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The Impact of Artificial Intelligence on Innovation:

An Exploratory Analysis

ABSTRACT

Acrtificial intelligence promises both to improve existing goods and services, and, by enabling the
automation of many tasks, to greatly increase the efficiency with which they are produced. But it may
have an even larger impact on the economy by serving as a new general-purpose “method of invention”
that can reshape the nature of the innovation process and the organization of R&D. This exploratory
essay considers this possibility in three interrelated ways. First, we review the history of artificial
intelligence, focusing in particular on the distinction between automation-oriented applications such as
robotics and the potential for recent developments in “deep learning” to serve as a general-purpose
method of invention. We then assess preliminary evidence of this differential impact in changing nature
of measurable innovation outputs in artificial intelligence, including papers and patents. We find strong
evidence of a “shift” in the importance of application-oriented learning research since 2009 (relative to
developments in robotics and symbolic systems research), and that a significant fraction of this upswing
in application-oriented learning research was initially led by researchers outside the United States.
Finally, we consider some of the implications of our findings, with a focus on both likely changes in the
organization of the innovation process as well as for the policy and institutional responses that might be
required if deep learning represents a meaningful general-purpose method of invention. From an
organizational perspective, there is likely to be significant substitution away from more routinized labor-
intensive research (often directed towards testing specific hypotheses in relatively small purpose-built
datasets) towards research that takes advantage of the interplay between passively generated large
datasets and enhanced prediction algorithms. At the same time, the potential commercial reward from
mastering this mode of research is likely to usher in a period of racing, driven by powerful incentives for
individual companies to acquire and control critical large datasets and application-specific algorithms.
We suggest that policies which encourage transparency and sharing of core datasets across both public
and private actors can stimulate a higher level of innovation-oriented competition, and a higher level of
research productivity going forward.



l. Introduction

Rapid advances in the field of artificial intelligence have profound implications for the
economy as well as society at large. These innovations have the potential to directly influence
both the production and the characteristics of a wide range of products and services, with
important implications for productivity, employment, and competition. But, as important as
these effects are likely to be, artificial intelligence also has the potential to change the innovation
process itself, with consequences that may be equally profound, and which may, over time, come

to dominate the direct effect.

Consider the case of Atomwise, a startup firm which is developing novel technology for
identifying potential drug candidates (and insecticides) by using neural networks to predict the
bioactivity of candidate molecules. The company reports that its deep convolutional neural
networks “far surpass” the performance of conventional “docking” algorithms. After appropriate
training on vast quantities of data, the company’s AtomNet product is described as being able to
“recognize” foundational building blocks of organic chemistry, and is capable of generating
highly accurate predictions of the outcomes of real-world physical experiments (Wallach et al.,
2015). Such breakthroughs hold out the prospect of substantial improvements in the productivity
of early stage drug screening. Of course, Atomwise’s technology (and that of other companies
leveraging artificial intelligence to advance drug discovery or medical diagnosis) is still at an
early stage: though their initial results seem to be promising, no new drugs have actually come
to market using these new approaches. But whether or not Atomwise delivers fully on its
promise, its technology is representative of the ongoing attempt to develop a new innovation
“playbook”, one that leverages large datasets and learning algorithms to engage in precise
prediction of biological phenomena in order to guide design effective interventions. Atomwise,
for example, is now deploying this approach to the discovery and development of new pesticides
and agents for controlling crop diseases.

Atomwise’s example illustrates two of the ways in which advances in artificial intelligence
have the potential to impact innovation. First, though the origins of artificial intelligence are
broadly in the field of computer science, and its early commercial applications have been in

relatively narrow domains such as robotics, the learning algorithms that are now being developed



suggest that artificial intelligence may ultimately have applications across a very wide range.
From the perspective of the economics of innovation (among others, Bresnahan and Trajtenberg
(1995)), there is an important distinction between the problem of providing innovation incentives
to develop technologies with a relatively narrow domain of application, such robots purpose-
built for narrow tasks, versus technologies with a wide—advocates might say almost limitless—
domain of application, as may be true of the advances in neural networks and machine learning
often referred to as “deep learning.” As such, a first question to be asked is the degree to which
developments in artificial intelligence are not simply examples of new technologies, but rather
may be the kinds of “general purpose technologies” (hereafter GPTs) that have historically been

such influential drivers of long-term technological progress.

Second, while some applications of artificial intelligence will surely constitute lower-cost or
higher-quality inputs into many existing production processes (spurring concerns about the
potential for large job displacements), others, such as deep learning, hold out the prospect of not
only productivity gains across a wide variety of sectors but also changes in the very nature of the
innovation process within those domains. As articulated famously by Griliches (1957), by
enabling innovation across many applications, the “invention of a method of invention” has the
potential to have much larger economic impact than development of any single new product.
Here we argue that recent advances in machine learning and neural networks, through their
ability to improve both the performance of end use technologies and the nature of the innovation
process, are likely to have a particularly large impact on innovation and growth. Thus the
incentives and obstacles that may shape the development and diffusion of these technologies are
an important topic for economic research, and building an understanding of the conditions under
which different potential innovators are able to gain access to these tools and to use them in a

pro-competitive way is a central concern for policy.

This essay begins to unpack the potential impact of advances in artificial intelligence on
innovation, and to identify the role that policy and institutions might play in providing effective
incentives for innovation, diffusion, and competition in this area. We begin in Section Il by
highlighting the distinctive economics of research tools, of which deep learning applied to R&D
problems is such an intriguing example. We focus on the interplay between the degree of
generality of application of a new research tool and the role of research tools not simply in



enhancing the efficiency of research activity but in creating a new “playbook” for innovation
itself. We then turn in Section 111 to briefly contrasting three key technological trajectories
within Al—robotics, symbolic systems, and deep learning. We propose that these often
conflated fields will likely play very different roles in the future of innovation and technical
change. Work in symbolic systems appears to have stalled and is likely to have relatively little
impact going forwards. And while developments in robotics have the potential to further displace
human labor in the production of many goods and services, innovation in robotics technologies
per se has relatively low potential to change the nature of innovation itself. By contrast, deep
learning seems to be an area of research that is highly general-purpose and that has the potential

to change the innovation process itself.

We explore whether this might indeed be the case through an examination of some
quantitative empirical evidence on the evolution of different areas artificial intelligence in terms
of scientific and technical outputs of Al researchers as measured (imperfectly) by the publication
of papers and patents from 1990 through 2015. In particular, we develop what we believe is the
first systematic database that captures the corpus of scientific paper and patenting activity in
artificial intelligence, broadly defined, and divides these outputs into those associated with
robotics, symbolic systems, and deep learning. Though preliminary in nature (and inherently
imperfect given that key elements of research activity in artificial intelligence may not be
observable using these traditional innovation metrics), we find striking evidence for a rapid and
meaningful shift in the application orientation of learning-oriented publications, particularly after
2009. The timing of this shift is informative, since it accords with qualitative evidence about the
surprisingly strong performance of so-called “deep learning” multi-layered neural networks in a
range of tasks including computer vision and other prediction tasks. Supplementary evidence
(not reported here) based on the citation patterns to authors such as Geoffrey Hinton who are
leading figures in deep learning suggests a striking acceleration of work in just the last few years
that builds on a small number of algorithmic breakthroughs related to multi-layered neural

networks.

Though not a central aspect of the analysis for this paper, we further find that, whereas

research on learning-oriented algorithms has had a slow and steady upward swing outside of the



United States, US researchers have had a less sustained commitment to learning-oriented

research prior to 2009, and have been in a “catch up” mode ever since.

Finally, we begin to explore some of the organizational, institutional and policy
consequences of our analysis. We see machine learning as the “invention of a method of
invention” whose application depends, in each case, on having access not just to the underlying
algorithms but also to large, granular datasets on physical and social behavior. Developments in
neural networks and machine learning thus raise the question of, even if the underlying scientific
approaches (i.e., the basic multi-layered neural networks algorithms) are open, prospects for
continued progress in this field—and commercial applications thereof—are likely to be
significantly impacted by terms of access to complementary data. Specifically, if there are
increasing returns to scale or scope in data acquisition (there is more learning to be had from the
“larger” dataset), it is possible that early or aggressive entrants into a particular application area
may be able to create a substantial and long-lasting competitive advantage over potential rivals
merely through the control over data rather than through formal intellectual property or demand-
side network effects. Strong incentives to maintain data privately has the additional potential
downside that data is not being shared across researchers, thus reducing the ability of all
researchers to access an even larger set of data that would arise from public aggregation. As the
competitive advantage of incumbents is reinforced, the power of new entrants to drive
technological change may be weakened. Though this is an important possibility, it is also the
case that, at least so far, there seems to be a significant amount of entry and experimentation

across most key application sectors.

1. The Economics of New Research Tools: The Interplay between New Methods of

Invention and the Generality of Innovation

At least since Arrow (1962) and Nelson (1959), economists have appreciated the
potential for significant underinvestment in research, particularly basic research or domains of
invention with low appropriability for the inventor. Considerable insight has been gained into
the conditions under which the incentives for innovation may be more or less distorted, both in
terms of their overall level and in terms of the direction of that research. As we consider the

potential impact of advances in Al on innovation, two ideas from this literature seem particularly
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important—the potential for contracting problems associated with the development of a new
broadly applicable research tool, and the potential for coordination problems arising from
adoption and diffusion of a new “general purpose technology.” In contrast to technological
progress in relatively narrow domains, such as traditional automation and industrial robots, we
argue that those areas of artificial intelligence evolving most rapidly—such as deep learning—

are likely to raise serious challenges in both dimensions.

First, consider the challenge in providing appropriate innovation incentives when an
innovation has potential to drive technological and organizational change across a wide number
of distinct applications. Such “general purpose technologies” (David, 1990; Bresnahan and
Trajtenberg, 1995) often take the form of core inventions that have the potential to significantly
enhance productivity or quality across a wide number of fields or sectors. David’s (1990)
foundational study of the electric motor showed that this invention brought about enormous
technological and organizational change across sectors as diverse as manufacturing, agriculture,
retail, and residential construction. Such “GPTs” are usually understood to meet three criteria
that distinguish them from other innovations: they have pervasive application across many
sectors; they spawn further innovation in application sectors, and they themselves are rapidly

improving.

As emphasized by Bresnahan and Trajtenberg (1995), the presence of a general-purpose
technology gives rise to both vertical and horizontal externalities in the innovation process that
can lead not just to underinvestment but also to distortions in the direction of investment,
depending on the degree to which private and social returns diverge across different application
sectors. Most notably, if there are “innovation complementarities” between the general purpose
technology and each of the application sectors, lack of incentives in one sector can create an
indirect externality that results in a system-wide reduction in innovative investment itself. While
the private incentives for innovative investment in each application sector depend on its the
market structure and appropriability conditions, that sector’s innovation enhances innovation in
the GPT itself, which then induces subsequent demand (and further innovation) in other
downstream application sectors. These gains can rarely be appropriated within the originating
sector. Lack of coordination between the GPT and application sectors, as well as across
application sectors, is therefore likely to significantly reduce investment in innovation. Despite



these challenges, a reinforcing cycle of innovation between the GPT and a myriad of application
sectors can generate a more systemic economy-wide transformation as the rate of innovation
increases across all sectors. A rich empirical literature examining the productivity impacts of
information technology point to the role of the microprocessor as a GPT as a way of
understanding the impact of IT on the economy as a whole (among many others, Bresnahan and
Greenstein (1995); Brynjolfsson and Hitt (1999); and Bresnahan, Brynjolfsson, and Hitt (2001)).
Various aspects of artificial intelligence can certainly be understood as a GPT, and learning from
examples such as the microprocessor are likely to be a useful foundation for thinking about both

the magnitude of their impact on the economy, and associated policy challenges.

A second conceptual framework for thinking about Al is the economics of research tools.
Within the research sectors, some innovations open up new avenues of inquiry, or simply
improve productivity “within the lab”. Some of these advances appear to have great potential
across a broad set of domains, beyond their initial application: as highlighted by Griliches (1957)
in his classic studies of hybrid corn, some new research tools are inventions that do not just
create or improve a specific product—instead they constitute a new way of creating new
products, with much broader application. In Griliches’ famous construction, the discovery of
double-cross hybridization “was the invention of a method of inventing.” (Hereinafter, “IMI”.)
Rather than being a means of creating a single a new corn variety, hybrid corn represented a
widely applicable method for breeding many different new varieties. When applied to the
challenge of creating new varieties optimized for many different localities (and even more
broadly, to other crops) the invention of double-cross hybridization had a huge impact on

agricultural productivity.

One of the important insights to be gained from thinking about IMls, therefore, is that the
economic impact of some types of research tools is not limited to their ability to reduce the costs
of specific innovation activities—perhaps even more consequentially they enable a new
approach to innovation itself, by altering the “playbook” for innovation in the domains where the
new tool is applied. For example, prior to the systematic understanding of the power of “hybrid
vigor,” a primary focus in agriculture had been improved techniques for self-fertilization (i.e.,
allowing for more and more specialized natural varietals over time). Once the rules governing

hybridization (i.e., heterosis) were systematized, and the performance advantages of hybrid vigor



demonstrated, the techniques and conceptual approach for agricultural innovation was shifted,

ushering in a long period of systematic innovation using these new tools and knowledge.

Advances in machine learning and neural networks appear to have great potential as a
research tool in problems of classification and prediction. These are both important limiting
factors in a variety of research tasks, and, as exemplified by the Atomwise example, application
of “learning” approaches to Al hold out the prospect of dramatically lower costs and improved
performance in R&D projects where these are significant challenges. But as with hybrid corn,
Al based learning may be more usefully understood as an IMI than as a narrowly limited solution
to a specific problem. One the one hand, Al based learning may be able to substantially
“automate discovery” across many domains where classification and prediction tasks play an
important role. On the other, they may also “expand the playbook” is the sense of opening up
the set of problems that can be feasibly addressed, and radically altering scientific and technical
communities’ conceptual approaches and framing of problems. The invention of optical lenses
in the 17" century had important direct economic impact in applications such as spectacles. But
optical lenses in the form of microscopes and telescopes also had enormous and long-lasting
indirect effects on the progress of science, technological change, growth, and welfare: by making
very small or very distant objects visible for the first time, lenses opened up entirely new
domains of inquiry and technological opportunity. Leung et al. (2016), for example, evocatively
characterize machine learning as an opportunity to “learn to read the genome” in ways that

human cognition and perception cannot.

Of course, many research tools are neither IMIs nor GPTs, and their primary impact is to
reduce the cost or enhance the quality of an existing innovation process. For example, in the
pharmaceutical industry, new kinds of materials promise to enhance the efficiency of specific
research processes. Other research tools can indeed be thought of as IMIs but are nonetheless
relatively limited in application. For example, the development of genetically engineered
research mice (such as the Oncomouse) is an IMI that has had a profound impact on the conduct
and “playbook” of biomedical research, but has no obvious relevance to innovation in areas such
as information technology, energy, or aerospace. The challenge presented by advances in Al is
that they appear to be research tools that not only have the potential to change the method of
innovation itself but also have implications across an extraordinarily wide range of fields.



Historically technologies with these characteristics—think of digital computing—have had large
and unanticipated impacts across the economy and society in general. Mokyr (2002) points to
the profound impact of IMIs that take the form not of tools per se, but innovations in the way
research is organized and conducted, such as the invention of the university. GPTs that are
themselves IMIs (or vice versa) are particularly complex phenomena, whose dynamics are as yet

poorly understood or characterized.

From a policy perspective, a further important feature of research tools is that it may be
particularly difficult to appropriate their benefits. As emphasized by Scotchmer (1990),
providing appropriate incentives for an upstream innovator that develops only the first “stage” of
an innovation (such as a research tool) can be particularly problematic when contracting is
imperfect and the ultimate application of the new products whose development is enabled by the
upstream innovation is uncertain. Scotchmer and her co-authors emphasized a key point about a
multi-stage research process: when the ultimate innovation that creates value requires multiple
steps, providing appropriate innovation incentives are not only a question of whether and how to
provide property rights in general, but also of how best to distribute property rights and
incentives across the multiple stages of the innovation process. Lack of incentives for early-
stage innovation can therefore mean that the tools required for subsequent innovation do not
even get invented; strong early-stage property rights without adequate contracting opportunities
may result in “hold-up” for later-stage innovators and so reduce the ultimate impact of the tool in

terms of commercial application.

The vertical research spillovers created by new research tools (or IMIs) are not just a
challenge for designing appropriate intellectual property policy.! They are also exemplars of the
core innovation externality highlighted by endogenous growth theory (Romer, 1990; Aghion and
Howitt, 1992); a central source of underinvestment in innovation is the fact that the intertemporal
spillovers from innovators today to innovators tomorrow cannot be easily captured. While
tomorrow’s innovators benefit from “standing on the shoulders of giants,” their gains are not
easily shared with their predecessors. This is not simply a theoretical idea: an increasing body of
evidence suggests that research tools and the institutions that support their development and

diffusion play an important role in generating intertemporal spillovers (among others, Furman

! Challenges presented by Al-enabled invention for legal doctrine and the patent process are beyond the scope of
this essay.



and Stern, 2011; Williams, 2014). A central insight of this work is that control—both in the
form of physical exclusivity as well as in the form of formal intellectual property rights—over
tools and data can shape both the level and direction of innovative activity, and that rules and
institutions governing control over these areas has a powerful influence on the realized amount

and nature of innovation.

Of course, these frameworks cover only a subset of the key informational and
competitive distortions that might arise when considering whether and how to provide optimal
incentives for the type of technological change represented by some areas of Al. But these two
areas in particular seem likely to be important for understanding the implications of the current
dramatic advances in Al supported learning. We therefore turn in the next section to a brief
outline of the ways in which Al is changing, with an eye towards bringing the framework here to
bear on how we might outline a research agenda exploring the innovation policy challenges that

they create.

I11.  The Evolution of Artificial Intelligence: Robotics, Symbolic Systems, and Neural

Networks

In his omnibus historical account of Al research, Nilsson (2010) defines Al as “that
activity devoted to making machines intelligent, and intelligence is that quality that enables an
entity to function appropriately and with foresight in its environment.” His account details the
contributions of multiple fields to achievements in Al, including but not limited to biology,
linguistics, psychology and cognitive sciences, neuroscience, mathematics, philosophy and logic,
engineering and computer science. And, of course, regardless of their particular approach,
artificial intelligence research has been united by from the beginning by its engagement with

Turing (1950), and his discussion of the possibility of mechanizing intelligence.

Though often grouped together, the intellectual history of Al as a scientific and technical
field is usefully informed by distinguishing between three interrelated but separate areas:
robotics, neural networks, and symbolic systems. Perhaps the most successful line of research in
the early years of Al—dating back to the 1960s—falls under the broad heading of symbolic

systems. Although early pioneers such as Turing had emphasized the importance of teaching a



machine as one might a child (i.e., emphasizing Al as a learning process), the “symbol
processing hypothesis” (Newell, Shaw, and Simon, 1958; Newell and Simon, 1976) was
premised on the attempt to replicate the logical flow of human decision making through
processing symbols. Early attempts to instantiate this approach yielded striking success in
demonstration projects, such as the ability of a computer to navigate elements of a chess game
(or other board games) or engage in relatively simple conversations with humans by following
specific heuristics and rules embedded into a program. However, while research based on the
concept of a “general problem solver” has continued to be an area of significant academic
interest, and there have been periodic explosions of interest in the use of such approaches to
assist human decision-making (e.g., in the context of early-stage expert systems to guide medical
diagnosis), the symbolic systems approach has been heavily criticized for its inability to
meaningfully impact real-world processes in a scalable way. It is of course possible that this
field will see breakthroughs in the future, but it is fair to say that, while symbolic systems
continues to be an area of academic research, it has not been central to the commercial
application of Al. Nor is it at the heart of the recent reported advances in Al that are associated
with the area of machine learning and prediction.

A second influential trajectory in Al has been broadly in the area of robotics. While the
concepts of “robots” as machines that can perform human tasks dates back at least to the 1940s,
the field of robotics began to meaningfully flourish from the 1980s onwards through a
combination of the advances in numerically controlled machine tools and the development of
more adaptive but still rules-based robotics that rely on the active sensing of a known
environment. Perhaps the most economically consequential application of Al to date has been in
this area, with large scale deployment of “industrial robots” in manufacturing applications.
These machines are precisely programmed to undertake a given task in a highly controlled
environment. Often located in “cages” within highly specialized industrial processes (most
notably automobile manufacturing), these purpose-built tools are perhaps more aptly described
as highly sophisticated numerically controlled machines rather than as robots with significant Al
content. Over the past twenty years, innovation in robotics has had an important impact on
manufacturing and automation, most notably through the introduction of more responsive robots
that rely on programmed response algorithms that can respond to a variety of stimuli. This
approach, famously pioneered by Rod Brooks (1990), focused the commercial and innovation

10



orientation of Al away from the modeling of human-like intelligence towards providing feedback
mechanisms that would allow for practical and effective robotics for specified applications. This
insight led, among other applications, to the Roomba and to other adaptable industrial robots that
could interact with humans such as Rethink Robotics” Baxter). Continued innovation in robotics
technologies (particularly in the ability of robotic devices to sense and interact with their

environment) may lead to wider application and adoption outside industrial automation.

These advances are important, and the most advanced robots continue to capture public
imagination when the term Al is invoked. But innovations in robotics are not, generally
speaking, IMIs. The increasing automation of laboratory equipment certainly improves research
productivity, but advances in robotics are not (yet) centrally connected to the underlying ways in
which researchers themselves might develop approaches to undertake innovation itself across
multiple domains. There are of course counterexamples to this proposition: robotic space
probes have been a very important research tool in planetary science, and the ability of
automated remote sensing devices to collect data at very large scale or in challenging
environments may transform some fields of research. But robots continue to be used principally

in specialized end-use “production” applications.

Finally, a third stream of research that has been a central element of Al since its founding
can be broadly characterized as a “learning” approach. Rather than being focused on symbolic
logic, or precise sense-and-react systems, the learning approach attempts to create reliable and
accurate methods for the prediction of particular events (either physical or logical) in the
presence of particular inputs. The concept of a neural network has been particularly important
in this area. A neural network is a program that uses a combination of weights and thresholds to
translate a set of inputs into a set of outputs, measures the “closeness” of these outputs to reality,
and then adjusts the weights it uses to narrow the distance between outputs and reality. In this
way, neural networks can learn as they are fed more inputs (Rosenblatt, 1958; 1963). Over the
course of the 1980s, Hinton and his co-authors further advanced the conceptual framework on
which neural networks are based through the development of “back-propagating multi-layer”

techniques that further enhance their potential for supervised learning.

After being initially heralded as having significant promise, the field of neural networks

has come in and out of fashion, particularly within the United States. From the 1980s through
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the mid-2000s, their challenge seemed to be that there were significant limitations to the
technology that could not be easily fixed by using larger training datasets or through the
introduction of additional layers of “neurons.” However, in the mid-2000s, a small number of
new algorithmic approaches demonstrated the potential to enhance prediction through back
propagation through multiple layers. These neural networks increased their predictive power as
they were applied to larger and larger datasets, and were able to scale to an arbitrary level
(among others, a key reference here is Hinton and Salakhutdinov (2006)). These advances
exhibited a “surprising” level of performance improvement, notably in the context of the
ImageNet visual recognition project competition pioneered by Fei-Fei Li at Stanford
(Krizhevsky, Sutskever and Hinton, 2012).

IV.  How Might Different Fields within Artificial Intelligence Impact Innovation?

Distinguishing between these three streams of Al is a critical first step towards
developing a better understanding of how Al is likely to influence the innovation process going

forward, since the three differ significantly in their potential to be either GPTs or IMIs—or both.

First, though a significant amount of public discussion of Al focuses on the potential for
Al to achieve super-human performance over a wide range of human cognitive capabilities, it is
important to note that, at least so far, the significant advances in Al have not been in the form of
the “general problem solver” approaches that were at the core of early work in symbolic systems
(and that were the motivation for considerations of human reasoning such as the Turing test).
Instead, recent advances in both robotics and in deep learning are by and large innovations that
require a significant level of human planning and that apply to a relatively narrow domain of
problem-solving (e.g., face recognition, playing Go, picking up a particular object, etc.) While it
is of course possible that further breakthroughs will lead to a technology that can meaningfully
mimic the nature of human subjective intelligence and emotion, the recent advances that have

attracted scientific and commercial attention are well removed from these domains.

Second, though most economic and policy analysis of Al draws out consequences from
the last two decades of automation to consider the future economic impact of Al (e.g., in job

displacement for an ever-increasing number of tasks), it is important to emphasize that there is a

12



sharp difference between the advances in robotics that were a primary focus of applications of Al
research during the 2000s and the potential applications of deep learning which have come to the

fore over the last few years.

As we suggested above, current advances in robotics are by and large associated with
applications that are highly specialized and that are focused on end-user applications rather than
on the innovation process itself and these advances do not seem as of yet to have translated to a
more generally applicable IMI. Robotics is therefore an area where we might focus on the
impact of innovation (improved performance) and diffusion (more widespread application) in
terms of job displacement versus job enhancement. We see limited evidence as yet of
widespread applications of robotics outside industrial automation, or of the scale of
improvements in the ability to sense, react to, and manipulate the physically environment that the
use of robotics outside manufacturing probably requires. But there are exceptions: developments
in the capabilities of “pick and place” robots and rapid progress in autonomous vehicles point to
the possibility for robotics to escape manufacturing and become much more broadly used.
Advances in robotics may well reveal this area of Al be a GPT, as defined by the classic criteria.

Some research tools/IMIs based on algorithms have transformed the nature of research in
some fields, but have lacked generality. These types of algorithmic research tools, based on a
static set of program instructions, are a valuable IMI, but do not appear to have wide
applicability outside a specific domain and do not qualify as GPTs. For example, while far from
perfect, powerful algorithms to scan brain images (so-called functional MRI imaging) have
transformed our understanding of the human brain, not only through the knowledge they have
generated but also by establishing an entirely new paradigm and protocol for brain research.
However, despite its role as a powerful IMI, fMRI lacks the type of general-purpose applicability
that has been associated with the most important GPTs. In contrast, the latest advances in deep

learning have the potential to be both a general-purpose IMI and a classic GPT.

The following table summarizes these ideas:
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General-Purpose Technology

NO YES
NO Industrial Robots ‘Sense & React” Robots
) (e.g. Fanuc R2000) (e.g. Autonomous vehicles)
Invention of a i
) Statically-coded
Method of Invention T _
YES Algorithmic Tools Deep Learning
(e.g. fMRI)

How might the promise of deep learning as a general-purpose IMI be realized? Deep
learning promises to be an enormously powerful new tool that allows for the unstructured
“prediction” of physical or logical events in contexts where algorithms based on a static set of
program instructions (such as classic statistical methods) perform poorly. The development of
this new approach to prediction enables a new approach to undertaking scientific and technical
research. Rather than focusing on small well-characterized datasets or testing settings, it is now
possible to proceed by identifying large pools of unstructured data which can be used to
dynamically develop highly accurate predictions of technical and behavioral phenomena. In
pioneering an unstructured approach to predictive drug candidate selection that brings together a
vast array of previously disparate clinical and biophysical data, for example, Atomwise may

fundamentally reshape the “ideas production function” in drug discovery.

If advances in deep learning do represent the arrival of a general-purpose IMI, it is clear
that there are likely to be very significant long-run economic, social, and technological
consequence. First, as this new IMI diffuses across many application sectors, the resulting
explosion in technological opportunities and increased productivity of R&D seem likely to
generate economic growth that can eclipse any near-term impact of Al on jobs, organizations,
and productivity. A more subtle implication of this point is that “past is not prologue”: even if
automation over the recent past has resulted in job displacement (e.g., Acemoglu and Restrepo,
2017a), Al is likely to have at least as important an impact through its ability to enhance the

potential for “new tasks” (as in Acemoglu and Restrepo, 2017b).

Second, the arrival of a general-purpose IMI is a sufficiently uncommon occurrence that

its impact could be profound for economic growth and its broader impact on society. There have
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been only a handful of previous general-purpose IMIs and each of these has had an enormous
impact not primarily through their direct effects (e.g., spectacles, in the case of the invention of
optical lenses) but through their ability to reshape the ideas production function itself (e.g.
telescopes and microscopes). It would therefore be helpful to understand the extent to which
deep learning is, or will, causing researchers to significantly shift or reorient their approach in

order to enhance research productivity (in the spirit of Jones (2009)).

Finally, if deep learning does indeed prove to be a general-purpose IMI, it will be
important to develop institutions and a policy environment that is conductive to enhancing
innovation through this approach, and to do so in a way that promotes competition and social
welfare. A central concern here may be the interplay between a key input required for deep
learning—Ilarge unstructured databases that provide information about physical or logical
events—and the nature of competition. While the underlying algorithms for deep learning are in
the public domain (and can and are being improved on rapidly), the data pools that are essential
to generate predictions may be public or private, and access to them will depend on
organizational boundaries, policy and institutions. Because the performance of deep learning
algorithms depends critically on the training data that they are created from, it may be possible,
in a particular application area, for a specific company (either an incumbent or start-up) gain a
significant, persistent innovation advantage through their control over data that is independent of
traditional economies of scale or demand-side network effects. This “competition for the
market” is likely to have several consequences. First, it creates incentives for duplicative racing
to establish a data advantage in particular application sectors (say, search, autonomous driving,
or cytology) followed by the establishment of durable barriers to entry that may be of significant
concern for competition policy. Perhaps even more importantly, this kind of behavior could
result in a balkanization of data within each sector, not only reducing innovative productivity
within the sector, but also reducing spillovers back to the deep learning GPT sector, and to other
application sectors. This suggests that the proactive development of institutions and policies that
encourage competition, data sharing, and openness is likely to be an important determinant of

economic gains from the development and application of deep learning.

Our discussion so far has been largely speculative, and it would be useful to know
whether our claim that deep learning may be both a general-purpose IMI and a GPT, while

15



symbolic logic and robotics are probably not, have any empirical basis. We turn in the next
section to a preliminary examination of the evolution of Al as revealed by bibliometric data, with

an eye towards answering this question.

V. Data

This analysis draws upon two distinct datasets, one that captures a set of Al publications
from Thompson Reuters Web of Science, and another that identifies a set of Al patents issued by
the U.S. Patent and Trademark Office. In this section, we provide detail on the assembly of these

datasets and summary statistics for variables in the sample.

. As previously discussed, peer-reviewed and public-domain literature on Al points to the
existence of three distinct fields within Al: robaotics, learning systems and symbol systems, each
comprised of numerous subfields. To track development of each of these using this data, we
began by identifying the publications and patents falling into each of these three fields based on
keywords. Appendix 1 lists the terms we used to define each field and identify the papers and
patents belonging to it. .2 In short, the robotics field includes approaches in which a system
engages with and responds to environmental conditions; the symbolic systems field attempts to
represent complex concepts through logical manipulation of symbolic representations, and the
learning systems field processes data through analytical programs modeled on neurologic

systems.
Publication Sample and Summary Statistics

Our analysis focuses on journal articles and book publications through the Web of
Science from 1955 to 2015. We conducted a keyword search utilizing the keywords described in
Appendix A (we tried several variants of these keywords and alternative algorithmic approaches
but this did not result in a meaningful difference in the publication set). We are able to gather
detailed information about each publication, including publication year, journal information,

topical information, as well as author and institutional affiliations.

Z Ironically enough, we relied upon human intelligence rather than machine learning to develop this classification
system and apply it to this data set.
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This search yields 98,124 publications. We then code each publication into one of the
three main fields of Al, as described above. Overall, relative to an initial dataset of 98,124, we
are able to uniquely classify 95,840 publications as symbolic systems, learning systems, robotics,
or “general” Al (we drop papers that involve combinations of these three fields). Table 1A

reports the summary statistics for this sample.

Of the 95,840 publication in the sample, 11,938 (12.5 percent) are classified as symbolic
systems, 58,853 (61.4 percent) as learning and 20,655 (21.6 percent) as robotics, with the
remainder being in the general field of “artificial intelligence.” To derive a better understanding
of the factors that have shaped the evolution of Al, we create indicators for variables of interest
including organization type (private versus academic), location type (US domestic versus
International), and application type (computer science versus other application area, in addition

to individual subject spaces, e.g. biology, materials science, medicine, physics, economics, etc.).

We identify organization type as academic if the organization of one of the authors on the
publication is an academic institution. 81,998 publications (85.5 percent) and 13,842 (14.4
percent) are produced by academic and private sector authors, respectively. We identify
publication location as US domestic if one of the authors on the publication lists the United
States as his or her primary location. 22,436 publications (25 percent of the sample) are produced

domestically.

We also differentiate between subject matter. 44 percent of the publications are classified
as Computer Science, with 56 percent classified as other applications. Summary statistics on the
other applications are provided in Table 2A. The other subjects with the largest number of
publications in the sample include Telecommunications (5.5 percent), Mathematics (4.2),
Neurology (3.8), Chemistry (3.7), Physics (3.4), Biology (3.4), and Medicine (3.1).

Finally, we create indicator variables to document publication quality, including journal
quality (top 10, top 25 and top 50 journals by impact factor®) and a count variable for cumulative
citation counts. Less than one percent of publications are in a top 10 journal with two percent and
10 percent in top 25 and top 50 journals. The average citation count for a publication in the

sample is 4.9.

® The rankings are collected from Guide2Research, found here: http://www.guide2research.com/journals/
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Patent Sample and Summary Statistics

We undertake a similar approach for gathering a dataset of Al patents. We start with the
public-use file of USPTO patents (Marco, Carley et al., 2015; Marco et al., 2015,), and filter the
data in two ways. First, we assemble a subset of data by filtering the USPTO Historical
Masterfile on the U.S. Patent Classification System (USPC) number. * Specifically, USPC
numbers 706 and 901 represent “Aurtificial Intelligence” and “Robots,” respectively. Within

USPC 706, there are numerous subclasses including “fuzzy logic hardware,” “plural processing

systems,” “machine learning,” and “knowledge processing systems,” to name a few. We then use
the USPC subclass to identify patents in Al fields of symbolic systems, learning systems and

robotics. We drop patents prior to 1990, providing a sample of 7,347 patents through 2014.

Second, we assemble another subset of Al patents by conducting a title search on patents,
with the search terms being the same keywords used to identify academic publications in Al.>
This provides an additional 8,640 Al patents. We then allocate each patent into an Al field by
associating the relevant search term with one of the overarching fields. For example, a patent that
is found through the search term “neural network,” is then classified as a “learning” patent.

Some patents found through this search method will be duplicative of those identified by USPC
search, i.e. the USPC class will be 706 or 901. We drop those duplicates. Together these two
subsets create a sample of 13,615 unique Al patents. Summary statistics are provided in Table
1B.

In contrast to the distribution of learning systems, symbolic systems and robotics in the
publication data, the three fields are more evenly distributed in the patent data: 3,832 (28
percent) learning system patents, 3,930 (29 percent) symbolic system patents, and 5,524 (40

percent) robotics patents. The remaining patents are broadly classified only as Al.

Using ancillary datasets to the USPTO Historical Masterfile, we are able to integrate
variables of interest related to organization type, location, and application space. For example,

Patent Assignment Data tracks ownership of patents across time. Our interest in this analysis

* We utilized data from the Historical Patent Data Files. The complete (un-filtered) data sets from which we derived
our data set are available here: https://www.uspto.gov/learning-and-resources/electronic-data-products/historical-
patent-data-files

> We utilized data from the Document ID Dataset that is complementary to Patent Assignment Data available on the
USPTO website. The complete (un-filtered) data sets from which we derived our data set are available here:
https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-assignment-dataset
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relates to upstream innovative work, and for this reason, we capture the initial patent assignee by
organization for each patent in our sample. This data enables the creation of indicator variables
for organization type and location. We create an indicator for academic organization type by
searching the name of the assignee for words relating to academic institutions, e.g. “University”,
“College” or “Institution.” We do the same for private sector organizations, searching for “corp”,
“business”, “inc”, or “co”, to name a few. We also search for the same words or abbreviations
utilized in other languages, e.g. “S.p.A.” Only seven percent of the sample is awarded to
academic organizations, while 91 percent is awarded to private entities. The remaining patents

are assigned to government entities, e.g. U.S. Department of Defense.

Similarly, we create indicator variables for patents assigned to U.S. firms and
international firms, based on the country of the assignee. The international firm data can also be
more narrowly identified by specific country (e.g. Canada) or region (e.g. European Union). 59
percent of our patent sample is assigned to U.S. domestic firms, while 41 percent is assigned to
international firms. Next to the United States, firms from non-Chinese, Asian nations account for
28 percent of patents in the sample. Firms from Canada are assigned 1.2 percent of the patents,

and firms from China, 0.4 percent.

Additionally, the USPTO data includes NBER classification and sub-classification for
each patent (Hall, Jaffe and Trajtenberg (2001); Marco, Carley, et al., (2015)). These sub-
classifications provide some granular detail about the application sector for which the patent is
intended. We create indicator variables for NBER sub-classifications related to chemicals
(NBER sub-class 11, 12, 13, 14, 15, 19), communications (21), computer hardware and software
(22), computer science peripherals (23), data and storage (24), business software (25), medical
fields (31, 32, 33, and 39), electronics fields (41, 42, 43, 44, 45, 46, and 49), automotive fields
(53, 54, 55), mechanical fields (51, 52, 59), and other fields (remaining). The vast majority of
these patents (71 percent) are in NBER subclass 22, Computer Hardware and Software.
Summary Statistics of the distribution of patents across application sectors are provided in Table
2B.

VI.  Deep Learning as a GPT: An Exploratory Empirical Analysis

These data allow us to begin examining the claim that the technologies of deep learning

may be the nucleus of a general-purpose invention for the method of invention.
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We begin in Figures 1A and 1B with a simple description of the evolution over time of
the three main fields identified in the corpus of patents and papers. The first insight is that the
overall field of Al has experienced sharp growth since 1990. While there are only a small
handful of papers (less than a hundred per year) at the beginning of the period, each of the three
fields now generates more than a thousand papers per year. At the same time, there is a striking
divergence in activity across fields: each start from a similar base, but there is a steady increase
in the deep learning publications relative to robotics and symbolic systems, particularly after
2009. Interestingly, at least through the end of 2014, there is more similarity in the patterns for
all three fields in terms of patenting, with robotics patenting continuing to hold a lead over
learning and symbolic systems. However, there does seem to be an acceleration of learning-
oriented patents in the last few years of the sample, and so there may be a relative shift towards
learning over the last few years which will manifest itself over time as publication and

examination lags work their way through.

Within the publication data, there are striking variations across geographies. Figure 2A
shows the overall growth in learning publications for the US versus rest-of-world, and Figure 2B
maps the fraction of publications within each geography that are learning related. Inthe US on
learning is far more variable. Prior to 2000 the US has a roughly equivalent share of learning
related publications, but the US then falls significantly behind, only catching up again around
2013. This is consistent with the suggestion in qualitative histories of Al that that learning
research has had a “faddish” quality in the US, with the additional insight that the rest of the
world (notably Canada) seems to have taken advantage of this inconsistent focus in the United

States to develop capabilities and comparative advantage in this field.

With these broad patterns in mind, we turn to our key empirical exercise: whether in the
late 2000s deep learning shifted more towards “application-oriented” research than either
robotics or symbolic systems. We begin in Figure 3 with a simple graph that examines the
number of publications over time (across all three fields) in computer science journals versus
application-oriented outlets. While there has actually been a stagnation (even a small decline) in
the overall number of Al publications in computer science journals, there has been a dramatic

increase in the number of Al-related publications in application-oriented outlets. By the end of
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2015, we estimate that nearly 2/3 of all publications in Al were in fields beyond computer

science.

In Figure 4 we then look at this division by field. Several patterns are worthy of note.
First, as earlier, we can see the relative growth through 2009 of publications in learning versus
the two other fields. Also, consistent with more qualitative accounts of the fields, we see the
relative stagnation of symbolic systems research relative to robotics and learning. But, after
2009, there is a significant increase in application publications in both robotics and learning, but
that the learning boost is both steeper and more long-lived. Over the course of just seven years,
learning-oriented application publications more than double in number, and now represent just

under 50% of all Al publications.®

These patterns are if anything even more striking if one disaggregates them by the
geographic origin of the publication. In Figure 5, we at rates of publication in computer science
versus applications for the US versus rest-of-world. The striking upward swing in Al application
papers that begins in 2009 turns out to be overwhelmingly driven by publications ex US, though
US researchers begin a period of catch-up at an accelerating pace towards the final few years of

the sample.

Finally, we look at how publications have varied across application sectors over time. In
Table 3, we examine the number of publications by application field in each of the three areas of
Al across two three-year cohorts (2004-2006 and 2013-2015). There are a number of patterns of
interest. First, and most importantly, in a range of application fields including medicine,
radiology and economics, there is a large relative increase in learning-oriented publications
relative to robotics and symbolic systems. A number of other sectors, including neuroscience
and biology, realize a large increase in both learning-oriented research as well as other Al fields.
There are also some more basic fields such as mathematics that have experienced a relative
decline in publications (indeed, learning-oriented publications in mathematics experienced a
small absolute decline, a striking different relative to most other fields in the sample). Overall,
though it would be useful to identify more precisely the type of research that is being conducted
and what is happening at the level of particular subfields, these results are consistent with our

® The precise number of publications for 2015 are estimated from the experience of the first nine months (the Web
of Science data run through September 30, 2015). We apply a linear multiplier for the remaining three months (i.e.,
estimating each category by 4/3).
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broader hypothesis that, alongside the overall growth of Al, learning-oriented research may
represent a general-purpose technology that is now beginning to be exploited far more

systematically across a wide range of application sectors.

Together, these preliminary findings provide some direct empirical evidence for at least
one of our hypotheses: learning-oriented Al seems to have some of the signature hallmarks of a
general-purpose technology. Bibliometric indicators of innovation show that it is rapidly
developing, and is being applied in many sectors—and these application sectors themselves
include some of the most technologically dynamic parts of the economy. This preliminary
analysis does not trace out the important knowledge spillovers between innovation in the GPT
and innovation and application sectors, but it is probably far too early to look for evidence of
this.

VIIl. Deep Learning as a General-Purpose Invention in the Method of Invention:

Considerations for Organizations, Institutions and Policy

With these results in mind, we now consider the potential implications for innovation and
innovation policy if deep learning is indeed a general-purpose technology (GPT) and/or a
general-purpose invention in the method of invention (IMI). If deep learning is merely a GPT, it
is likely to generate innovation across a range of applications (with potential for spillovers both
back to the learning GPT and also to other application sectors) but will not itself change the
nature of the innovation production function. If it is also a general purpose IMI, we would
expect it to have an even larger impact on economy-wide innovation, growth, and productivity as
dynamics play out—and to trigger even more severe short run disruptions of labor markets and

the internal structure of organizations.

Widespread use of deep learning as a research tool implies a shift towards investigative
approaches that use large datasets to generate predictions for physical and logical events that
have previously resisted systematic empirical scrutiny. These data are likely to have three
sources: prior knowledge (as in the case of “learning” of prior literatures by IBM’s Watson),
online transactions (e.g., search or online purchasing behavior) and physical events (e.g., the

output from various types of sensors or geolocation data) What would this imply for the
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appropriate organization of innovation, the institutions we have for training and conducting
research over time, and for policy, particularly as we think about private incentives to maintain

proprietary datasets and application-specific algorithms?
The Management and Organization of Innovation

Perhaps most immediately, the rise of general-purpose predictive analytics using large
datasets seems likely to result in a substitution towards capital and away from labor in the
research production process. Many types of R&D and innovation more generally are effectively
problems of labor-intensive search with high marginal cost per search (Evenson and Kislev,
1975, among others). The development of deep learning holds out the promise of sharply
reduced marginal search costs, inducing R&D organizations to substitute away from highly-
skilled labor towards fixed cost investments in Al. These investments are likely to improve
performance in existing “search intensive” research projects, as well as to open up new
opportunities to investigate social and physical phenomena that have previously been considered

intractable or even as beyond the domain of systematic scientific and empirical research.

It is possible that the ability to substitute away from specialized labor and towards capital
(that in principle could be rented or shared) may lower the “barriers to entry” in certain scientific
or research fields—particularly those in which the necessary data and algorithms are freely
available—while erecting new barriers to entry in other areas (e.g. by restricting access to data
and algorithms). As of yet, there are few if any organized markets for “trained” research tools or
services based on deep learning, and few standards to evaluate alternatives. Our analysis
suggests that the development of markets for shared Al services and the widespread availability
of relevant data may be a necessary precursor to the broad adoption and dissemination of deep

learning.

At the same time, the arrival of this new research paradigm is likely to require a
significant shift in the management of innovation itself. For example, it is possible that the
democratization of innovation will also be accompanied by a lack of investment by individual
researchers in specialized research skills and specialized expertise in any given area, reducing the
level of theoretical or technical depth in the work force. This shift away from career-oriented
research trajectories towards the ability to derive new findings based on deep learning may

undermine long-term incentives for breakthrough research that can only be conducted by people
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who are at the research frontier. There is also the possibility that the large scale replacement of
skilled technical labor in the research sector by Al will “break science” in some fields by
disrupting the career ladders and labor markets that support the relatively long periods of training

and education required in many scientific and technical occupations.

Finally, it is possible that deep learning will change the nature of scientific and technical
advance itself. Many fields of science and engineering are driven by a mode of inquiry that
focuses on identifying a relatively small number of causal drivers of underlying phenomena built
upon an underlying theory (the parsimony principle as restated by Einstein states that theory
should be “as simple as possible but no simpler.”) However, deep learning offers an alternative
paradigm based on the ability to predict complex multi-causal phenomena using a “black box”
approach that abstracts away from underlying causes but that does allow for a singular prediction
index that can yield sharp insight. De-emphasizing the understanding of causal mechanisms and
abstract relationships may come at a cost: many major steps forward in science involve the
ability to leverage an understanding of “big picture” theoretical structure to make sense of, of
recognize the implications of, smaller discoveries. For example, it is easy to imagine a deep
learning system trained on a large amount of x-ray diffraction data quickly “discovering” the
double helix structure of DNA at very low marginal cost, but it would likely require human
judgment and insight about a much broader biological context to notice that the proposed
structure suggests a direct mechanism for heredity.

Innovation and Competition Policy and Institutions

A second area of impact, beyond the organization of individual research projects or the
nature of what counts as “science” in a particular field, will be on the appropriate design and

governance of institutions governing the innovation process. Three implications stand out.

First, as discussed above, research over the past two decades has emphasized the
important role played by institutions that encourage cumulative knowledge production through
low-cost independent access to research tools, materials and data (Furman and Stern, 2012;
Murray, et al, 2015). However to date there has only been a modest level of attention to the
questions of transparency and replicability within the deep learning community. Grassroots
initiatives to encourage openness organized through online hubs and communities are to be

welcomed. But it is useful to emphasize that there is likely to be a significant gap between the
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private and social incentives to share and aggregate data—even among academic researchers or
private sector research communities. One implication of this divergence may be that to the
degree any single research result depends on the aggregation of data from many sources, it will
be important to develop rules of credit and attribution, as well as to develop mechanisms to

replicate the results.

This implies that it will be particularly important to pay attention to the design and
enforcement of formal intellectual property rights. On the one hand it will be important to think
carefully about the laws that currently surround the ownership of data. Should the data about e.g.
my shopping and travel behavior belong to me or to the search engine or ride sharing company
that | use? Might consumers have a strong collective interest in ensuring that these data (suitably
blinded, of course) are in the public domain, so that many companies can use them in the pursuit

of innovation?

On the other, the advent of deep learning has significant implications for the patent
system. Though there has so far been relatively little patenting of deep learning innovations,
historical episodes such as the discovery and attempted wholesale patenting of express sequence
tags and other kinds of genetic data suggests that breakthroughs in research tools—often
combined with a lack of capacity at patent offices and conflicting court decisions—can result in
long periods of uncertainty that has hampered the issuing of new patents, and this in turn has led
to lower research productivity and less competition. Deep learning also presents difficult
questions of legal doctrine for patent systems that have been built around the idea of creative
authors and inventors. For example, “inventorship” has a specific meaning in patent law, with
very important implications for ownership and control of the claimed invention. Can an Al
system be an inventor in the sense envisaged by the drafters of the US Constitution? Similarly,
standards for determining the size of the inventive step required to obtain a patent are driven by a
determination of whether the claimed invention would or would not be obvious to a “person
having ordinary skill in the art.” Who this “person” might be, and what constitutes “ordinary
skill” in an age of deep learning systems trained on proprietary data, are questions well beyond

the scope of this essay.

In addition to these traditional innovation policy questions, the prospect for deep learning

raises a wide variety of other issues, including issues relating to privacy, the potential for bias
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(deep learning has been found to reinforce stereotypes already present in society), and consumer
protection (related to areas such as search, advertising, and consumer targeting and monitoring).
The key is that, to the extent that deep learning is general-purpose, the issues that arise across
each of these domains (and more) will play out across a wide variety of sectors and contexts and
at a global rather than local level. Little analysis has been conducted that can help design
institutions that will be responsive at the level of application sectors that also internalize the

potential issues that may arise with the fact that deep learning is likely to be a GPT.

Finally, the broad applicability of deep learning (and possibly robotics) across many
sectors is likely to engender a race within each sector to establish a proprietary advantage that
leverages these new approaches. As such, the arrival of deep learning raises issues for
competition policy. In each application sector, there is the possibility that firms that are able to
establish an advantage at an early stage, and in doing so position themselves to be able to
generate more data (about their technology, about customer behavior, about their organizational
processes) will be able to erect a deep-learning-driven barrier to entry that will ensure market
dominance over at least the medium term. This suggests that rules ensuring data accessibility are
not only a matter of research productivity or aggregation, but also speak to the potential to guard
against lock-in and anticompetitive conduct. At the present moment there seem to be a large
number of individual companies attempting to take advantage of Al across a wide variety of
domains (e.g., there are probably more than 20 firms engaging in significant levels of research in
autonomous vehicles, and no firm has yet to show a decisive advantage), but this high level of
activity likely reflects an expectation for the prospects for significant market power in the future.
Ensuring that deep learning does not enhance monopolization and increase barriers to entry
across a range of sectors will be a key topic going forward.

VIIIl. Concluding Thoughts

The purpose of this exploratory essay has not been to provide a systematic account or
prediction of the likely impact of Al on innovation, nor clear guidance for policy or the
management of innovation. Instead, our goal has been to raise a specific possibility—that deep
learning represents a new general-purpose invention of a method of invention—and to draw out

some preliminary implications of that hypothesis for management, institutions, and policy.
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Our preliminary analysis highlights a few key ideas that have not been central to the
economics and policy discussion so far. First, at least from the perspective of innovation, it is
useful to distinguish between the significant and important advances in fields such as robotics
from the potential of a general-purpose method of invention based on application of multi-
layered neural networks to large amounts of digital data to be an “invention in the method of
invention”. Both the existing qualitative evidence and our preliminary empirical analysis
documents a striking shift since 2009 towards deep learning based application-oriented research
that is consistent with this possibility. Second, and relatedly, the prospect of a change in the
innovation process raises key issues for a range of policy and management areas, ranging from
how to evaluate this new type of science to the potential for prediction methods to induce new
barriers to entry across a wide range of industries. Proactive analysis of the appropriate private
and public policy responses towards these breakthroughs seems like an extremely promising area

for future research.
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Table 1A: Publication Data Summary Statistics

Mean Std. Dev. Min Max
Publication Year 2007 6.15 1990 2015
Symbolic Systems 12 .33 0 1
Learning Systems 61 48 0 1
Robotics 21 41 0 1
Artificial Intelligence .06 23 0 1
Computer Science 44 .50 0 1
Other Applications .56 .50 0 1
US Domestic 25 43 0 1
International 75 43 0 1
Observations 95840
Table 1B: Patent Data Summary Statistics
Mean Std. Dev. Min Max
Application Year 2003 6.68 1982 2014
Patent Year 2007 6.98 1990 2014
Symbolic Systems 29 45 0 1
Learning Systems .28 45 0 1
Robotics 41 49 0 1
Artificial Intelligence .04 19 0 1
Computer Science 7 42 0 1
Other Applications 23 42 0 1
US Domestic Firms .59 49 0 1
International Firms 41 49 0 1
Org Type Academic .07 .26 0 1
Org Type Private 91 29 0 1
Observations 13615
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Table 2A: Distribution of Publications across Subjects

Mean Std. Dev.

Biology .034 18
Economics .028 .16
Physics .034 18
Medicine .032 .18
Chemistry .038 19
Mathematics .042 .20
Materials Science .029 17
Neurology .038 19
Energy 015 12
Radiology .015 12
Telecommunications .055 23
Computer Science 44 .50
Observations 95840

Table 2B: Distribution of Patents across Application Sectors

Mean Std. Dev.

Chemicals .007 .08
Communications .044 .20
Computer Hardware and 710 45
Software

Computer Peripherals .004 .06
Data and Storage .008 .09
Business software .007 .09
All Computer Science 173 42
Medical .020 14
Electronics .073 .26
Automotive .023 15
Mechanical .075 .26
Other .029 16
Observations 13615
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Table 3: Publications Across Sectors, by Al Field, 2004-2006 versus 2013-2015

Biology Economics Physics  Medicine  Chemistry Math Materials Neuro. Energy Radiology Telecom. CompSci

2004-2006 258 292 343 231 325 417 209 271 172 94 291 3889

Learning Systems | 2013-2015 600 423 388 516 490 414 429 970 272 186 404 4582
% growth 133% 45% 13% 123% 51% -1% 105% 258% 58% 98% 39% 18%

2004-2006 33 10 52 69 24 45 36 31 6 47 653 1431

Robotics 2013-2015 65 12 122 83 92 80 225 139 18 25 401 1322

% growth 97% 20% 135% 20% 283% 78% 525% 348% 200% -47% -39% -8%

2004-2006 93 8 68 96 139 54 32 35 15 82 51 827

Symbol Systems | 2013-2015 105 10 125 84 149 60 101 73 22 56 88 1125
% growth 13% 25% 84% -13% 7% 11% 216% 109% 47% -32% 73% 36%
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Table 4: Herfindahl-Hirschman Index for Application Sectors

Application H= Y PatShare®

Chemical Applications 153.09
Communications 140.87
Hardware and Software 86.99

Computer Science Peripherals 296
Data and Storage 366.71

Computer Science Business Models 222
Medical Applications 290.51
Electronic Applications 114.64
Automotive Applications 197.03
Mechanical Applications 77.51
Other 129.20
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Figure 1A: Publications by Al field over Time
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Figure 2A: Academic Institution Publication Fraction by Al Field

2000 3000 4000
1

1000

o -

T
1990

T
1995

T T T T
2000 2005 2010 2015
pubyear

|

U.S.A. International ‘

Figure 2B: Fraction of Learning Publications by US versus World
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Figure 3: Publications in Computer Science versus Application Journals
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Figure 5: Learning Publications in Computer Science versus Applications, By US versus ROW
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Appendix Table 1: Artificial Intelligence Keyword Allocation

Symbols

image grammars
pattern recognition
image matching
symbolic reasoning
symbolic error analysis
pattern analysis
symbol processing
physical symbol system
natural languages
pattern analysis

image alignment
optimal search
symbolic reasoning
symbolic error analysis

Appendix A

Learning

natural language processing machine learning

neural networks
reinforcement learning
logic theorist

bayesian belief networks
unsupervised learning
deep learning

Robotics

computer vision
robot

robots

robot systems
robotics

robotic

collaborative systems

knowledge representation and reasoning humanoid robotics
crowdsourcing and human computation sensor network

neuromorphic computing

decision making
machine intelligence
neural network

sensor networks

sensor data fusion

systems and control theory
layered control systems
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