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Abstract

In many fields, innovation is predicated on discovering useful new combinations of
existing knowledge in highly complex knowledge spaces. Such needle-in-a-haystack
problems are pervasive in fields like genomics, drug discovery, materials science, and
particle physics. We develop a combinatorial-based knowledge production function and
embed it in the classic Jones growth model (1995) to explore how breakthroughs in
artificial intelligence (AI) that dramatically improve prediction accuracy about which
combinations are most valuable could enhance discovery rates and consequently
economic growth. This production function is a generalization (and reinterpretation) of
the Romer/Jones knowledge production function. Separate parameters control the
extent of individual-researcher knowledge access, the effects of fishing out/complexity,
and the ease of forming research teams.

! University of Toronto and NBER.

> National University of Ireland Galway and Whitaker Institute for Innovation and Societal Development.
3 Georgia Institute of Technology.

* We thank Joshua Gans and Chad Jones for thoughtful input on this paper. We gratefully acknowledge
financial support from the Social Sciences Research Council of Canada and the Whitaker Institute for
Innovation and Societal Development.



The potential for continued economic growth comes from the vast search space that we
can explore. The curse of dimensionality is, for economic purposes, a remarkable
blessing. To appreciate the potential for discovery, one need only consider the
possibility that an extremely small fraction of the large number of potential mixtures
may be valuable. (Paul Romer, 1993, pp. 68-69)

Deep learning is making major advances in solving problems that have resisted the best
attempts of the artificial intelligence community for years. It has turned out to be very
good at discovering intricate structure in high-dimensional data and is therefore
applicable to many domains of science, business, and government. (Yann LeCun,
Yoshua Bengio, and Geoffrey Hinton, 2015, p. 436)

1. Introduction

What are the prospects for technology-driven economic growth? Technological
optimists point in part to the ever-expanding possibilities for combining existing
knowledge into new knowledge (Paul Romer, 1990, 1993; Martin Weitzman, 1998;
Brian Arthur, 2009; Erik Brynjolfsson and Andrew McAfee, 2014). The counter case
put forward by technological pessimists is primarily empirical: Growth at the
technological frontier has been slowing down rather than speeding up (Tyler Cowen,
2011; Robert Gordon, 2016). Gordon (2016, p. 575) highlights this slowdown for the
US economy. Between 1920 and 1970, total factor productivity grew at an annual
average compound rate of 1.89 percent, falling to 0.57 percent between 1970 and 1994,
then rebounding to 1.03 percent during the information technology boom between
1994 and 2004, before falling again to just 0.40 percent between 2004 and 2014. Even
the maintenance of this lowered growth rate has only been possible due to exponential
growth in the number of research workers (Charles Jones, 1995). Nicholas Bloom,
Charles Jones, John Van Reenen, and Michael Webb (2017) document that the total
factor productivity in knowledge production itself has been falling both in the aggregate

and in key specific knowledge domains such as transistors, healthcare, and agriculture.

Economists have given a number of explanations for the disappointing growth
performance. Cowen (2011) and Gordon (2016) point to a “fishing out” or “low-

hanging fruit” effect - good ideas are simply becoming harder to find. Benjamin Jones



(2009) points to the headwind created by an increased “burden of knowledge.” As the
technological frontier expands, it becomes harder and harder for individual researchers
to know enough to find the combinations of knowledge that produce useful new ideas.
This is reflected in PhDs being awarded at older ages and a rise in team production as
ever-more specialized researchers must combine their knowledge to produce
breakthroughs. Other evidence points to the physical, social, and institutional
constraints that limit access to knowledge, including the need to be physically close to
the sources of knowledge (Adam Jaffe, Manuel Trajtenberg, and Rebacca Henderson,
1993; Christian Catalini, 2017), the importance of social relationships in accessing
knowledge (Joel Mokyr, 2002; Ajay Agrawal, Iain Cockburn, and John McHale, 2006;
Agrawal, Devesh Kapur, and McHale, 2008), and the importance of institutions in

facilitating - or limiting - access to knowledge (Jeff Furman and Scott Stern, 2011).

Despite the evidence of a growth slowdown, one reason to be hopeful about the
future is the recent explosion in data availability under the rubric of “big data” and
computer-based advances in capabilities to discover and process those data. We can
view these technologies in part as “meta technologies” - technologies for the production
of new knowledge. If part of the challenge is dealing with the combinatorial explosion
in the potential ways that existing knowledge can be combined as the knowledge base
grows, then meta technologies such as deep learning hold out the potential to partially
overcome the challenges of fishing out, the rising burden of knowledge, and the social

and institutional constraints on knowledge access.

Of course, meta technologies that aid in the discovery of new knowledge are
nothing new. Mokyr (2002; 2017) gives numerous examples of how scientific
instruments such as microscopes and x-ray crystallography significantly aided the
discovery process. Nathan Rosenberg (1998) provides an account of how technology-
embodied chemical engineering altered the path of discovery in the petro-chemical
industry. Moreover, the use of artificial intelligence for discovery is itself not new and
has underpinned fields such as cheminformatics, bioinformatics, and particle physics

for decades. However, recent breakthroughs in Al such as deep learning have given a



new impetus to these fields.> The convergence of GPU-accelerated computing power,
exponential growth in data availability buttressed in part by open data sources, and the
rapid advance in Al-based prediction technologies is leading to breakthroughs in
solving many needle-in-a-haystack problems. If the curse of dimensionality is both the
blessing and curse of discovery, advances in Al offer renewed hope of breaking the

curse while helping to deliver on the blessing.

Understanding how these technologies could affect future growth dynamics is
likely to require an explicitly combinatorial framework. Weitzman’s (1998) pioneering
development of a recombinant growth model has unfortunately not been well
incorporated into the corpus of growth theory literature. Our contribution in this paper
is thus twofold. First, we develop a relatively simple combinatorial-based knowledge
production function that converges in the limit to the Romer/Jones function. The model
allows for the consideration of how existing knowledge is combined to produce new
knowledge and also how researchers combine to form teams. Second, while this
function can be incorporated into existing growth models, the specific combinatorial
foundations mean that the model provides insights into how new meta technologies

such as artificial intelligence might matter for the path of future economic growth.

Our paper thus contributes to a recent but rapidly expanding literature on the
effects of Al on economic growth. Much of the focus of this new literature is on how
increased automation substitutes for labor in the production process. Building on the
pioneering work of Joseph Zeira (1998), Daron Acemoglu and Pascual Restrepo (2017)
develop a model in which Al substitutes for workers in existing tasks but also creates
new tasks for workers to do. Philippe Aghion, Benjamin Jones, and Charles Jones
(2017) show how automation can be consistent with relatively constant factor shares
when the elasticity of substitution between goods is less than one. Central to their
results is Baumol’s “cost disease,” which posits the ultimate constraint on growth to be
from goods that are essential but hard to improve rather than goods whose production

benefits from Al-driven technical change. In a similar vein, William Nordhaus (2015)

> See, for example, the recent survey of the use of deep learning in computational chemistry by
Garrett Goh, Nathan Hodas, and Abhinav Vishnu (2017).
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explores the conditions under which Al would lead to an “economic singularity” and
examines the empirical evidence on the elasticity of substitution on both the demand

and supply sides of the economy.

Our focus is different from these papers in that instead of emphasising the
potential substitution of machines for workers in existing tasks, we emphasise the
importance of Al in overcoming a specific problem that impedes human researchers -
finding useful combinations in complex discovery spaces. Our paper is closest in spirit
to Iain Cockburn, Rebecca Henderson, and Scott Stern (2017), which examines the
implications of Al - and deep learning in particular - as a general purpose technology
(GPT) for invention. We provide a suggested formalization of this key idea. Nielsen
(2012) usefully illuminates the myriad ways in which “big data” and associated
technologies are changing the mechanisms of discovery in science. Nielsen emphasizes
the increasing importance of “collective intelligence” in formal and informal networked
teams, the growth of “data-driven intelligence” that can solve problems that challenge
human intelligence, and the importance of increased technology facilitating access to
knowledge and data. We incorporate all of these elements into the model developed in

this paper.

The rest of the paper is organized as follows. In the next section, we outline some
examples of how advances in artificial intelligence are changing both knowledge access
and the ability to combine knowledge in high dimensional data across a number of
domains. In Section 3, we develop an explicitly combinatorial-based knowledge
production function and embed it in the growth model of Jones (1995), which itself is a
modification of Romer (1990). In Section 4, we extend the basic model to allow for
knowledge production by teams. We discuss our results in Section 5 and conclude in
Section 6 with some speculative thoughts on how an “economic singularity” might

emerge.

2. How Artificial Intelligence is Impacting the Production of Knowledge: Some Motivating

Examples



Breakthroughs in Al are already impacting the productivity of scientific research
and technology development. It is useful to distinguish between such meta technologies
that aid in the process of search (knowledge access) and discovery (combining existing
knowledge to produce new knowledge). For search, we are interested in Als that solve
problems that meet two conditions: 1) potential knowledge relevant to the process of
discovery is subject to an explosion of data that an individual researcher or team of
researchers finds increasingly difficult to stay abreast of (the “burden of knowledge”);
and 2) the Al predicts which pieces of knowledge will be most relevant to the
researcher, typically through the input of search terms. For discovery, we also identify
two conditions: 1) potentially combinable knowledge for the production of new
knowledge is subject to combinatorial explosion; and 2) the AI predicts which
combinations of existing knowledge will yield valuable new knowledge across a large
number of domains. We now consider some specific examples of how Al-based search

and discovery technologies may change the innovation process.

Search

Meta* produces Al-based search technologies for identifying relevant scientific
papers and tracking the evolution of scientific ideas. The company was acquired by the
Chan-Zuckerberg Foundation, which intends to make it available free of charge to
researchers. This Al-based search technology meets our two conditions for a meta
technology for knowledge access: 1) the stock of scientific papers is subject to
exponential growth at an estimated 8-9 percent per year (Lutz Bornmann and Riidiger
Mutz, 2015); and 2) the Al-based search technology helps scientists identify relevant
papers, thereby reducing the “burden of knowledge” associated with the exponential

growth of published output.

BenchSci is an Al-based search technology for the more specific task of
identifying effective compounds used in drug discovery (notably antibodies that act as
reagents in scientific experiments). It again meets our two conditions: 1) reports on

compound efficacy are scattered through millions of scientific papers with little
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standardisation in how these reports are provided; and 2) an Al extracts compound-
efficacy information, allowing scientists to more effectively identify appropriate

compounds to use in experiments.

Discovery

Atomwise is a deep learning-based Al for the discovery of drug molecules
(compounds) that have the potential to yield safe and effective new drugs. This Al
meets our two conditions for a meta technology for discovery: 1) the number of
potential compounds is subject to combinatorial explosion; and 2) the Al predicts how
basic chemical features combine into more intricate features to identify potential

compounds for more detailed investigation.

DeepGenomics is a deep learning-based Al that predicts what happens in a cell
when DNA is altered by natural or therapeutic genetic variation. It again meets our two
conditions: 1) genotype-phenotype variations are subject to combinatorial explosion;
and 2) the Al “bridges the genotype-phenotype divide” by predicting the results of
complex biological processes that relate variations in the genotype to observable
characteristics of an organism, thus helping to identify potentially valuable therapeutic

interventions for further testing.

3. A Combinatorial-Based Knowledge Production Function

Figure 1 provides an overview of our modelling approach and how it relates to
the classic Romer/Jones knowledge production function. The solid lines capture the
essential character of the Romer/Jones function. Researchers use existing knowledge -
the standing-on-shoulders effect - to produce new knowledge. The new knowledge then
becomes part of the knowledge base from which subsequent discoveries are made. The
dashed lines capture our approach. The existing knowledge base determines the

potential new combinations that are possible, the majority of which are likely to have no



value. The discovery of valuable new knowledge is made by searching among the
massive number of potential combinations. This discovery process is aided by meta
technologies such as deep learning that allow researchers to identify valuable
combinations in spaces where existing knowledge interacts in often highly complex
ways. As with the Romer/Jones function, the new knowledge adds to the knowledge
base - and thus the potential combinations of that knowledge base - which subsequent
researchers have to work with. A feature of our new knowledge production function
will be that the Romer/Jones function emerges as a limiting case both with and without
team production of new knowledge. In this section, we first develop the new function
without team production of new knowledge; in the next section, we extend the function

to allow for team production.

The total stock of knowledge in the world is denoted as 4, which we assume
initially is measured discretely. An individual researcher has access to an amount of
knowledge, A% (also assumed to be an integer), so that the share of the stock of
knowledge available to an individual researcher is A?~1.6 We assume that 0 < ¢ < 1.
This implies that the share of total knowledge accessible to an individual researcher is
falling with the total stock of knowledge. This is a manifestation in the model of the
“burden of knowledge” effect identified by Jones (2009) - it becomes more difficult to
access all the available knowledge as the total stock of knowledge grows. The
knowledge access parameter, ¢, is assumed to capture not only what a researcher
knows at a point in time but also their ability to find existing knowledge should they
require it. The value of the parameter will thus be affected by the extent to which
knowledge is available in codified form and can be found as needed by researchers. The

combination of digital repositories of knowledge and search technologies that can

® Paul Romer emphasized the importance of distinguishing between ideas (a non-rival good)
and human capital (a rival good). “Ideas are. .. the critical input in the production of more
valuable human and non-human capital. But human capital is also the most important input in
the production of new ideas. ... Because human capital and ideas are so closely related as inputs
and outputs, it is tempting to aggregate them into a single type of good. . .. It is important,
nevertheless, to distinguish ideas and human capital because they have different fundamental
attributes as economic goods, with different implications for economic theory” (Romer, 1993, p.
71). In our model, A? is a measure of a researcher’s human capital. Clearly, human capital
depends on the existing technological and other knowledge and the researcher’s access to that
knowledge. In turn, the production of new knowledge depends on the researcher’s human
capital.



predict what knowledge will be most relevant to the researcher given the search terms
they input - think of the ubiquitous Google as well as more specialized search

technologies such Meta® and BenchSci - should increase the value of ¢.

Innovations occur as a result of combining existing knowledge to produce new
knowledge. Knowledge can be combined aideas at a time, where a=10, 1... A®. Fora
given individual researcher, the total number of possible combinations of units of

existing knowledge (including singletons and the null set)” given their knowledge

access is:
AP
¢
W z=) (A7) =2
a=0 a

The total number of potential combinations, Z;, grows exponentially with A?. Clearly, if
A is itself growing exponentially, Z; will be growing at a double exponential rate. This is
the source of combinatorial explosion in the model. Since it is more convenient to work
with continuously measured variables in the growth model, from this point on we treat
A and Z; as continuously measured variables. However, the key assumption is that the

number of potential combinations grow exponentially with knowledge access.

The next step is to specify how potential combinations map to discoveries. We
assume that a large share of potential combinations do not produce useful new
knowledge. Moreover, of those combinations that are useful, many will have already
been discovered and thus are already part of A. This latter feature reflects the fishing-
out phenomenon. The per period translation of potential combinations into valuable

new knowledge is given by the (asymptotically) constant elasticity discovery function:

’ Excluding the singletons and the null set, total number of potential combinations would be
24% _ 4% — 1. As singletons and the null set are not true “combinations,” we take equation (1)
to be an approximation of the true number of potential combinations. The relative significance
of this approximation will decline as the knowledge base grows, and we ignore it in what

follows.
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where f is a positively valued knowledge discovery parameter and use is made of

L’Hopital’s rule for the limiting case of 8 = 0.8

For 8 > 0, the elasticity of new discoveries with respect to the number of

possible combinations, Zj, is:

94 Z; pzot VAL

15
—_— = = 9’
9Z; A z% -1 (zﬁ—1>
Fl=o

(3)

which converges to 6 as the number of potential combinations goes to infinity. For

6 = 0, the elasticity of new discoveries is:

0AZ; B Z 1

0Z, A Z,BlnZ,  InZ;

(4)

® L’Hépital’s rule is often useful where a limit of a quotient is indeterminate. The limit of the
term in brackets on the right-hand-side of equation (2) as 8 goes to zero is 0 divided by 0 and is
thus indeterminate. However, by L’Hopital’s rule, the limit of this quotient is equal to the limit
of the quotient produced by dividing the limit of the derivative of the numerator with respect to
6 by the limit of the derivative of the denominator with respect to 8. This limit is equal to
In(2)A4¢.
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which converges to zero as the number of potential combinations goes to infinity.

A number of factors seem likely to affect the value of the fishing-out/complexity
parameter, 8. First are basic constraints relating to natural phenomena that limit what
is physically possible in terms of combining existing knowledge to produce scientifically
or technologically useful new knowledge. Pessimistic views on the possibilities for
future growth tend to emphasize such constraints. Second is the ease of discovering
new useful combinations that are physically possible. The potentially massive size and
complexity of the space of potential combinations means that finding useful
combinations can be a needle-in-the-haystack problem. Optimistic views of the
possibilities for future growth tend to emphasize how the combination of Al (embedded
in algorithms such as those developed by Atomwise and DeepGenomics) and increases
in computing power can aid prediction in the discovery process, especially where it is
difficult to identify patterns of cause and effect in high dimensional data. Third,
recognizing that future opportunities for discoveries are path dependent (see, for
example, Weitzman, 1998), the value of & will depend on the actual path that is
followed. To the extent that Al can help identify productive paths, it will limit the

chances of economies going down technological dead-ends.

There are L, researchers in the economy each working independently, where L,
is assumed to be measured continuously. (In Section 4, we consider the case of team
production in an extension of the model.) We assume that some researchers will
duplicate each other’s discoveries - the standing-on-toes effect. To capture this effect,
new discoveries are assumed to take place “as if” the actual number of researchers is
equal to L}, where 0 < 1 < 1. Thus the aggregate knowledge production function for

6 > 0 is given:

11



At a point in time (with given values of 4 and L), how does an increase in 6
affect the rate of discovery of new knowledge, A? The partial derivative of A with

respect to 0 is:

9A  BLi(61n(2) A% —1)24%° .\ gLA

©) 06 62 02"

A sufficient condition for this partial derivative to be positive is that that term in square

brackets is greater than zero, which requires:

S

7 A> (01n(2)> '

We assume this condition holds. Figure 2 shows an example of how A (and also the
percentage growth of A given that A is assumed to be equal to 100) varies with 8 for
different assumed values of ¢p. Higher values of 8 are associated with a faster growth
rate. The figure also shows how 6 and ¢ interact positively: Greater knowledge access
(as reflected in a higher value of ¢) increases the gain associated with a given increase

in the value of 6.

We assume, however, that 6 itself evolves with 4. A larger 4 means a bigger and
more complex discovery search space. We further assume that this complexity will
eventually overwhelm any discovery technology given the power of the combinatorial

explosion as A4 grows. This is captured by assuming that 6 is a declining function of 4;

12



that is, 8 = 6(A), where 8'(A) < 0. In the limit as 4 goes to infinity, we assume that

6(A) goes to zero, or:

® limo(4)=o.

This means that the discovery function converges asymptotically (given sustained

growth in A) to:

(9) A=pIn)LiA%.

This mirrors the functional form of the Romer/Jones function and allows for decreasing
returns to scale in the number of researchers, depending on the size of 1. While the
form of the function is familiar by design, its combinatorial-based foundations have the
advantage of providing richer motivations for the key parameters in the knowledge

discovery function.

We use the fact that the functional form of equation (9) is the same as that used
in Jones (1995) to solve for the steady state of the model. More precisely, given that the
limiting behaviour of our knowledge production function mirrors the function used by
Jones and all other aspects of the economy are assumed to be identical, the steady-state
along a balanced growth path with constant exponential growth will be the same as in

that model.

As we have nothing to add to the other elements of the model, we here simply
sketch the growth model developed by Jones (1995), referring the reader to the original
for details. The economy is composed of a final goods sector and a research sector. The
final goods sector uses labor, Ly, and intermediate inputs to produce its output. Each

new idea (or “blueprint”) supports the design of an intermediate input, with each input
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being supplied by a profit-maximizing monopolist. Given the blueprint, capital, X is
transformed unit for unit in producing the input. The total labor force, Z, is fully
allocated between the final goods and research sectors, so that Ly + L, = L. We assume

the labor force to be equal to the population and growing at rate n(> 0).

Building on Romer (1990), Jones (1995) shows that the production function for

final goods can be written as:

(10) Y =(ALy)*K'"%,

where Yis final goods output. The intertemporal utility function of a representative

consumer in the economy is given by:

1) U= f (et

where ¢ is per capita consumption and p is the consumer’s discount rate. The
instantaneous utility function is assumed to exhibit constant relative risk aversion, with
a coefficient of risk aversion equal to ¢ and a (constant) intertemporal elasticity of

substitution equal to 1/a.

Jones (1995) shows that the steady-state growth rate of this economy along a

balanced growth path with constant exponential growth is given by:

An
1—¢

(12) ga=9y=9gc =gk =
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where g, = A/A is the growth rate of the knowledge stock, gy is the growth rate of per

capita output y (wherey =Y/L), g. is the growth rate of per capita output c
(where ¢ = C/L), and gy, is the growth rate of the capital labor ratio (where k = K/L).

Finally, the steady-state share of labor allocated to the research sector is given by:

1
1

e

(13) s =

1+

We can now consider how changes in the parameters of knowledge production
given by equation (5) will affect the dynamics of growth in the economy. We start with
improvement in the availability of Al-based search technologies that improve a
researcher’s access to knowledge. In the context of the model, the availability of Al-
based search technologies - e.g., Google, Meta®, BenchSci, etc. - should increase the
value of ¢ and reduce the “burden of knowledge” effect. From equation (12), an
increase in this parameter will increase the steady steady-state growth rate and also the
growth rate and the level of per capital output along the transition path to the steady

state.

We next consider Al-based technologies that increase the value of the discovery
parameter, f. As [ does not appear in the steady state in equation (12), the steady-
state growth rate is unaffected. However, such an increase will raise the growth rate

(and level) along the path to that steady state.

The most interesting potential changes to the possibilities for growth come
about if we allow a change to the fishing-out/complexity parameter, 8. We assume that
the economy is initially in a steady state and then experiences an increase in 6 as the

result of the discovery of a new Al technology. Recall that we assume that 6 will
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eventually converge back to zero as the complexity that comes with combinatorial
explosion eventually overwhelms the new Al. Thus, the steady state of the economy is
unaffected. However, the transition dynamics are again quite different, with larger
increases in knowledge for an given starting of the knowledge stock along the path back

to the steady state.

Using Jones (1995) as the limiting case of the model is appealing because we
avoid unbounded increases in the growth rate, which would lead to the breakdown of
any reasonable growth model and indeed a breakdown in the normal operations of any
actual economy. It is interesting to note, however, what happens to growth in the
economy if instead of assuming that 8 converges asymptotically to zero, it stays at some
positive value (even if very small). Dividing both sides of equation (5) by 4 gives an

expression for the growth rate of the stock of knowledge:

0
A pm@A[(247) -1
an Zzﬁn(A)A( 2}

The partial derivative of this growth rate with respect to Ais:

d (é> A 0
(1s) —4/_ ab [1 + (2A¢) (p0In(2)4% — 1)|.

0A 042

The key to the sign of this derivative is the sign of the term inside the last round
brackets. This term will be positive for a large enough A. As Ais growing over time (for
any positive number of researchers and existing knowledge stock), the growth rate
must eventually begin to rise once 4 exceeds some threshold value. Thus, with a fixed
positive value of 8 (or with 8 converging asymptotically to a positive value), the growth

rate will eventually begin to grow without bound.
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4. A Combinatorial-Based Knowledge Production Function with Team Production: An

Extended Model

Our basic model assumes that researchers working alone combine the
knowledge to which they have access, A?, to discover new knowledge. In reality, new
discoveries are increasingly being made by research teams (Benjamin Jones, 2009;
Nielsen, 2012; Agrawal, Avi Goldfarb, Florenta Teodoridis, 2016). Assuming initially no
redundancy in the knowledge that individual members bring to the team - i.e., collective
team knowledge is the sum of the knowledge of the individual team members -
combining individual researchers into teams can greatly expand the knowledge base
from which new combinations of existing knowledge can be made. This also opens up
the possibility of a positive interaction between factors that facilitate the operation of
larger teams and factors that raise the size of the fishing out/complexity parameter, 6.
New meta technologies such as deep learning can be more effective in a world where
they are operating on a larger knowledge base due to the ability of researchers to more

effectively pool their knowledge by forming larger teams.

We thus extend in this section the basic model to allow for new knowledge to be
discovered by research teams. For a team with m members and no overlap in the
knowledge of its members, the total knowledge access for the team is simply mA®. (We
later relax the assumption of no knowledge overlap within a team.) Innovations occur
as a result of the team combining existing knowledge to produce new knowledge.
Knowledge can be combined by the team aideas at a time, where a=0, 1...mA®. For
a given team j with m members, the total number of possible combinations of units of
existing knowledge (including singletons and the null set) given their combined

knowledge access is:

ma®

(16) Z = Z (m£¢) = gma?,

a=0
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Assuming again for convenience that A? and Zcan be treated as continuous, the
per period translation of potential combinations into valuable new knowledge by a

team is again given by the (asymptotic) constant elasticity discovery function:

. 70 —1 (2m47) -1
(17) Aj=ﬁ<’ >=,8 ~ for 0<6<1
9 9
= fInZ; = fIn(274*) = fIn(2)ma? for 6=0,

where use is again made of L’Hépital’s rule for the limiting case of 8 = 0.

The number of researchers in the economy at a point in time is again L, (which
we now assume is measured discretely). Research teams can potentially be formed
from any possible combination of the L, researchers. For each of these potential teams,
an entrepreneur can coordinate the team. However, for a potential team with m
members to form, the entrepreneur must have relationships with all m members. The
need for a relationship thus places a constraint on feasible teams. The probability of a
relationship existing between the entrepreneur and any given researcher is 1, and thus
the probability of relationships existing between all members of a team of size m is n™.
Using the formula for a binomial expansion, the expected total number of feasible teams

is:

La

(18) s= > (M)gm = +mi

m=0
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The average feasible team size is then given by:

m

iy (M) gm

m

s (5o

Factorizing the numerator and substituting in the denominator using equation (18), we

obtain a simple expression for the average feasible team size:

La (La). m _
20) m= m=0(m)'7 m 1+t 117LA_( Ul )
T oyka (L T @A+ 1)
anlzo(n/;)nm ( 1) n

Figure 3 shows an example of the full distribution of teams sizes (with L, = 50) for two
different values of . An increase in n (i.e. an improvement in the capability to form

teams) will push the distribution to the right and increase the average team size.

We can now write down the form that the knowledge production function would
take if all possible research teams could form (ignoring for the moment any stepping-

on-toes effects):

La m¢0_
(1) A= Z(%)nmﬁ(zz# for 0<@<1.
m=0

We next allow for the fact that only a fraction of the feasible teams will actually form.
Recognising obvious time constraints on the ability of a given researcher to be part of

multiple research teams, we impose the constraint that each researcher can only be part
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of one team. However, we assume the size of any team that successfully forms is drawn
from the same distribution over sizes as the potential teams. Therefore, the expected

average team size is also given by equation (18). With this restriction, we can solve for

. e 1
the total number of teams, A, from the equation L, = N (%) L4, which implies N = %
Given the assumption that the distribution of actual team sizes is drawn from the same

distribution as the feasible team sizes, the aggregate knowledge production function

(assuming 8 > 0) is then given by:

where the first term is the actual number of teams as a fraction of the potentially
feasible number of teams. For 8 = 0, the aggregate knowledge production function

takes the form:

Ly

. 1

= Ty (LM ILBIn2)4?),

= BL4In(2)A°?.

To see intuitively how an increase in 7 could affect aggregate knowledge
discovery when 8 > 0, note that from equation (20) an increase in 1 will increase the

average team size of the teams that form. From equation (16), we see that for a given
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knowledge access by an individual researcher, the number of potential combinations
increases exponentially with the size of the team, m (see Figure 4). This implies that
combining two teams of size m’to create a team of size Zm’will more than double the
new knowledge output of the team. Hence, there is a positive interaction between 6 and
7. On the other hand, when 8 = 0, combining the two teams will exactly double the new
knowledge output given the linearity of the relationship between team size and
knowledge output. In this case, the aggregate knowledge is invariant to the distribution

of team sizes.

To see this formally, note that from equation (23) we know that when 6 = 0, the
partial derivative of A with respect to 7 must be zero since n does not appear in the final
form of the knowledge production function. This results from the balancing of two
effects as n increases. The first (negative) effect is that the number of teams as a share
of the potentially possible teams falls. The second (positive) effect is that the amount of
new knowledge production if all possible teams do form rises. We can now ask what
happens if we raise 6 to a strictly positive value. The first of these effects is unchanged.
But that second effect will be stronger provided that the knowledge production of a
team for any given team size rises with 6. A sufficient condition for this to be true is

that:

-

24) A> ( for allm > 0.

en)

We assume that the starting size of the knowledge stock is large enough so that this
condition holds. Moreover, the partial derivative of A with respect to n will be larger

the larger is the value of 8. We show these effects for a particular example in Figure 5.

The possibilities of knowledge overlap at the level of the team and duplication of
knowledge outputs between teams creates additional complications. To allow for

stepping-on-toes effects, it is useful to first rewrite equation (20) as:
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We introduce two stepping-on-toes effects. First, we allow for knowledge overlap
within teams to introduce the potential for redundancy of knowledge. A convenient way
to introduce this effect is to assume that the overlap reduces the effective average team
size in the economy from the viewpoint of generating new knowledge. More

specifically, we assume the effective team size is given by:

where 0 <y < 1. The extreme case of y = 0 (full overlap) has each team acting as if it
had effectively a single member; the opposite extreme of y = 1 (no overlap) has no
knowledge redundancy at the level of the team. Second, we allow for the possibility that
new ideas are duplicated across teams. The effective number of non-idea-duplicating

teams is given by:

1+m\" Y
(27) Neé=N'"V= <_n n) :

where 0<1 < 1. The extreme case of Y =0 (no duplication) implies that the
effective number of teams is equal to the actual number of teams; the extreme case of
1 = 1 (full duplication) implies that a single team produces the same number of new

ideas as the full set of teams.
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We can now add the stepping-on-toes effects - knowledge redundancy within teams
and discovery duplication between teams - to yield the general form of the knowledge

production function for 8 > 0:

. L ’ < gma®)’ g
(28) A=<1nﬂ) ((ﬁ)u) q +n)1A‘1nLA mz (f;l“)nmﬁ(T) .

If we take the limit of equation (24) as 8 goes to zero, we reproduce the limiting case of
the knowledge production function. Ignoring integer constraints on L4, this knowledge

production function again has the form of the Romer/Jones function:

Lg

. (1+nm 1w n Y 1 L, "
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We note finally the presence of the relationship parameter n in the knowledge
production equation. This can be taken to reflect in part the importance of (social)
relationships in the forming of research teams. Advances in computer-based
technologies such as email and file sharing (as well as policies and institutions) could
also affect this parameter (see, for example, Agrawal and Goldfarb (2008) on the effects
of the introduction of precursors to today’s internet on collaboration between
researchers). Although not the main focus of this paper, being able to incorporate the
effects of changes in collaboration technologies increases the richness of the framework

for considering the determinants of the efficiency of knowledge production.
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5. Discussion

5.1 Something new under the sun? Deep learning as a new tool for discovery

Two key observations motivate the model developed above. First, using the
analogy of finding a needle in a haystack, significant obstacles to discovery in numerous
domains of science and technology result from highly non-linear relationships of causes
and effect in high dimensional data. Second, advances in algorithms such as deep
learning (combined with increased availability of data and computing power) offer the
potential to find relevant knowledge and predict combinations that will yield valuable

new discoveries.

Even a cursory review of the scientific and engineering literatures indicates that
needle-in-the-haystack problems are pervasive in many frontier fields of innovation,
especially in areas where matter is manipulated at the molecular or sub-molecular level.
In the field of genomics, for example, complex genotype-phenotype interactions make it
difficult to identify therapies that yield valuable improvements in human health or
agricultural productivity. In the field of drug discovery, complex interactions between
drug compounds and biological systems present an obstacle to identifying promising
new drug therapies. And in the field of material sciences, including nanotechnology,
complex interactions between the underlying physical and chemical mechanisms
increases the challenge of predicting the performance of potential new materials with
potential applications ranging from new materials to prevent traumatic brain injury to
lightweight materials for use in transportation to reduce dependence on carbon-based

fuels (National Science and Technology Council, 2011).

The apparent speed with which deep learning is being applied in these and other

fields suggests it represents a breakthrough general purpose meta technology for
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predicting valuable new combinations in highly complex spaces. Although an in-depth
discussion of the technical advances underlying deep learning is beyond the scope of
this paper, two aspects are worth highlighting. First, previous generations of machine
learning were constrained by the need to extract features (or explanatory variables) by
hand before statistical analysis. A major advance in machine learning involves the use of
“representation learning” to automatically extract the relevant features.? Second, the
development and optimization of multilayer neural networks allows for substantial
improvement in the ability to predict outcomes in high-dimensional spaces with
complex non-linear interactions (LeCun, Bengio, and Hinton, 2015). A recent review of
the use of deep learning in computational biology, for instance, notes that the “rapid
increase in biological data dimensions and acquisition rates is challenging conventional
analysis strategies,” and that “[m]odern machine learning methods, such as deep
learning, promise to leverage very large data sets for finding hidden structure within
them, and for making accurate predictions” (Christof Angermueller, Tanel Parnamaa,
Leopold Parts, and Oliver Stegle, 2016, p.1). Another review of the use of deep learning
in computational chemistry highlights how deep learning has a “ubiquity and broad
applicability to a wide range of challenges in the field, including quantitative activity
relationship, virtual screening, protein structure prediction, quantum chemistry,

materials design and property prediction” (Goh, Hoda, and Vishu, 2017).

Although the most publicized successes of deep learning have been in areas such
as image recognition, voice recognition, and natural language processing, parallels to
the way in which the new methods work on unstructured data are increasingly being
identified in many fields with similar data challenges to produce research

breakthroughs.1© While these new general purpose research tools will not displace

° As described by LeCun, Bengio, and Hinton (2015, p. 436), “[c]onventional machine-learning
techniques were limited in their ability to process natural data in their raw form. For decades,
constructing a pattern-recognition or machine-learning system required careful engineering
and considerable domain expertise to design a feature extractor that transformed the raw data
(such as the pixel values of an image) into a suitable internal representation or feature vector
from which the learning subsystem, often a classifier, could detect or classify patterns in the
input. ... Representation learning is a set of methods that allows a machine to be fed with raw
data and to automatically discover the representations needed for detection or classification.”

‘% A recent review of deep learning applications in biomedicine usefully draws out these
parallels: “With some imagination, parallels can be drawn between biological data and the types
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traditional mathematical models of cause and effect and careful experimental design,
machine learning methods such as deep learning offer a promising new tool for
discovery - including hypothesis generation — where the complexity of the underlying

phenomena present obstacles to more traditional methods.!

5.2 Meta ideas, meta technologies, and general purpose technologies

We conceptualize Als as general purpose meta technologies - that is, general
purpose technologies (GPTs) for the discovery of new knowledge. Figure 6 summarises
the relationship between Paul Romer’s broader idea of meta ideas, meta technologies,
and GPTs. Romer defines a meta idea as an idea that supports the production and
transmission of other ideas (see, for example, Romer, 2008). He points to such ideas as
the patent, the agricultural extension station, and the peer-review system for research
grants as examples of meta ideas. We think of meta technologies as a subset of Romer’s
meta ideas (the area enclosed by the dashed lines in Figure 6), where the idea for how
to discover new ideas is embedded in a technological form such as an algorithm or

measurement instrument.

Elhanan Helpman (1998, p. 3) argues that a “drastic innovation qualifies as a
GPT if it has the potential for pervasive use in a wide range of sectors in ways that
drastically change their mode of operation.” He further notes two important features
necessary to qualify as a GPT: “generality of purpose and innovational

complementarities” (see also Bresnahan and Trajtenberg, 1995). Not all meta

of data deep learning has shown the most success with — namely image and voice data. A gene
expression profile, for instance, is essentially a ‘snapshot,” or image, of what is going on in a
given cell or tissue in the same way that patterns of pixilation are representative of the objects
in a picture” (Polina Mamoshina, Armando Vieira, Evgeny Putin, and Alex Zhavoronkov, 2016, p.
1445).

" Arecent survey of the emerging use of machine learning in economics (including policy
design) provides a pithy characterization of the power of the new methods: “The appeal of
machine learning is that it manages to uncover generalizable patterns. In fact, the success of
machine learning at intelligence tasks is largely due to its ability to discover complex structure
that was not specified in advance. It manages to fit complex and very flexible functional forms
to the data without simply overfitting; it finds functions that work well out of sample” (Sendhil
Mullainathan and Jann Spiess, 2017, p. 88).
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technologies are general purpose in this sense. The set of general purpose meta
technologies is given by the intersection of the two circles in Figure 6. Cockburn,
Henderson, and Stern (2017) give the example of functional MRI as an example of a
discovery tool that lacks the generality of purpose required for a GPT. In contrast, the
range of application of deep learning as a discovery tool would appear to qualify it as a
GPT. It is worth noting that some authors discuss GPTs as technologies that more
closely align with our idea of a meta technology. Rosenberg (1998), for example,
provides a fascinating examination of chemical engineering as an example of GPT.
Writing of this branch of engineering, he argues that a “discipline that provides the
concepts and methodologies to generate new or improved technologies over a wide
range of downstream economic activity may be thought of as an even purer, or higher

order, GPT” (Rosenberg, 1998, p. 170).

Our concentration on general purpose meta technologies (GPMTs) parallels
Cockburn, Henderson, and Stern’s (2017) idea of a general purpose invention of a
method of invention. This idea combines the idea of a GPT with Zvi Griliches’ (1957)
idea of the “invention of a method of invention,” or IMI. Such an invention has the
“potential for a more influential impact than a single invention, but is also likely to be
associated with a wide variation in the ability to adapt the new tool to particular
settings, resulting in a more heterogeneous pattern of diffusion over time” (Cockburn,
Henderson, and Stern, 2017, p. 4). They see some emerging Als such as deep learning as
candidates for such general purpose IMIs and contrast these with Als underpinning

robotics that, while being GPTs, do not have the characteristic features of an IMI.

5.3 Beyond Al: potential uses of the new knowledge production function

Although the primary motivation for this paper is to explore how breakthroughs
in Al could affect the path of economic growth, the knowledge production function we
develop is potentially of broader applicability. By deriving the Romer/Jones knowledge

production function as the limiting case of a more general function, our analysis may
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also contribute to providing candidate micro-foundations for that function.!? The key
conceptual change is to model discovery as operating on the space of potential
combinations (rather than directly on the knowledge base itself). As in Weitzman
(1998), our production function focuses attention explicitly on how new knowledge is
discovered by combining existing knowledge, which is left implicit in the Romer/Jones
formulation. While this shift in emphasis is motivated by the particular way in which
deep learning can aid discovery - allowing researchers to uncover otherwise hard-to-
find valuable combinations in highly complex spaces - the view of discovery as the
innovative combination of what is already known has broader applicability. The more
general function also has the advantage of providing a richer parameter space for
mapping how meta technologies or policies could affect knowledge discovery. The ¢
parameter captures how access to knowledge at the individual researcher level
determines the potential for new combinations to be made given the inherited
knowledge base. The 6 parameter captures how the available potential combinations
(given the access to knowledge) map to new discoveries. Finally, the n parameter
captures the ease of forming research teams and ultimately the average team size. To
the extent that the capacity to bring the knowledge of individual researchers together
through research teams directly affects the possible combinations, the ease of team
formation can have an important effect on how the existing knowledge base is utilized

for new knowledge discovery.

? In developing and applying the Romer/Jones knowledge production function, growth
theorists have understood its potential combinatorial underpinnings and the limits of the Cobb-
Douglas form. Charles Jones (2005) observes in his review chapter on “Growth and Ideas” for
the Handbook of Economic Growth: “While we have made much progress in understanding
economic growth in a world where ideas are important, there remain many open, interesting
research questions. The first is ‘What is the shape of the idea production function? How do
ideas get produced? The combinatorial calculations of Romer (1993) and Weitzman (1998) are
fascinating and suggestive. The current research practice of modelling the idea production
function as a stable Cobb-Douglas combination of research and the existing stock of ideas is
elegant, but at this point we have little reason to believe it is correct. One insight that illustrates
the incompleteness of our knowledge is that there is no reason why research productivity
should be a smooth monotonic function of the stock of ideas. One can easily imagine that some
ideas lead to domino-like unravelling of phenomena that were previously mysterious . .. Indeed,
perhaps decoding of the human genome or the continued boom in information technology will
lead to a large upward shift in the production function for ideas. On the other hand, one can
equally imagine situations where research productivity unexpectedly stagnates, if not forever
then at least for a long time” (Jones, 2005, p. 1107).
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We hope this more general function will be of use in other contexts. In a recent
commentary celebrating the 25t anniversary of the publication of Romer (1990),
Joshua Gans (2015) observes that the Romer growth model has not been as influential
on the design of growth policy as might have been expected despite its enormous
influence on the subsequent growth theory literature. The reason he identifies is that it
abstracts away “some of the richness of the microeconomy that give rise to new ideas
and also their dissemination” (Gans, 2015). By expanding the parameter space, our
function allows for the inclusion of more of this richness, including the role that meta
technologies such as deep learning can play in knowledge access and knowledge
discovery but potentially other policy and institutional factors that affect knowledge

access, discovery rates, and team formation as well.

6. Concluding Thoughts: A Coming Singularity?

We developed this paper upon a number of prior ideas. First, the production of
new knowledge is central to sustaining economic growth (Romer, 1990, 1993). Second,
the production of new ideas is fundamentally a combinatorial process (Weitzman,
1998). Third, given this combinatorial process, technologies that predict what
combinations of existing knowledge will yield useful new knowledge hold out the
promise of improving growth prospects. Fourth, breakthroughs in AI represent a
potential step change in the ability of algorithms to predict what knowledge is
potentially useful to researchers and also to predict what combinations of existing

knowledge will yield useful new discoveries (LeCun et al., 2015).

In a provocative recent paper, William Nordhaus (2015) explored the
possibilities for a coming “economic singularity,” which he defines as “[t]he idea. .. that
rapid growth in computation and artificial intelligence will cross some boundary or
singularity after which economic growth will accelerate sharply as an ever-accelerating
pace of improvements cascade through the economy.” Central to Nordhaus’ analysis is
that rapid technological advance is occurring in a relatively small part of the economy

(see also Aghion, Jones, and Jones, 2017). To generate more broadly based rapid
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growth, the products of the new economy need to substitute for products on either the
demand- or supply-side of the economy. His review of the evidence - including,
critically, the relevant elasticities of substitution - leads him to conclude that a

singularity through this route is highly unlikely.

However, our paper’s analysis suggests an alternative route to an economic
singularity - a broad-based alteration in the economy’s knowledge production function.
Given the centrality of new knowledge to sustained growth at the technological frontier,
it seems likely that if an economic singularity were to arise, it would be because of some
significant change to the knowledge production function affecting a number of domains
outside of information technology itself. In a world where new knowledge is the result
of combining existing knowledge, Al technologies that help ease needle-in-the haystack
discovery challenges could affect growth prospects, at least along the transition path to
the steady state. It doesn’t take an impossible leap of imagination to see how new meta
technologies such as Al could alter - perhaps modestly, perhaps dramatically - the
knowledge production function in a way that changes the prospects for economic

growth.
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Figure 1. Romer/Jones and Combinatorial-Based Knowledge Production Functions
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Figure 2. Relationships Between New Knowledge Production, 6, and ¢
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Figure 3. Example of How the Distribution of Team Size Varies with i
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Figure 4. Team Knowledge Production and Team Size
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Figure 5. Relationships Between New Knowledge Production, 77, and 6.
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Figure 6. Relationships between Meta Ideas, Meta Technologies, and General Purpose

Technologies

Meta Technologies
(as a Subset of Meta
Ideas)

Ry
A
19

B

Meta Ideas

&

39

General Purpose
Meta T ogies

General Purpose Technologies



