurement such as motor vehicle production and 
Value Put In Place (VPIP) estimates for construction. Alternative private data offer the 
possibility of capturing news that may otherwise be overlooked by indicator series or projections, 
though recognizing that private administrative data are collected with a goal other than national 
statistics (e.g., profit maximization). Thus, our proposed machine learning-alternative data 
hybrid should not be viewed as a replacement for current projection methods, but rather a 
supplemental source that is run in parallel that assesses the validity of current projections.  

The target series are 188 industry time series published in the QSS, available in time for the third 
estimate of GDP. To ensure predictions produce an output that are useful for estimate 
production, we target NSA percentage quarterly growths for both revenue and expenditure series 
for a 31-quarter period—between the second quarter of 2010 and the first quarter of 2018. 

We assemble a variety of input data from traditional and alternative sources. Among traditional 
sources are NSA aggregates from the Bureau of Labor Statistics’s (BLS) Current Employment 
Survey (CES) and Consumer Price Indices (CPI). These sources are currently used in estimating 
national indicators, are publicly available and are constructed on probability samples—in other 
words, these are generalizable samples with known universes and quantifiable biases. 

Two alternative data sources are considered. First, credit card transactions are acquired from 
First Data, which offers credit card processing services for a network of merchants across the 
United States. The data are available daily within the first 10 days after the end of a month and 
are processed by Palantir using a methodology developed by the Federal Reserve Board of 
Governors (Aladangady et al. Forthcoming). To minimize the effect of churn, each monthly 
transaction estimate only includes merchants that have been First Data customers within the prior 
13 months. These data provide a timely view into purchasing behavior, trading 
representativeness off with timeliness. 

Google Trends is another source of timely, near-real-time source of data that covers a wide range 
of activity. In many respects, trends gauge public interest in various economically-related issues, 
as captured through Google’s online offerings, including Google Search, Google News, and 
Froogle. 160 keywords were derived from QSS NAICS definitions and monthly estimates for the 
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period of 2003 through 2017 were requested via the Google Trends API. The API returned 240 
volume indexes that were constructed from a simple random sample of search queries, 
aggregated into a time series of proportion of total Google search activity, and indexed to the 
maximum search volume share in the time series. 

TABLE 2: Data sources used for this prediction study. 

Data Description Economic Relevance 
Census Bureau 
Quarterly Services 
Survey (QSS) 

Longitudinal survey of 19,000 US businesses 
operating in the services sector. 

Key input into BEA’s 
Personal Consumption 
Expenditure (PCE) series. 

BLS Current 
Employment 
Survey (CES) 

Employment estimates released monthly, 
converted into quarterly average. CES is currently 
relied on for national accounting estimates. 
Contains 140 industry series. 

Employment trends that 
coincide and trend with 
consumption. 

BLS Consumer 
Price Indexes (CPI) 

National-level price indices for products and are 
currently relied on for national accounting 
estimates. Each CPI is associated to NAICS code 
based on keyword similarity. Contains 600+ series 

Price changes of items that 
are consumed alongside 
services. 

First Data Credit 
Card Transactions 

Near real-time credit card transaction aggregates, 
converted from Merchant Class Codes (MCC) to 
NAICS. Contains 192 industry series. 

Contemporaneous measure 
of consumption. 

Google Trends Monthly activity indices for search queries, 
Google News topics, and Froogle shopping 
activity. Converted from search terms to NAICS 
based on keyword similarity. Contains 240 
industry series. 

Gauge of interest and 
prospective buying behavior 
on the internet. 

3.2.4. One-Step Ahead Validation 

Of the 𝑛 = 31 observations, 𝑛 = 12 are set aside for validating performance. As our objective is 
to generalize and apply models, we simulate the PCE estimation process using a one-step-ahead 
model validation. The model validation technique is an iterative one, producing each 𝑦𝑖𝑖 by 
training on all data 𝑡 < 𝑇, then applying the prediction developed on data points 𝑡 < 𝑇 to 
produce a prediction for the observation 𝑡 = 𝑇. For each of the 12 validation quarters, we re-train 
each model by growing the data’s time window (see Figure 1), thereby producing predictions 
that are responsive to evolving economic patterns. In Figure 1 we start with a prediction for T = 
0 and use time periods T = -1 and less to form this prediction. We next move one step ahead to 
predict time T = 1 using information in time periods T = 0 and lower to form the prediction. The 
predictions in period T = 2 and future periods proceed accordingly. While the number of 
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observations per prediction grows with time, we assume the benefits of greater accuracy and 
stability among the predictions should affect all models in the same way. 

In total, 73,884 model scenarios were trained and produced predictions for 12 consecutive 
validation quarters, resulting in 886,608 model runs and predictions.  

  

FIGURE 1: One-step ahead model validation design. The X axis represents both the training set (pink) 
and test set (orange). The Y axis represents the prediction time periods. 

4. Evaluating Performance and Revision Reduction 

When a large sample is available, a robust model selection framework should include both a 
model validation step (e.g., one step ahead or k-fold cross validation) to aid in selecting the most 
generalizable model and a test step to re-validate the chosen model’s performance. The sample 
available for this study, however, is not sufficiently large to afford a test set, thus a model chosen 
from thousands of candidates may run the risk of overfitting the data. We instead take a 
conservative approach that evaluates performance by selecting ensembles of models developed 
under common conditions. For an industry i, for example, all models that were trained using a 
Random Forest would be considered one ensemble, whereas all models that rely on BLS CES 
would be considered another. 

First, we train thousands of models for a cross-section of 188 QSS series covering many 
industries using one-step-ahead validation. QSS predictions 𝑦�𝑖𝑖 are converted into PCE 
component estimates 𝐶̂𝑚 for a model m: 

𝐶̂𝑚 = 𝑔𝑐(𝑦𝑖𝑖) 
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where 𝑔𝑐 is BEA’s PCE estimation process that seasonally adjusts and converts available QSS 
data into components estimates. Note that some PCE components rely on only one QSS series 
while others rely on multiple. 

A prediction model applied where revisions are unlikely to reduce revisions will likely add error 
to official estimates, so it is important to evaluate the reduction in revisions. From the 
perspective of data quality, an estimate should only be used if revision reductions are 
consistently expected across a broad distribution of models. We construct two measures to 
evaluate revision reduction potential: The Mean Revision Reduction Probability (MRRP) and the 
Proportion of Improved Periods (PIP). 

Proportion of Improved Periods (PIP). It is easy to imagine that an ensemble can reduce 
revisions on average, but masks generally poor individual quarter-to-quarter performance. The 
PIP is the proportion of the test period that would have had a revision reduction had a given 
model been applied. This measure captures the consistency of revision reductions over time, 
placing emphasis on cases where there is a net improvement over current BEA methodology. 

𝑃𝑃𝑃𝑚 =
1
𝑇
�(
𝑇

𝑖=1

| 𝐶̂𝑚,𝑡 − 𝐶𝑡ℎ𝑖𝑖𝑖,𝑡| < | 𝐶̂𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡 − 𝐶𝑡ℎ𝑖𝑖𝑖,𝑡|) 

To summarize proportion of improved periods for each component 𝑃𝑃𝑃𝑐, we calculate the 
proportion of models that yield improvements in the majority of historical quarters: 

𝑃𝑃𝑃𝑐 =
1
𝑀
� (
𝑀

𝑚=1

𝑃𝑃𝑃𝑚 > 0.5) 

In small samples, it may be challenging to distinguish models on their performance and to some 
extent can be viewed as an arbitrary decision. Thus, when 𝑃𝑃𝑃𝑐 is high, we would have some 
surety that a model selected at random could improve component 𝐶 at least a majority of the 
time. Conversely, a low 𝑃𝑃𝑃𝑐 value indicates that a prediction strategy poses an increased risk of 
increasing quarterly revisions in component 𝐶. 

Mean Revision Reduction Probability (MRRP). Whereas PIP captures revision reductions with 
respect to time, we also consider how often average dollar revision reductions yield 
improvements to PCE components in the long run. 𝑀𝑀𝑀𝑀 is based on the Root Mean Square 
Revision (RMSR) that compares PCE 𝐶̂𝑚 to the actual third estimate of PCE resulting in: 

RMSR𝑚 = �
1
𝑛
�(
𝑛

𝑖=1

Ĉ𝑚 − C𝑡ℎ𝑖𝑖𝑖)2 

Similarly, 𝑅𝑅𝑅𝑅 is calculated for the current projection methodology: 
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RMSRcurrent = �
1
𝑛
�(
𝑛

𝑖=1

Ĉcurrent − C𝑡ℎ𝑖𝑖𝑖)2 

Relative revisions (𝛥𝛥𝛥𝛥𝑅𝑚) are expressed as the dollar difference between 𝑅𝑅𝑅𝑅𝑚 and 
𝑅𝑅𝑅𝑅current, where a negative value indicates a revision reduction: 

𝛥RMSR𝑚 = RMSR𝑚 − RMSR𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Looking across a set of 𝑀 models, we summarize their collective performance as the Mean 
Revision Reduction Probability (MRRP) defined as: 

𝑀𝑀𝑀𝑃𝑐 =
1
𝑀
� (
𝑀

𝑚=1

𝛥RMSR𝑚 < 0) 

in which we are interested in the proportion of models that can achieve a net revision reduction. 
Like PIP, an arbitrary model selected to predict a component with a high 𝑀𝑀𝑀𝑀 value is more 
likely to yield revision reductions. 

Together, PIP and MRRP can be summarized by taking the harmonic mean: 

𝜇𝑘 = 2 ×
𝑀𝑀𝑀𝑀 × 𝑃𝑃𝑃
𝑀𝑀𝑀𝑀 + 𝑃𝑃𝑃

 

where larger values of 𝜇𝑘 indicate more revision reductions. In samples with little power, 𝜇𝑘 
could be used as the basis of identifying the number of components that should be included to 
maximize revision reductions; However, in this study, we use 𝜇𝑘 to examine the revision impacts 
of applying a prediction strategy at a pre-defined cutoff, namely 𝜇𝑘 ≥ 0.8. 

5. Results 

5.1. QSS Predictions 

We sift through the manifold of results to better understand which algorithms, data sets and 
modeling practices contribute to prediction performance. The process generates 393 sets of 
predictions for each of the 188 QSS series, representing possible growth paths under a broad set 
of assumptions.  

Taking a closer look at key industries shown in Figure 2, we see that the mass of the out-of-
sample predictions tend to follow the variation in the target series. The center mass of the 
predictions over time also tend to have a central tendency, which suggests that prediction of the 
QSS growth is generally possible regardless of the modeling scenario. 
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FIGURE 2: Comparison of actual QSS quarterly growths (black dot) with 393 sets of out-of-sample 
predictions (magenta lines) 

Each algorithm reacts to data selection in a different way. The predictions for the physician 
offices category is a prime example, shown in Figure 3. Stepwise and CART regressions are 
prone to overfitting the data and are sensitive to high-leverage data points. Rather than producing 
a diffuse cloud of predictions that have correlated movements, they produce a discrete set of 
predictions, many of which perform relatively poorly. In contrast, the XG Boost and SVM 
algorithms produce predictions that are more dispersed. However, none of the poorer prediction 
paths is particularly prominent; in some of these cases there are algorithms that seem to be 
flatter, but none that show highly variable fluctuations nowhere near the actual data like the 
CART algorithm does. Rather, the central tendency in these algorithms is toward the actual data. 

 

FIGURE 3: Comparison of different modeling assumptions applied to physician services series. 
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Model selection for prediction use cases is guided by finding the model with the lowest error: 
Given a series of models, we could choose the model that minimizes a squared loss function. 
This selection paradigm is effective when the sample size is large; however, as discussed 
previously, crowning a specific model champion is a foolhardy task with only 𝑛 = 12, as the 
model selection process may overfit the data. 

Instead, we take advantage of the sheer number of out-of-sample predictions to identify 
conditions that generally maximize predictive performance across a large cross section of 188 
series that we study. We estimate a simple fixed effect regression to extract the average 
contribution of each modeling dimension: 

𝑅𝑅𝑅𝐸𝑖,𝑘,𝑚 = 𝛽 + 𝛼𝑖 + 𝛾𝑚 + 𝜉𝑘 + 𝜖𝑖,𝑘,𝑚 

As we would expect, some industries are more predictable than others due to sampling 
variability and volatility in the sector; thus, we control for industry fixed effects 𝛼𝑖. 𝛾𝑚 are a 
matrix of dummy variables for each model type (e.g., Extreme Gradient Boost xg, Random 
Forests rf, etc.). 𝜉𝑘 represents the data and variable selection procedures (e.g. cherry picking, 
CES, Google, etc.). From the resulting regression, we can determine which modeling strategies 
tend to perform better in matching the QSS estimates. 

 

TABLE 3: Industry fixed effect regression results with clustered standard errors. 

  (1) (2) (3) 
Constant 5.01 (0.06)*** 6 (0.08)*** 6.01 (0.09)*** 
        
Algorithms (Ref = Stepwise Regression) 
   4Q Moving Average 1.97 (0.23)***   2.16 (0.25)*** 
   Ridge Regression 0.04 (0.07)   0.04 (0.07) 
   LASSO -0.16 (0.04)***   -0.16 (0.04)*** 
   CART 0.69 (0.11)***   0.69 (0.11)*** 
   Random Forest -0.55 (0.05)***   -0.56 (0.06)*** 
   Gradient Boosting -0.42 (0.05)***   -0.43 (0.05)*** 
   SVM Regression 0.25 (0.1)**   0.25 (0.1)** 
   MARS 1.47 (0.13)***   1.48 (0.13)*** 
        
Data (Ref = Google) 
   CES   -0.86 (0.1)*** -0.97 (0.11)*** 
   First Data   -0.72 (0.08)*** -0.81 (0.09)*** 
   Consumer Price Indexes   -0.35 (0.06)*** -0.39 (0.07)*** 
   Dependent Lags   -0.83 (0.11)*** -0.87 (0.11)*** 
 
Variable Selection (Ref = Kitchen Sink) 
...Cherry Picking   0.22 (0.05)*** 0.28 (0.06)*** 
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Number of Data Sets (Ref = 1) 
    2 sets   0.36 (0.05)*** 0.31 (0.05)*** 
    3 sets   0.81 (0.1)*** 0.8 (0.11)*** 
Fixed Effects Yes Yes Yes 
N 73,884 73,884 73,884 
R-squared 0.64 0.62 0.65 
Adjusted R-squared 0.64 0.62 0.65 
Residual Standard Error 2.75 2.83 2.72 

 

Algorithms. Aside from the industry fixed effects, the choice of algorithm appears to have the 
greatest overall influence on RMSE. Among algorithms, we find that tree-based ensemble 
techniques offer the greatest improvements: relative to stepwise regression, random forests and 
gradient boosting reduce RMSEs on average -0.56 and -0.43 percentage points, respectively. 
LASSO regression offers an improvement over stepwise. In contrast, MARS and moving 
averages should be avoided due to their overwhelmingly poor performance. It is worth noting 
that prediction is a game of wins at the margins—if a technique does not perform well across 
industries, there is still a chance that it can offer consistent accuracy gains for individual 
industries. Nevertheless, because we don’t have the data to assess all of the series individually, 
we have to assess the performance of these models more generally. 

Data and variable selection. The data and variable selection dimensions suggest three 
takeaways. 

• There are diminishing returns to adding additional data sources. For example, the 
coefficients imply that if First Data is added as a data source instead of Google Trends, the 
reduction in error is -0.81. However, if First Data is added as a second data source, the 
reduction in RMSE is -0.5 (= -0.8 + 0.3). If First Data is added as a third data source, there 
is an even smaller reduction in RMSE (-0.3 = -0.8 + (0.8 – 0.3)). Moreover, more data is not 
necessarily better (e.g., adding google as a second or third data source would increase 
RMSE).  

• Second, models that are constructed on a purely conceptual basis may not necessarily 
translate into the statistically accurate results. Cherry-picked specifications add an average 
of 0.28 percentage points to the RMSE, meaning that specifications motivated by 
conceptual assumptions may omit some useful information from predictions or introduce 
noise. Thus, relying on the implicit variable selection of the machine learning techniques to 
surface predictive variables offers some gains. 

• Lastly, the Current Employment Survey and dependent lags of QSS, both of which have 
long been available publicly, on average have the greatest influence on prediction quality. 
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The CES and CPIs are both currently used for the national economic accounts and if 
combined with machine learning could likely offer improvements in estimates. 

The fixed effects from the above regression also provide estimates of the predictability of each 
QSS industry series. This is important as some series may be generally harder to predict than 
others, across all the methods that we consider. The difficulty in predicting a series could be 
related to a variety of factors such as the volatility of an industry or the sampling error of the 
series that we are attempting to predict. To investigate the relationship with sampling error, we 
compare the average prediction error (𝛽0 + 𝛼𝑖) and the Census-Bureau-reported average 
sampling error for the QSS. If there were no prediction error, then all the error would come from 
sampling and our prediction error would be directly proportional to sampling error (dashed 
diagonal line), and for a few cases this is nearly the case, such as motor vehicle repair and 
maintenance, spectator sports, and insurance carriers. However, we find that most prediction 
error is higher than the sampling error (as expected). Increases in sampling error is problematic 
for our model predictions, with a one percentage point increase in the target series’ sampling 
error, prediction error increases at a rate of 0.56-percentage points. This serves as a reminder that 
predictions are only as strong as the targets they mimic. 

 

FIGURE 4: Comparison of Survey Sampling Error versus Prediction Error. Each point represents an 
industry, scaled by its total revenue or expenditure as of 2018-Q1. Transparency denotes statistical 
significance of fixed effect estimate—solid red indicates highly significant at the 1% level. Dashed 

diagonal line is the line of equality. 
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While our goal is to identify the winner of the prediction horse race discussed above, we do not 
wish to pare the results down too much based only on this regression. We note, however, that 
algorithm is the single-most important factor in determining RMSE, with a range of about 2.5 
percentage points between the best and the worse-performing algorithms. Because along this 
dimension, the performance is improved by the largest margin, we elect in the following exercise 
to retain all combinations of all other dimensions (data set, scope), but retain only the most 
effective algorithm choice. The random forest algorithm generally seems to perform the best, and 
the second best (grading boosting) is a modification of the random forest algorithm. These two 
methods are both ensemble techniques, which form estimates based on averaging many 
nonlinear models. Nonlinear models that are not ensemble methods, such as CART and MARS, 
perform relatively poorly. 

In subsequent sections, we evaluate the performance of the optimal modeling strategy based on a 
collection of 47 Random Forest models that were constructed under a variety of conditions. 

5.2.  Revision Reductions 

Upon converting predictions of QSS to PCE estimates, each component of PCE can be evaluated 
on whether it may lead to to revision reductions relative to current practice based on our 
measures of improved fit (PIP and MRRP). 71 PCE services sub-components are considered—
all of which incorporate one or more QSS series. We find that there is at least one prediction 
model for each of the 71 components that can improve upon current BEA methods. In large 
samples, this would be a reasonable finding. However, this is an overly optimistic conclusion for 
a small sample that lacks statistical power. 

Instead, as we mentioned previously, we take a more conservative approach to evaluate models 
using measures of revision reductions (PIP and MRRP) to identify modeling strategies that on 
average yield improvements. In principle, one would place greater confidence in predicting a 
component in which 90% of models can reduce revisions rather than a component in which only 
1% of models can meet the task. In low power samples, selecting a specific model from a pool of 
alternative models is like drawing a model at random. Thus, the chance of overfitting would 
arguably be less likely in the former case. Comparing across PCE components, the bubble chart 
shows significant heterogeneity in predictability—higher scores indicate greater surety that a 
model is not a random improvement. A component in the larger grey area indicates that one in 
two models can reduce revisions (𝑝 ≥ 50) whereas the smaller box indicates that 8 in 10 models 
can reduce revisions (𝑝 ≥ 80). 

Based on these cutoffs, we find that 20 PCE components have at a least a coin flip’s chance or 
better of seeing revision reductions—three of which have historically averaged at least $1 billion 
in revisions per quarter. This is not to say that other components are not predictable, but rather 
there is a far smaller margin of error for selecting a reliable model, especially given the limited 
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sample size. When reviewing the less predictable components, we find evidence that evaluating 
components on only one loss function could reduce data quality. MRRP alone would overstate 
the consistency of revision reductions as improvements could be concentrated in only a minority 
of time periods. For example, nearly half of the models predicting HHH (For Profit Home Health 
Care Services) satisfy the condition 𝛥𝛥𝛥𝛥𝛥 < 0, but less than 10% can improve estimates in at 
least a majority of test periods. Components like HHH have one or two large revision reductions 
that mask suboptimal performance in all other quarters. 

 

FIGURE 5: Comparison of MRRP and TS for each PCE Services component. Circles are scaled based on 
average quarterly revisions under current BEA methodology and labeled when revisions exceed $1 

billion. 

The story becomes more nuanced as we evaluate among alternative modeling strategies for each 
PCE component. Generally, the consensus, or lack thereof, give clues about what contributes to 
accuracy. Several components are predictable when applying almost any modeling strategy. 
Physician Services (PHH) and Specialty Outpatient Care (SOH) fall into this category, which 
translates as a need for fine-tuning towards optima rather that conducting an exhaustive search. 
Other components like Non-Profit Hospitals (NPH) have little chance of improvement regardless 
of the modeling strategy. These two scenarios may be due to a combination of the magnitude in 
sampling error of the underlying target series and availability of input variables. In contrast, 
modeling strategies for certain components fail to achieve consensus such as in the case of motor 
vehicle repair and maintenance (MVR). However, two algorithms stand apart in their ability to 
reduce revisions. We can infer that accuracy in this case may be more likely a matter of 
identifying the appropriate functional form. 
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FIGURE 6: Comparison of MRRP and TS for four PCE Services components by modeling component. 

While revision reductions for individual sub-components can be easily evaluated, the ability to 
achieve revision reductions among top line measures (e.g., overall PCE and PCE services) is 
more challenging due to offsetting. Given two sub-components that are added together to 
estimate a more aggregate PCE component, one may have upward revision reductions and the 
other may have downward revision reductions. When added together, the revision reductions 
may partially offset one another, muting the magnitude of improvement to top-line measures. We 
estimate net revision reductions for the most versatile modeling strategy, Random Forest. Only 
PCE components where 𝜇𝑘 ≥ 80 are included in the calculations. The following impact analysis 
reflects the contributions of 20 PCE components, each of which has an ensemble of 50 models 
reflecting a broad range of assumptions. 
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TABLE 4: Estimated Revision Reductions in historical test sample when only applying Random Forest to 
components that have at least an 80-percent chance of improvement. Percent correct direction indicates 
if the ensemble mean’s growth accurately anticipates the actual series’ direction of growth (positive or 

negative). GO NP denotes Gross Output for Nonprofit. 

Component 
Percent Levels ($Mil) Direction 

10th  Mean Median 90th Mean Median ML Current 
PCE 5.59 12.17 13.11 18.33 2054.75 2213.61 100 100 
..PCE Services 0.2 10.3 11.78 19.72 1552.69 1775.76 100 100 
....Health Care 2.23 11.27 12.64 18.99 1442.62 1618 100 100 
....Transportation 2.91 25.57 26.7 43.86 1100.38 1149.29 75 67 
....Recreation 4.28 8.47 8.28 12.75 349.73 341.88 92 83 
....Education 1.74 3.25 3.11 5.16 17.6 16.83 100 100 
....Professional and Other 1.38 4.2 3.72 7.02 77.84 68.89 75 67 
....Personal Care and Clothing  21.8 27.37 28.24 31.03 513.85 530.18 92 83 
....Social Services and Religious 10.29 14.21 14.7 17.82 155.06 160.42 83 83 
....Household Maintenance -24.25 10.94 16.71 34.38 45.49 69.49 100 92 
....GO  NP Social Services 0.07 0.43 0.47 0.74 9.37 10.2 33 33 
....GO  NP Prof  Advocacy 26.24 36.99 41.03 47.8 235.12 260.79 100 100 

 

Starting from the topline, we find that overall PCE revisions would have been reduced on 
average 12% with an ensemble median of 13%, translating to approximately $2 billion in net 
revision reductions. The ensemble’s upper shoulder suggests that some of the better performing 
models within the ensemble could achieve as much as a 21.3% revision reduction ($3.6 billion); 
However, individual model selection would only be possible when statistical power is 
sufficiently large in the validation sample. Within PCE services, several components attain even 
larger revision reductions, with health care and transportation services leading (in absolute 
terms) with average 11.3% and 25.6% improvements, respectively. 

While the shape of growth is matched by the models, the ability to correctly anticipate the 
direction of growth—whether it is positive or negative—has apparent effects on the levels. 
Anticipating a deceleration when growth is accelerating reduces estimate quality and magnifies 
revisions. We evaluate the performance of the ensemble average relative to current performance 
using the validation period. As would be expected, current BEA methods are able to anticipate 
direction of growth in most periods. While we do not find improvements among higher 
aggregate components of PCE, the prediction ensemble marginally improves subcomponents 
with one quarter improvement. 
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6. Conclusion 

In this paper, we illustrate a suitable use of machine learning techniques for macroeconomic 
estimation. We focus on improving data quality by reducing revisions to PCE service 
components. Our proposed approach provides predictions of advanced estimates using machine 
learning techniques and identifies PCE components for which prediction-based improvements 
are likely.  

In general, non-parametric techniques such as Random Forest and Gradient Boosting offer 
marked gains in prediction accuracy and are well-adapted to conducting implicit variable 
selection at scale. Furthermore, these techniques can accommodate the typical ill-posed problem, 
sifting through quantities of data without significant loss in prediction quality.  

One key evaluation point for macroeconomic prediction is its ability to detect economic 
downturns. As the current incarnation of the QSS does not span the 2008-2009 recession, it is not 
possible to test for downturns although it may be applied to anticipating other indicator series. 
Prior studies such Chauvet and Potter (2013) found that commonly macroeconomic techniques 
for forecasting output, such as autoregressive models of a variety of builds, generally perform 
well during expansions, but poorly in recessions. While we are unable to test the machine 
learning models in this context, we can foresee the likely performance of these non-parametric 
techniques during recessionary periods by taking note of the core assumptions. Like linear 
models, non-parametric algorithms are designed for stationary processes. Unlike linear models, 
the predicted value 𝑦𝚤�  are bounded by the range of y in the training sample. In small samples that 
do not span recessions, we can assume that the shape of economic growth can be predicted, but 
the depth of a contraction will likely be understated. A model switching mechanism such as a 
Markov Switching Model should be incorporated to provide greater flexibility to use both non-
parametric and parametric extrapolators. 

There are opportunities to improve the stability of predictions while increasing revision 
reductions. One extension is to train an additional model to marshal predictions and cut through 
the noise of less reliable models. Model averaging as in the case of Hansen (2007) can improve 
predictions subject to a linear constraint. More generally, model stacking techniques offer a more 
flexible solution in which a supervised machine learning algorithm trains on values of 𝑦𝑖 from 
the validation set to produce predictions. In either case, additional training observations would be 
required for the averaging and stacking model to learn which underlying models are in fact 
predictive. As the sample size is a constraint, we may adopt the leave-one-out model validation 
strategy as described in Cornwall et al. (forthcoming) to expand the training sample while 
meeting Granger Causality criteria. 

This study also finds that prediction error will only grow with sampling error, as expected; 
therefore, industries with large sampling error limit the ability for the current strategy to predict 
highly variable PCE components. One approach to overcome sampling error is to consider a top-
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down hierarchical forecasting model (Hyndman et al., 2016), predicting the top-line estimates of 
PCE, then sharing growth by component by modeling conditional probabilities. A benefit is that 
each component is logically consistent with parent series and have a decent degree of accuracy 
among low error series, but sampling error and noise may still pose a challenge. An alternative 
but more costly solution involves improving the underlying survey’s sample design by 
oversampling strata with large sampling error. We recognize this would incur greater cost 
relative to a modeling strategy but may be a necessity for estimate quality. 

This paper shows that using both traditional and alternative data sources can contribute to 
improved predictions. However, there are issues outside of the prediction methodology that 
should also be considered. For instance, while private data sources may lead to better 
predictions, the cost, quality and availability of these data sources may change for external 
reasons (e.g., a company failing or a change in management). Users of alternative data sources 
should be mindful of the long-term availability and stability of these sources. Nevertheless, these 
concerns will be relevant irrespective of the methods that are applied, and it is worth noting that 
a benefit of the ML approach is that it reduces the reliance on a single data source. 

While the macroeconomic literature incorporating machine learning is in its nascent stages, we 
show that computationally intensive algorithms do in fact offer measurable improvements for 
estimates of the PCE Services component of GDP. There is considerable scope for future 
research to apply these techniques to other components of GDP, as well as other national 
statistics.  
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