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We interpret recent developments in the field of artificial intelligence (AI) as 
improvements in prediction technology. In this paper, we explore the consequences 
of improved prediction in decision-making. To do so, we adapt existing models of 
decision-making under uncertainty to account for the process of determining payoffs. 
We label this process of determining the payoffs ‘judgment.’ There is a risky action, 
whose payoff depends on the state, and a safe action with the same payoff in every 
state. Judgment is costly; for each potential state, it requires thought on what the 
payoff might be. Prediction and judgment are complements as long as judgment is 
not too difficult. We show that in complex environments with a large number of 
potential states, the effect of improvements in prediction on the importance of 
judgment depend a great deal on whether the improvements in prediction enable 
automated decision-making. We discuss the implications of improved prediction in 
the face of complexity for automation, contracts, and firm boundaries. 
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1 Introduction 

There is widespread discussion regarding the impact of machines on employment (see 

Autor, 2015). In some sense, the discussion mirrors a long-standing literature on the impact of 

the accumulation of capital equipment on employment; specifically, whether capital and labor 

are substitutes or complements (Acemoglu, 2003). But the recent discussion is motivated by the 

integration of software with hardware and whether the role of machines goes beyond physical 

tasks to mental ones as well (Brynjolfsson and McAfee, 2014). As mental tasks were seen as 

always being present and essential, human comparative advantage in these was seen as the main 

reason why, at least in the long term, capital accumulation would complement employment by 

enhancing labour productivity in those tasks.  

The computer revolution has blurred the line between physical and mental tasks. For 

instance, the invention of the spreadsheet in the late 1970s fundamentally changed the role of 

book-keepers. Prior to that invention, there was a time intensive task involving the 

recomputation of outcomes in spreadsheets as data or assumptions changed. That human task 

was substituted by the spreadsheet software that could produce the calculations more quickly, 

cheaply, and frequently. However, at the same time, the spreadsheet made the jobs of 

accountants, analysts, and others far more productive. In the accounting books, capital was 

substituting for labour but the mental productivity of labour was being changed. Thus, the impact 

on employment critically depended on whether there were tasks the “computers cannot do.” 

These assumptions persist in models today. Acemoglu and Restrepo (2017) observe that 

capital substitutes for labour in certain tasks while at the same time technological progress 

creates new tasks. They make what they call a “natural assumption” that only labour can perform 

the new tasks as they are more complex than previous ones.1 Benzell, LaGarda, Kotlikoff, and 

Sachs (2015) consider the impact of software more explicitly. Their environment has two types 

of labour – high-tech (who can, among other things, code) and low-tech (who are empathetic and 

can handle interpersonal tasks). In this environment, it is the low-tech workers who cannot be 

replaced by machines while the high-tech ones are employed initially to create the code that will 

eventually displace their kind. The results of the model depend, therefore, on a class of worker 

                                                      
1 To be sure, their model is designed to examine how automation of tasks causes a change in factor prices that biases 
innovation towards the creation of new tasks that labour is more suited to.  
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who cannot be substituted directly for capital but also on the inability of workers themselves to 

substitute between classes. 

In this paper, our approach is to delve into the weeds of what is happening currently in the 

field of artificial intelligence (AI). The recent wave of developments in artificial intelligence (AI) 

all involve advances in machine learning. Those advances allow for automated and cheap 

prediction; that is, providing a forecast (or nowcast) of a variable of interest from available data 

(Agrawal, Gans and Goldfarb, 2018a). In some cases, prediction has enabled full automation of 

tasks – for example, self-driving vehicles where the process of data collection, prediction of 

behavior and surroundings, and actions are all conducted without a human in the loop. In other 

cases, prediction is a standalone tool – such as image recognition or fraud detection – that may or 

may not lead to further substitution of human users of such tools by machines. Thusfar, 

substitution between humans and machines has focused mainly on cost considerations. Are 

machines cheaper, more reliable, and more scalable (in their software form) than humans? This 

paper, however, considers the role of prediction in decision-making explicitly and from that 

examines the complementary skills that may be matched with prediction within a task. 

Our focus, in this regard, is on what we term judgment. While judgment is a term with 

broad meaning, here we use it to refer to a very specific skill. To see this, consider a decision. 

That decision involves choosing an action, x, from a set, X. The payoff (or reward) from that 

action is defined by a function, 𝑢(𝑥, 𝜃) where Θ  is a realization of an uncertain state drawn from 

a distribution, F(Θ ). Suppose that, prior to making a decision, a prediction (or signal), s, can be 

generated that results in a posterior, 𝐹(𝜃|𝑠). Thus, the decision-maker would solve: 

max𝑥∈𝑋 �𝑢(𝑥, 𝜃)𝑑𝐹(𝜃|𝑠) 

In other words, a standard problem of choice under uncertainty. In this standard world, the role 

of prediction is to improve decision-making. The payoff, or utility function, is known. 

To create a role for judgment we depart from this standard set-up in statistical decision 

theory and ask how a decision-maker comes to know the function, 𝑢(𝑥, 𝜃)? We assume that this 

is not simply given or a primitive of the decision-making model. Instead, it requires a human to 

undertake a costly process that allows the mapping from (𝑥, 𝜃) to a particular payoff value, u, to 
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be discovered. This is a reasonable assumption given that beyond some rudimentary 

experimentation in closed environments, there is no current way for an AI to impute a utility 

function that resides with humans. Additionally, this process separates the costs of providing the 

mapping for each pair, (𝑥, 𝜃). (Actually, we focus, without loss in generality, on situations where 

𝑢(𝑥, 𝜃) ≠ 𝑢(𝑥) for all Θ  and presume that if a payoff to an action is state independent that 

payoff is known). In other words, while prediction can obtain a signal of the underlying state, 

judgment is the process by which the payoffs from actions that arise based on that state can be 

determined. We assume that this process of determining payoffs requires human understanding 

of the situation: It is not a prediction problem.  

For intuition on the difference between prediction and judgment, consider the example of 

credit card fraud. A bank observes a credit card transaction. That transaction is either legitimate 

or fraudulent. The decision is whether to approve the transaction. If the bank knows for sure that 

the transaction is legitimate, the bank will approve it. If the bank knows for sure that it is 

fraudulent, the bank will refuse the transaction. Why? Because the bank knows the payoff of 

approving a legitimate transaction is higher than the payoff of refusing that transaction. Things 

get more interesting if the bank is uncertain about whether the transaction is legitimate. The 

uncertainty means that the bank also needs to know the payoff from refusing a legitimate 

transaction and from approving a fraudulent transaction. In our model, judgment is the process of 

determining these payoffs. It is a costly activity, in the sense that it requires time and effort.  

As the new developments regarding AI all involve making prediction more readily 

available, we ask, how does judgment and its endogenous application change the value of 

prediction? Are prediction and judgment substitutes or complements? How does the value of 

prediction change monotonically with the difficulty of applying judgment? In complex 

environments (as they relate to automation, contracting, and the boundaries of the firm), how do 

improvements in prediction affect the value of judgment?  

We proceed by first providing supportive evidence for our assumption that recent 

developments in AI overwhelmingly impact the costs of prediction. We then use the example of 

radiology to provide a context for understanding the different roles of prediction and judgment. 

Drawing inspiration from Bolton and Faure-Grimaud (2009), we then build the baseline model 

with two states of the world and uncertainty about payoffs to actions in each state. We explore 
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the value of judgment in the absence of any prediction technology, and then the value of 

prediction technology when there is no judgment. We finish the discussion of the baseline model 

with an exploration of the interaction between prediction and judgment, demonstrating that 

prediction and judgment are complements as long as judgment isn’t too difficult. We then 

separate prediction quality into prediction frequency and prediction accuracy. As judgment 

improves, accuracy becomes more important relative to frequency. Finally, we examine complex 

environments where the number of potential states is large. Such environments are common in 

economic models of automation, contracting, and boundaries of the firm. We show that the effect 

of improvements in prediction on the importance of judgment depend a great deal on whether the 

improvements in prediction enable automated decision-making. 

2 AI and Prediction Costs 

We argue that the recent advances in artificial intelligence are advances in the technology 

of prediction. Most broadly, we define prediction as the ability to take known information to 

generate new information. Our model emphasizes prediction about the state of the world.  

Most contemporary artificial intelligence research and applications come from a field now 

called “machine learning.” Many of the tools of machine learning have a long history in statistics 

and data analysis, and are likely familiar to economists and applied statisticians as tools for 

prediction and classification.2 For example, Alpaydin’s (2010) textbook Introduction to Machine 

Learning covers maximum likelihood estimation, Bayesian estimation, multivariate linear 

regression, principal components analysis, clustering, and nonparametric regression. In addition, 

it covers tools that may be less familiar, but also use independent variables to predict outcomes: 

Regression trees, neural networks, hidden Markov models, and reinforcement learning. Hastie, 

Tibshirani, and Friedman’s (2009) The Elements of Statistical Learning covers similar topics. 

The 2014 Journal of Economic Perspectives symposium on big data covered several of these less 

familiar prediction techniques in articles by Varian (2014) and Belloni, Chernozhukov, and 

Hansen (2014).  

                                                      
2 We define prediction as known information to generate new information. Therefore, classification techniques such 
as clustering are prediction techniques in which the new information to be predicted is the appropriate category or 
class. 
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While many of these prediction techniques are not new, recent advances in computer 

speed, data collection, data storage, and the prediction methods themselves have led to 

substantial improvements. These improvements have transformed the computer science research 

field of artificial intelligence. The Oxford English Dictionary defines artificial intelligence as 

“[t]he theory and development of computer systems able to perform tasks normally requiring 

human intelligence.” In the 1960s and 1970s, artificial intelligence research was primarily rules-

based, symbolic logic. It involved human experts generating rules that an algorithm could follow 

(Domingos 2015, p. 89). These are not prediction technologies. Such systems became very good 

chess players and they guided factory robots in highly controlled settings; however, by the 

1980s, it became clear that rules-based systems could not deal with the complexity of many non-

artificial settings. This led to an “AI winter” in which research funding artificial intelligence 

projects largely dried up (Markov 2015).  

Over the past 10 years, a different approach to artificial intelligence has taken off. The idea 

is to program computers to “learn” from example data or experience. In the absence of the ability 

to pre-determine the decision rules, a data-driven prediction approach can conduct many mental 

tasks. For example, humans are good at recognizing familiar faces, but we would struggle to 

explain and codify this skill. By connecting data on names to image data on faces, machine 

learning solves this problem by predicting which image data patterns are associated with which 

names. As a prominent artificial intelligence researcher put it, “Almost all of AI’s recent 

progress is through one type, in which some input data (A) is used to quickly generate some 

simple response (B)” (Ng 2016). Thus, the progress is explicitly about improvements in 

prediction. In other words, the suite of technologies that have given rise to the recent resurgence 

of interest in artificial intelligence use data collected from sensors, images, videos, typed notes, 

or anything else that can be represented in bits to fill in missing information, recognize objects, 

or forecast what will happen next.  

To be clear, we do not take a position on whether these prediction technologies really do 

mimic the core aspects of human intelligence. While Palm Computing founder Jeff Hawkins 

argues that human intelligence is — in essence — prediction (Hawkins 2004), many 

neuroscientists, psychologists, and others disagree. Our point is that the technologies that have 

been given the label artificial intelligence are prediction technologies. Therefore, in order to 
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understand the impact of these technologies, it is important to assess the impact of prediction on 

decisions. 

3 Case: Radiology  

Before proceeding to the model, we provide some intuition of how prediction and 

judgment apply in a particular context where prediction machines are expected to have a large 

impact: radiology. In 2016, Geoff Hinton – one of the pioneers of deep learning neutral networks 

– stated that it was no longer worth training radiologists. His strong implication was that 

radiologists would not have a future. This is something that radiologists have been concerned 

about since 1960 (Lusted, 1960). Today, machine learning techniques are being heavily applied 

in radiology by IBM using its Watson computer and by a start-up, Enlitic. Enlitic has been able 

to use deep learning to detect lung nodules (a fairly routine exercise3) but also fractures (which is 

more complex). Watson can now identify pulmonary embolism and some other heart issues. 

These advances are at the heart of Hinton’s forecast but have also been widely discussed 

amongst radiologists and pathologists (Jha and Topol, 2016). What does the model in this paper 

suggest about the future of radiologists? 

If we consider a simplified characterization of the job of a radiologist it would be that they 

examine an image in order to characterize and classify that image and return an assessment to a 

physician. While often that assessment is a diagnosis (i.e., “the patient has pneumonia”), in many 

cases, the assessment is in the negative (i.e., “pneumonia not excluded”). In that regard, this is 

stated as a predictive task to inform the physician of the likelihood of the state of the world. 

Using that, the physician can devise a treatment. 

These predictions are what machines are aiming to provide. In particular, it might provide 

a differential diagnosis of the following kind: 

Based on Mr Patel's demographics and imaging, the mass in the liver has a 66.6% 

chance of being benign, 33.3% chance of being malignant, and a 0.1% of not being 

real. 4 

                                                      
3 "You did not go to medical school to measure lung nodules." http://www.medscape.com/viewarticle/863127#vp_2  
4 http://www.medscape.com/viewarticle/863127#vp_3  

http://www.medscape.com/viewarticle/863127#vp_2
http://www.medscape.com/viewarticle/863127#vp_3
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The action is whether some intervention is needed. For instance, if a potential tumor is identified 

in a non-invasive scan, then this will inform whether an invasive examination will be conducted. 

In terms of identifying the state of the world, the invasive exam is costly but safe – it can deduce 

a cancer with certainty and remove it if necessary. The role of a non-invasive exam is to inform 

whether an invasive exam should be forgone. That is, it is to make physicians more confident 

about abstaining from treatment and further analysis. In this regard, if the machine improves 

prediction, it will lead to fewer invasive examinations. 

Judgment involves understanding the payoffs. What is the payoff to conducting a biopsy if 

the mass is benign, malignant, or not real? What is the payoff to not doing anything in those 

three states? The issue for radiologists in particular is whether a trained specialist radiologist is in 

the best position to make this judgment or will it occur further along the chain of decision-

making or involve new job classes that merge diagnostic information such as a combined 

radiologist/pathologist (Jha and Topol, 2016). Next, we formalize these ideas. 

4 Baseline Model 

Our baseline model is inspired by the “bandit” environment considered by Bolton and 

Faure-Grimaud (2009) although it departs significantly in the questions addressed and base 

assumptions made. Like them, in our baseline model, we suppose there are two states of the 

world, {𝜃1, 𝜃2} with prior probabilities of {𝜇, 1 − 𝜇}. There are two possible actions: a state 

independent action with known payoff of S (safe) and a state dependent action with two possible 

payoffs, R or r as the case may be (risky).  

As noted in the introduction, a key departure from the usual assumptions of rational 

decision-making is that the decision-maker does not know the payoff from the risky action in 

each state and must apply judgment to determine that payoff.5 Moreover, decision-makers need 

to be able to make a judgment for each state that might arise in order to formulate a plan that 

would be the equivalent of payoff maximization. In the absence of such judgment, the ex-ante 

expectation that the risky action is optimal in any state is 𝑣 (which is independent between 

                                                      
5 Bolton and Faure-Grimaud (2009) consider this step to be the equivalent of a thought experiment where thinking 
takes time. To the extent that our results can be interpreted as a statement about the comparative advantage of 
humans, we assume that only humans can do judgment.  
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states). To make things more concrete, we assume 𝑅 > 𝑆 > 𝑟.6 Thus, we assume that 𝑣 is the 

probability in any state that the risky payoff is R rather than r. This is not a conditional 

probability of the state. It is a statement about the payoff, given the state.  

In the absence of knowledge regarding the specific payoffs from the risky action, a 

decision can only be made on the basis of prior probabilities. Then the safe action will be chosen 

if: 

𝜇(𝑣𝑣 + (1 − 𝑣)𝑟) + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟) = 𝑣𝑣 + (1 − 𝑣)𝑟 ≤ 𝑆 

So that the payoff is: 𝑉0 = max {𝑣𝑣 + (1 − 𝑣)𝑟, 𝑆}. To make things simpler, we will focus our 

attention on the case where the safe action is – in the absence of prediction or judgment – the 

default. That is, we assume that: 

A1 (Safe Default) 𝑣𝑣 + (1 − 𝑣)𝑟 ≤ 𝑆  

This assumption is made for simplicity only and will not change the qualitative conclusions 

below.7 Under A1, in the absence of knowledge of the payoff function or a signal of the state, the 

decision-maker would choose S.  

Judgment in the absence of prediction 

Prediction provides knowledge of the state. The process of judgment provides knowledge 

of the payoff function. Judgment therefore allows the decision-maker to understand which action 

is optimal for a given state should it arise. Suppose that this knowledge is gained without cost (as 

it would be assumed to do under the usual assumptions of economic rationality). In other words, 

the decision-maker has knowledge of optimal action in a given state. Then the risky action will 

be chosen (1) if it is the preferred action in both states (which arises with probability 𝑣2); (2) if it 

is the preferred action in 𝜃1 but not 𝜃2 and 𝜇𝜇 + (1 − 𝜇)𝑟 > 𝑆 (with probability 𝑣(1 − 𝑣)); or 

(3) if it is the preferred action in 𝜃2 but not 𝜃1 and 𝜇𝜇 + (1 − 𝜇)𝑅 > 𝑆 (with probability 𝑣(1 −

𝑣)). Thus, the expected payoff is:  
                                                      
6 Thus, we assume that the payoff function, u, can only take one of three values, {R, r, S}. The issue is which 
combinations of state realization and action lead to which payoffs. However, we assume that S is the payoff from the 
safe action regardless of state and so this is known to the decision-maker. As it is the relative payoffs from actions 
that drive the results, this assumption is without loss in generality. Requiring this property of the safe action to be 
discovered would just add an extra cost. Implicitly, as the decision-maker cannot make a decision in complete 
ignorance, we are assuming that the safe action’s payoff can be judged at an arbitrarily low cost. 
7 Bolton and Faure-Grimaud (2009) make the opposite assumption. Here, as our focus is on the impact of prediction, 
it is better to consider environments where prediction has the effect of reducing uncertainty over riskier actions. 
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𝑣2𝑅 + 𝑣(1 − 𝑣) max{𝜇𝜇 + (1 − 𝜇)𝑟, 𝑆} + 𝑣(1 − 𝑣) max{𝜇𝜇 + (1 − 𝜇)𝑅, 𝑆} + (1 − 𝑣)2𝑆 

Note that this is greater than 𝑉0. The reason for this is that, when there is uncertainty, judgment is 

valuable because it can identify actions that are dominant or dominated – that is, that might be 

optimal across states. In this situation, any resolution of uncertainty does not matter as it will not 

change the decision made.  

A key insight is that judgment itself can be consequential. 

Result 1. If max {𝜇𝜇 + (1 − 𝜇)𝑟, 𝜇𝜇 + (1 − 𝜇)𝑅 } > 𝑆, it is possible that judgment alone can 
cause the decision to switch from the default action (safe) to the alternative action (risky).  

As we are motivated by understanding the interplay between prediction and judgment, we want 

to make these consequential. Therefore, we make the following assumption to ensure prediction 

always has some value: 

A2 (Judgment Insufficient) max {𝜇𝜇 + (1 − 𝜇)𝑟, 𝜇𝜇 + (1 − 𝜇)𝑅} ≤ 𝑆  

Under this assumption, if different actions are optimal in each state and this is known, the 

decision-maker will not change to the risky action. This, of course, implies that the expected 

payoff is: 

𝑣2𝑅 + (1 − 𝑣2)𝑆 

Note that, absent any cost, full judgment improves the decision-maker’s expected payoff. 

Judgment does not come for free. We assume here that it takes time (although the 

formulation would naturally match with the notion that it takes costly effort). Suppose the 

discount factor is δ  < 1. A decision-maker can spend time in a period determining what the 

optimal action is for a particular state. If they choose to apply judgment with respect to state 𝜃𝑖, 

then there is a probability 𝜆𝑖 that they will determine the optimal action in that period and can 

make a choice based on that judgment. Otherwise, they can choose to apply judgment to that 

problem in the next period.  

It is useful, at this point, to consider what judgment means once it has been applied. The 

initial assumption we make here is that the knowledge of the payoff function depreciates as soon 

as a decision is made. In other words, applying judgment can delay a decision (and that is costly) 

and it can improve that decision (which is its value) but it cannot generate experience that can be 
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applied to other decisions (including future ones). In other words, the initial conception of 

judgment is the application of thought rather than the gathering of experience.8 Practically, this 

reduces our examination to a static model. However, in a later section, we consider the 

experience formulation and demonstrate that most of the insights of the static model carry over 

to the dynamic model. 

In summary, the timing of the game is as follows: 

1. At the beginning of a decision stage, the decision-maker chooses whether to apply 

judgment and to what state or whether to simply choose an action without 

judgment. If an action is chosen, uncertainty is resolved and payoffs are realized 

and we move to a new decision stage. 

2. If judgment is chosen, with probability, 1 − 𝜆𝑖, they do not find out the payoffs for 

the risky action in that state, a period of time elapses and the game moves back to 1. 

With probability 𝜆𝑖, the decision-maker gains this knowledge. The decision-maker 

can then take an action, uncertainty is resolved and payoffs are realized, and we 

move to a new decision stage (back to 1). If no action is taken, a period of time 

elapses and the current decision stage continues. 

3. The decision-maker chooses whether to apply judgment to the other state. If an 

action is chosen, uncertainty is resolved and payoffs are realized and we move to a 

new decision stage (back to 1). 

4. If judgment is chosen, with probability, 1 − 𝜆−𝑖, they do not find out the payoffs 

for the risky action in that state, a period of time elapses and the game moves back 

to 1. With probability 𝜆−𝑖, the decision-maker gains this knowledge. The decision-

maker then chooses an action, uncertainty is resolved and payoffs are realized and 

we move to a new decision stage (back to 1).  

When prediction is available, it will become available prior to the beginning of a decision stage. 

The various parameters are listed in Table 1. 

Table 1: Model Parameters 

                                                      
8 The experience frame is considered in Agrawal, Gans and Goldfarb (2018b). 
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Parameter Description 
S Known payoff from the safe action 
R Potential payoff from the risky action in a given state 
r Potential payoff from the risky action in a given state 
𝜃𝑖 Label of state 𝑖 ∈ {1,2} 
 Probability of state 1 

𝑣 Prior probability that the payoff in a given state is R 

𝜆𝑖 
Probability that decision-maker learns the payoff to the risky action 𝜃𝑖 if 
judgment is applied for one period 

 Discount factor 
 

Suppose that the decision-maker focusses on judging the optimal action (i.e., assessing the 

payoff) for 𝜃𝑖. Then the expected present discount payoff from applying judgment is: 

𝜆𝑖(𝑣𝑣 + (1 − 𝑣)𝑆) + (1 − 𝜆𝑖)𝛿𝜆𝑖(𝑣𝑣 + (1 − 𝑣)𝑆) + �(1 − 𝜆𝑖)𝑡𝛿𝑡𝜆𝑖(𝑣𝑣 + (1 − 𝑣)𝑆)
∞

𝑡=2

 

=
𝜆𝑖

1 − (1 − 𝜆𝑖)𝛿
(𝑣𝑣 + (1 − 𝑣)𝑆) 

The decision-maker eventually can learn what to do and will earn a higher payoff than without 

judgment but will trade this off against a delay in the payoff. 

This calculation presumes that the decision-maker knows the state--that 𝜃𝑖 is true—prior to 

engaging in judgment. If this is not the case, then the expected present discounted payoff to 

judgment on, say, 𝜃1 alone is: 

𝜆1
1 − (1 − 𝜆1)𝛿

�max {𝑣�𝜇𝑅 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)�

+ (1 − 𝑣)�𝜇𝑟 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)�, 𝑆}�

=
𝜆1

1 − (1 − 𝜆1)𝛿
�max {𝑣�𝜇𝑅 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)�, 𝑆} + (1 − 𝑣)𝑆� 

where the last step follows from (A1). To make exposition simpler, we suppose that 𝜆1 = 𝜆2 =

𝜆. In addition, let 𝜆̂ = 𝜆
1−(1−𝜆)𝛿.  𝜆̂ can be given a similar interpretation to 𝜆, the quality of 

judgment.  
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If the strategy were to apply judgment on one state only and then make a decision, this 

would be the relevant payoff to consider. However, because judgment is possible in both states, 

there are several cases to consider.  

First, the decision-maker might apply judgment to both states in sequence. In this case, the 

expected present discounted payoff is: 

𝜆̂2(𝑣2𝑅 + 𝑣(1 − 𝑣) max{𝜇𝜇 + (1 − 𝜇)𝑟, 𝑆} + 𝑣(1 − 𝑣) max{𝜇𝜇 + (1 − 𝜇)𝑅, 𝑆} + (1 − 𝑣)2𝑆)

= 𝜆̂2(𝑣2𝑅 + (1 − 𝑣2)𝑆) 

where the last step follows from (A1).  

Second, the decision-maker might apply judgment to, say, 𝜃1 first and then, contingent on 

the outcome there, apply judgment to 𝜃2. If the decision-maker chooses to pursue judgment on 

𝜃2 if the outcome for 𝜃1 is that the risky action is optimal, the payoff becomes: 

𝜆̂�𝑣𝜆̂(𝑣𝑣 + (1 − 𝑣)max {𝜇𝑅 + (1 − 𝜇)𝑟, 𝑆}) + (1 − 𝑣)max {𝜇𝑟 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆}�

= 𝜆̂�𝑣𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆) + (1 − 𝑣)𝑆� 

If the decision-maker chooses to pursue judgment on 𝜃2 after determining that the outcome for 

𝜃1 is that the safe action is optimal, the payoff becomes: 

𝜆̂�𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝜆̂(𝑣max {𝜇𝜇 + (1 − 𝜇)𝑅, 𝑆} + (1 − 𝑣)𝑆)�

= 𝜆̂�𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝜆̂𝑆� 

Note that this is option is dominated by not applying further judgment at all if the outcome for 𝜃1 

is that the safe action is optimal.  

Given this we can prove the following: 

Proposition 1. Under A1, and A2, and in the absence of any signal about the state, (a) judging 
both states and (b) continuing after the discovery that the safe action is preferred in a state are 
never optimal. 

PROOF: Note that judging two states is optimal if: 

𝜆̂ >
𝑆

𝑣max{𝜇𝜇 + (1 − 𝜇)𝑅, 𝑆} + (1 − 𝑣)𝑆
 

𝜆̂ >
𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)

𝑣𝑣 + (1 − 𝑣) max{𝜇𝜇 + (1 − 𝜇)𝑟, 𝑆} 
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As (A2) implies that 𝜇𝜇 + (1 − 𝜇)𝑅 ≤ 𝑆, the first condition reduces to 𝜆̂ > 1. Thus, (a) 
judging two states is dominated by judging one state and continuing to explore only if the 
risky is found to be optimal in that state. 
Turning to the strategy of continuing to apply judgment only if the safe action is found to 
be preferred in a state, we can compare this to the payoff from applying judgment to one 
state and then acting immediately. Note that: 

𝜆̂�𝑣 max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝜆̂𝑆�
> 𝜆̂(𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝑆) 

This can never hold proving that (b) is dominated. 
 

The intuition is similar to Propositions 1 and 2 in Bolton and Faure-Grimaud (2009). In 

particular, applying judgment is only useful if it is going to lead to the decision-maker switching 

to the risky action. Thus, it is never worthwhile to unconditionally explore a second state as it 

may not change the action taken. Similarly, if judging one state leads to knowledge the safe 

action continues to be optimal in that state, in the presence of uncertainty about the state, even if 

knowledge is gained of the payoff to the risky action in the second state, that action will never be 

chosen. Hence, further judgment is not worthwhile. Hence, it is better to choose immediately at 

that point rather than delay the inevitable. 

Given this proposition, there are only two strategies that are potentially optimal (in the 

absence of prediction). One strategy (we will term here J1) is where judgment is applied to one 

state and if the risky action is optimal, then that action is taken immediately; otherwise the safe 

default is taken immediately. The state where judgment is applied first is the state most likely to 

arise. This will be state 1 if 𝜇 > 1
2. This strategy might be chosen if: 

𝜆̂(𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝑆) > 𝑆 

⟹ 𝜆̂ > 𝜆̂𝐽1 ≡
𝑆

𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑅 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝑆
 

which clearly requires that 𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟) > 𝑆. 

The other strategy (we will term here J2) is where judgment is applied to one state and if 

the risky action is optimal, then judgment is applied to the next state; otherwise the safe default is 

taken immediately. Note that J2 is preferred to J1 if: 
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𝜆̂�𝑣𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆) + (1 − 𝑣)𝑆� > 𝜆̂(𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝑆)

⟹ 𝜆̂𝑣(𝑣𝑣 + (1 − 𝑣)𝑆) > 𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} 

⟹ 𝜆̂ >
max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆}

𝑣𝑣 + (1 − 𝑣)𝑆
 

This is intuitive. Basically, it is only when the efficiency of judgment is sufficiently high, that 

more judgment is applied. However, for this inequality to be relevant, J2 must also be preferred 

to the status quo yielding a payoff of S. Thus, J2 is not dominated if:  

𝜆̂ > 𝜆̂𝐽2

≡ max {
max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆}

𝑣𝑣 + (1 − 𝑣)𝑆
,
�𝑆�4𝑣2𝑅 + 𝑆(1 + 2𝑣 − 3𝑣2)� − (1 − 𝑣)𝑆

2𝑣(𝑣𝑣 + (1 − 𝑣)𝑆) } 

where the first term is the range where J2 dominates J1 while the second term is where J2 

dominates S alone; so for J2 to be optimal it must exceed both. Note also that as 𝜇 → 𝑆−𝑟
𝑅−𝑟  (its 

highest possible level consistent with A1 and A2), then 𝜆̂𝐽2 → 1.  

If 𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟) > 𝑆, note that: 

𝜆̂𝐽2 > 𝜆̂𝐽1 ⟹
𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)

𝑣𝑣 + (1 − 𝑣)𝑆
>

𝑆
𝑣�𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)� + (1 − 𝑣)𝑆

⟹ (1 − 𝑣)𝑆(𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟) − 𝑆)

> 𝑣(𝑅𝑅 − �𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟)�
2

) 

which may not hold for v sufficiently high. However, it can be shown that when 𝜆̂𝐽2 = 𝜆̂𝐽1, then 

the two terms of 𝜆̂𝐽2 are equal and the second term exceeds the first when 𝜆̂𝐽2 < 𝜆̂𝐽1. This implies 

that in the range where 𝜆̂𝐽2 < 𝜆̂𝐽1, J2 dominates J1. 

This analysis implies there are two types of regimes with judgment only. If 𝜆̂𝐽2 > 𝜆̂𝐽1, then 

easier decisions (with high 𝜆̂) involve using J2, the next tranche of decisions use J1 (with 

intermediate 𝜆̂) while the remainder involves no exercise of judgment at all. On the other hand, if 

𝜆̂𝐽2 < 𝜆̂𝐽1, then the easier decisions involve using J2 while the remainder do not involve 

judgment at all.  
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Prediction in the absence of judgment 

Next, we consider the model with prediction but no judgment. Suppose that there exists an 

AI that can, if deployed, identify the state prior to a decision being made. In other words, 

prediction, if it occurs, is perfect; an assumption we will relax in a later section. Initially, suppose 

there is no judgment mechanism to determine what the optimal action is in each state. 

Recall that, in the absence of prediction or judgment, (A1) ensures that the safe action will 

be chosen. If the decision-maker knows the state, then the risky action in a given state is chosen 

if: 

𝑣𝑣 + (1 − 𝑣)𝑟 > 𝑆 

This contradicts A1. Thus, the expected payoff is: 

𝑉𝑃 = 𝑆 

which is the same outcome if there is no judgment or prediction.  

Prediction and judgment together 

Both prediction and judgment can be valuable on their own. The question we next wish to 

consider is whether they are complements or substitutes.  

While perfect prediction allows you to choose an action based on the actual rather than 

expected state, it also affords the same opportunity with respect to judgment. As judgment is 

costly, it is useful not to waste considering what action might be taken in a state that does not 

arise. This was not possible when there was no prediction. But if you receive a prediction 

regarding the state, you can then apply judgment exclusively to actions in relation to that state. 

To be sure, that judgment still involves a cost but at the same time does not lead to any wasted 

cognitive resources. 

Given this, if the decision-maker were the apply judgment after the state is predicted, their 

expected discounted payoff would be: 

𝑉𝑃𝑃 = max {𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆), 𝑆} 
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This represents the highest expected payoff possible (net of the costs of judgment). A necessary 

condition for both prediction and judgment to be optimal is that: 𝜆̂ ≥ 𝜆̂𝑃𝑃 ≡ 𝑆
𝑣𝑣+(1−𝑣)𝑆. Note that 

𝜆̂𝑃𝑃 ≤ 𝜆̂𝐽1, 𝜆̂𝐽2. 

Complements or substitutes? 

To evaluate whether prediction and judgment are complements or substitutes we adopt the 

following parameterization for the effectiveness of prediction: we assume that with probability e, 

an AI yields a prediction while otherwise, the decision must be made in its absence (with 

judgment only). With this parameterization, we can prove the following. 

Proposition 2. In the range of   where 𝜆̂ < 𝜆̂𝐽2, e and lambda  are complements, otherwise they are 
substitutes. 

PROOF: Step 1: Is 𝜆̂𝐽2 > 𝑅
2(𝑣𝑣+(1−𝑣)𝑆)? First, note that: 

max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆}
𝑣𝑣 + (1 − 𝑣)𝑆

>
𝑅

2(𝑣𝑣 + (1 − 𝑣)𝑆)
⟹ max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} > 1

2𝑅 

Note that by (A2) and since 𝜇 > 1
2, 𝑆 > 𝜇𝜇 + (1 − 𝜇)𝑟 > 1

2𝑅 so this inequality always 
holds. 

Second, note that: 

�𝑆�4𝑣2𝑅 + 𝑆(1 + 2𝑣 − 3𝑣2)� − (1 − 𝑣)𝑆

2𝑣(𝑣𝑣 + (1 − 𝑣)𝑆) >
𝑅

2(𝑣𝑣 + (1 − 𝑣)𝑆)
⟹ 𝑆�4𝑣2𝑅 + 𝑆(1 + 2𝑣 − 3𝑣2)� > (𝑣𝑣 + (1 − 𝑣)𝑆)2 ⟹ 𝑆(𝑆 − 2𝑅)
> 𝑣(𝑅2 − 6𝑅𝑅 + 𝑆2) 

which holds as the left-hand side is always positive while the right-hand side is always 
negative.  

Step 2: Suppose that 𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟) ≤ 𝑆, then J1 is never optimal. In 
this case, the expected payoff is: 

𝑒𝑉𝑃𝑃 + (1 − 𝑒)𝑉𝐽2 = 𝑒𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆) + (1 − 𝑒)𝜆̂�𝑣𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆) + (1 − 𝑣)𝑆� 

This mixed partial derivative with respect to (𝑒, 𝜆̂) is 𝑣(𝑅 − 2𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆)). This is 
positive if 𝑅

2(𝑣𝑣+(1−𝑣)𝑆) ≥ 𝜆̂. By step 1, this implies that for 𝜆̂ < 𝜆̂𝐽2, prediction and judgment 
are complements, otherwise they are substitutes. 

Step 3: Suppose that that 𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟) > 𝑆. Note that for 𝜆̂𝐽1 < 𝜆̂ < 𝜆̂𝐽2, 
J1 is preferred to J2. In this case, the expected payoff to prediction and judgment is: 



 18 

𝑒𝜆̂(𝑣𝑣 + (1 − 𝑣)𝑆) + (1 − 𝑒)𝜆̂(𝑣max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 + (1 − 𝑣)𝑟), 𝑆} + (1 − 𝑣)𝑆) 

This mixed partial derivative with respect to (𝑒, 𝜆̂) is 𝑣(𝑅 − max{𝜇𝜇 + (1 − 𝜇)(𝑣𝑣 +
(1 − 𝑣)𝑟), 𝑆}) > 0. By step 1, this implies that for 𝜆̂ < 𝜆̂𝐽2, prediction and judgment are 
complements, otherwise they are substitutes. 
 

The intuition is as follows. When 𝜆̂ < 𝜆̂𝐽2, then, in the absence of prediction either no judgment 

is applied or, alternatively, strategy J1 (with one round of judgment) is optimal. e parameterizes 

the degree of difference between the expected value with both prediction and judgment and the 

expected value without prediction with an increase in lambda , increasing both. However, with one 

round of judgment, the increase when judgment is used alone is less than that when both are used 

together. Thus, when 𝜆̂ < 𝜆̂𝐽2 prediction and judgment are complements.   

By contrast, when 𝜆̂ > 𝜆̂𝐽2, then strategy J2 (with two rounds of judgment) is used in the 

absence of prediction. In this case, increasing lambda  increases, the expected payoff from judgment 

alone increases disproportionately more because judgment is applied on both states whereas 

under prediction and judgment it is only applied on one. Thus, improving the quality of judgment 

reduces the returns to prediction. And so, when 𝜆̂ > 𝜆̂𝐽2 prediction and judgment are substitutes. 

5 Complexity 

Thus far, the model illustrates the interplay between knowing the reward function 

(judgment) and prediction. While those results show that prediction and judgment can be 

substitutes, there is a sense in which that are more naturally complements. The reason is this: 

what prediction enables is a form of state-contingent decision-making. Without a prediction, a 

decision-maker is forced to make the same choice regardless of the state that might arise. In the 

spirit of Herbert Simon, one might call this a heuristic. And in the absence of prediction, the role 

of judgment is to make that choice. Moreover, that choice is easier – that is, more likely to be 

optimal – when there exists dominant (or “near dominant”) choices. Thus, when either the state 

space or the action space expand (as it may in more complex situations), it is less likely that there 

will exist a dominant choice. In that regard, faced with complexity, in the absence of prediction, 

the value of judgment diminishes and we are more likely to see decision-makers choose default 

actions that, on average, are likely to be better than others. 
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Suppose now we add a prediction machine to the mix. While in our model such a machine, 

when it renders a prediction, can perfectly signal the state that will arise, let us consider a more 

convenient alternative that may arise in complex situations: the prediction machine can perfectly 

signal some states (should they arise) but for other states, no precise prediction is possible except 

for the fact that one of those states is the correct one. In other words, the prediction machine can 

sometimes render a fine prediction and otherwise a coarse one. Here, an improvement in the 

prediction machine means an increase in the number of states in which the machine can render a 

fine prediction. 

Thus, consider an N-state model where the probability of state i is 𝜇𝑖. Suppose that states 

{1, …, m} can be finely predicted by an AI while the remainder cannot be distinguished. 

Suppose that in the states that cannot be distinguished applying judgment is not worthwhile so 

that the optimal choice is the safe action. Also, assume that when a prediction is available, 

judgment is worthwhile; that is, 𝜆̂ ≥ 𝑆
𝑣𝑣+(1−𝑣)𝑆. In this situation, the expected present discounted 

value when both prediction and judgment are available is: 

𝑉𝑃𝑃 = 𝜆̂�𝜇𝑖(𝑣𝑣 + (1 − 𝑣)𝑆)
𝑚

𝑖=1

+ � 𝜇𝑖𝑆
𝑁

𝑖=𝑚+1

 

Similarly, it is easy to see that 𝑉𝑃 = 𝑉𝐽 = 𝑆 = 𝑉0 as 𝑣𝑣 + (1 − 𝑣)𝑟 ≤ 𝑆. Note that as m increases 

(perhaps because the prediction machine learns to predict more states), then the marginal value 

of better judgment increases. That is, 𝜆̂𝜇𝑚(𝑣𝑣 + (1 − 𝑣)𝑆) − 𝜇𝑚𝑆 is increasing in 𝜆̂. 

What happens as the situation becomes more complex (that is, N increases)? An increase in 

N will weakly lead to a reduction in 𝜇𝑖 for any given i. Holding m fixed (and so the quality of the 

prediction machine does not improve with the complexity of the world), this will reduce the 

value of prediction and judgment as greater weight is placed on states where prediction is 

unavailable; that is, it is assumed that the increase in complexity does not, ceteris paribus, create 

a state where prediction is available. Thus, complexity appears to be associated with lower 

returns to both prediction and judgment. Put differently, an improvement in prediction machines 

would mean m increases with N fixed. In this case, the returns to judgment rise as greater weight 

is put on states where prediction is available. 
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This insight is useful because there are several places in the economics literature where 

complexity has interacted with other economic decisions. These include, automation, 

contracting, and firm boundaries. We discuss each of these in turn, highlighting potential 

implications. 

Automation 

The literature on automation is sometimes synonymous with AI. This arises because AI 

may power new robots that are able to operate in open environments thanks to machine 

learnings. For instance, while automated trains have been possible for some time since they run 

on tracks, automated cars are new because they need to operate in far more complex 

environments. It is prediction in those open environments that has allowed the emergence of 

environmentally-flexible capital equipment. Note that leads to the implication that as AI 

improves, tasks in more complex environment can be handled by machines (Acemoglu and 

Restrepo, 2017).  

However, this story masks the message that emerges from our analysis that recent AI 

developments are all about prediction. Why prediction enables automated vehicles is because it 

is relatively straightforward to describe (and hence, program) what those vehicles should do in 

different situations. In other words, if prediction enables ‘state contingent decisions’ then 

automated vehicles arise because someone knows what decision is optimal in each state. In other 

words, automation means that judgment can be encoded in machine behavior. Prediction added 

to that means that automated capital can be moved into more complex environments. In that 

respect, it is perhaps natural to suggest that improvements in AI will lead to a substitution of 

humans for machines as more tasks in more complex environments become capable of being 

programmed in a state-contingent manner.  

That said, there is another dimension of substitution that arises in complex environments. 

As noted above, when states cannot be predicted (something that for a given technology is more 

likely to be the case in more complex environments), then the actions chosen are more likely to 

be defaults or the results of heuristics that perform, on average, well. Many, including Acemoglu 

and Restrepo (2017) argue that it is for more complex tasks that humans have a comparative 

advantage relative to machines. However, this is not at all obvious. If it is known that a particular 

default or heuristic should be used then a machine can be programmed to undertake this. In this 
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regard, the most complex tasks – precisely because little is known regarding how to take better 

actions given that the prediction of the state is coarse – may be more, not less, amenable to 

automation.  

If we had to speculate, imagine that states were ordered in terms of diminished likelihood 

(ie., 𝜇𝑖 ≥ 𝜇𝑗 for all 𝑖 < 𝑗). The lowest index states might be ones that, because they arrive 

frequently, there is knowledge of what the optimal action is in each and so they can be 

programmed to be handled by a machine. The highest index states similarly, because the optimal 

action cannot be determined can also be programmed. It is the intermediate states that arise less 

frequently but not infrequently where, if a reliable prediction existed, could be handled by 

humans applying judgment when those states arose. Thus, the payoff could be written: 

𝑉𝑃𝑃 = �𝜇𝑖(𝑣𝑣 + (1 − 𝑣)𝑆)
𝑘

𝑖=1

+ 𝜆̂ � 𝜇𝑖(𝑣𝑣 + (1 − 𝑣)𝑆)
𝑚

𝑖=𝑘+1

+ � 𝜇𝑖𝑆
𝑁

𝑖=𝑚+1

 

where tasks 1 through k are automated using prediction because there is knowledge of the 

optimal action. If this was the matching of tasks to machines and humans, then it is not at all 

clear whether an increase in complexity would be associated with more or less human 

employment.  

That said, the issue for the automation literature is not subtleties over the term ‘complex 

tasks’ but as AI becomes more prevalent where might the substitution of machines for humans 

arise. As noted above, an increase in AI increases m. At this margin, humans are able to come 

into the marginal tasks and, because a prediction machine is available, use judgment to conduct 

state-contingent decisions in those situations. Absent other effects, therefore, an increase in AI is 

associated with more human labour on any given task. However, as the weight on those marginal 

tasks is falling in the level of complexity, it may not be the more complex tasks that humans are 

performing more of. On the other hand, one can imagine that in a model with a full labour 

market equilibrium, that an increase in AI that enables more human judgment at the margin may 

also create opportunities to study that judgment to see if it can be programmed into lower index 

states and be handled by machines. So, while the AI does not necessarily cause more routine 

tasks to be handled by machines it might create the economic conditions that lead to just that.  
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Contracting 

Contracting shares much with programming. Here is Jean Tirole (2009) on the subject: 

Its general thrust goes as follows. The parties to a contract (buyer, seller) 
initially avail themselves of an available design, perhaps an industry standard. 
This design or contract is the best contract under existing knowledge. The 
parties are unaware, however, of the contract's implications, but they realize 
that something may go wrong with this contract; indeed, they may exert 
cognitive effort in order to find out about what may go wrong and how to draft 
the contract accordingly: put differently, a contingency is foreseeable (perhaps 
at a prohibitively high cost), but not necessarily foreseen. To take a trivial 
example, the possibility that the price of oil increases, implying that the 
contract should be indexed on it, is perfectly foreseeable, but this does not 
imply that parties will think about this possibility and index the contract price 
accordingly.  

Tirole argues that contingencies can be planned for in contracts using cognitive effort (akin to 

what we have termed here judgment) while others may be optimally left out because the effort is 

too costly relative to the return given, say, the low likelihood that contingency arises.  

This logic can assist us in understanding what prediction machines might do to contracts. If 

an AI becomes available then, in writing contracts, it is possible, because fine state predictions 

are possible, to incur cognitive costs to determine what the contingencies should be if those 

states should arise. For other states, the contract will be left incomplete – perhaps for a default 

action or alternatively some renegotiation process. A direct implication of this is that contracts 

may well become less incomplete.  

Of course, when it comes to employment contracts, the effects may be different. As 

Herbert Simon (1951) noted, employment contracts differ from other contracts precisely because 

it is often not possible to specify what actions should be performed in what circumstance. Hence, 

what those contracts often allocate are different decision rights.  

What is of interest here is the notion that contacts can be specified clearly – that is, 

programmed – but also that prediction can activate the use of human judgment. That latter notion 

means that actions cannot be easily contracted – by definition, contractibility is programming 

and needing judgment implies that programming was not possible. Thus, as prediction machines 

improve and more human judgment is optimal, then that judgment will be applied outside of 

objective contract measures – including objective performance measures. If we had to speculate, 
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this would favor more subjective performance processes including relational contracts (Baker, 

Gibbons and Murphy, 1999).9  

Firm Boundaries 

We now turn to consider what impact AI may have on firm boundaries (that is, the make or 

buy decision). Suppose that it is a buyer (B) who receives the value from a decision taken – that 

is, the payoff from the risky or safe action as the case may be. To make things simple let’s 

assume that 𝜇𝑖 = 𝜇 for all i, so that 𝑉 = 𝑘(𝑣𝑣 + (1 − 𝑣)𝑆) + 𝜆̂(𝑚 − 𝑘)(𝑣𝑣 + (1 − 𝑣)𝑆) +

(𝑁 −𝑚)𝑆.  

We suppose that the tasks are undertaken by a seller (S). The tasks {1, …., k} and {m+1, 

…., N) can be contracted upon while the intermediate tasks require the seller to exercise 

judgment. We suppose that the cost of providing judgment is a function 𝑐(𝜆̂) which is non-

decreasing and convex. (We write this function in terms of 𝜆̂ just to keep the notation simple). 

The costs can be anticipated by the buyer. So if one of the intermediate states arises, the buyer 

can choose to give the seller a fixed price contract (and bear none of the costs) or a cost-plus 

contract (and bear all of them).  

Following Tadelis (2002), we assume that the seller market is competitive and so all 

surplus accrues to the buyer. In this case, the buyer return is: 

𝑘(𝑣𝑣 + (1 − 𝑣)𝑆) + max {𝜆̂(𝑚 − 𝑘)(𝑣𝑣 + (1 − 𝑣)𝑆), 𝑆} + (𝑁 −𝑚)𝑆 − 𝑝 − 𝑧𝑧(𝜆̂) 

while the seller return is: 𝑝 − (1 − 𝑧)𝑐(𝜆̂). Here 𝑝 + 𝑧𝑧(𝜆̂) is the contract price and z is 0 for a 

fixed price contract and 1 for a cost-plus contract. Note that, only with a cost-plus contract does 

the seller exercise any judgment. Thus, the buyer chooses a cost-plus over a fixed price contract 

if: 

𝑘(𝑣𝑣 + (1 − 𝑣)𝑆) + max�𝜆̂(𝑚 − 𝑘)(𝑣𝑣 + (1 − 𝑣)𝑆), 𝑆� + (𝑁 −𝑚)𝑆 − 𝑐�𝜆̂�

> 𝑘(𝑣𝑣 + (1 − 𝑣)𝑆) + (𝑁 − 𝑘)𝑆 

It is easy to see that as m rises (i.e., prediction becomes cheaper), a cost-plus contract is more 

likely to be chosen. That is, incentives fall as prediction becomes more abundant. 
                                                      
9 A recent paper by Dogan and Yildirim (2017) actually considers how automation might impact on worker 
contracts. However, they do not examine AI per se and focus on how it might change objective performance 
measures in teams moving from joint performance evaluation to more relative performance evaluation. 
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Now we can consider the impact of integration. We assume that the buyer can choose to 

make the decisions themselves but at a higher cost. That is, 𝑐�𝜆̂, 𝐼� > 𝑐�𝜆̂� where I denotes 

integration. We also assume that 𝜕𝜕�𝜆�,𝐼�
𝜕𝜆�

> 𝜕𝜕�𝜆��
𝜕𝜆�

. Under integration, the buyer’s value is 

𝑘(𝑣𝑣 + (1 − 𝑣)𝑆) + 𝜆̂∗(𝑚 − 𝑘)(𝑣𝑣 + (1 − 𝑣)𝑆) + (𝑁 −𝑚)𝑆 − 𝑐�𝜆̂∗, 𝐼� 

where 𝜆̂∗ maximizes the buyer payoff in this case. Given this, it can easily be seen that as m 

increases, the returns to integration rise.  

By contrast, notice that as k increases, the incentives for a cost-plus contract are diminished 

and the returns to integration fall. Thus, the more prediction machines allow for the placement of 

contingencies in a contract (the larger m-k), the higher powered will seller incentives be and the 

more likely there is to be integration. 

Forbes and Lederman (2009) showed that airlines are more likely to vertically integrate 

with regional partners when scheduling is more complex: specifically, where bad weather is 

more likely to lead to delays. The impact of prediction machines will depend on whether they 

lead to an increase in the number of states where the action can be automated in a state-

contingent manner (k) relative to the increase in the number of states where the state becomes 

known but the action cannot be automated (m). If the former, then we will see more vertical 

integration with the rise of prediction machines. If the latter, we will see less. The difference is 

driven by the need for more costly judgment in the vertically integrated case as m-k rises. 

6 Conclusions 

In this paper, we explore the consequences of recent improvements in machine learning 

technology that have advanced the broader field of artificial intelligence. In particular, we argue 

that these advances in the ability of machines to conduct mental tasks are driven by 

improvements in machine prediction. In order to understand how improvements in machine 

prediction will impact decision-making, it is important to analyze how the payoffs of the model 

arise. We label the process of learning payoffs ‘judgment.’  

By modeling judgment explicitly, we derive a number of useful insights into the value of 

prediction. We show that prediction and judgment are generally complements, as long as 

judgment isn’t too difficult. We also show that improvements in judgment change the type of 
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prediction quality that is most useful: Better judgment means that more accurate predictions are 

valuable relative to more frequent predictions. Finally, we explore the role of complexity, 

demonstrating that, in the presence of complexity, the impact of improve prediction on the value 

of judgment depends on whether improved prediction leads to automated decision-making. 

Complexity is a key aspect of economic research in automation, contracting, and the boundaries 

of the firm. As prediction machines improve, our model suggests that the consequences in 

complex environments are particularly fruitful to study.  

There are numerous directions research in this area could proceed. First, the paper does not 

explicitly model the form of the prediction – including what measures might be the basis for 

decision-making. In reality, this is an important design variable and impacts on the accuracy of 

predictions and decision making. In computer science, this is referred to as the choice of 

surrogates and this appears to be a topic amenable for economic theoretical investigation. 

Second, the paper treats judgment as largely a human directed activity. However, we have noted 

that it can else be encoded but have not been explicit about the process by which this occurs. 

Endogenising this – perhaps relating it to the accumulation of experience – would be an avenue 

for further investigation. Finally, this is a single agent model. It would be interesting to explore 

how judgment and prediction mix when each is impacted upon by the actions and decisions of 

other agents in a game theoretic setting. 
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