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Abstract 

In many fields, innovation is predicated on discovering useful new combinations of 
existing knowledge in highly complex knowledge spaces.  Such needle-in-a-haystack 
problems are pervasive in fields like genomics, drug discovery, materials science, and 
particle physics. We develop a combinatorial-based knowledge production function and 
embed it in the classic Jones growth model (1995) to explore how breakthroughs in 
artificial intelligence (AI) that dramatically improve prediction accuracy about which 
combinations are most valuable could enhance discovery rates and consequently 
economic growth. This production function is a generalization (and reinterpretation) of 
the Romer/Jones knowledge production function.  Separate parameters control the 
extent of individual-researcher knowledge access, the effects of fishing out/complexity, 
and the ease of forming research teams.  
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The potential for continued economic growth comes from the vast search space that we 
can explore.  The curse of dimensionality is, for economic purposes, a remarkable 

blessing.  To appreciate the potential for discovery, one need only consider the 
possibility that an extremely small fraction of the large number of potential mixtures 

may be valuable.  (Paul Romer, 1993, pp. 68-69) 

 

Deep learning is making major advances in solving problems that have resisted the best 
attempts of the artificial intelligence community for years.  It has turned out to be very 

good at discovering intricate structure in high-dimensional data and is therefore 
applicable to many domains of science, business, and government.  (Yann LeCun, 

Yoshua Bengio, and Geoffrey Hinton, 2015, p. 436) 

 

1.  Introduction 

 

What are the prospects for technology-driven economic growth?  Technological 

optimists point in part to the ever-expanding possibilities for combining existing 

knowledge into new knowledge (Paul Romer, 1990, 1993; Martin Weitzman, 1998; 

Brian Arthur, 2009; Erik Brynjolfsson and Andrew McAfee, 2014).   The counter case 

put forward by technological pessimists is primarily empirical: Growth at the 

technological frontier has been slowing down rather than speeding up (Tyler Cowen, 

2011; Robert Gordon, 2016).  Gordon (2016, p. 575) highlights this slowdown for the 

US economy. Between 1920 and 1970, total factor productivity grew at an annual 

average compound rate of 1.89 percent, falling to 0.57 percent between 1970 and 1994, 

then rebounding to 1.03 percent during the information technology boom between 

1994 and 2004, before falling again to just 0.40 percent between 2004 and 2014. Even 

the maintenance of this lowered growth rate has only been possible due to exponential 

growth in the number of research workers (Charles Jones, 1995). Nicholas Bloom, 

Charles Jones, John Van Reenen, and Michael Webb (2017) document that the total 

factor productivity in knowledge production itself has been falling both in the aggregate 

and in key specific knowledge domains such as transistors, healthcare, and agriculture.  

 

Economists have given a number of explanations for the disappointing growth 

performance.   Cowen (2011) and Gordon (2016) point to a “fishing out” or “low-

hanging fruit” effect – good ideas are simply becoming harder to find.  Benjamin Jones 
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(2009) points to the headwind created by an increased “burden of knowledge.” As the 

technological frontier expands, it becomes harder and harder for individual researchers 

to know enough to find the combinations of knowledge that produce useful new ideas.  

This is reflected in PhDs being awarded at older ages and a rise in team production as 

ever-more specialized researchers must combine their knowledge to produce 

breakthroughs. Other evidence points to the physical, social, and institutional 

constraints that limit access to knowledge, including the need to be physically close to 

the sources of knowledge (Adam Jaffe, Manuel Trajtenberg, and Rebacca Henderson, 

1993; Christian Catalini, 2017), the importance of social relationships in accessing 

knowledge (Joel Mokyr, 2002; Ajay Agrawal, Iain Cockburn, and John McHale, 2006; 

Agrawal, Devesh Kapur, and McHale,  2008), and the importance of institutions in 

facilitating – or limiting – access  to knowledge (Jeff Furman and Scott Stern, 2011).   

 

Despite the evidence of a growth slowdown, one reason to be hopeful about the 

future is the recent explosion in data availability under the rubric of “big data” and 

computer-based advances in capabilities to discover and process those data. We can 

view these technologies in part as “meta technologies” – technologies for the production 

of new knowledge.  If part of the challenge is dealing with the combinatorial explosion 

in the potential ways that existing knowledge can be combined as the knowledge base 

grows, then meta technologies such as deep learning hold out the potential to partially 

overcome the challenges of fishing out, the rising burden of knowledge, and the social 

and institutional constraints on knowledge access.   

 

Of course, meta technologies that aid in the discovery of new knowledge are 

nothing new.  Mokyr (2002; 2017) gives numerous examples of how scientific 

instruments such as microscopes and x-ray crystallography significantly aided the 

discovery process.  Nathan Rosenberg (1998) provides an account of how technology-

embodied chemical engineering altered the path of discovery in the petro-chemical 

industry.  Moreover, the use of artificial intelligence for discovery is itself not new and 

has underpinned fields such as cheminformatics, bioinformatics, and particle physics 

for decades. However, recent breakthroughs in AI such as deep learning have given a 



4 
 

new impetus to these fields.5 The convergence of GPU-accelerated computing power, 

exponential growth in data availability buttressed in part by open data sources, and the 

rapid advance in AI-based prediction technologies is leading to breakthroughs in 

solving many needle-in-a-haystack problems. If the curse of dimensionality is both the 

blessing and curse of discovery, advances in AI offer renewed hope of breaking the 

curse while helping to deliver on the blessing.   

 

Understanding how these technologies could affect future growth dynamics is 

likely to require an explicitly combinatorial framework. Weitzman’s (1998) pioneering 

development of a recombinant growth model has unfortunately not been well 

incorporated into the corpus of growth theory literature.  Our contribution in this paper 

is thus twofold.  First, we develop a relatively simple combinatorial-based knowledge 

production function that converges in the limit to the Romer/Jones function.  The model 

allows for the consideration of how existing knowledge is combined to produce new 

knowledge and also how researchers combine to form teams.   Second, while this 

function can be incorporated into existing growth models, the specific combinatorial 

foundations mean that the model provides insights into how new meta technologies 

such as artificial intelligence might matter for the path of future economic growth.  

 

Our paper thus contributes to a recent but rapidly expanding literature on the 

effects of AI on economic growth. Much of the focus of this new literature is on how 

increased automation substitutes for labor in the production process.  Building on the 

pioneering work of Joseph Zeira (1998), Daron Acemoglu and Pascual Restrepo (2017) 

develop a model in which AI substitutes for workers in existing tasks but also creates 

new tasks for workers to do.  Philippe Aghion, Benjamin Jones, and Charles Jones 

(2017) show how automation can be consistent with relatively constant factor shares 

when the elasticity of substitution between goods is less than one. Central to their 

results is Baumol’s “cost disease,” which posits the ultimate constraint on growth to be 

from goods that are essential but hard to improve rather than goods whose production 

benefits from AI-driven technical change.  In a similar vein, William Nordhaus (2015) 
                                                           
5 See, for example, the recent survey of the use of deep learning in computational chemistry by 
Garrett Goh, Nathan Hodas, and Abhinav Vishnu (2017).   
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explores the conditions under which AI would lead to an “economic singularity” and 

examines the empirical evidence on the elasticity of substitution on both the demand 

and supply sides of the economy.   

 

Our focus is different from these papers in that instead of emphasising the 

potential substitution of machines for workers in existing tasks, we emphasise the 

importance of AI in overcoming a specific problem that impedes human researchers – 

finding useful combinations in complex discovery spaces.  Our paper is closest in spirit 

to Iain Cockburn, Rebecca Henderson, and Scott Stern (2017), which examines the 

implications of AI – and deep learning in particular – as a general purpose technology 

(GPT) for invention. We provide a suggested formalization of this key idea.  Nielsen 

(2012) usefully illuminates the myriad ways in which “big data” and associated 

technologies are changing the mechanisms of discovery in science. Nielsen emphasizes 

the increasing importance of “collective intelligence” in formal and informal networked 

teams, the growth of “data-driven intelligence” that can solve problems that challenge 

human intelligence, and the importance of increased technology facilitating access to 

knowledge and data. We incorporate all of these elements into the model developed in 

this paper.   

 

The rest of the paper is organized as follows. In the next section, we outline some 

examples of how advances in artificial intelligence are changing both knowledge access 

and the ability to combine knowledge in high dimensional data across a number of 

domains. In Section 3, we develop an explicitly combinatorial-based knowledge 

production function and embed it in the growth model of Jones (1995), which itself is a 

modification of Romer (1990).  In Section 4, we extend the basic model to allow for 

knowledge production by teams. We discuss our results in Section 5 and conclude in 

Section 6 with some speculative thoughts on how an “economic singularity” might 

emerge.   

 

2.  How Artificial Intelligence is Impacting the Production of Knowledge: Some Motivating 

Examples 



6 
 

 

Breakthroughs in AI are already impacting the productivity of scientific research 

and technology development.  It is useful to distinguish between such meta technologies 

that aid in the process of search (knowledge access) and discovery (combining existing 

knowledge to produce new knowledge).  For search, we are interested in AIs that solve 

problems that meet two conditions: 1) potential knowledge relevant to the process of 

discovery is subject to an explosion of data that an individual researcher or team of 

researchers finds increasingly difficult to stay abreast of (the “burden of knowledge”); 

and 2) the AI predicts which pieces of knowledge will be most relevant to the 

researcher, typically through the input of search terms.  For discovery, we also identify 

two conditions: 1) potentially combinable knowledge for the production of new 

knowledge is subject to combinatorial explosion; and 2) the AI predicts which 

combinations of existing knowledge will yield valuable new knowledge across a large 

number of domains. We now consider some specific examples of how AI-based search 

and discovery technologies may change the innovation process.   

 

Search 

Metaα produces AI-based search technologies for identifying relevant scientific 

papers and tracking the evolution of scientific ideas. The company was acquired by the 

Chan-Zuckerberg Foundation, which intends to make it available free of charge to 

researchers. This AI-based search technology meets our two conditions for a meta 

technology for knowledge access: 1) the stock of scientific papers is subject to 

exponential growth at an estimated 8-9 percent per year (Lutz Bornmann and Rüdiger 

Mutz, 2015); and 2) the AI-based search technology helps scientists identify relevant 

papers, thereby reducing the “burden of knowledge” associated with the exponential 

growth of published output.  

 

BenchSci is an AI-based search technology for the more specific task of 

identifying effective compounds used in drug discovery (notably antibodies that act as 

reagents in scientific experiments). It again meets our two conditions: 1) reports on 

compound efficacy are scattered through millions of scientific papers with little 



7 
 

standardisation in how these reports are provided; and 2) an AI extracts compound-

efficacy information, allowing scientists to more effectively identify appropriate 

compounds to use in experiments. 

 

Discovery 

Atomwise is a deep learning-based AI for the discovery of drug molecules 

(compounds) that have the potential to yield safe and effective new drugs.  This AI 

meets our two conditions for a meta technology for discovery: 1) the number of 

potential compounds is subject to combinatorial explosion; and 2) the AI predicts how 

basic chemical features combine into more intricate features to identify potential 

compounds for more detailed investigation. 

 

DeepGenomics is a deep learning-based AI that predicts what happens in a cell 

when DNA is altered by natural or therapeutic genetic variation.  It again meets our two 

conditions: 1) genotype-phenotype variations are subject to combinatorial explosion; 

and 2) the AI “bridges the genotype-phenotype divide” by predicting the results of 

complex biological processes that relate variations in the genotype to observable 

characteristics of an organism, thus helping to identify potentially valuable therapeutic 

interventions for further testing.   

 

3.  A Combinatorial-Based Knowledge Production Function 

 

Figure 1 provides an overview of our modelling approach and how it relates to 

the classic Romer/Jones knowledge production function. The solid lines capture the 

essential character of the Romer/Jones function. Researchers use existing knowledge – 

the standing-on-shoulders effect – to produce new knowledge. The new knowledge then 

becomes part of the knowledge base from which subsequent discoveries are made.  The 

dashed lines capture our approach. The existing knowledge base determines the 

potential new combinations that are possible, the majority of which are likely to have no 
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value.  The discovery of valuable new knowledge is made by searching among the 

massive number of potential combinations.   This discovery process is aided by meta 

technologies such as deep learning that allow researchers to identify valuable 

combinations in spaces where existing knowledge interacts in often highly complex 

ways. As with the Romer/Jones function, the new knowledge adds to the knowledge 

base – and thus the potential combinations of that knowledge base – which subsequent 

researchers have to work with.  A feature of our new knowledge production function 

will be that the Romer/Jones function emerges as a limiting case both with and without 

team production of new knowledge. In this section, we first develop the new function 

without team production of new knowledge; in the next section, we extend the function 

to allow for team production.  

 

The total stock of knowledge in the world is denoted as A, which we assume 

initially is measured discretely. An individual researcher has access to an amount of 

knowledge, 𝐴𝜙(also assumed to be an integer), so that the share of the stock of 

knowledge available to an individual researcher is 𝐴𝜙−1. 6
P  We assume that 0 < 𝜙 < 1.  

This implies that the share of total knowledge accessible to an individual researcher is 

falling with the total stock of knowledge.  This is a manifestation in the model of the 

“burden of knowledge” effect identified by Jones (2009) – it becomes more difficult to 

access all the available knowledge as the total stock of knowledge grows.  The 

knowledge access parameter, 𝜙, is assumed to capture not only what a researcher 

knows at a point in time but also their ability to find existing knowledge should they 

require it.  The value of the parameter will thus be affected by the extent to which 

knowledge is available in codified form and can be found as needed by researchers.  The 

combination of digital repositories of knowledge and search technologies that can 
                                                           
6 Paul Romer emphasized the importance of distinguishing between ideas (a non-rival good) 
and human capital (a rival good).  “Ideas are . . . the critical input in the production of more 
valuable human and non-human capital.   But human capital is also the most important input in 
the production of new ideas. . . . Because human capital and ideas are so closely related as inputs 
and outputs, it is tempting to aggregate them into a single type of good. . . . It is important, 
nevertheless, to distinguish ideas and human capital because they have different fundamental 
attributes as economic goods, with different implications for economic theory” (Romer, 1993, p. 
71). In our model, 𝐴𝜙 is a measure of a researcher’s human capital.  Clearly, human capital 
depends on the existing technological and other knowledge and the researcher’s access to that 
knowledge.  In turn, the production of new knowledge depends on the researcher’s human 
capital.   
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predict what knowledge will be most relevant to the researcher given the search terms 

they input – think of the ubiquitous Google as well as more specialized search 

technologies such Metaα and BenchSci – should increase the value of 𝜙. 

 

Innovations occur as a result of combining existing knowledge to produce new 

knowledge.  Knowledge can be combined a ideas at a time, where a = 0, 1 . . . 𝐴𝜙 .   For a 

given individual researcher,  the total number of possible combinations of units of 

existing knowledge (including singletons and the null set)7 given their knowledge 

access is: 

 

(1)      𝑍𝑖 = � �𝐴𝜙

𝑎
�

𝐴𝜙

𝑎=0

= 2𝐴𝜙 . 

 

The total number of potential combinations, 𝑍𝑖 , grows exponentially with 𝐴𝜙.  Clearly, if 

A is itself growing exponentially, 𝑍𝑖  will be growing at a double exponential rate.  This is 

the source of combinatorial explosion in the model.  Since it is more convenient to work 

with continuously measured variables in the growth model, from this point on we treat 

A and 𝑍𝑖  as continuously measured variables.  However, the key assumption is that the 

number of potential combinations grow exponentially with knowledge access. 

 

The next step is to specify how potential combinations map to discoveries.  We 

assume that a large share of potential combinations do not produce useful new 

knowledge.   Moreover, of those combinations that are useful, many will have already 

been discovered and thus are already part of A.   This latter feature reflects the fishing-

out phenomenon.   The per period translation of potential combinations into valuable 

new knowledge is given by the (asymptotically) constant elasticity discovery function: 
                                                           
7 Excluding the singletons and the null set, total number of potential combinations would be 
2𝐴𝜙 − 𝐴𝜙 − 1.  As singletons and the null set are not true “combinations,” we take equation (1) 
to be an approximation of the true number of potential combinations.  The relative significance 
of this approximation will decline as the knowledge base grows, and we ignore it in what 
follows.   
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(2)      𝐴̇𝑖 = 𝛽 �
𝑍𝑖

𝜃 − 1
𝜃

� = 𝛽 �
�2𝐴𝜙�

𝜃
− 1

𝜃
�                         𝑓𝑓𝑓      0 < 𝜃 ≤ 1 

 

                   = 𝛽 ln 𝑍𝑖 = 𝛽 ln �2𝐴𝜙� = 𝛽 ln(2)𝐴𝜙                         𝑓𝑓𝑓       𝜃 = 0, 

 

where 𝛽 is a positively valued knowledge discovery parameter and use is made of 

L’Hôpital’s rule for the limiting case of 𝜃 = 0.8    

 

For θ  > 0, the elasticity of new discoveries with respect to the number of 

possible combinations, Zi, is: 

 

 

(3)        
𝜕𝐴̇
𝜕𝑍𝑖

𝑍𝑖

𝐴̇
=

𝛽𝑍𝑖
𝜃−1

𝛽 �𝑍𝑖
𝜃 − 1

𝜃 �
= �

𝑍𝑖
𝜃

𝑍𝑖
𝜃 − 1

� 𝜃, 

 

which converges to 𝜃 as the number of potential combinations goes to infinity.  For 

𝜃 = 0, the elasticity of new discoveries is: 

 

(4)        
𝜕𝐴̇
𝜕𝑍𝑖

𝑍𝑖

𝐴̇
=

𝛽
𝑍𝑖

𝑍𝑖

𝛽𝛽𝛽𝑍𝑖
=

1
𝑙𝑙𝑍𝑖

, 

                                                           
8 L’Hôpital’s rule is often useful where a limit of a quotient is indeterminate. The limit of the 
term in brackets on the right-hand-side of equation (2) as 𝜃 goes to zero is 0 divided by 0 and is 
thus indeterminate.  However, by L’Hôpital’s rule, the limit of this quotient is equal to the limit 
of the quotient produced by dividing the limit of the derivative of the numerator with respect to 
𝜃 by the limit of the derivative of the denominator with respect to 𝜃. This limit is equal to 
ln (2)𝐴𝜙. 
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which converges to zero as the number of potential combinations goes to infinity.   

 

A number of factors seem likely to affect the value of the fishing-out/complexity 

parameter, θ.  First are basic constraints relating to natural phenomena that limit what 

is physically possible in terms of combining existing knowledge to produce scientifically 

or technologically useful new knowledge.  Pessimistic views on the possibilities for 

future growth tend to emphasize such constraints.  Second is the ease of discovering 

new useful combinations that are physically possible. The potentially massive size and 

complexity of the space of potential combinations means that finding useful 

combinations can be a needle-in-the-haystack problem.  Optimistic views of the 

possibilities for future growth tend to emphasize how the combination of AI (embedded 

in algorithms such as those developed by Atomwise and DeepGenomics) and increases 

in computing power can aid prediction in the discovery process, especially where it is 

difficult to identify patterns of cause and effect in high dimensional data. Third, 

recognizing that future opportunities for discoveries are path dependent (see, for 

example, Weitzman, 1998), the value of θ  will depend on the actual path that is 

followed.  To the extent that AI can help identify productive paths, it will limit the 

chances of economies going down technological dead-ends. 

 

There are 𝐿𝐴 researchers in the economy each working independently, where 𝐿𝐴 

is assumed to be measured continuously.  (In Section 4, we consider the case of team 

production in an extension of the model.)   We assume that some researchers will 

duplicate each other’s discoveries – the standing-on-toes effect.  To capture this effect, 

new discoveries are assumed to take place “as if” the actual number of researchers is 

equal to 𝐿𝐴
𝜆 , where 0 ≤ 𝜆 ≤ 1.   Thus the aggregate knowledge production function for 

𝜃 > 0 is given: 
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(5)       𝐴̇ = β𝐿𝐴
𝜆 �

�2𝐴𝜙�
𝜃

− 1
𝜃

�. 

 

At a point in time (with given values of A and 𝐿𝐴), how does an increase in 𝜃 

affect the rate of discovery of new knowledge, 𝐴̇?  The partial derivative of 𝐴̇ with 

respect to 𝜃 is: 

 

(6)       
𝜕𝐴̇
𝜕𝜕

=
𝛽𝐿𝐴

𝜆 �𝜃 ln(2) 𝐴𝜙 − 1�2𝐴𝜙𝜃

𝜃2 +
𝛽𝐿𝐴

𝜆

𝜃2 .  

 

A sufficient condition for this partial derivative to be positive is that that term in square 

brackets is greater than zero, which requires:  

 

(7)      𝐴 > �
1

𝜃ln (2)
�

1
𝜙

. 

 

We assume this condition holds.  Figure 2 shows an example of how 𝐴̇ (and also the 

percentage growth of A given that A is assumed to be equal to 100) varies with 𝜃 for 

different assumed values of 𝜙.   Higher values of 𝜃 are associated with a faster growth 

rate.  The figure also shows how 𝜃 and 𝜙 interact positively: Greater knowledge access 

(as reflected in a higher value of 𝜙) increases the gain associated with a given increase 

in the value of 𝜃.    

 

We assume, however, that 𝜃 itself evolves with A.   A larger A means a bigger and 

more complex discovery search space.   We further assume that this complexity will 

eventually overwhelm any discovery technology given the power of the combinatorial 

explosion as A grows. This is captured by assuming that 𝜃 is a declining function of A; 
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that is, 𝜃 = 𝜃(𝐴), where 𝜃′(𝐴) < 0.  In the limit as A goes to infinity, we assume that 

𝜃(𝐴) goes to zero, or: 

 

(8)      lim
𝐴→∞

𝜃(𝐴) = 0. 

 

This means that the discovery function converges asymptotically (given sustained 

growth in A) to:  

 

(9)       𝐴̇ = βln (2)𝐿𝐴
𝜆 𝐴𝜙.  

 

This mirrors the functional form of the Romer/Jones function and allows for decreasing 

returns to scale in the number of researchers, depending on the size of 𝜆.   While the 

form of the function is familiar by design, its combinatorial-based foundations have the 

advantage of providing richer motivations for the key parameters in the knowledge 

discovery function.  

 

We use the fact that the functional form of equation (9) is the same as that used 

in Jones (1995) to solve for the steady state of the model. More precisely, given that the 

limiting behaviour of our knowledge production function mirrors the function used by 

Jones and all other aspects of the economy are assumed to be identical, the steady-state 

along a balanced growth path with constant exponential growth will be the same as in 

that model.   

 

As we have nothing to add to the other elements of the model, we here simply 

sketch the growth model developed by Jones (1995), referring the reader to the original 

for details. The economy is composed of a final goods sector and a research sector. The 

final goods sector uses labor, 𝐿𝑌, and intermediate inputs to produce its output.  Each 

new idea (or “blueprint”) supports the design of an intermediate input, with each input 
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being supplied by a profit-maximizing monopolist. Given the blueprint, capital, K, is 

transformed unit for unit in producing the input.  The total labor force, L, is fully 

allocated between the final goods and research sectors, so that 𝐿𝑌 + 𝐿𝐴 = 𝐿. We assume 

the labor force to be equal to the population and growing at rate 𝑛(> 0).  

 

Building on Romer (1990), Jones (1995) shows that the production function for 

final goods can be written as: 

 

(10)        𝑌 = (𝐴𝐿𝑌)𝛼𝐾1−𝛼 , 

 

where Y is final goods output.  The intertemporal utility function of a representative 

consumer in the economy is given by:  

 

(11)       𝑈 = � 𝑢(𝑐)𝑒−𝜌𝜌𝑑𝑑
∞

0
, 

 

where c is per capita consumption and 𝜌 is the consumer’s discount rate.  The 

instantaneous utility function is assumed to exhibit constant relative risk aversion, with 

a coefficient of risk aversion equal to 𝜎 and a (constant) intertemporal elasticity of 

substitution equal to 1 𝜎⁄ .    

 

Jones (1995) shows that the steady-state growth rate of this economy along a 

balanced growth path with constant exponential growth is given by: 

 

(12)       𝑔𝐴 = 𝑔𝑦 = 𝑔𝑐 = 𝑔𝑘 =
𝜆𝜆

1 − 𝜙
, 
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where 𝑔𝐴 = 𝐴̇ 𝐴⁄  is the growth rate of the knowledge stock, 𝑔𝑦 is the growth rate of per 

capita output 𝑦 (𝑤ℎ𝑒𝑒𝑒 𝑦 = 𝑌 𝐿⁄ ), 𝑔𝑐 is the growth rate of per capita output 𝑐 

(𝑤ℎ𝑒𝑒𝑒 𝑐 = 𝐶 𝐿⁄ ), and 𝑔𝑘 is the growth rate of the capital labor ratio (𝑤ℎ𝑒𝑒𝑒 𝑘 = 𝐾 𝐿⁄ ). 

 

Finally, the steady-state share of labor allocated to the research sector is given by:  

 

(13)        𝑠 =
1

1 + 1

𝜆 �𝜌(1 − 𝜙)
𝜆𝜆 + 1

𝜎 − 𝜙�

. 

 

We can now consider how changes in the parameters of knowledge production 

given by equation (5) will affect the dynamics of growth in the economy.  We start with 

improvement in the availability of AI-based search technologies that improve a 

researcher’s access to knowledge.  In the context of the model, the availability of AI-

based search technologies – e.g., Google, Metaα, BenchSci, etc. – should increase the 

value of 𝜙 and reduce the “burden of knowledge” effect.  From equation (12), an 

increase in this parameter will increase the steady steady-state growth rate and also the 

growth rate and the level of per capital output along the transition path to the steady 

state.   

 

We next consider AI-based technologies that increase the value of the discovery 

parameter, 𝛽.   As 𝛽 does not appear in the steady state in equation (12), the steady-

state growth rate is unaffected. However, such an increase will raise the growth rate 

(and level) along the path to that steady state.   

 

The most interesting potential changes to the possibilities for growth come 

about if we allow a change to the fishing-out/complexity parameter, 𝜃.  We assume that 

the economy is initially in a steady state and then experiences an increase in 𝜃 as the 

result of the discovery of a new AI technology. Recall that we assume that 𝜃 will 
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eventually converge back to zero as the complexity that comes with combinatorial 

explosion eventually overwhelms the new AI.  Thus, the steady state of the economy is 

unaffected. However, the transition dynamics are again quite different, with larger 

increases in knowledge for an given starting of the knowledge stock along the path back 

to the steady state.    

 

Using Jones (1995) as the limiting case of the model is appealing because we 

avoid unbounded increases in the growth rate, which would lead to the breakdown of 

any reasonable growth model and indeed a breakdown in the normal operations of any 

actual economy. It is interesting to note, however, what happens to growth in the 

economy if instead of assuming that 𝜃 converges asymptotically to zero, it stays at some 

positive value (even if very small). Dividing both sides of equation (5) by A gives an 

expression for the growth rate of the stock of knowledge:  

 

(14)       
𝐴̇
𝐴

=
β ln(2) 𝐿𝐴

𝜆

𝐴
�

�2𝐴𝜙�
𝜃

− 1
𝜃

�. 

 

The partial derivative of this growth rate with respect to A is: 

 

(15)        
𝜕 �𝐴̇

𝐴�

𝜕𝜕
=

𝐿𝐴
𝜆 𝛽

𝜃𝜃2 �1 + �2𝐴𝜙�
𝜃

(𝜙𝜙ln (2)𝐴𝜙 − 1)�. 

 

The key to the sign of this derivative is the sign of the term inside the last round 

brackets.  This term will be positive for a large enough A.   As A is growing over time (for 

any positive number of researchers and existing knowledge stock), the growth rate 

must eventually begin to rise once A exceeds some threshold value.  Thus, with a fixed 

positive value of 𝜃 (or with 𝜃 converging asymptotically to a positive value), the growth 

rate will eventually begin to grow without bound.   
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4.  A Combinatorial-Based Knowledge Production Function with Team Production: An 

Extended Model 

 

Our basic model assumes that researchers working alone combine the 

knowledge to which they have access, 𝐴𝜙, to discover new knowledge. In reality, new 

discoveries are increasingly being made by research teams (Benjamin Jones, 2009; 

Nielsen, 2012; Agrawal, Avi Goldfarb, Florenta Teodoridis, 2016).  Assuming initially no 

redundancy in the knowledge that individual members bring to the team – i.e., collective 

team knowledge is the sum of the knowledge of the individual team members – 

combining individual researchers into teams can greatly expand the knowledge base 

from which new combinations of existing knowledge can be made.  This also opens up 

the possibility of a positive interaction between factors that facilitate the operation of 

larger teams and factors that raise the size of the fishing out/complexity parameter, 𝜃.   

New meta technologies such as deep learning can be more effective in a world where 

they are operating on a larger knowledge base due to the ability of researchers to more 

effectively pool their knowledge by forming larger teams.   

 

We thus extend in this section the basic model to allow for new knowledge to be 

discovered by research teams. For a team with m members and no overlap in the 

knowledge of its members, the total knowledge access for the team is simply 𝑚𝐴𝜙 .   (We 

later relax the assumption of no knowledge overlap within a team.) Innovations occur 

as a result of the team combining existing knowledge to produce new knowledge.  

Knowledge  can be combined by the team a ideas at a time, where a = 0, 1 . . . 𝑚𝐴𝜙.   For 

a given team j  with m members, the total number of possible combinations of units of 

existing knowledge (including singletons and the null set) given their combined 

knowledge access is:  

 

(16)      𝑍𝑗 = � �𝑚𝑚𝜙

𝑎
�

𝑚𝑚𝜙

𝑎=0

= 2𝑚𝐴𝜙 . 
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Assuming again for convenience that 𝐴𝜙 and Z can be treated as continuous, the 

per period translation of potential combinations into valuable new knowledge by a 

team is again given by the (asymptotic) constant elasticity discovery function: 

 

(17)      𝐴̇𝑗 = 𝛽 �
𝑍𝑗

𝜃 − 1
𝜃

� = 𝛽 �
�2𝑚𝐴𝜙�

𝜃
− 1

𝜃
�                       𝑓𝑓𝑓      0 < 𝜃 ≤ 1 

 

                    = 𝛽 ln 𝑍𝑗 = 𝛽 ln �2𝑚𝐴𝜙� = 𝛽 ln(2)𝑚𝐴𝜙                    𝑓𝑓𝑓       𝜃 = 0, 

 

where use is again made of L’Hôpital’s rule for the limiting case of 𝜃 = 0.   

 

The number of researchers in the economy at a point in time is again 𝐿𝐴 (which 

we now assume is measured discretely). Research teams can potentially be formed 

from any possible combination of the 𝐿𝐴 researchers.  For each of these potential teams, 

an entrepreneur can coordinate the team. However, for a potential team with m 

members to form, the entrepreneur must have relationships with all m members. The 

need for a relationship thus places a constraint on feasible teams. The probability of a 

relationship existing between the entrepreneur and any given researcher is 𝜂, and thus 

the probability of relationships existing between all members of a team of size m is 𝜂𝑚.   

Using the formula for a binomial expansion, the expected total number of feasible teams 

is:  

 

(18)    𝑆 =  � �𝐿𝐴
𝑚� 𝜂𝑚 = (1 + 𝜂)𝐿𝐴

𝐿𝐴

𝑚=0

. 
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The average feasible team size is then given by:  

 

(19)     𝑚� =
∑ �𝐿𝐴

𝑚� 𝜂𝑚𝑚𝐿𝐴
𝑚=0

∑ �𝐿𝐴
𝑚� 𝜂𝑚𝐿𝐴

𝑚=0

. 

 

Factorizing the numerator and substituting in the denominator using equation (18), we 

obtain a simple expression for the average feasible team size:  

 

(20)    𝑚� =  
∑ �𝐿𝐴

𝑚� 𝜂𝑚𝑚𝐿𝐴
𝑚=0

∑ �𝐿𝐴
𝑚� 𝜂𝑚𝐿𝐴

𝑚=0

=
(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴

(1 + 𝜂)𝐿𝐴
= �

𝜂
1 + 𝜂

� 𝐿𝐴. 

 

Figure 3 shows an example of the full distribution of teams sizes (with 𝐿𝐴 = 50) for two 

different values of 𝜂.  An increase in 𝜂 (i.e. an improvement in the capability to form 

teams) will push the distribution to the right and increase the average team size.   

 

We can now write down the form that the knowledge production function would 

take if all possible research teams could form (ignoring for the moment any stepping-

on-toes effects): 

 

(21)      𝐴̇ = � � �𝐿𝐴
𝑚� 𝜂𝑚𝛽

𝐿𝐴

𝑚=0

�2𝑚𝐴𝜙�
𝜃

− 1
𝜃

�                      𝑓𝑓𝑓      0 < 𝜃 ≤ 1. 

 

We next allow for the fact that only a fraction of the feasible teams will actually form.   

Recognising obvious time constraints on the ability of a given researcher to be part of 

multiple research teams, we impose the constraint that each researcher can only be part 
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of one team. However, we assume the size of any team that successfully forms is drawn 

from the same distribution over sizes as the potential teams. Therefore, the expected 

average team size is also given by equation (18).  With this restriction, we can solve for 

the total number of teams, N, from the equation 𝐿𝐴 = 𝑁 � 𝜂
1+𝜂

� 𝐿𝐴, which implies 𝑁 = 1+𝜂
𝜂

. 

Given the assumption that the distribution of actual team sizes is drawn from the same 

distribution as the feasible team sizes, the aggregate knowledge production function 

(assuming 𝜃 > 0) is then given by: 

 

(22)      𝐴̇ =

1 + 𝜂
𝜂

(1 + 𝜂)𝐿𝐴
� � �𝐿𝐴

𝑚� 𝜂𝑚𝛽
�2𝑚𝐴𝜙�

𝜃
− 1

𝜃

𝐿𝐴

𝑚=0

� 

                   =
1

(1 + 𝜂)𝐿𝐴−1𝜂
� � �𝐿𝐴

𝑚� 𝜂𝑚𝛽
�2𝑚𝐴𝜙�

𝜃
− 1

𝜃

𝐿𝐴

𝑚=0

�,                    

 

where the first term is the actual number of teams as a fraction of the potentially 

feasible number of teams.   For 𝜃 = 0, the aggregate knowledge production function 

takes the form: 

 

(23)      𝐴̇ =
1

(1 + 𝜂)𝐿𝐴−1𝜂
� � �𝐿𝐴

𝑚� 𝜂𝑚𝑚𝑚ln (2)𝐴𝜙

𝐿𝐴

𝑚=0

� 

                   =
1

(1 + 𝜂)𝐿𝐴−1𝜂
�(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴𝛽ln (2)𝐴𝜙�,                    

                   = 𝛽𝐿𝐴ln (2)𝐴𝜙.                    

 

To see intuitively how an increase in 𝜂 could affect aggregate knowledge 

discovery when 𝜃 > 0, note that from equation (20) an increase in 𝜂 will increase the 

average team size of the teams that form. From equation (16), we see that for a given 
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knowledge access by an individual researcher, the number of potential combinations 

increases exponentially with the size of the team, m (see Figure 4).   This implies that 

combining two teams of size m’ to create a team of size 2m’ will more than double the 

new knowledge output of the team. Hence, there is a positive interaction between 𝜃 and 

𝜂.  On the other hand, when 𝜃 = 0, combining the two teams will exactly double the new 

knowledge output given the linearity of the relationship between team size and 

knowledge output.  In this case, the aggregate knowledge is invariant to the distribution 

of team sizes.   

 

To see this formally, note that from equation (23) we know that when 𝜃 = 0, the 

partial derivative of 𝐴̇ with respect to 𝜂 must be zero since 𝜂 does not appear in the final 

form of the  knowledge production function.  This results from the balancing of two 

effects as 𝜂 increases.  The first (negative) effect is that the number of teams as a share 

of the potentially possible teams falls.  The second (positive) effect is that the amount of 

new knowledge production if all possible teams do form rises.  We can now ask what 

happens if we raise 𝜃 to a strictly positive value.  The first of these effects is unchanged.  

But that second effect will be stronger provided that the knowledge production of a 

team for any given team size rises with 𝜃.  A sufficient condition for this to be true is 

that:  

 

(24)      𝐴 > �
1

𝜃ln (2)𝑚
�

1
𝜙

         for all 𝑚 > 0. 

 

We assume that the starting size of the knowledge stock is large enough so that this 

condition holds.  Moreover, the partial derivative of 𝐴̇ with respect to 𝜂 will be larger 

the larger is the value of 𝜃.  We show these effects for a particular example in Figure 5.   

 

The possibilities of knowledge overlap at the level of the team and duplication of 

knowledge outputs between teams creates additional complications.  To allow for 

stepping-on-toes effects, it is useful to first rewrite equation (20) as:  
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(25)       𝐴̇ = �
1 + 𝜂

𝜂
� �

𝜂
1 + 𝜂

� 𝐿𝐴  
1

(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴
� � �𝐿𝐴

𝑚� 𝜂𝑚𝛽
𝐿𝐴

𝑚=0

�2𝑚𝐴𝜙�
𝜃

− 1
𝜃

�.    

 

We introduce two stepping-on-toes effects.  First, we allow for knowledge overlap 

within teams to introduce the potential for redundancy of knowledge. A convenient way 

to introduce this effect is to assume that the overlap reduces the effective average team 

size in the economy from the viewpoint of generating new knowledge.   More 

specifically, we assume the effective team size is given by: 

 

(26)      𝑚� 𝑒 = 𝑚� 𝛾 = ��
𝜂

1 + 𝜂
� 𝐿𝐴�

𝛾

, 

 

where 0 ≤ 𝛾 ≤ 1.  The extreme case of 𝛾 = 0 (full overlap) has each team acting as if it 

had effectively a single member; the opposite extreme of 𝛾 = 1 (no overlap) has no 

knowledge redundancy at the level of the team.  Second, we allow for the possibility that 

new ideas are duplicated across teams. The effective number of non-idea-duplicating 

teams is given by: 

 

(27)       𝑁𝑒 = 𝑁1−𝜓 = �
1 + 𝜂

𝜂
�

1−𝜓

, 

 

where  0 ≤ 𝜓 ≤ 1.   The extreme case of 𝜓 = 0 (no duplication) implies that the 

effective number of teams is equal to the actual number of teams; the extreme case of 

𝜓 = 1 (full duplication) implies that a single team produces the same number of new 

ideas as the full set of teams.    
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We can now add the stepping-on-toes effects – knowledge redundancy within teams 

and discovery duplication between teams – to yield the general form of the knowledge 

production function for 𝜃 > 0: 

 

(28)      𝐴̇ = �
1 + 𝜂

𝜂
�

1−𝜓

��
𝜂

1 + 𝜂
� 𝐿𝐴�

𝛾

 
1

(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴
� � �𝐿𝐴

𝑚� 𝜂𝑚

𝐿𝐴

𝑚=0

𝛽
�2𝑚𝐴𝜙�

𝜃
− 1

𝜃
�.    

 

If we take the limit of equation (24) as 𝜃 goes to zero, we reproduce the limiting case of 

the knowledge production function. Ignoring integer constraints on 𝐿𝐴, this knowledge 

production function again has the form of the Romer/Jones function: 

 

(29)        𝐴̇ = �
1 + 𝜂
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                            = �
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𝛾

𝛽 ln(2) 𝐿𝐴
𝛾𝐴𝜙. 

  

We note finally the presence of the relationship parameter 𝜂 in the knowledge 

production equation. This can be taken to reflect in part the importance of (social) 

relationships in the forming of research teams. Advances in computer-based 

technologies such as email and file sharing (as well as policies and institutions) could 

also affect this parameter (see, for example, Agrawal and Goldfarb (2008) on the effects 

of the introduction of precursors to today’s internet on collaboration between 

researchers). Although not the main focus of this paper, being able to incorporate the 

effects of changes in collaboration technologies increases the richness of the framework 

for considering the determinants of the efficiency of knowledge production.   
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5.  Discussion 

 

5.1 Something new under the sun?  Deep learning as a new tool for discovery 

 

Two key observations motivate the model developed above. First, using the 

analogy of finding a needle in a haystack, significant obstacles to discovery in numerous 

domains of science and technology result from highly non-linear relationships of causes 

and effect in high dimensional data.  Second, advances in algorithms such as deep 

learning (combined with increased availability of data and computing power) offer the 

potential to find relevant knowledge and predict combinations that will yield valuable 

new discoveries.  

 

Even a cursory review of the scientific and engineering literatures indicates that 

needle-in-the-haystack problems are pervasive in many frontier fields of innovation, 

especially in areas where matter is manipulated at the molecular or sub-molecular level.  

In the field of genomics, for example, complex genotype-phenotype interactions make it 

difficult to identify therapies that yield valuable improvements in human health or 

agricultural productivity. In the field of drug discovery, complex interactions between 

drug compounds and biological systems present an obstacle to identifying promising 

new drug therapies.  And in the field of material sciences, including nanotechnology, 

complex interactions between the underlying physical and chemical mechanisms 

increases the challenge of predicting the performance of potential new materials with 

potential applications ranging from new materials to prevent traumatic brain injury to 

lightweight materials for use in transportation to reduce dependence on carbon-based 

fuels (National Science and Technology Council, 2011).  

 

The apparent speed with which deep learning is being applied in these and other 

fields suggests it represents a breakthrough general purpose meta technology for 
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predicting valuable new combinations in highly complex spaces.  Although an in-depth 

discussion of the technical advances underlying deep learning is beyond the scope of 

this paper, two aspects are worth highlighting. First, previous generations of machine 

learning were constrained by the need to extract features (or explanatory variables) by 

hand before statistical analysis. A major advance in machine learning involves the use of 

“representation learning” to automatically extract the relevant features.9 Second, the 

development and optimization of multilayer neural networks allows for substantial 

improvement in the ability to predict outcomes in high-dimensional spaces with 

complex non-linear interactions (LeCun, Bengio, and Hinton, 2015). A recent review of 

the use of deep learning in computational biology, for instance, notes that the “rapid 

increase in biological data dimensions and acquisition rates is challenging conventional 

analysis strategies,” and that “[m]odern machine learning methods, such as deep 

learning, promise to leverage very large data sets for finding hidden structure within 

them, and for making accurate predictions” (Christof Angermueller, Tanel Pärnamaa, 

Leopold Parts, and Oliver Stegle, 2016, p.1).  Another review of the use of deep learning 

in computational chemistry highlights how deep learning has a “ubiquity and broad 

applicability to a wide range of challenges in the field, including quantitative activity 

relationship, virtual screening, protein structure prediction, quantum chemistry, 

materials design and property prediction” (Goh, Hoda, and Vishu, 2017).    

 

Although the most publicized successes of deep learning have been in areas such 

as image recognition, voice recognition, and natural language processing, parallels to 

the way in which the new methods work on unstructured data are increasingly being 

identified in many fields with similar data challenges to produce research 

breakthroughs.10 While these new general purpose research tools will not displace 

                                                           
9 As described by LeCun, Bengio, and Hinton (2015, p. 436), “[c]onventional machine-learning 
techniques were limited in their ability to process natural data in their raw form.  For decades, 
constructing a pattern-recognition or machine-learning system required careful engineering 
and considerable domain expertise to design a feature extractor that transformed the raw data 
(such as the pixel values of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or classify patterns in the 
input. . . . Representation learning is a set of methods that allows a machine to be fed with raw 
data and to automatically discover the representations needed for detection or classification.” 
10 A recent review of deep learning applications in biomedicine usefully draws out these 
parallels: “With some imagination, parallels can be drawn between biological data and the types 
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traditional mathematical models of cause and effect and careful experimental design, 

machine learning methods such as deep learning offer a promising new tool for 

discovery – including hypothesis generation – where the complexity of the underlying 

phenomena present obstacles to more traditional methods.11 

 

5.2 Meta ideas, meta technologies, and general purpose technologies 

 

We conceptualize AIs as general purpose meta technologies – that is, general 

purpose technologies (GPTs) for the discovery of new knowledge.  Figure 6 summarises 

the relationship between Paul Romer’s broader idea of meta ideas, meta technologies, 

and GPTs. Romer defines a meta idea as an idea that supports the production and 

transmission of other ideas (see, for example, Romer, 2008). He points to such ideas as 

the patent, the agricultural extension station, and the peer-review system for research 

grants as examples of meta ideas.  We think of meta technologies as a subset of Romer’s 

meta ideas (the area enclosed by the dashed lines in Figure 6), where the idea for how 

to discover new ideas is embedded in a technological form such as an algorithm or 

measurement instrument.   

 

Elhanan Helpman (1998, p. 3) argues that a “drastic innovation qualifies as a 

GPT if it has the potential for pervasive use in a wide range of sectors in ways that 

drastically change their mode of operation.”  He further notes two important features 

necessary to qualify as a GPT: “generality of purpose and innovational 

complementarities” (see also Bresnahan and Trajtenberg, 1995).  Not all meta 
                                                                                                                                                                                     
of data deep learning has shown the most success with – namely image and voice data.  A gene 
expression profile, for instance, is essentially a ‘snapshot,’ or image, of what is going on in a 
given cell or tissue in the same way that patterns of pixilation are representative of the objects 
in a picture” (Polina Mamoshina, Armando Vieira, Evgeny Putin, and Alex Zhavoronkov, 2016, p. 
1445).   
11 A recent survey of the emerging use of machine learning in economics (including policy 
design) provides a pithy characterization of the power of the new methods:  “The appeal of 
machine learning is that it manages to uncover generalizable patterns. In fact, the success of 
machine learning at intelligence tasks is largely due to its ability to discover complex structure 
that was not specified in advance.  It manages to fit complex and very flexible functional forms 
to the data without simply overfitting; it finds functions that work well out of sample” (Sendhil 
Mullainathan and Jann Spiess, 2017, p. 88).   



27 
 

technologies are general purpose in this sense.   The set of general purpose meta 

technologies is given by the intersection of the two circles in Figure 6.  Cockburn, 

Henderson, and Stern (2017) give the example of functional MRI as an example of a 

discovery tool that lacks the generality of purpose required for a GPT.  In contrast, the 

range of application of deep learning as a discovery tool would appear to qualify it as a 

GPT.  It is worth noting that some authors discuss GPTs as technologies that more 

closely align with our idea of a meta technology. Rosenberg (1998), for example, 

provides a fascinating examination of chemical engineering as an example of GPT.  

Writing of this branch of engineering, he argues that a “discipline that provides the 

concepts and methodologies to generate new or improved technologies over a wide 

range of downstream economic activity may be thought of as an even purer, or higher 

order, GPT” (Rosenberg, 1998, p. 170).   

 

Our concentration on general purpose meta technologies (GPMTs) parallels 

Cockburn, Henderson, and Stern’s (2017) idea of a general purpose invention of a 

method of invention.  This idea combines the idea of a GPT with Zvi Griliches’ (1957) 

idea of the “invention of a method of invention,” or IMI. Such an invention has the 

“potential for a more influential impact than a single invention, but is also likely to be 

associated with a wide variation in the ability to adapt the new tool to particular 

settings, resulting in a more heterogeneous pattern of diffusion over time” (Cockburn, 

Henderson, and Stern, 2017, p. 4).  They see some emerging AIs such as deep learning as 

candidates for such general purpose IMIs and contrast these with AIs underpinning 

robotics that, while being GPTs, do not have the characteristic features of an IMI.  

 

5.3 Beyond AI: potential uses of the new knowledge production function 

 

Although the primary motivation for this paper is to explore how breakthroughs 

in AI could affect the path of economic growth, the knowledge production function we 

develop is potentially of broader applicability. By deriving the Romer/Jones knowledge 

production function as the limiting case of a more general function, our analysis may 
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also contribute to providing candidate micro-foundations for that function.12 The key 

conceptual change is to model discovery as operating on the space of potential 

combinations (rather than directly on the knowledge base itself). As in Weitzman 

(1998), our production function focuses attention explicitly on how new knowledge is 

discovered by combining existing knowledge, which is left implicit in the Romer/Jones 

formulation. While this shift in emphasis is motivated by the particular way in which 

deep learning can aid discovery – allowing researchers to uncover otherwise hard-to-

find valuable combinations in highly complex spaces – the view of discovery as the 

innovative combination of what is already known has broader applicability. The more 

general function also has the advantage of providing a richer parameter space for 

mapping how meta technologies or policies could affect knowledge discovery. The 𝜙 

parameter captures how access to knowledge at the individual researcher level 

determines the potential for new combinations to be made given the inherited 

knowledge base. The 𝜃 parameter captures how the available potential combinations 

(given the access to knowledge) map to new discoveries.  Finally, the 𝜂 parameter 

captures the ease of forming research teams and ultimately the average team size. To 

the extent that the capacity to bring the knowledge of individual researchers together 

through research teams directly affects the possible combinations, the ease of team 

formation can have an important effect on how the existing knowledge base is utilized 

for new knowledge discovery.   

 

                                                           
12 In developing and applying the Romer/Jones knowledge production function, growth 
theorists have understood its potential combinatorial underpinnings and the limits of the Cobb-
Douglas form.  Charles Jones (2005) observes in his review chapter on “Growth and Ideas” for 
the Handbook of Economic Growth: “While we have made much progress in understanding 
economic growth in a world where ideas are important, there remain many open, interesting 
research questions. The first is ‘What is the shape of the idea production function?’  How do 
ideas get produced? The combinatorial calculations of Romer (1993) and Weitzman (1998) are 
fascinating and suggestive. The current research practice of modelling the idea production 
function as a stable Cobb-Douglas combination of research and the existing stock of ideas is 
elegant, but at this point we have little reason to believe it is correct.  One insight that illustrates 
the incompleteness of our knowledge is that there is no reason why research productivity 
should be a smooth monotonic function of the stock of ideas.  One can easily imagine that some 
ideas lead to domino-like unravelling of phenomena that were previously mysterious . . . Indeed, 
perhaps decoding of the human genome or the continued boom in information technology will 
lead to a large upward shift in the production function for ideas.  On the other hand, one can 
equally imagine situations where research productivity unexpectedly stagnates, if not forever 
then at least for a long time” (Jones, 2005, p. 1107). 
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We hope this more general function will be of use in other contexts. In a recent 

commentary celebrating the 25th anniversary of the publication of Romer (1990), 

Joshua Gans (2015) observes that the Romer growth model has not been as influential 

on the design of growth policy as might have been expected despite its enormous 

influence on the subsequent growth theory literature. The reason he identifies is that it 

abstracts away “some of the richness of the microeconomy that give rise to new ideas 

and also their dissemination” (Gans, 2015).  By expanding the parameter space, our 

function allows for the inclusion of more of this richness, including the role that meta 

technologies such as deep learning can play in knowledge access and knowledge 

discovery but potentially other policy and institutional factors that affect knowledge 

access, discovery rates, and team formation as well.    

               

6.  Concluding Thoughts: A Coming Singularity? 

 

We developed this paper upon a number of prior ideas. First, the production of 

new knowledge is central to sustaining economic growth (Romer, 1990, 1993).   Second, 

the production of new ideas is fundamentally a combinatorial process (Weitzman, 

1998).  Third, given this combinatorial process, technologies that predict what 

combinations of existing knowledge will yield useful new knowledge hold out the 

promise of improving growth prospects.  Fourth, breakthroughs in AI represent a 

potential step change in the ability of algorithms to predict what knowledge is 

potentially useful to researchers and also to predict what combinations of existing 

knowledge will yield useful new discoveries (LeCun et al., 2015).   

 

In a provocative recent paper, William Nordhaus (2015) explored the 

possibilities for a coming “economic singularity,” which he defines as “[t]he idea . . . that 

rapid growth in computation and artificial intelligence will cross some boundary or 

singularity after which economic growth will accelerate sharply as an ever-accelerating 

pace of improvements cascade through the economy.” Central to Nordhaus’ analysis is 

that rapid technological advance is occurring in a relatively small part of the economy 

(see also Aghion, Jones, and Jones, 2017).   To generate more broadly based rapid 



30 
 

growth, the products of the new economy need to substitute for products on either the 

demand- or supply-side of the economy. His review of the evidence – including, 

critically, the relevant elasticities of substitution – leads him to conclude that a 

singularity through this route is highly unlikely.   

 

However, our paper’s analysis suggests an alternative route to an economic 

singularity – a broad-based alteration in the economy’s knowledge production function.  

Given the centrality of new knowledge to sustained growth at the technological frontier, 

it seems likely that if an economic singularity were to arise, it would be because of some 

significant change to the knowledge production function affecting a number of domains 

outside of information technology itself. In a world where new knowledge is the result 

of combining existing knowledge, AI technologies that help ease needle-in-the haystack 

discovery challenges could affect growth prospects, at least along the transition path to 

the steady state. It doesn’t take an impossible leap of imagination to see how new meta 

technologies such as AI could alter – perhaps modestly, perhaps dramatically – the 

knowledge production function in a way that changes the prospects for economic 

growth.   
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Figure 1.  Romer/Jones and Combinatorial-Based Knowledge Production Functions 
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Figure 2.  Relationships Between New Knowledge Production, 𝜽, and 𝝓 
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Figure 3.  Example of How the Distribution of Team Size Varies with 𝜼 
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Figure 4.  Team Knowledge Production and Team Size 
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Figure 5.  Relationships Between New Knowledge Production, 𝜼, and 𝜽. 
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Figure 6.  Relationships between Meta Ideas, Meta Technologies, and General Purpose 
Technologies 
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