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2.1 Introduction

We have seen in the past decade a sharp increase in the extent that compa-
nies use data to optimize their businesses. Variously called the “Big Data” or 
“Data Science” revolution, this has been characterized by massive amounts 
of data, including unstructured and nontraditional data like text and images, 
and the use of fast and fl exible machine learning (ML) algorithms in anal-
ysis. With recent improvements in deep neural networks (DNNs) and related 
methods, application of  high- performance ML algorithms has become 
more automatic and robust to diff erent data scenarios. That has led to the 
rapid rise of an artifi cial intelligence (AI) that works by combining many ML 
algorithms together—each targeting a straightforward prediction task—to 
solve complex problems.

In this chapter, we will defi ne a framework for thinking about the ingre-
dients of this new ML- driven AI. Having an understanding of the pieces 
that make up these systems and how they fi t together is important for those 
who will be building businesses around this technology. Those studying the 
economics of AI can use these defi nitions to remove ambiguity from the 
conversation on AI’s projected productivity impacts and data requirements. 
Finally, this framework should help clarify the role for AI in the practice 
of modern business analytics1 and economic measurement.
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2.2 What Is AI?

In fi gure 2.1, we show a breakdown of AI into three major and essential 
pieces. A full end- to-end AI solution—at Microsoft, we call this a System 
of Intelligence—is able to ingest human- level knowledge (e.g., via machine 
reading and computer vision) and use this information to automate and 
accelerate tasks that were previously only performed by humans. It is neces-
sary here to have a well- defi ned task structure to engineer against, and in a 
business setting this structure is provided by business and economic domain 
expertise. You need a massive bank of data to get the system up and running, 
and a strategy to continue generating data so that the system can respond 
and learn. And fi nally, you need machine- learning routines that can detect 
patterns in and make predictions from the unstructured data. This section 
will work through each of these pillars, and in later sections we dive in detail 
into deep learning models, their optimization, and data generation.

 Notice that we are explicitly separating ML from AI here. This is impor-
tant: these are diff erent but often confused technologies. Machine learn-
ing can do fantastic things, but it is basically limited to predicting a future 
that looks mostly like the past. These are tools for pattern recognition. In 
contrast, an AI system is able to solve complex problems that have been 
previously reserved for humans. It does this by breaking these problems 
into a bunch of simple prediction tasks, each of which can be attacked by 
a “dumb” ML algorithm. Artifi cial intelligence uses instances of machine 
learning as components of the larger system. These ML instances need to 
be organized within a structure defi ned by domain knowledge, and they 
need to be fed data that helps them complete their allotted prediction tasks.

This is not to down- weight the importance of ML in AI. In contrast to 
earlier attempts at AI, the current instance of AI is ML driven. Machine- 
learning algorithms are implanted in every aspect of  AI, and below we 
describe the evolution of ML toward status as a general purpose technology. 
This evolution is the main driver behind the current rise of AI. However, 
ML algorithms are building blocks of AI within a larger context.

To make these ideas concrete, consider an example AI system from the 
Microsoft- owned company Maluuba that was designed to play (and win!) 
the video game Ms. Pac- Man on Atari (van Seijen et al. 2017).The system 

Fig. 2.1 AI systems are self- training structures of ML predictors that automate 
and accelerate human tasks
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is illustrated in fi gure 2.2. The player moves Ms. Pac- Man on this game 
“board,” gaining rewards for eating pellets while making sure to avoid get-
ting eaten by one of the adversarial “ghosts.” The Maluuba researchers were 
able to build a system that learned how to master the game, achieving the 
highest possible score and surpassing human performance.

A common misunderstanding of  AI imagines that, in a system like 
Maluuba’s, the player of the game is a deep neural network. That is, the 
system works by swapping out the human joystick operator for an artifi cial 
DNN “brain.” That is not how it works. Instead of a single DNN that is tied 
to the Ms. Pac- Man avatar (which is how the human player experiences the 
game), the Maluuba system is broken down into 163 component ML tasks. 
As illustrated on the right panel of fi gure 2.2, the engineers have assigned 
a distinct DNN routine to each cell of  the board. In addition, they have 
DNNs that track the game characters: the ghosts and, of course, Ms. Pac- 
Man herself. The direction that the AI system sends Ms. Pac- Man at any 
point in the game is then chosen through consideration of the advice from 
each of these ML components. Recommendations from the components 
that are close to Ms. Pac- Man’s current board position are weighted more 
strongly than those of currently remote locations. Hence, you can think of 
the ML algorithm assigned to each square on the board as having a simple 
task to solve: when Ms. Pac- Man crosses over this location, which direction 
should she go next?

 Learning to play a video or board game is a standard way for AI fi rms 
to demonstrate their current capabilities. The Google DeepMind system 
AlphaGo (Silver et al. 2016), which was constructed to play the fantastically 
complex board game “go,” is the most prominent of such demonstrations. 
The system was able to surpass human capability, beating the world cham-
pion, Lee Sedol, four matches to one at a live- broadcast event in Seoul, 
South Korea, in March 2016. Just as Maluuba’s system broke Ms. Pac- Man 
into a number of composite tasks, AlphaGo succeeded by breaking Go into 
an even larger number of  ML problems: “value networks” that evaluate 
diff erent board positions and “policy networks” that recommend moves. 
The key point here is that while the composite ML tasks can be attacked 
with relatively generic DNNs, the full combined system is constructed in a 
way that is highly specialized to the structure of the problem at hand.

In fi gure 2.1, the fi rst listed pillar of AI is domain structure. This is the 
structure that allows you to break a complex problem into composite tasks 
that can be solved with ML. The reason that AI fi rms choose to work with 
games is that such structure is explicit: the rules of the game are codifi ed. 
This exposes the massive gap between playing games and a system that 
could replace humans in a real- world business application. To deal with the 
real world, you need to have a theory as to the rules of the relevant game. 
For example, if  you want to build a system that can communicate with cus-
tomers, you might proceed by mapping out customer desires and intents in 

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



F
ig

. 2
.2

  
S

cr
ee

ns
ho

ts
 o

f 
th

e 
M

al
uu

ba
 s

ys
te

m
 p

la
yi

ng
 M

s.
 P

ac
- M

an
N

ot
es

: O
n 

th
e 

le
ft

, w
e 

se
e 

th
e 

ga
m

e 
bo

ar
d 

th
at

 c
on

ta
in

s 
a 

m
az

e 
fo

r 
M

s 
P

ac
- M

an
 a

nd
 th

e 
gh

os
ts

. O
n 

th
e 

ri
gh

t,
 th

e 
au

th
or

s 
ha

ve
 a

ss
ig

ne
d 

ar
ro

w
s 

sh
ow

in
g 

th
e 

cu
rr

en
t d

ir
ec

ti
on

 fo
r 

M
s.

 P
ac

- M
an

 th
at

 is
 a

dv
is

ed
 b

y 
di

ff 
er

en
t l

oc
at

io
ns

 o
n 

th
e 

bo
ar

d,
 e

ac
h 

co
rr

es
po

nd
in

g 
to

 a
 d

is
ti

nc
t d

ee
p 

ne
ur

al
 n

et
w

or
k.

 T
he

 fu
ll 

vi
de

o 
is

 a
t h

tt
ps

://
 yo

ut
u.

be
/ z

Q
yW

M
H

F
je

w
U

 .

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



The Technological Elements of Artifi cial Intelligence    65

such a way that allows diff erent dialog- generating ML routines for each. Or, 
for any AI system that deals with marketing and prices in a retail environ-
ment, you need to be able to use the structure of an economic demand system 
to forecast how changing the price on a single item (which might, say, be the 
job of a single DNN) will aff ect optimal prices for other products and behav-
ior of your consumers (who might themselves be modeled with DNNs).

The success or failure of  an AI system is defi ned in a specifi c context, 
and you need to use the structure of that context to guide the architecture 
of your AI. This is a crucial point for businesses hoping to leverage AI and 
economists looking to predict its impact. As we will detail below, machine 
learning in its current form has become a general purpose technology (Bres-
nahan 2010). These tools are going to get cheaper and faster over time, due 
to innovations in the ML itself  and above and below in the AI technology 
stack (e.g., improved software connectors for business systems above, and 
improved computing hardware like GPUs below). Macine learning has 
the potential to become a cloud- computing commodity.2 In contrast, the 
domain knowledge necessary to combine ML components into an end- 
to-end AI solution will not be commoditized. Those who have expertise 
that can break complex human business problems into ML- solvable compo-
nents will succeed in building the next generation of business AI, that which 
can do more than just play games.

In many of these scenarios, social science will have a role to play. Science 
is about putting structure and theory around phenomena that are obser-
vationally incredibly complex. Economics, as the social ccience closest to 
business, will often be relied upon to provide the rules for business AI. And 
since ML- driven AI relies upon measuring rewards and parameters inside its 
context, econometrics will play a key role in bridging between the assumed 
system and the data signals used for feedback and learning. The work will 
not translate directly. We need to build systems that allow for a certain mar-
gin of error in the ML algorithms. Those economic theories that apply for 
only a very narrow set of conditions—for example, at a knife’s edge equilib-
rium—will be too unstable for AI. This is why we mention relaxations and 
heuristics in fi gure 2.1. There is an exciting future here where economists 
can contribute to AI engineering, and both AI and economics advance as 
we learn what recipes do or do not work for business AI.

Beyond ML and domain structure, the third pillar of AI in fi gure 2.1 is 
data generation. I am using the term “generation” here, instead of a more 
passive term like “collection,” to highlight that AI systems require an active 
strategy to keep a steady stream of new and useful information fl owing 
into the composite learning algorithms. In most AI applications there will 

2. Amazon, Microsoft, and Google are all starting to off er basic ML capabilities like tran-
scription and image classifi cation as part of their cloud services. The prices for these services 
are low and mostly matched across providers.
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be two general classes of  data: fi xed- size data assets that can be used to 
train the models for generic tasks, and data that is actively generated by the 
system as it experiments and improves performance. For example, in learn-
ing how to play Ms. Pac- Man the models could be initialized on a bank of 
data recording how humans have played the game. This is the fi xed- size data 
asset. Then this initialized system starts to play the game of Ms. Pac- Man. 
Recalling that the system is broken into a number of ML components, as 
more games are played each component is able to experiment with possible 
moves in diff erent scenarios. Since all of this is automated, the system can 
iterate through a massive number of games and quickly accumulate a wealth 
of experience.

For business applications, we should not underestimate the advantage 
of having large data assets to initialize AI systems. Unlike board or video 
games, real- world systems need to be able to interpret a variety of extremely 
subtle signals. For example, any system that interacts with human dialog 
must be able to understand the general domain language before it can deal 
with specifi c problems. For this reason, fi rms that have large banks of human 
interaction data (e.g., social media or a search engine) have a large techno-
logical advantage in conversational AI systems. However, this data just gets 
you started. The context- specifi c learning starts happening when, after this 
“warm start,” the system begins interacting with real- world business events.

The general framework of ML algorithms actively choosing the data that 
they consume is referred to as reinforcement learning (RL).3 It is a hugely 
important aspect of ML- driven AI, and we have a dedicated section on the 
topic. In some narrow and highly structured scenarios, researchers have 
build “zero- shot” learning systems where the AI is able to achieve high 
performance after starting without any static training data. For example, in 
subsequent research, Google DeepMind has developed the AlphaGoZero 
(Silver et al. 2017) system that uses zero- shot learning to replicate their ear-
lier AlphaGo success. Noting that the RL is happening on the level of indi-
vidual ML tasks, we can update our description of AI as being composed 
of many RL- driven ML components.

As a complement to the work on reinforcement learning, there is a lot of 
research activity around AI systems that can simulate “data” to appear as 
though it came from a real- world source. This has the potential to accelerate 
system training, replicating the success that the fi eld has had with video and 
board games where experimentation is virtually costless ( just play the game, 
nobody loses money or gets hurt). Generative adversarial networks (GANs; 
Goodfellow et al. 2014) are schemes where one DNN is simulating data and 
another is attempting to discern which data is real and which is simulated. 

3. This is an old concept in statistics. In previous iterations, parts of reinforcement learning 
have been referred to as the sequential design of experiments, active learning, and Bayesian 
optimization.
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For example, in an image- tagging application one network will generate 
captions for the image while the other network attempts to discern which 
captions are human versus machine generated. If  this scheme works well 
enough, then you can build an image tagger while minimizing the number 
of dumb captions you need to show humans while training.

And fi nally, AI is pushing into physical spaces. For example, the Amazon 
Go concept promises a frictionless shopping checkout experience where 
cameras and sensors determine what you’ve taken from the shelves and 
charge you accordingly. These systems are as data intensive as any other AI 
application, but they have the added need to translate information from a 
physical to a digital space. They need to be able to recognize and track both 
objects and individuals. Current implementations appear to rely on a combi-
nation of object- based data sources via sensor and device networks (i.e., the 
IoT or Internet of Things), and video data from surveillance cameras. The 
sensor data has the advantage in that it is well structured and tied to objects, 
but the video data has the fl exibility to look in places and at objects that you 
did not know to tag in advance. As computer vision technology advances, 
and as the camera hardware adapts and decreases in cost, we should see 
a shift in emphasis toward unstructured video data. We have seen similar 
patterns in AI development, for example, as use of raw conversation logs 
increases with improved machine reading capability. This is the progress of 
ML- driven AI toward general purpose forms.

2.3 General Purpose Machine Learning

The piece of AI that gets the most publicity—so much so that it is often 
confused with all of AI—is general purpose machine learning. Regardless 
of this slight overemphasis, it is clear that the recent rise of deep neural net-
works (DNNs; see section 2.5) is a main driver behind growth in AI. These 
DNNs have the ability to learn patterns in speech, image, and video data (as 
well as in more traditional structured data) faster, and more automatically, 
than ever before. They provide new ML capabilities and have completely 
changed the workfl ow of an ML engineer. However, this technology should 
be understood as a rapid evolution of existing ML capabilities rather than 
as a completely new object.

Machine learning is the fi eld that thinks about how to automatically build 
robust predictions from complex data. It is closely related to modern statis-
tics, and indeed many of the best ideas in ML have come from statisticians 
(the lasso, trees, forests, etc). But whereas statisticians have often focused 
model inference—on understanding the parameters of  their models (e.g., 
testing on individual coeffi  cients in a regression)—the ML community has 
been more focused on the single goal of maximizing predictive performance. 
The entire fi eld of ML is calibrated against “out- of-sample” experiments 
that evaluate how well a model trained on one data set will predict new data. 
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And while there is a recent push to build more transparency into machine 
learning, wise ML practitioners will avoid assigning structural meaning to 
the parameters of their fi tted models. These models are black boxes whose 
purpose is to do a good job in predicting a future that follows the same pat-
terns as in past data.

Prediction is easier than model inference. This has allowed the ML com-
munity to quickly push forward and work with larger and more complex 
data. It also facilitated a focus on automation: developing algorithms that 
will work on a variety of  diff erent types of  data with little or no tuning 
required. We have seen an explosion of general purpose ML tools in the past 
decade—tools that can be deployed on messy data and automatically tuned 
for optimal predictive performance.

The specifi c ML techniques used include high- dimensional ℓ1 regularized 
regression (Lasso), tree algorithms and ensembles of trees (e.g., Random 
Forests), and neural networks. These techniques have found application in 
business problems under such labels as “data mining” and, more recently, 
“predictive analytics.” Driven by the fact that many policy and business 
questions require more than just prediction, practitioners have added an 
emphasis on inference and incorporated ideas from statistics. Their work, 
combined with the demands and abundance of big data, coalesced together 
to form the loosely defi ned fi eld of data science. More recently, as the fi eld 
matures and as people recognize that not everything can be explicitly A/ B 
tested, data scientists have discovered the importance of careful causal anal-
ysis. One of the most currently active areas of data science is combining 
ML tools with the sort of  counterfactual inference that econometricians 
have long studied, hence now merging the ML and statistics material with 
the work of economists. See, for example, Athey and Imbens (2016), Hart-
ford et al. (2017), and the survey in Athey (2017).

The push of ML into the general area of business analytics has allowed 
companies to gain insight from high- dimensional and unstructured data. 
This is only possible because the ML tools and recipes have become robust 
and usable enough that they can be deployed by nonexperts in computer 
science or statistics. That is, they can be used by people with a variety of 
quantitative backgrounds who have domain knowledge for their business 
use case. Similarly, the tools can be used by economists and other social 
scientists to bring new data to bear on scientifi cally compelling research 
questions. Again: the general usability of these tools has driven their adop-
tion across disciplines. They come packaged as quality software and include 
validation routines that allow the user to observe how well their fi tted models 
will perform in future prediction tasks.

The latest generation of  ML algorithms, especially the deep learning 
technology that has exploded since around 2012 (Krizhevsky, Sutskever, 
and Hinton 2012), has increased the level of automation in the process of 
fi tting and applying prediction models. This new class of ML is the general 
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purpose ML (GPML) that we reference in the rightmost pillar of fi gure 2.1. 
The fi rst component of GPML is deep neural networks: models made up 
of layers of  nonlinear transformation node functions, where the output of 
each layer becomes input to the next layer in the network. We will describe 
DNNs in more detail in our Deep Learning section , but for now it suffi  ces 
to say that they make it faster and easier than ever before to fi nd patterns in 
unstructured data. They are also highly modular. You can take a layer that 
is optimized for one type of data (e.g., images) and combine it with other 
layers for other types of data (e.g., text). You can also use layers that have 
been pretrained on one data set (e.g., generic images) as components in a 
more specialized model (e.g., a specifi c recognition task).

Specialized DNN architectures are responsible for the key GPML capa-
bility of working on human- level data: video, audio, and text. This is essen-
tial for AI because it allows these systems to be installed on top of the same 
sources of  knowledge that humans are able to digest. You don’t need to 
create a new database system (or have an existing standard form) to feed 
the AI; rather, the AI can live on top of the chaos of information generated 
through business functions. This capability helps to illustrate why the new 
AI, based on GPML, is so much more promising than previous attempts at 
AI. Classical AI relied on hand- specifi ed logic rules to mimic how a rational 
human might approach a given problem (Haugeland 1985). This approach 
is sometimes nostalgically referred to as GOFAI, or “good old- fashioned 
AI.” The problem with GOFAI is obvious: solving human problems with 
logic rules requires an impossibly complex cataloging of all possible sce-
narios and actions. Even for systems able to learn from structured data, the 
need to have an explicit and detailed data schema means that the system 
designer must to know in advance how to translate complex human tasks 
into deterministic algorithms.

The new AI doesn’t have this limitation. For example, consider the 
problem of creating a virtual agent that can answer customer questions 
(e.g., “why won’t my computer start?”). A GOFAI system would be based 
on hand- coded dialog trees: if  a user says X, answer Y, and so forth. To 
install the system, you would need to have human engineers understand 
and explicitly code for all of the main customer issues. In contrast, the new 
ML- driven AI can simply ingest all of your existing customer- support logs 
and learn to replicate how human agents have answered customer ques-
tions in the past. The ML allows your system to infer support patterns from 
the human conversations. The installation engineer just needs to start the 
DNN- fi tting routine.

This gets to the last bit of GPML that we highlight in fi gure 2.1, the tools 
that facilitate model fi tting on massive data sets: out- of-sample (OOS) vali-
dation for model tuning, stochastic gradient descent (SGD) for parameter 
optimization, and graphical processing units (GPUs) and other computer 
hardware for massively parallel optimization. Each of these pieces is essen-
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tial for the success of  large- scale GPML. Although they are commonly 
associated with deep learning and DNNs (especially SGD and GPUs), these 
tools have developed in the context of many diff erent ML algorithms. The 
rise of DNNs over alternative ML modeling schemes is partly due to the 
fact that, through trial and error, ML researchers have discovered that neural 
network models are especially well suited to engineering within the context 
of these available tools (LeCun et al. 1998).

Out- of-sample validation is a basic idea: you choose the best model speci-
fi cation by comparing predictions from models estimated on data that was 
not used during the model “training” (fi tting). This can be formalized as a 
cross- validation routine: you split the data into K “folds,” and then K times 
fi t the model on all data but the Kth fold and evaluate its predictive perfor-
mance (e.g., mean squared error or misclassifi cation rate) on the left- out 
fold. The model with optimal average OOS performance (e.g., minimum 
error rate) is then deployed in practice.

Machine learning’s wholesale adoption of OOS validation as the arbitra-
tor of  model quality has freed the ML engineer from the need to theorize 
about model quality. Of course, this can create frustration and delays when 
you have nothing other than “guess- and- test” as a method for model selec-
tion. But, increasingly, the requisite model search is not being executed 
by humans: it is done by additional ML routines. This either happens ex-
plicitly, in AutoML (Feurer et al. 2015) frameworks that use simple auxil-
iary ML to predict OOS performance of  the more complex target model, or 
implicitly by adding fl exibility to the target model (e.g., making the tuning 
parameters part of  the optimization objective). The fact that OOS vali-
dation provides a clear target to optimize against—a target which, unlike 
the in-sample likelihood, does not incentive over- fi t—facilitates automated 
model tuning. It removes humans from the process of adapting models to 
specifi c data sets.

Stochastic gradient descent optimization will be less familiar to most 
readers, but it is a crucial part of GPML. This class of algorithms allows 
models to be fi t to data that is only observed in small chunks: you can train 
the model on a stream of  data and avoid having to do batch computations 
on the entire data set. This lets you estimate complex models on massive data 
sets. For subtle reasons, the engineering of SGD algorithms also tends to 
encourage robust and generalizable model fi ts (i.e., use of SGD discourages 
over- fi t). We cover these algorithms in detail in a dedicated section.

Finally, the GPUs: specialized computer processors have made massive- 
scale ML a reality, and continued hardware innovation will help push AI to 
new domains. Deep neural network training with stochastic gradient descent 
involves massively parallel computations: many basic operations executed 
simultaneously across parameters of  the network. Graphical processing 
units were devised for calculations of this type, in the context of video and 
computer graphics display where all pixels of an image need to be rendered 
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simultaneously, in parallel. Although DNN training was originally a side use 
case for GPUs (i.e., as an aside from their main computer graphics mandate), 
AI applications are now of primary importance for GPU manufacturers. 
Nvidia, for example, is a GPU company whose rise in market value has been 
driven by the rise of AI.

The technology here is not standing still. The GPUs are getting faster 
and cheaper every day. We are also seeing the deployment of  new chips 
that have been designed from scratch for ML optimization. For example, 
fi eld- programmable gate arrays (FPGAs) are being used by Microsoft and 
Amazon in their data centers. These chips allow precision requirements to 
be set dynamically, thus effi  ciently allocating resources to high- precision 
operations and saving compute eff ort where you only need a few decimal 
points (e.g., in early optimization updates to the DNN parameters). As an-
other example, Google’s Tensor Processing Units (TPUs) are specifi cally 
designed for algebra with “tensors,” a mathematical object that occurs com-
monly in ML.4

One of  the hallmarks of  a general purpose technology is that it leads 
to broad industrial changes, both above and below where that technology 
lives in the supply chain. This is what we are observing with the new general 
purpose ML. Below, we see that chip makers are changing the type of hard-
ware they create to suit these DNN- based AI systems. Above, GPML has 
led to a new class of ML- driven AI products. As we seek more real- world 
AI capabilities—self- driving cars, conversational business agents, intelligent 
economic marketplaces—domain experts in these areas will need to fi nd 
ways to resolve their complex questions into structures of ML tasks. This is 
a role that economists and business professionals should embrace, where the 
increasingly user- friendly GPML routines become basic tools of their trade.

2.4 Deep Learning

We have stated that deep neural networks are a key tool in GPML, but 
what exactly are they? And what makes them deep? In this section we will 
give a high- level overview of these models. This is not a user guide. For that, 
we recommend the excellent recent textbook by Goodfellow, Bengio, and 
Courville (2016). This is a rapidly evolving area of research, and new types 
of neural network models and estimation algorithms are being developed 
at a steady clip. The excitement in this area, and considerable media and 
business hype, makes it diffi  cult to keep track. Moreover, the tendency of 
ML companies and academics to proclaim every incremental change as 
“completely brand new” has led to a messy literature that is tough for new-
comers to navigate. But there is a general structure to deep learning, and a 

4. A tensor is a multidimensional extension of a matrix—that is, a matrix is another name 
for a two- dimensional tensor.
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hype- free understanding of this structure should give you insight into the 
reasons for its success.

Neural networks are simple models. Indeed, their simplicity is a strength: 
basic patterns facilitate fast training and computation. The model has linear 
combinations of inputs that are passed through nonlinear activation func-
tions called nodes (or, in reference to the human brain, neurons). A set of 
nodes taking diff erent weighted sums of the same inputs is called a “layer,” 
and the output of one layer’s nodes becomes input to the next layer. This 
structure is illustrated in fi gure 2.3. Each circle here is a node. Those in the 
input (farthest left) layer typically have a special structure; they are either 
raw data or data that has been processed through an additional set of layers 
(e.g., convolutions as we will describe). The output layer gives your predic-
tions. In a simple regression setting, this output could just be ŷ, the predicted 
value for some random variable y, but DNNs can be used to predict all sorts 
of high- dimensional objects. As it is for nodes in input layers, output nodes 
also tend to take application- specifi c forms.

 Nodes in the interior of the network have a “classical” neural network 
structure. Say that �hk(·) is the kth node in interior layer h. This node takes 
as input a weighted combination of the output of the nodes in the previous 
layer of the network, layer h – 1, and applies a nonlinear transformation to 
yield the output. For example, the ReLU (for “rectifi ed linear unit”) node is 
by far the most common functional form used today; it simply outputs the 
maximum of its input and zero, as shown in fi gure 2.4.5 Say zij

h 1 is output of 

5. In the 1990s, people spent much eff ort choosing among diff erent node transformation 
functions. More recently, the consensus is that you can just use a simple and computation-
ally convenient transformation (like ReLU). If  you have enough nodes and layers the specifi c 
transformation doesn’t really matter, so long as it is nonlinear.

Fig. 2.3 A fi ve- layer network
Source: Adapted from Nielsen (2015).
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node j in layer h – 1 for observation i. Then the corresponding output for 
the kth node in the hth layer can be written

(1) zik
h = hk h'zi

h 1( ) = max 0,
j

hj zij
h 1

,

where �hj are the network weights. For a given network architecture—the 
structure of nodes and layers—these weights are the parameters that are 
updated during network training.

 Neural networks have a long history. Work on these types of models dates 
back to the mid- twentieth century, for example, including Rosenblatt’s Per-
ceptron (Rosenblatt 1958). This early work was focused on networks as 
models that could mimic the actual structure of the human brain. In the 
late 1980s, advances in algorithms for training neural networks (Rumelhart 
et al. 1988) opened the potential for these models to act as general pattern- 
recognition tools rather than as a toy model of the brain. This led to a boom 
in neural network research, and methods developed during the 1990s are at 
the foundation of much of deep learning today (Hochreiter and Schmid-
huber 1997; LeCun et al. 1998). However, this boom ended in bust. Due to 
the gap between promised and realized results (and enduring diffi  culties in 
training networks on massive data sets) from the late 1990s, neural networks 
became just one ML method among many. In applications they were sup-
planted by more robust tools such as Random Forests, high- dimensional 
regularized regression, and a variety of Bayesian stochastic process models.

In the 1990s, one tended to add network complexity by adding width. 
A couple of layers (e.g., a single hidden layer was common) with a large 
number of nodes in each layer were used to approximate complex functions. 

Fig. 2.4 The ReLU function
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Researchers had established that such “wide” learning could approximate 
arbitrary functions (Hornik, Stinchcombe, and White 1989) if  you were able 
to train on enough data. The problem, however, was that this turns out to 
be an ineffi  cient way to learn from data. The wide networks are very fl exible, 
but they need a ton of data to tame this fl exibility. In this way, the wide nets 
resemble traditional nonparametric statistical models like series and kernel 
estimators. Indeed, near the end of the 1990s, Radford Neal showed that 
certain neural networks converge toward Gaussian Processes, a classical 
statistical regression model, as the number of nodes in a single layer grows 
toward infi nity (Neal 2012). It seemed reasonable to conclude that neural 
networks were just clunky versions of more transparent statistical models.

What changed? A bunch of things. Two nonmethodological events are 
of primary importance: we got much more data (big data) and computing 
hardware became much more effi  cient (GPUs). But there was also a cru-
cial methodological development: networks went deep. This breakthrough 
is often credited to 2006 work by Geoff  Hinton and coauthors (Hinton, 
Osindero, and Teh 2006) on a network architecture that stacked many pre-
trained layers together for a handwriting recognition task. In this pretrain-
ing, interior layers of the network are fi t using an unsupervised learning task 
(i.e., dimension reduction of the inputs) before being used as part of the 
supervised learning machinery. The idea is analogous to that of principal 
components regression: you fi rst fi t a low- dimensional representation of 
x, then use that low- D representation to predict some associated y. Hinton 
and colleague’s scheme allowed researchers to train deeper networks than 
was previously possible.

This specifi c type of unsupervised pretraining is no longer viewed as cen-
tral to deep learning. However, Hinton, Osindero, and Teh’s (2006) paper 
opened many people’s eyes to the potential for deep neural networks: mod-
els with many layers, each of which may have diff erent structure and play 
a very diff erent role in the overall machinery. That is, a demonstration that 
one could train deep networks soon turned into a realization that one should 
add depth to models. In the following years, research groups began to show 
empirically and theoretically that depth was important for learning effi  -
ciently from data (Bengio et al. 2007). The modularity of  a deep network 
is key: each layer of functional structure plays a specifi c role, and you can 
swap out layers like Lego blocks when moving across data applications. This 
allows for fast application- specifi c model development, and also for trans-
fer learning across models: an internal layer from a network that has been 
trained for one type of image recognition problem can be used to hot- start 
a new network for a diff erent computer vision task.

Deep learning came into the ML mainstream with a 2012 paper by 
Krizhevsky, Sutskever, and Hinton (2012) that showed their DNN was able 
to smash current performance benchmarks in the well- known ImageNet 
computer vision contest. Since then, the race has been on. For example, 
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image classifi cation performance has surpassed human abilities (He et al. 
2016) and DNNs are now able to both recognize images and generate appro-
priate captions (Karpathy and Fei- Fei 2015).

The models behind these computer vision advances all make use of  a 
specifi c type of convolution transformation. The raw image data (pixels) goes 
through multiple convolution layers before the output of those convolutions 
is fed into the more classical neural network architecture of equation (1) 
and fi gure 2.3. A basic image convolution operation is shown in fi gure 2.5: 
you use a kernel of  weights to combine image pixels in a local area into a 
single output pixel in a (usually) lower- dimensional output image. So- called 
convolutional neural networks (CNNs; LeCun and Bengio 1995) illustrate 
the strategy that makes deep learning so successful: it is convenient to stack 
layers of diff erent specializations such that image- specifi c functions (convo-
lutions) can feed into layers that are good at representing generic functional 
forms. In a contemporary CNN, typically, you will have multiple layers of 
convolutions feeding into ReLU activations and, eventually, into a max 
pooling layer constructed of nodes that output the maximum of each input 
matrix.6 For example, fi gure 2.6 shows the very simple architecture that we 
used in Hartford et al. (2017) for a task that mixed digit recognition with 
(simulated) business data.

 This is a theme of deep learning: the models use early layer transforma-
tions that are specifi c to the input data format. For images, you use CNNs. 

6. Convolutional neural networks are a huge and very interesting area. The textbook by 
Goodfellow, Bengio, and Courville (2016) is a good place to start if  you want to learn more.

Fig. 2.5 A basic convolution operation
Notes: The pixels A, B, and so forth, are multiplied and summed across kernel weights �k. The 
kernel here is applied to every 2 × 2 submatrix of our “image.”

Fig. 2.6 The network architecture used in Hartford et al. (2017)
Notes: Variables x, z contain structured business information (e.g., product IDs and prices) 
that is mixed with images of handwritten digits in our network.
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For text data, you need to embed words into a vector space. This can hap-
pen through a simple word2vec transformation (Mikolov et al. 2013) (a 
linear decomposition on the matrix of co-occurrence counts for words; for 
example, within three words of each other) or through a LSTM (long short- 
term memory) architecture (Hochreiter and Schmidhuber 1997)—models 
for sequences of words or letters that essentially mix a hidden Markov model 
(long) with an autoregressive process (short). And there are many other vari-
ants, with new architectures being developed every day.7

One thing should be clear: there is a lot of structure in DNNs. These mod-
els are not similar to the sorts of nonparametric regression models used by 
statisticians, econometricians, and in earlier ML. They are semi- parametric. 
Consider the cartoon DNN in fi gure 2.7. The early stages in the network 
provide dramatic, and often linear, dimension reduction. These early stages 
are highly parametric: it makes no sense to take a convolution model for 
image data and apply it to, say, consumer transaction data. The output 
of these early layers is then processed through a series of classical neural 
network nodes, as in equation (1). These later network layers work like a 
traditional nonparametric regression: they expand the output of early layers 
to approximate arbitrary functional forms in the response of interest. Thus, 
the DNNs combine restrictive dimension reduction with fl exible function 
approximation. The key is that both components are learned jointly.

 As warned at the outset, we have covered only a tiny part of  the area 
of  deep learning. There is a ton of  exciting new material coming out of 
both industry and academia. (For a glimpse of what is happening in the 

Fig. 2.7 A cartoon of a DNN, taking as input images, structured data x1 . . . xbig, 
and raw document text

7. For example, the new Capsule networks of Sabour, Frosst, and Hinton (2017) replace the 
max- pooling of CNNs with more structured summarization functions.
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fi eld, browse the latest proceedings of NIPS [Neural Information Processing 
 Systems, the premier ML conference] at https:// papers.nips.cc/ ). You will see 
quickly the massive breadth of current research. One currently hot topic 
is on uncertainty quantifi cation for deep neural networks, another is on 
understanding how imbalance in training data leads to potentially biased 
predictions. Topics of this type are gaining prominence as DNNs are mov-
ing away from academic competitions and into real- world applications. As 
the fi eld grows, and DNN model construction moves from a scientifi c to 
an engineering discipline, we will see more need for this type of research 
that tells us when and how much we can trust the DNNs.

2.5 Stochastic Gradient Descent

To give a complete view of deep learning, we need to describe the one 
algorithm that is relied upon for training all of the models: SGD. Stochas-
tic gradient descent optimization is a twist on gradient descent (GD), the 
previously dominant method for minimizing any function that you can dif-
ferentiate. Given a minimization objective L(Ω), where Ω is the full set of 
model parameters, each iteration of a gradient descent routine updates from 
current parameters Ωt as

(2) t+1 = t Ct L |
t
,

where ∇L|Ωt is the gradient of L evaluated at the current parameters and Ct 
is a projection matrix that determines the size of the steps taken in the direc-
tion implied by ∇L.8 We have the subscript t on Ct because this projection 
can be allowed to update during the optimization. For example, Newton’s 
algorithm uses Ct equal to the matrix of objective second derivatives, ∇2L|Ωt.

It is often stated that neural networks are trained through “back- 
propagation,” which is not quite correct. Rather, they are trained through 
variants of gradient descent. Back- propagation (Rumelhart et al. 1988), or 
back- prop for short, is a method for calculating gradients on the parameters 
of a network. In particular, back- prop is just an algorithmic implementation 
of your chain rule from calculus. In the context of our simple neuron from 
equation (1), the gradient calculation for a single weight �hj is

(3) 
L

hj

=
i=1

n L

zij
h

zij
h

hj

=
i=1

n L

zij
h zij

h 11[0< j hjzij
h 1]

.

Another application of  the chain rule can be used to expand L / zij
h as 

L / zij
h+1 * zij

h+1/ zij
h, and so on until you have written the full gradient as a 

product of layer- specifi c operations. The directed structure of the network 
lets you effi  ciently calculate all of the gradients by working backward layer 

8. If  Ω = [�1 . . . �p], then ∇L(Ω) = [(∂L/ ∂�1) . . . (∂L/ ∂�p)]. The Hessian matrix, ∇2L, has ele-
ments [∇2L]jk = ∂L2 /∂�j∂�k).
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by layer, from the response down to the inputs. This recursive application of 
the chain rule, and the associated computation recipes, make up the general 
back- prop algorithm.

In statistical estimation and ML model training, L typically involves a 
loss function that sums across data observations. For example, assuming an 
ℓ2 (ridge) regularization penalty on the parameters, the minimization objec-
tive corresponding to regularized likelihood maximization over n indepen-
dent observations di (e.g., di = [xi,yi] for regression) can be written as

(4) L( ) L ;{di}i=1
n( ) =

i=1

n

logp(zi | ) + 2
2 ,

where 2
2 is the sum of all squared parameters in Ω. More generally, 

L ;{di}i=1
n( ) can consist of any loss function that involves summation over 

observations. For example, to model predictive uncertainty we often work 
with quantile loss. Defi ne τq(x;Ω) as the quantile function, parametrized by 
Ω, that maps from covariates x to the qth quantile of the response y:

(5) P y < q x;( ) | x( ) = q.
We fi t τq to minimize the regularized quantile loss function (again assuming 
a ridge penalty):

(6) L ;{di}i=1
n( ) =

i=1

n

yi q (x i; )( ) q 1[ yi< q (x i ; )]( ) + 2
2 .

The very common “sum of squared errors” criterion, possibly regularized, is 
another loss function that fi ts this pattern of summation over observations.

In all of these cases, the gradient calculations required for the updates in 
equation (2) involve sums over all n observations. That is, each calculation 
of ∇L requires an order of n calculations. For example, in a ridge penalized 
linear regression where Ω = �, the vector of regression coeffi  cients, the j th 
gradient component is

(7) 
L

j

=
i=1

n

( yi x i' )x j + j .

The problem for massive data sets is that when n is really big these calcula-
tions become prohibitively expense. The issue is aggravated when, as it is for 
DNNs, Ω is high dimensional and there are complex calculations required 
in each gradient summand. GDGradient descent is the best optimization 
tool that we’ve got, but it becomes computationally infeasible for massive 
data sets.

The solution is to replace the actual gradients in equation (2) with esti-
mates of  those gradients based upon a subset of the data. This is the SGD 
algorithm. It has a long history, dating back to the Robbins- Monro (Rob-
bins and Monro 1951) algorithm proposed by a couple of statisticians in 
1951. In the most common versions of  SGD, the full- sample gradient is 
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simply replaced by the gradient on a smaller subsample. Instead of calculat-
ing gradients on the full- sample loss, L( ;{di}i=1

n ), we descend according to 
subsample calculations:

(8) t+1 = t Ct L ;{dib}b=1
B( ) |

t
,

where {dib}b=1
B  is a mini- batch of  observations with B << n. The key mathe-

matical result behind SGD is that, so long as the sequence of Ct matrices 
satisfy some basic requirements, the SGD algorithm will converge to a local 
optimum whenever L ;{dib}b=1

B( ) is an unbiased estimate of the full- sample 
gradient.9 That is, SGD convergence relies upon

(9) E 1
B
L ;{dib}b=1

B( ) = E 1
n
L ;{di}i=1

n( ) = E L( ;d ),

where the last term here refers to the population expected gradient—that is, 
the average gradient for observation d drawn from the true data generating 
process.

To understand why SGD is so preferable to GD for machine learning, it 
helps to discuss how computer scientists think about the constraints on esti-
mation. Statisticians and economists tend to view sample size (i.e., lack of 
data) as the binding constraint on their estimators. In contrast, in many ML 
applications the data is practically unlimited and continues to grow during 
system deployment. Despite this abundance, there is a fi xed computational 
budget (or the need to update in near- real- time for streaming data), such 
that we can only execute a limited number of operations when crunching 
through the data. Thus, in ML, the binding constraint is the amount of 
computation rather than the amount of data.

Stochastic gradient descent trades faster updates for a slower per-update 
convergence rate. As nicely explained in a 2008 paper by Bottou and Bous-
quet (Bottou and Bousquet 2008), this trade is worthwhile when the faster 
updates allow you to expose your model to more data than would otherwise 
be possible. To see this, note that the mini- batch gradient B 1 L ;{dib}b=1

B( ) 
has a much higher variance than the full- sample gradient, n 1 L ;{di}i=1

n( ). 
This variance introduces noise into the optimization updates. As a result, 
for a fi xed data sample n, the GD algorithm will tend to take far fewer itera-
tions than SGD to get to a minimum of the in- sample loss, L ;{di}i=1

n( ). 
However, in DNN training we don’t really care about the in-sample loss. We 
really want to minimize future prediction loss—that is, we want to minimize 
the population loss function EL(Ω;d ). And the best way to understand the 
population loss is to see as much data as possible. Thus if  the variance of 
the SGD updates is not too large, it is more valuable to spend computational 

9. You can actually get away with biased gradients. In Hartford et al. (2017) we fi nd that 
trading bias for variance can actually improve performance. But this is tricky business and in 
any case the bias must be kept very small.
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eff ort streaming through more data than to spend it on minimizing the vari-
ance of each individual optimization update.

This is related to an important high- level point about SGD: the nature of 
the algorithm is such that engineering steps taken to improve optimization 
performance will tend to also improve estimation performance. The same 
tweaks and tricks that lower the variance of each SGD update will lead to 
fi tted models that generalize better when predicting new unseen data. The 
“train faster, generalize better” paper by Hardt, Recht, and Singer (2016) 
explains this phenomenon within the framework of  algorithm stability. 
For SGD to converge in fewer iterations means that the gradients on new 
observations (new mini- batches) are approaching zero more quickly. That is, 
faster SGD convergence means by defi nition that your model fi ts are general-
izing better to unseen data. Contrast this with full- sample GD, for example, 
for likelihood maximization: faster convergence implies only quicker fi tting 
on your current sample, potentially overfi tting for future data. A reliance on 
SGD has made it relatively easy for deep learning to progress from a scien-
tifi c to engineering discipline. Faster is better, so the engineers tuning SGD 
algorithms for DNNs can just focus on convergence speed.

On the topic of tuning SGD: real- world performance is very sensitive to 
the choice of Ct, the projection matrix in equation (8). For computational 
reasons, this matrix is usually diagonal (i.e., it has zeros off  of the diagonal) 
such that entries of  Ct dictate your step- size in the direction of  each pa-
rameter gradient. Stochastic gradient descent algorithms have often been 
studied theoretically under a single step- size, such that Ct = �tI where �t 
is a scalar and I  is the identity matrix. Unfortunately, this simple specifi ca-
tion will underperform and even fail to converge if  �t is not going toward 
zero at a precise rate (Toulis, Airoldi, and Rennie 2014). Instead, practi-
tioners make use of algorithms where Ct = [�1t . . . �pt]I, with p the dimension 
of Ω, and each �jt is chosen to approximate 2L / j

2, the corresponding 
diagonal element of the Hessian matrix of loss- function second derivatives 
(i.e., what would be used in a Newton’s algorithm). The ADAGRAD paper 
(Duchi, Hazan, and Singer 2011) provides a theoretical foundation for this 
approach and suggests an algorithm for specifying �jt. Most deep learning 
systems make use of  ADAGRAD-inspired algorithms, such as ADAM 
(Kingma and Ba 2015), that combine the original algorithm with heuristics 
that have been shown empirically to improve performance.

Finally, there is another key trick to DNN training: dropout. This pro-
cedure, proposed by researchers (Srivastava et al. 2014) in Hinton’s lab at 
the University of Toronto, involves introduction of random noise into each 
gradient calculation. For example, “Bernoulli dropout” replaces current 
estimates �tj with wtj = �tj * �tj where �tj is a Bernoulli random variable with 
p(�tj = 1) = c. Each SGD update from equation (8) then uses these parameter 
values when evaluating the gradient, such that
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(10) t+1 = t Ct f ;{dib}b=1
B( ) |Wt ,

where Wt is the noised-up version of Ωt, with elements wtj.
Dropout is used because it has been observed to yield model fi ts that have 

lower out- of-sample error rates (so long as you tune c appropriately). Why 
does this happen? Informally, dropout acts as a type of implicit regulariza-
tion. An example of  explicit regularization is parameter penalization: to 
avoid over- fi t, the minimization objective for DNNs almost always has a 

2
2 ridge penalty term added to the data- likelihood loss function. Drop-

out plays a similar role. By forcing SGD updates to ignore a random sample 
of the parameters, it prevents over- fi t on any individual parameter.10 More 
rigorously, it has recently been established by a number of authors (Kendall 
and Gal 2017) that SGD with dropout corresponds to a type of “variational 
Bayesian Inference.” That means that dropout SGD is solving to fi nd the 
posterior distribution over Ω rather than a point estimate.11 As interest grows 
around uncertainty quantifi cation for DNNs, this interpretation of dropout 
is one option for bringing Bayesian inference into deep learning.

2.6  Reinforcement Learning

As our fi nal section on the elements of deep learning, we will consider 
how these AI systems generate their own training data through a mix of 
experimentation and optimization. Reinforcement learning (RL) is the com-
mon term for this aspect of AI. Reinforcement learning is sometimes used 
to denote specifi c algorithms, but we are using it to refer to the full area of 
active data collection.

The general problem can be formulated as a reward- maximization task. 
You have some policy or “action” function, d(xt;Ω), that dictates how the 
system responds to “event” t with characteristics xt. The event could be 
a customer arriving on your website at a specifi c time, or a scenario in a 
video game, and so forth. After the event, you observe “response” yt and the 
reward is calculated as r(d(xt,;Ω),yt). During this process you are accumulat-
ing data and learning the parameters Ω, so we can write Ωt as the parameters 
used at event t. The goal is that this learning converges to some optimal 
reward- maximizing parametrization, say Ωå, and that this happens after 
some T events where T is not too big—that is, so that you minimize regret,

(11) 
t=1

T

r d(xt ;
å ), yt( ) r d(xt ; t ), yt( ) .

10. This seems to contradict our earlier discussion about minimizing the variance of gradient 
estimates. The distinction is that we want to minimize variance due to noise in the data, but 
here we are introducing noise in the parameters independent of  the data.

11. It is a strange variational distribution, but basically the posterior distribution over Ω 
becomes that implied by W, with elements �j multiplied by random Bernoulli noise.
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This is a very general formulation. We can map it to some familiar scenarios. 
For example, suppose that the event t is a user landing on your website. You 
would like to show a banner advertisement on the landing page, and you 
want to show the ad that has the highest probability of getting clicked by 
the user. Suppose that there are J diff erent possible ads you can show, such 
that your action dt = d(xt;Ωt) ∈ {1, . . . , J} is the one chosen for display. The 
fi nal reward is yt = 1 if  the user clicks the ad and yt = 0 otherwise.12

This specifi c scenario is a multi- armed bandit (MAB) set-up, so named 
by analogy to a casino with many slot machines of diff erent payout proba-
bilities (the casino is the bandit). In the classic MAB (or simply “bandit”) 
problem, there are no covariates associated with each ad and each user, such 
that you are attempting to optimize toward a single ad that has highest click 
probability across all users. That is, �j is �(yt = 1|dt = j), the generic click 
probability for ad j, and you want to set dt to the ad with highest �j. There 
are many diff erent algorithms for bandit optimization. They use diff erent 
heuristics to balance exploitation with exploration. A fully exploitive algo-
rithm is greedy: it always takes the currently estimated best option without 
any consideration of uncertainty. In our simple advertising example, this 
implies always converging to the fi rst ad that ever gets clicked on. A fully 
exploratory algorithm always randomizes the ads and it will never converge 
to a single optimum. The trick to bandit learning is fi nding a way to balance 
between these two extremes.

A classic bandit algorithm, and one which gives solid intuition into RL 
in general, is Thompson sampling (Thompson 1933). Like many tools in 
RL, Thompson sampling uses Bayesian inference to model the accumula-
tion of knowledge over time. The basic idea is simple: at any point in the 
optimization process you have a probability distribution over the vector of 
click rates, � = [�1 . . . �J], and you want to show each ad j in proportion 
to the probability that �j is the largest click rate. That is, with yt = {ys}s=1

t  
denoting observed responses at time t, you want to have

(12) p(dt+1 = j) p j = max{ k}k=1
J | yt( ),

such that an ad’s selection probability is equal to the posterior probability 
that it is the best choice. Since the probability in equation (12) is tough to 
calculate in practice (the probability of a maximum is not an easy object to 
analyze), Thompson sampling uses Monte Carlo estimation. In particular, 
you draw a sample of ad- click probabilities from the posterior distribution 
at time t,

(13) t+1 ~ p( | yt ),

12. This application, on the news website MSN .com with headlines rather than ads, motivates 
much of the RL work in Agarwal et al. (2014).

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



The Technological Elements of Artifi cial Intelligence    83

and set dt+1 = argmaxj �t+1j. For example, suppose that you have a Beta(1,1) 
prior on each ad’s click rate (i.e., a uniform distribution between zero and 
one). At time t, the posterior distribution for the jth ad’s click rate is

(14) P( j |d
t, yt ) = Beta 1+

s=1

t

1 ds= j
ys ,1+

s=1

t

1 ds= j
(1 ys ) .

A Thompson sampling algorithm draws �t+1j from equation (14) for each j 
and then shows the ad with highest sampled click rate.

Why does this work? Think about scenarios where an ad j would be shown 
at time t—that is, when the sampled �tj is largest. This can occur if  there is a 
lot of uncertainty about �j, in which case high probabilities have nontrivial 
posterior weight, or if  the expected value of  �j is high. Thus Thompson 
sampling will naturally balance between exploration and exploitation. There 
are many other algorithms for obtaining this balance. For example, Agarwal 
et al. (2014) survey methods that work well in the contextual bandit set-
ting where you have covariates attached to events (such that action- payoff  
probabilities are event specifi c). The options considered include ε- greedy 
search, which fi nds a predicted optimal choice and explores within a neigh-
borhood of that optimum, and a bootstrap- based algorithm that is eff ec-
tively a nonparametric version of Thompson sampling.

Another large literature looks at so-called Bayesian optimization (Taddy 
et al. 2009). In these algorithms, you have an unknown function r(x) that 
you would like to maximize. This function is modeled using some type of 
fl exible Bayesian regression model, for example, a Gaussian process. As you 
accumulate data, you have a posterior over the “response surface” r at all 
potential input locations. Suppose that, after t function realizations, you 
have observed a maximal value rmax. This is your current best option, but you 
want to continue exploring to see if  you can fi nd a higher maximum. The 
Bayesian optimization update is based on the expected improvement statistic,

(15) E max 0,r(x) rmax( ) ,

the posterior expectation of improvement at new location x, thresholded 
below at zero. The algorithm evaluates equation (15) over a grid of potential 
x locations, and you choose to evaluate r(xt+1) at the location xt+1 with high-
est expected improvement. Again, this balances exploitation with explora-
tion: the statistic in equation (15) can be high if  r(x) has high variance or a 
high mean (or both).

These RL algorithms are all described in the language of optimization, 
but it is possible to map many learning tasks to optimization problems. For 
example, the term active learning is usually used to refer to algorithms that 
choose data to minimize some estimation variance (e.g., the average pre-
diction error for a regression function over a fi xed input distribution). Say 
f (x;Ω) is your regression function, attempting to predict response y. Then 
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your action function is simply prediction, d(x;Ω) = f(x;Ω), and your opti-
mization goal could be to minimize the squared error—that is, to maximize 
r(d(x;Ω),y) = – (y – f (x;Ω))2. In this way, active learning problems are special 
cases of the RL framework.

From a business and economic perspective, RL is interesting (beyond its 
obvious usefulness) for assigning a value to new data points. In many set-
tings the rewards can be mapped to actual monetary value: for instance, in 
our advertising example where the website receives revenue- per- click. Rein-
forcement learning algorithms assign a dollar value to data observations. 
There is a growing literature on markets for data, for example, including the 
“data- is- labor” proposal in Lanier (2014). It seems useful for future study in 
this area to take account of how currently deployed AI systems assign rela-
tive data value. As a high- level point, the valuation of data in RL depends 
upon the action options and potential rewards associated with these actions. 
The value of data is only defi ned in a specifi c context.

The bandit algorithms described above are vastly simplifi ed in com-
parison to the type of RL that is deployed as part of a deep learning sys-
tem. In practice, when using RL with complex fl exible functions like DNNs 
you need to be very careful to avoid over exploitation and early conver-
gence (Mnih et al. 2015). It is also impossible to do a comprehensive search 
through the super high- dimensional space of optional values for the Ω that 
parametrizes a DNN. However, approaches such as that in van Seijen et al. 
(2017) and Silver et al. (2017) show that if  you impose structure on the full 
learning problem then it can be broken into a number of simple composite 
tasks, each of which is solvable with RL. As we discussed earlier, there is an 
undeniable advantage to having large fi xed data assets that you can use to 
hot- start your AI (e.g., data from a search engine or social media platform). 
But the exploration and active data collection of RL is essential when tuning 
an AI system to be successful in specifi c contexts. These systems are taking 
actions and setting policy in an uncertain and dynamic world. As statisti-
cians, scientists, and economists are well aware, without constant experimen-
tation it is not possible to learn and improve.

2.7 AI in Context

This chapter has provided a primer on the key ingredients of AI. We have 
also been pushing some general points. First, the current wave of ML- driven 
AI should be viewed as a new class of products growing up around a new 
general purpose technology: large- scale, fast, and robust machine learn-
ing. Artifi cial intelligence is not machine learning, but general purpose ML, 
specifi cally deep learning, is the electric motor of AI. These ML tools are 
going to continue to get better, faster, and cheaper. Hardware and big data 
resources are adapting to the demands of DNNs, and self- service ML solu-
tions are available on all of the major cloud computing platforms. Trained 
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DNNs might become a commodity in the near- term future, and the market 
for deep learning could get wrapped up in the larger battle over market share 
in cloud computing services.

Second, we are still waiting for true end- to-end business AI solutions that 
drive a real increase in productivity. AI’s current “wins” are mostly limited 
to settings with high amounts of  explicit structure, like board and video 
games.13 This is changing, as companies like Microsoft and Amazon produce 
semi- autonomous systems that can engage with real business problems. But 
there is still much work to be done, and the advances will be made by those 
who can impose structure on these complex business problems. That is, for 
business AI to succeed we need to combine the GPML and big data with 
people who know the rules of the “game” in their business domain.

Finally, all of this will have signifi cant implications for the role of eco-
nomics in industry. In many cases, the economists are those who can provide 
structure and rules around messy business scenarios. For example, a good 
structural econometrician (McFadden 1980; Heckman 1977; Deaton and 
Muellbauer 1980) uses economic theory to break a substantiative question 
into a set of  measurable (i.e., identifi ed) equations with parameters that 
can be estimated from data. In many settings, this is exactly the type of 
workfl ow required for AI. The diff erence is that, instead of being limited to 
basic linear regression, these measurable pieces of the system will be DNNs 
that can actively experiment and generate their own training data. The next 
generation of economists needs to be comfortable in knowing how to apply 
economic theory to obtain such structure, and how to translate this structure 
into recipes that can be automated with ML and RL. Just as big data led to 
data science, a new discipline combining statistics and computer science, AI 
will require interdisciplinary pioneers who can combine economics, statis-
tics, and machine learning.
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