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7.1 Introduction

Pharmaceutical treatments in the United States are typically homoge-
neous products that are tightly regulated by the Food and Drug Adminis-
tration (FDA) to ensure that the dosage and delivery are consistent across 
each prescription. However, differences across patients—including genet-
ics, age, comorbidity, preferences, and environment—and differences across 
diseases—such as severity and progression—cause the impact of a treat-
ment to vary across patients. Patients respond to the same dosage differently, 
from how their bodies process and react to the treatment to the side effects 
that arise.1

This heterogeneity is often not apparent when assessing the impact of 
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1. See discussions and examples in Basu et al. (2014), Kravitz, Duan, and Braslow (2004), 
and Segal, Weiss, and Varadhan (2012).
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innovations because clinical trials and cost- effectiveness research focus on the 
average treatment effect, even if  this effect varies significantly across patients. 
To understand the potential impact of heterogeneity across treatments, con-
sider two treatments in the same disease category where the health impact of 
each treatment is measured in quality- adjusted life years (QALYs) across the 
patient population follows an independent normal distribution with a mean 
of one QALY and a standard deviation of one.2 If  each patient matches 
with the treatment that provides the highest individual health impact, then 
the total impact across all patients is over 56 percent higher than if  patients 
are randomly assigned a treatment.3 Since the median innovation in health 
care increases QALYs by around 1 percent relative to existing innovations 
(Hult, Jaffe, and Philipson 2016), this result suggests that there is enormous 
potential in addressing treatment heterogeneity.

Personalized medicine is a growing field that addresses the heterogeneity 
in treatment effects across patients by targeting or tailoring treatments to 
individuals based on their characteristics. Personalized medicine has the 
ability to create novel treatments, such as treatments that target specific 
genes or proteins, and the ability to guide patients to the most efficacious 
treatment through diagnostic testing or data- driven analysis.4

Understanding the potential impact of incorporating patient heteroge-
neity in biology, environment, and behavior, the United States announced 
a $215 million Precision Medicine Initiative in 2015.5 The purpose of this 
initiative is to provide funding for research in personalized medicine, includ-
ing building a research cohort to collect individual- level data to help develop 
more effective treatments and funding cancer genomics, one of the leading 
research fields in personalized medicine.6

We are just beginning to understand the potential impact of precision 
medicine. Goldman et al. (2013) present a framework for understanding 
the value of diagnostic tests. In a case study of rofecoxib, a nonsteroidal 
anti- inflammatory drug that was withdrawn from the market, they show 
that diagnostic testing can have a large social value by avoiding unneces-
sary treatment and identifying patients who would not otherwise be treated. 
Basu (2013) discusses the difference between passive personalization, which 
is a form of learning- by- doing where patients and physicians learn about 
patient- specific treatment effects through a trial- and- error process, and 

2. QALYs are a frequently used measure of either disease burden or treatment effect that 
includes the quality and quantity of life lived by the patient.

3. The maximum of two independently distributed normal distributions with mean μ and 
a standard deviation of one is distributed as a Gumbel or Extreme Value Type 1 distribution, 
which has a mean of μ + (1/π) > μ + 0.56 (Nadarajah and Kotz 2008).

4. Examples of  targeted treatments include human epidermal growth factor receptor 2 
(HER2) in breast cancer, epidermal growth factor receptor (eGFR) in colorectal cancer, and 
BRAF inhibitors for melanoma. See Hutchinson et al. (2015).

5. See www .whitehouse .gov /precisionmedicine.
6. See Chin, Andersen, and Futreal (2011).
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active personalization, which involves biomarker and genetic tests that 
inform patient- specific treatment effects. Egan and Philipson (2014) discuss 
the role of passive personalization in measuring adherence. They create a 
dynamic model to argue that personalized medicine has the capacity to 
expedite this search process, which reduces overadherence and increases 
underadherence.

The goal of  this chapter is to present a framework for understanding 
the potential health impact of personalized medicine and to compare it to 
the health impact of other types of pharmaceutical innovations.7 I present 
a theoretical framework for measuring the health impact of personalized 
medicine by modifying the model of Hult (2014). The model in this chap-
ter measures the value of two types of personalized medicine: allocating 
patients to treatments based on individual treatment effects and identifying 
individual risk to serious side effects from a treatment. The health impact 
of these types of personalized medicine depends on the number of treat-
ments, the variance in the health impact within a treatment, the noise in a 
patient’s signal of their treatment effect, and the correlation of treatment 
effects across the different treatment options.

Using this model, I measure the relative impact of personalized medi-
cine compared with the introduction of new treatments in a case study of 
multiple sclerosis (MS). I find that the potential health impact of personal-
ized medicine for MS patients would increase the health impact of existing 
treatments by 21 percent by improving the ability to match patients with 
the treatment that provides the largest treatment effect and by 30 percent by 
properly identifying a patient’s risk of serious side effects, which can prevent 
a patient from having a significant adverse side effect.

To understand the value of personalized medicine, consider two examples. 
First, consider an MS patient deciding which first- line therapy to take. If  
that patient chooses a therapy on which they will eventually fail (meaning 
they have a suboptimal response and switch to a different therapy), that 
patient experiences a relapse rate five times higher compared with their sec-
ond therapy (Río et al. 2012). These patients stay on their unsuccessful first 
treatment for almost as long as they stay on their successful treatment (3.9 
years versus 4.2 years). For diseases like MS, where the disease progression 
is irreversible and failing on a treatment produces similar results to taking 
no treatment at all, the effect of choosing an ineffective treatment can be 
significant and permanent.

Second, consider an MS patient deciding which second- line therapy to 
take. Two second- line options are Tysabri, a treatment with the highest effi-
cacy but the risk of a potentially fatal side effect, and Gilenya, a treatment 
with lower efficacy but with much less severe side effects. When personalized 

7. This chapter focuses on pharmaceuticals, but the implications of  the chapter are also 
relevant for medical devices and other medical treatments.
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information is used to inform a patient of their individual side effect risk 
level (which ranges from less than 1 in 10,000 to 1 in 89), high- risk patients 
are able to avoid being exposed to the potentially fatal side effect while low- 
risk patients are able to take more efficacious treatments than they would 
have without personalized information (Sørensen et al. 2012).

This chapter is organized as follows. Section 7.2 discusses the different 
types of pharmaceutical innovations, which include novel, follow- on, and 
personalized innovations. Section 7.3 discusses the theory of how to measure 
the value of personalized innovations. Section 7.4 is a case study of disease- 
modifying therapies in MS to illustrate the rate of return to personalized 
medicine. Section 7.5 discusses the development costs and costs to patients 
of personalized medicine. Section 7.6 concludes.

7.2 Types of Pharmaceutical Innovations

I consider three main types of pharmaceutical innovations: novel innova-
tions, follow- on innovations, and innovations in personalized medicine. A 
novel innovation is the approval of a chemical entity that has not already 
been approved by the FDA and is the part of the pharmaceutical treatment 
that is responsible for the pharmacological action of the treatment. These 
approvals are either a new molecular entity (for smaller chemically synthe-
sized molecules) or a new biologic (for larger treatments extracted from 
biological sources). Novel innovation is a necessary precursor for follow-
 on innovation and personalized medicine. However, novel innovation in 
its original form often extracts only part of the potential health impact of 
the new molecule because it generally provides only one treatment that has 
not been adapted to the heterogeneity of the treatment population or to the 
learning that takes place from treatments being on the market. Follow- on 
innovations and personalized medicine develop the molecule into a more 
efficacious or desirable treatment for patients.

Follow- on innovations take already FDA- approved molecules and cre-
ate new treatments by changing the dosage, formulation, indication, active 
ingredient, or by combining two molecules.8 Roughly 70 percent of  all 
FDA- approved innovations and over half  of all prescriptions use follow- on 
innovations (Hult 2014). Follow- on innovations make three main types of 
improvements. First, they can create a new treatment by combining existing 
molecules. Second, they can make existing treatments either more effec-
tive or better tolerated. Third, they can expand the number of treatment 
options available and expand the availability of treatment to subgroups of 

8. A follow- on innovation that contains a new active ingredient means that it contains the 
same active moiety but includes a different enantiomer, racemate, salt, ester, complex, chelate, 
or clathrate.
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the population.9 The main focus of these innovations is to expand the treat-
ment population, reduce treatment burden, or increase efficacy for a group 
of patients. For instance, HIV/AIDS treatments in their original form were 
unable to be taken by pediatric, elderly, and pregnant patients. With follow-
 on innovation, all of these patient groups now have a variety of treatment 
options, including oral pellets that can be mixed into children’s food or 
intravenous treatments for patients that cannot take the pill regimen.10

The third type of innovations are innovations in personalized medicine, 
which take follow- on innovations a step further by creating directed treat-
ments or diagnostics tests from the characteristics of an individual patient. 
These innovations can create new treatments, create data sets or diagnos-
tic tests to determine the best treatment considering individual treatment 
effects, and identify individual treatment burdens for patients.

Improve Matching and Reduce Searching. One way in which personalized 
medicine improves the health outcomes of patients is that it can inform a 
patient about which treatment will either be more efficacious or have a lower 
burden of treatment through diagnostic testing or patient databases.11 If  
patients learn about their individual treatment effect, it can direct patients 
toward a treatment that makes them better off than if  they do not have any 
individual specific information.

Consider the two treatment options shown in figure 7.1. This figure plots 
the distribution of patient outcomes for the treatment efficacy and burden 
of two treatments: Treatment 1 (represented with a dashed line) with aver-
age outcome μ1 and Treatment 2 (represented with a solid line) with aver-
age outcome μ2. The indifference curves (IC) show the efficacy and burden 
combinations for which patients are equally well off, so a patient is indiffer-
ent between receiving the treatment effect of any points along the same IC. 
Patients are better off with higher efficacy and lower treatment burdens, so 
they are better off on indifference curves closer to the upper left of the graph. 
A patient with no information about his individual treatment effect would 
be indifferent between these two treatments because the average treatment 
effects (μ1 and μ2) lie on the same indifference curve.

However, if  a patient learns from diagnostic testing that they receive the 
efficacy and treatment burden at point h1 for Treatment 1 and the efficacy 

9. Examples of  follow- on innovations include the creation of  CART treatments used in 
HIV/AIDS, which combine three different molecules in a treatment that reduces pill burden 
and potential drug interactions; Fetzima, an SNRI drug used to treat major depressive dis-
order, was approved as a new active ingredient using a different orientation of the molecule 
in milnacipran HCI (Savella), which is used to treat fibromyalgia; and Norvir, an HIV/AIDS 
treatment, received a new formulation that eliminated the need for refrigeration, reduced the 
number of drug and food interactions, and provided extended release for drugs.

10. See UNAIDS (2015).
11. As a simplification, throughout this chapter I treat the patient as the person who decides 

what treatment to take even when this decision is heavily influenced by the physician.
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and treatment burden at point h2 for Treatment 2, then the patient is better 
off taking Treatment 1 than Treatment 2.

There are different ways a patient can learn about their individual treat-
ment effect, which can broadly be categorized as passive and active personal-
ized medicine.12 In passive personalized medicine, treatments are experience 
goods, which means that the patient or his physician learns about a patient’s 
individual treatment effect through learning by doing.13 Experience goods 
have several costs including opportunity costs, side effects, and financial 
costs. For example, if  a patient has an aggressive form of MS, taking a 
treatment that the patient does not respond to can cause irreversible dam-
age and disability and allow the disease to progress to a form of MS that 
is less responsive to therapy (see Rush, MacLean, and Freedman 2015). 
In addition, taking less efficacious but milder treatments at an early stage 
of the disease can increase the risk of serious side effects for a patient who 
takes more efficacious treatments at a later stage of treatment. Therefore, 
when patients learn by experiencing the treatment outcome, a patient with 
a more aggressive disease will be more prone to serious side effects than a 
patient who can be matched to the more efficacious treatment earlier (see 
Zaheer and Berger 2012). Finally, MS patients may develop neutralizing 

12. See a discussion of passive and active personalization in Basu (2013).
13. See Nelson (1970, 1974) for a discussion of search goods versus experience goods.

Fig. 7.1 Improve matching and reduce searching
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antibodies taking one treatment that makes other treatments ineffective. For 
example, if  a patient takes either interferon beta- 1b (Betaseron), interferon 
beta- 1b (Extavia), or interferon beta- 1a (Rebif), that patient may develop 
neutralizing antibodies that will block the biological activity of the other 
two treatments (Malucchi et al. 2004).

In active personalized medicine the treatment is a search good, which 
means that a patient can learn about the individual treatment effect without 
having to take the treatment. The patients learn through diagnostic testing 
or using patient databases to inform how an individual patient may respond 
to a treatment. In the MS examples above, this would include a test that 
determines the aggressiveness of a patient’s MS or susceptibility of develop-
ing neutralizing antibodies to determine which course of treatment is best 
for that patient.

Part of the potential of personalized medicine is that it has the ability to 
convert experience goods to search goods, thereby eliminating the potential 
costs of learning by doing (see chapter 1, this volume). However, it is also 
important to understand that there is still potential value in personalized 
medicine, even if  the treatment cannot be converted to a search good. For 
example, even if  a patient has to experience the treatment to understand the 
individual treatment effect, personalized medicine can improve that patient’s 
understanding of whether to switch to a different treatment or adjust taking 
the current treatment.

Risk Assessment. Another way that personalized medicine impacts health 
is through risk assessment. Some treatments have very serious side effects 
for a fraction of the patient population. For example, Tysabri, an MS treat-
ment, has a side effect of progressive multifocal leukoencephalopathy (PML) 
for up to 0.013 percent of patients. PML is a devastating disease that has 
a mortality rate up to 50 percent within two years and potentially severe 
neurological disabilities for those who survive (Pavlovic et al. 2015).14 PML 
is an infection caused by the John Cunningham virus (JCV).15 The risk of 
PML was enough to get Tysabri pulled from the market within four months 
of FDA approval. However, Tysabri is the most efficacious treatment for MS 
patients. The ability to identify patients with higher risk factors can reduce 
the odds of getting PML from 0.013 to less than 0.001 percent.

For example, figure 7.2 shows the treatment distributions of two treat-
ments, Treatment 1 in a dashed line and Treatment 2 in a solid line. Treat-
ment 2 has a potentially serious side effect (which increases the treatment 
burden) as shown by the two Treatment 2 distributions. The Treatment 2 
distribution on the left (with mean μ2A) is for those patients who do not have 
the side effect, and the Treatment 2 distribution on the right (with mean μ2B) 

14. See https:// www .tysabri .com /en _us /home /about /safety -  side -  effects .html.
15. See https:// www .tysabrihcp .com /en _us /home /safety /risk -  pml -  jcv .html.
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is for those patients who have the side effect. Without any information about 
their side- effect risk factor, patients may choose Treatment 1. However, if  
patients can identify whether they would have the serious side effect from 
Treatment 2, then patients could incorporate this information into their 
treatment decision. In this bifurcated outcome, the health impact of treat-
ment increases on average.

7.3 Measuring Health Impact

In this section, I describe a model from Hult (2014) that describes how to 
measure the health impact of pharmaceutical treatments, and I discuss an 
extension of the model to incorporate patient heterogeneity and the poten-
tial health impact of personalized medicine.

7.3.1 Health Impact of Novel and Incremental Innovation

The health impact of a novel or incremental innovation is how much it 
increases the patient population’s length and quality of  life. Innovations 
affect health through three channels: adherence, quantity measured as the 
number of users, and efficacy measured in QALYs.

The health impact of treatment t on individual i(hit) is

hit = aiteit,

Fig. 7.2 Risk assessment
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where ait is the adherence and eit is the efficacy conditional on being fully 
adherent for patient i with treatment t.16 Health impact is a one- dimensional 
measure of the total impact of a treatment incorporating efficacy, as well 
as the treatment burden such as side effects or burden of administration. A 
negative value for hit means that a patient is worse off taking the treatment 
relative to not taking the treatment, and the more positive the value for hit 
the better off the patient is taking the treatment.

Summing across all patients who take treatment t(i ∈ T ), the aggregate 
health impact of treatment t, Ht, is

Ht =
i T

hit =
i T

aiteit = qt ht = qt atet,

where qt is the quantity measured as the number of users, whether or not 
the users are adherent to the treatment.17 If  100 people take a drug with a 
60 percent adherence rate that adds one QALY on average, then the health 
impact of the drug is 60 QALYs.18

To measure the increase in health impact produced by treatment t, which 
is how treatment t increases health impact relative to the standard of care 
(SOC) that existed before the innovation, I construct Ht

innovation:

Ht
innovation = ht

q
q + ht

a
a + ht

h
e

= qt atet + atqtet + etqt at

= qtht + htqt,

where qt is the average quantity of treatment t per year, Δqt is how treatment 
t changes the quantity relative to the SOC, Δat is how treatment t changes 
the adherence rate relative to the SOC, and Δet is how treatment t changes 
efficacy relative to the SOC. Hence, the health impact of treatment t is the 
effect of the change in the quantity, adherence, and efficacy relative to what 
would be used instead of that treatment. For instance, if  a treatment with 
100 users and an efficacy of one QALY increases the adherence rate rela-
tive to the previous SOC by 5 percentage points, then the health impact of 
that innovation is 0.05 ∗ 100 ∗ 1 = 5 QALYs. If  that drug innovation had an 
adherence rate of 60 percent and also increased efficacy by 5 percent, then 
the health impact would be 5 + 0.05 ∗ 100 ∗ 0.6 = 5.3 QALYs.

16. I treat adherence as a dichotomous variable, rather than a continuous variable, where a 
patient either adheres to a treatment regimen or does not adhere.

17. Quantity can be either defined as the number of users or the number of patients for a 
particular disease. This distinction does not matter for the framework because patients who are 
not adherent would have an adherence of zero, and therefore a health impact of zero.

18. 100 ∗ 0.6 ∗ 1 QALY = 60 QALYs.
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7.3.2 Potential Health Impact of Personalized Medicine

This section describes how to modify the health impact framework to 
measure the potential health impact of personalized medicine by incorpo-
rating patient heterogeneity and individualized treatments options.

Expected Value of Individualized Care

The framework in this section is similar to the expected value of individu-
alized care (EVIC) used in the cost- effectiveness literature (Basu and Meltzer 
2007). The EVIC measures the value of individualized care by calculating 
the potential value that society is willing to pay for individualized care. This 
framework has been expanded to incorporate the identification and selection 
of population subgroups (Espinoza et al. 2014), determining which sources 
of patient heterogeneity to consider (Grutters et al. 2013), and the value of 
genomic information (chapter 3, this volume).

The framework I discuss is similar to the EVIC framework in that it 
attempts to quantify the value of  individualized care, but it differs from 
the existing literature in two main ways. First, it measures the benefit of 
individualized treatment in terms of health impact instead of societal value. 
Second, it focuses on understanding the form and distribution of health 
impact using a model from Hult (2014).

Theoretical Framework

To understand the effect of innovations in personalized medicine, con-
sider patient i who receives health impact (h) measured in QALYs and has the 
choice between two treatments, Treatment A and Treatment B. The health 
impact for the two treatments is distributed as a bivariate normal

h ~ N
A

B

,
A
2

AB

AB B
2

,

where μt and t
2 are the mean and variance of each treatment t ∈ {A, B} and 

σAB is the covariance between A and B. The covariance between treatment 
effects is important because the more correlated effects are across treatments, 
the lower the value of identifying individual treatment effects.

Impact of Individual Treatment Effect on Searching. Information about 
the patient’s individual treatment effect can come from numerous sources, 
including disease severity and progression, genetics, environment, and 
comorbid conditions. In this section I do not distinguish learning through 
passive or active learning, as they have the same effect. For simplicity in this 
section assume μA > μB.19

19. In this framework, generics and biosimilars can be thought of as treatments with the same 
distribution and perfect correlation with the branded treatment. Therefore, having a generic 
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If  a patient has no information about the individual treatment effect, then 
the patient chooses the treatment t with the highest μt because the patient’s 
expected health impact for each treatment is E [ht] = μt. In this scenario, 
each patient chooses Treatment A, and the average treatment effect across 
all patients is h1 = maxt∈(A,B}(μt) = μA.20

With perfect information, a patient knows his exact h for each treatment 
so he simply chooses the highest ht. In this scenario, the average treatment 
effect across all patients is

h2 = A ( ) + B [1 ( )] + ( ),

where = A
2 + B

2 2 AB , η = (μA – μB) /θ, and ϕ(∙) and Φ(∙) are the pdf 
and cdf of a standard normal distribution respectively (Nadarajah and Kotz 
2008). Note that h2 h1, so patients are not worse off having perfect informa-
tion about their individual treatment effect.21

The third scenario is patients receive a noisy signal of  their individual 
treatment effect from t. For a patient who has treatment effect ht from treat-
ment t, that individual gets a signal st ∼ N(ht, σs). In this scenario, patients 
choose the treatment with the highest signal st, and the average treatment 
effect across all patients is h3 = maxt∈(A,B}(st). Receiving an inaccurate signal 
means that a patient can choose a treatment with a lower treatment effect 
(ht). Across the population, patients get a greater health impact with perfect 
information compared to either a noisy signal or no information (h2 h3 
and h2 h1), but having a noisy signal does not necessarily make the patient 
better off than having no signal (h1 can be greater than, less than, or equal 
to h3).

As a result, the maximum potential health impact of personalized medi-
cine in this market is

H p = q hp = q(h2 h1)

With a noisy signal the maximum potential health impact of personalized 
medicine is

H p = q hp = q(h3 h1)

where ( h3 / AB) 0 and ( h 3 / s) 0. Therefore, the less correlated the 
different treatment outcomes and the less noise that a patient has about his 
treatment effect, the larger the health impact of personalized medicine for 
improving the matching of patients to treatments.

option does not provide an increase in health impact. If  a generic uses a different formulation 
or delivery mechanism, then it would not necessarily be perfectly correlated with the branded 
version. But in this case they would not be AB- rated generics.

20. Throughout this section, I assume patients are risk neutral.
21. The max of two or more independently distributed normals generalizes to the Gumbel 

distribution, or Type 1 extreme value distribution, which for two standard normals has a mean 
of 1 / 0.56 (Nadarajah and Kotz 2008).
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For this chapter the relevant comparison is how much personalized medi-
cine can increase the total health impact compared to how patients and 
physicians choose treatments in the real world

(1) Hp = q h3 hactual( ).
To understand the effect of a patient’s knowledge of his individual treat-

ment effect, consider an example where the distribution of  h across two 
treatments A and B is

(hA, hB) ~ N
1.5
1

,
1.5 AB

AB 1

and patients receive a noisy signal of their individual treatment effect observe

st ~ N(ht,1) t {A, B}.

Figure 7.3 illustrates the average treatment effect for different covariances 
between the two treatments (σAB) for the three scenarios discussed: patients 
have no information about their individual treatment effect, patients have 
full information about their individual treatment effect, and patients have a 
noisy signal of their individual treatment effect.

Fig. 7.3 Average treatment effect by 𝛔AB and patient signal
Source: Author calculations.
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In this example, perfect knowledge of  an individual’s treatment effect 
increases the health impact by up to 33 percent relative to patients choosing 
the treatment with the highest average health impact. The largest increase in 
health impact comes when the treatments are uncorrelated and there is no 
health impact when the treatments are perfectly correlated. With a noisy sig-
nal, the increase in health impact with uncorrelated treatment effects drops 
to 23 percent and is negative with perfectly correlated treatment effects.

Impact of Individual Treatment Effect on Risk Assessment. The impact of 
risk assessment is similar to treatment effect of searching except the health 
impact of Treatment A(hA) comes from a multimodal normal distribution. 
This distribution represents the two possible outcomes that occur depending 
on whether the patient does not get the serious side effect (State 1) or the 
patient does get the serious side effect (State 2). Therefore

μA = pμA1 + (1 – p)μA2

and

A
2 = p A1

2 + (1 p) A2
2 +

where λ = p(1 – p)(μA1 – μA2)2 and A1 represents Treatment A in State 1 and 
A2 represents Treatment A in State 2.

Consider a patient choosing between Treatment A and Treatment B where 
a patient knows his individual treatment effect for each treatment in each 
state in the world such that hA1 > hB > hA2.

22 With no individual information 
about p, the probability a patient is in State 1 (no serious side effect) versus 
State 2 (serious side effect), the patient may have information about p, the 
average share of patients in State 1 in the patient population. A patient then 
chooses Treatment A if

p > hB hA2

hA1 hA2

,

and Treatment B if  the inequality holds in the other direction.23 As a result, 
all patients choose either Treatment A or Treatment B based on p and the 
average health impact of the different treatments.

If  a patient has information about his individual probability of getting 
the serious side effect, pi, then he chooses Treatment A if

pi > hB hA2

hA1 hA2

,

and Treatment B if  the inequality holds in the other direction. As a result, 
for the case when p > (hB – hA2) / (hA1 – hA2), patients with pi such that

22. It is straightforward to adapt this example to the case where the patient has no informa-
tion or noisy information about his health impact and makes his choice based on either the 
treatment average across the population (μ) with no information or the treatment signal (s) 
with noisy information.

23. The patient chooses Treatment A if  phA1 + (1 p)hA2 > hB.
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p > hB hA2

hA1 hA2

> pi

would choose Treatment A in the case of no information and Treatment B 
in the case of full information about p.24 This patient is better off in the case 
of full information by pi hA1+ (1 – pi)hA2 – hB > 0. Summing over all patients 
the increase in health effect is

 Hp =
i pi<

hB –hA2
hA1–hA2{ }

pihA1 + (1 pi)hA2 hB .

7.4 Case Study in MS

Multiple sclerosis is a good case study for understanding the value of 
innovations in personalized medicine because there is profound heterogene-
ity in the MS population, disease course, and treatment response (Lucchi-
netti et al. 2000). Multiple sclerosis is a chronic condition that occurs when 
the body’s immune system attacks the central nervous system and damages 
or destroys the nerves’ protective covering, causing flare- ups that range from 
dizziness to paralysis and cognitive loss.25 There are currently more than 
400,000 patients with MS in the United States with almost $14 billion in 
annual spending on MS treatments, which makes it the fourth largest spe-
cialty pharmacy class in the United States.26

Currently, physicians can rely on clinical trials data, biomarkers, and pas-
sive searching to determine the best course of treatment. Clinical trials data 
in MS is useful at the group level, but it is viewed as insufficient to influence 
individual treatment decisions and “few biomarkers have made their way 
into clinical practice” in MS (Derfuss 2012). As a result, there is very little 
predictive power about how a patient will respond to an individual treatment 
(Derfuss 2012). Passive searching, while frequently used, is costly because, as 
previously discussed, it can cause irreversible damage and disability, increase 
disease progression, increase future side effects, and increase the probability 
that a patient will be unresponsive to alternative treatments.

There are twelve disease- modifying therapies (DMTs) available in the 
United States to treat MS, which are listed in appendix table 7A.1. The pur-
pose of these treatments is to reduce the number of flare- ups that patients 
suffer, but they do not cure the underlying disease. These treatments can 
broadly be categorized in two ways: by line of treatment and mode of admin-

24. The case when p < (hB – hA2) / (hA1 – hA2) and p < (hB – hA2) / (hA1 – hA2) < pi is symmetric.
25. There are four disease courses for MS patients, clinically isolated syndrome (CIS), 

relapsing- remitting MS (RRMS), primary progressive MS (PPMS), and progressive relapsing 
MS (RPMS). Eighty- five percent of MS patients have RRMS, which is the focus of this case 
study (Trapp and Nave 2008).

26. See Pietrangelo and Higuera (2016) and IMS (2016).
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istration. Figure 7.4 shows the typical line of treatment for each DMT, where 
first- line treatments are safer treatments with lower efficacy and lower treat-
ment burden, second- line treatments are more aggressive treatments that 
feature higher efficacy but also higher treatment burden, and third- line treat-
ments feature the highest efficacy but also have potentially life- threatening 
side effects. Most of the first- line treatments are referred to as ABCRE treat-
ments, which represent Avonex, Betaseron, Copaxone, Rebif, and Extavia.

The other way the market is divided is by the mode of administration. 
There are three modes of administration: injection, infusion, and oral. The 
ABCRE treatments are all injectable (either with intramuscular or sub-
cutaneous injection), and injectables were the only option from 1993 to 2004.

In 2004 Tysabri, a more efficacious treatment that is administered through 
infusion, was introduced. Tysabri plays an important role in the MS market 
because it is not only the most efficacious treatment, but it has been linked 
to a rare and highly fatal brain disease, PML. Tysabri was approved by the 
FDA in 2004 as the first infusion treatment and was almost six times more 
efficacious than any existing treatment. By February 2005, the treatment 
was withdrawn from the market after three patients developed PML. In 
February 2006, Tysabri returned to the market with conditions including 
mandatory patient registration in a database, follow- ups every six months, 

Fig. 7.4 Market for MS treatments
Source: Coles (2015) with author edits.
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and magnetic resonance imaging (MRI) evaluation prior to initiation. In 
2010, oral treatments were introduced that reduced the burden of treatment 
administration.

7.4.1 Data

There are three main types of data necessary to estimate the health impact 
of MS treatments: the distribution of QALYs for each treatment t (previ-
ously denoted as μt and σt), the covariance in treatment outcomes between 
treatments ( t1t2

), and the patient count estimates for each treatment (qt). For 
my analysis, I measure the market size as the number of patients on treat-
ment. The data appendix provides additional details about the data.

The QALYs estimates are taken from published clinical studies, most 
of which are summarized in the Tufts Medical Center Cost- Effectiveness 
Analysis Registry (CEAR).27 The CEAR includes over 4,800 pharmaceuti-
cal cost- utility analyses in the peer- reviewed medical literature. It is intended 
to be a comprehensive data set of all cost- utility articles analyzed by trained 
professionals, who rate the quality of the study and provide information 
about the quality level and quality relative to the standard of care found in 
the study. Of the twenty- four MS studies that use MS DMTs, I rely on the 
fifteen that are for relapsing- remitting MS (RRMS) patients (which com-
poses 85 percent of all MS patients).28 The CEAR rates the studies on a scale 
from 1 to 7 depending on the quality of the analysis. All of the MS clinical 
studies used from the CEAR data set have a rating above average. The effi-
cacy measures are relative to a patient taking no DMT, so a QALY of zero 
means that the treatment provides no benefit relative to not taking any DMT.

One consideration when using clinical trials data is that the distribution of 
QALYs differs from how patients use the treatment in the real world. Since 
the uniformity of a clinical trial is likely to reduce the variance of treatment 
effects, the use of clinical trials data would likely underestimate each treat-
ment variance in the real world and, therefore, underestimate the potential 
health impact of personalized medicine.

7.4.2 Covariance Estimation

The estimates of the covariance between treatment outcomes are more 
difficult to measure because clinical studies generally provide informa-
tion about how a patient responds to one treatment, not how each patient 
responds to multiple treatments.29 However, there are observational studies 

27. I assume the distributions of QALYs from clinical studies is equal to distributions of all 
patients in the disease category, that the QALY measure incorporates all side effects as well as 
treatment efficacy, and that QALY measures incorporate adherence and are not conditional 
on adherence.

28. RRMS is relapsing- remitting MS.
29. See Basu, Jena, and Philipson (2011) for a discussion of the effect of the joint distribu-

tion of treatment effects.
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that measure the treatment effect of patients before and after a treatment 
failure, which is when a patient experiences a suboptimal response to a treat-
ment and switches to a substitute treatment.30 These studies show how a 
patient responded to two different treatments conditional on the patient 
failing at least one of the treatments, but do not show how many patients 
would have been successful on both treatments.31

I estimate the covariance between treatment impacts using two observa-
tional studies of patients who switch therapies (Gajofatto et al. 2009; Río 
et al. 2012).32 Figure 7.5, from Río et al. (2012), illustrates the type of data 
that can be used to construct a covariance matrix and why the covariance 
is important for understanding the potential health impact of  personal-
ized medicine. This figure shows how average annual relapse rates, which 
are unpredictable acute attacks that are a main symptom of MS, vary for 
patients who fail or succeed on their first treatment. For patients that fail on 
their first treatment, their relapse rate on their first treatment is not much 
different from not being on any MS treatment at all. However, the relapse 
rate on the second treatment is similar to the relapse rate for patients who 
succeed on their first treatment. If  treatment effects were highly correlated 

30. See, for example, Río et al. (2012) and Gajofatto et al. (2009).
31. A patient’s response to the second treatment may be affected by the first treatment. For 

example, I previously discussed the effect of neutralizing antibodies that could be produced 
during the first treatment and make the second treatment less effective.

32. The covariance could also be estimated using a micro- level data set that tracks a patient’s 
treatment and response to treatment such as the Sylvia Lawry Centre MS Patient Database.

Fig. 7.5 Correlation example for MS treatments
Source: Río et al. (2012).
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across treatments, the patient who failed on their first treatment would be 
very likely to fail on their second treatment. The less correlated treatment 
effects are across treatments, the more differentiated a patient’s treatment 
effect would be between the first and second treatment. This figure sug-
gests that treatment effects for MS treatments are not very correlated and, 
therefore, there is potential for personalized medicine to help patients by 
matching them to the treatment on which they are more likely to succeed.

I estimate two covariances with this data. First, I estimate the covari-
ance in treatment outcomes between a patient on two different interferons. 
Second, I estimate the covariance in treatment outcomes between a patient 
on an interferon and Copaxone. I do not have data on oral treatments so  
I assume that oral treatments have the same covariance as an interferon with 
Copaxone. Since I do not have the patient’s treatment impact in QALYs,  
I use the covariance between treatment failure as a proxy. Although treat-
ment failure is likely to be highly correlated with treatment impact, treatment 
failure outcomes are likely to be more correlated than health impacts within 
a patient due to the dichotomous nature of treatment failure. A higher cor-
relation would understate the potential impact of personalized medicine.

Table 7.1 shows the share of the 597 patients from Gajofatto et al. (2009) 
that fall into each combination of treatment pair and treatment result (fail-
ure/success). I observe aggregate counts of patients who fail or not on their 
first treatments. However, I do not observe what a patient who has a suc-
cess with their first treatment would do on a second treatment. As a result,  
I assume that the probability of success on Treatment A given the success 
of Treatment B is proportional to the probability of failure on Treatment A 
given failure of Treatment B.

The resulting covariances are listed in table 7.2.

Table 7.1 Failure correlation calculation

First  
treatment  

Result on first 
treatment  

Second  
treatment  

Result on second 
treatment  

Share of patients 
(%)

Copaxone Failure Interferon Success 6
Copaxone Failure Interferon Failure 1
Copaxone Success Interferon Success 12
Copaxone Success Interferon Failure 1
Interferon Failure Copaxone Success 2
Interferon Failure Copaxone Failure 2
Interferon Success Copaxone Success 38
Interferon Success Copaxone Failure 38
    100

Interferon A Failure Interferon B Success 16
Interferon A Failure Interferon B Failure 9
Interferon A Success Interferon B Success 48
Interferon A Success Interferon B Failure 26
        100
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There are several important considerations when estimating the covari-
ance. The first consideration is disease progression. With MS, as with many 
diseases, the patient’s disease may have progressed between the first and 
second treatment; since the correlation measures the same patient at dif-
ferent points of time, it could impact the measurement of the covariance 
matrix. Ideally, the covariance matrix would measure the treatment impact 
of two treatments at the same time, which is not possible to observe with 
most treatments. While there will be some disease progression between 
the two treatments in my covariance matrix calculation, the estimation is 
restricted to patients who are taking two first- line treatments with simi-
lar efficacy and side effects and, therefore, would not be likely to have had 
significant disease progression. The limitation of  this restriction is that  
I assume that patients’ alternative treatment choices are restricted to simi-
lar treatments. This assumption would underestimate the potential health 
impact of sorting because it could be valuable for patients on first- line treat-
ments to switch to treatments that differ significantly in efficacy and side  
effects.

Another consideration is the representativeness of the patient behavior 
in the observational study. The studies provide breakdowns of the patient 
characteristics included in the sample (include gender, race, age, age of onset, 
and annual relapse rate). These data are consistent with the characteristics 
of the MS population as a whole, but it would require a more detailed data 
set of MS patients to understand any potential bias in the patient pool.33

I present a sensitivity analysis around the covariance matrix in the next 
section.

7.4.3 Health Impact

I measure the actual or potential health impact of seven events in the his-
tory of MS treatments: (a) the innovation of Betaseron, the first MS DMT; 
(b) the innovation of the other ABCRE DMTs; (c) the potential impact of 
improved matching between ABCRE treatments; (d) the innovation of oral 
DMTs; (e) the potential impact of improved matching between oral DMTs; 
(f) the innovation of infusion DMTs; and (g) the potential benefit of risk 
assessment for Tysabri.

33. For example, the average age of onset in the observational data is thirty- one and the 
female- to- male ratio is 1.4. Both are consistent with the MS population as a whole (see, e.g., 
https:// www .healthline .com /health /multiple -  sclerosis /facts -  statistics -  infographic).

Table 7.2 Failure correlation calculation

 Treatment 1  Treatment 2  Correlation  Covariance  

Interferon A Interferon B 0.13 0.03
 Interferon  Copaxone  0.10  0.02  
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1. Innovation of Betaseron. Betaseron, approved in 1993, was the first 
DMT for MS. As shown in table 7.5, Betaseron provides patients with 0.34 
QALY relative to no DMT, has an adherence rate of 52 percent, and has a 
market share of 10 percent (or roughly 23,400 patients per year).

To measure the health impact of  Betaseron, I compare the market for 
MS with no DMT and a but- for world where Betaseron is the only DMT. 
I assume that in this but- for world all interferon patients and 63 percent of 
Copaxone patients (the share of actual Copaxone patients that are tolerant 
of interferon treatments) would be on Betaseron (Bergvall et al. 2014).34 As 
a result, the introduction of Betaseron provided 0.34 QALYs of treatment 
for 76 percent of the market (or 178,000 patients) for a total health impact 
of roughly 61,000 QALYs.

2. Innovation of other ABCREs. After Betaseron’s entry into the market, 
the other ABCRE treatments (Avonex, Copaxone, Rebif, and Extavia) hit 
the market between 1996 and 2009. The introduction of these treatments had 
several effects. First, they expanded the market by the 21 percent of the mar-
ket (or 63 percent of actual Copaxone patients) who could take Copaxone, 
but not an interferon. Second, the introduction of the other ABCRE treat-
ments made higher efficacy and adherence treatments available. For instance, 
Copaxone, with an efficacy of 0.41 QALY and an adherence rate of 55 per-
cent, has a higher efficacy and adherence rate than Betaseron.

To determine the increase in health impact from the other ABCRE treat-
ments, I measure the share of patients who failed or did not fail on treat-
ment.35 Failure is defined by either switching to a different first- line treatment 
or switching to a second- line treatment after being on treatment for less than 
two years. I assume that patients who failed their treatment received a health 
impact similar to a patient who was randomly assigned a treatment (h1), and 
a patient who did not fail the treatment received a health impact similar to 
a patient who was assigned the optimal treatment (h2).

The introduction of  the ABCREs increased the health impact of  MS 
treatments by 22,000 QALYs or a 36 percent increase in the total health 
impact.

3. Potential of ABCRE Heterogeneity. Using the distribution of health 
impact for each of the treatments (shown in table 7.3) and the covariance 
table, I estimate the potential impact of  personalized medicine to match 
patients to their highest individual treatment effect across the different 
ABCRE treatments.

I assume that the individual health impact from Avonex and Rebif  (which 
are both interferon beta- 1a) and from Betaseron and Extavia (which are 
both interferon beta- 1b) are perfectly correlated because they are the same 

34. There are four interferon treatments, Avonex, Betaseron, Extavia, and Rebif, which 
together comprise 55 percent of the market.

35. These shares are taken from Gajofatto et al. (2009).
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molecule. Since Avonex and Rebif  have different modes of administration, 
this assumption provides a conservative estimate of the potential impact of 
heterogeneity.

To calculate the two counterfactual health impacts (the health impact 
of patients being randomly sorted on treatments and the health impact of 
patients sorted to their highest health impact treatment), a simulated group 
of patients the size of the actual market receives a health impact for each 
treatment according to a joint normal distribution with the parameters listed 
in table 7.3 and the covariance table. The simulated patients are then either 
assigned a random treatment or the treatment that corresponds to their 
highest health impact.

The health impact of the actual distribution of patients across treatments 
increases the health impact by 63 percent relative to patients being randomly 
distributed across treatments. The maximum potential health impact given 
this distribution provides an 18 percent or 14,000 QALY increase compared 
to how patients and physicians choose treatments in the real world.

4. Innovation of Oral Treatments. The three oral treatments, Aubagio, 
Gilenya, and Tecfidera, entered the market between 2010 and 2013. These 
treatments altered the MS landscape by offering an alternative form of treat-
ment administration. They also offered improved efficacy over the existing 
ABCRE treatments for early line patients. The oral treatments expanded 
the market by the 6 percent of  oral treatment patients that were not on 
any MS treatment before taking an oral treatment.36 In addition, the oral 
treatments increased the maximum health impact by a first- line treatment 
by 0.19 QALY.

As a result, the introduction of the oral treatments increased the health 
impact by 18 percent over ABCRE treatments, which resulted in an increase 
of 15,000 QALYs.

5. Potential of Oral Treatment Heterogeneity. As with the ABCRE treat-
ments, properly matching patients with treatments considering patient het-
erogeneity has a potential to increase the health impact of treatments. The 
distribution of health impact across the oral treatments is listed in table 7.4.

The health impact of  the current distribution of patients across treat-

36. See MS in America (2014).

Table 7.3 Distribution of health impact of ABCRE treatments

   Mean  Standard deviation  

Avonex 0.20 0.08
Betaseron 0.34 0.14
Copaxone 0.41 0.20
Extavia 0.34 0.14

 Rebif   0.20  0.08  
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ments increases the health impact by 100 percent relative to patients being 
randomly distributed across treatments.37 The maximum potential health 
impact given this distribution provides an 18 percent increase over the cur-
rent distribution. As a result, personalized medicine that improves the abil-
ity of patients to identify the oral treatments with the highest impact can 
improve the average health impact of these patients by 17,700 QALYs.

6. Innovation of Infusion Treatments. The innovation of infusion treat-
ments, especially Tysabri, not only brought a new form of treatment admin-
istration to the market but also an increase in efficacy. The infusion treat-
ments increased the market by 3 ppts, since 35 percent of infusion patients 
were new to the market (in other words, they were not patients that would 
have been on another treatment in the absence of the infusion treatments) 
and infusion treatments comprise 9 percent of the market (Biogen 2008). In 
addition, the infusion treatments provide 1.70 QALY over the next highest 
treatment in terms of efficacy.

As a result, the infusion treatments increased the total health impact by 
60 percent or almost 58,000 QALYs.

7. Potential of Tysabri Risk Assessment. As discussed previously, Tysabri 
not only brought an increase in efficacy but also the potential for very serious 
side effects.38 Tysabri’s PML side effect was not known at the time of the FDA 
approval. Instead, the treatment was on the market for almost three months 
when Biogen, the maker of Tysabri, learned about one confirmed and two 
suspected cases of PML. As a result, Tysabri was temporarily pulled from 
the market until it was allowed to be reintroduced to the market roughly one 
and a half  years after learning about the PML side effect.

Since the PML side effect was learned after Tysabri was on the market, 
I back out the effect that PML has on Tysabri consumption to measure 
the potential effect of a PML diagnostic test. First, prior to learning about 
PML, industry analysts expected Biogen sales to exceed 87,000 patients per 
year, which amounts to over 40 percent of market share.39 Second, when 

37. Health impact under a random treatment distribution and maximum potential health 
impact are calculated using the same methodology that was discussed in the subsection on 
ABCRE heterogeneity, but using the parameters in table 7.3.

38. It was recently discovered that Tecfidera also poses a PML risk (Van Schependom et al. 
2016).

39. Wall Street Journal (2005). Tysabri was expected to sell over $2 billion per year at $23,000 
per year. For a market with 210,000 patients, which is roughly the market size in 2009, this would 
amount to over 40 percent of the market.

Table 7.4 Distribution of health impact of oral treatments

   Mean  Standard deviation  

Gilenya 0.60 0.27
Aubagio 0.32 0.34

 Tecfidera  0.59  0.23  
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information about Tysabri’s link to PML came out, Biogen’s stock dropped 
44 percent or $10 billion, which is consistent with an expected market share 
of Tysabri above 33 percent.40 Third, before the information about Tysabri’s 
link to PML was known, industry projection models predicted that Tysabri 
would have a market share that rose from 15 percent in 2005 (the treatment’s 
first full year on the market) and would stay around 35 percent through 
2015.41 Finally, these estimates are consistent with an estimate based on 
physician perceptions. If  the only patients in the current market that are pre-
scribed Tysabri are patients with physicians who feel the benefits of Tysabri 
outweigh the costs (roughly 65 percent of physicians) and are JCV negative 
(55 percent of patients), then Tysabri’s 9 percent market share would be over 
25 percent in a world with perfect information about a patient’s PML risk.42

All of  these examples suggest that Tysabri would have a market share 
between 25 and 40 percent of the market with a diagnostic test that provides 
perfect information about a patient’s PML risk. To be conservative and to 
allow for the introduction of other treatments that were not on the market 
in 2005, I assume Tysabri would have a 20 percent market share if  it did not 
have any PML side effect. By comparison, the number of PML cases in the 
United States from 2005 to 2015 was 165.43

As a result, a perfect PML diagnostic test that could correctly identify 
the PML side effect would have allowed over 12 percent of the MS market 
to take Tysabri while restricting it to the hundreds of  patients that were 
subjected to PML.44 The health impact of putting 12 percent of the market 
that is not at risk for PML onto Tysabri relative to the treatment with the 
next highest health impact (0.60 for Gilenya compared with 2.30 for Tysabri) 
would increase the total health impact by almost 47,000 QALYs or 30 per-
cent from the current market.45

Although conservative in the 20 percent market share, this estimate serves 
as an upper bound for a PML diagnostic test since the diagnostic test would 

40. See http:// www .fool .com /investing /high -  growth /2005 /03 /08 /after -  the -  crash -  is -  biogen 
-  idec -  a -  buy .aspx. If  Avonex was responsible for the entire $12 billion remaining market share, 
had 40 percent market share, and had a nearly identical price to Tysabri, this suggests that 
Tysabri’s market share would be in excess of 33 percent market share.

41. http:// www .fool .com /investing /small -  cap /2004 /12 /07 /spin -  the -  medicine -  bottle .aspx.
42. http:// i .bnet .com /blogs /tysabri -  confidence -  survey _figure -  2 .jpg.
43. http:// wasmain .nationalmssociety .org /site /DocServer /PML. _MS _Summit _2015 .pdf 

?docID = 75816.
44. There is already a diagnostic test on the market for JCV. In a step toward incorporat-

ing personalized medicine into MS treatments, in 2012, the FDA approved the Stratify JCV 
Antibody ELISA test, which helps identify patients who are more prone to PML. This diag-
nostic test tells if  a patient is anti- JCV antibody positive or negative. If  the patient is anti- JCV 
antibody negative, they have a lower than 1 in 1,000 risk of developing PML. If  the patient if  
anti- JCV antibody positive, that risk is between 6 and 13 in 1,000 depending on prior treat-
ments. However, 70 to 90 percent of the population has the JCV virus, so the test is not very 
informative about a patient’s actual risk factors (Holland and Nall 2016). However, this test 
was not on the market for most of the period of interest so the vast majority of MS patients 
did not have access to JCV diagnostic testing before taking Tysabri.

45. Lemtrada is currently the second- highest treatment on the market, but it has not been on 
the market long so it would not have a significant impact during the 2005 to 2015 time period.
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not perfectly sort patients. The health impact of an actual diagnostic test 
would depend on its accuracy.

Breakdown. Table 7.5 breaks down what share of the total health impact 
discussed in the previous sections come from each of the seven events.

This breakdown shows that personalized medicine events in MS have 
the potential to increase the health impact of treatments by over 50 percent 
(= 0.34/0.66). The potential health impact of personalized medicine is split 
between improving the matching process of patients to treatment through 
the individual treatment effect and risk assessment for serious side effects.46

Betaseron had the largest impact, even in large part because it was the 
first treatment on the market, and the infusion treatments had the second 
largest impact because they had the highest efficacy. The potential impact of 
a Tysabri risk assessment shows that Tysabri would have by far the largest 
health impact if  the PML risk were better identified.

The impact of perfectly sorting patients on both ABCRE and oral treat-
ments is roughly equivalent to the impact of the seven treatments (Avonex, 
Copaxone, Rebif, Extavia, Gilenya, Aubagio, and Tecfidera).

7.5 Cost Considerations in Personalized Medicine Innovation

Up to this point, I have focused on the health impact of  personalized 
medicine. In this section, I discuss potential cost considerations for person-
alized medicine, including the cost of development and the cost to patients.

46. To address the sensitivity of the results with respect to the covariance matrix, I include 
the results with no correlation and perfect correlation. With perfect correlation, there would be 
no potential health impact of sorting within ABCRE treatments and within oral treatments. 
As a result, the potential health impact of  personalized medicine would all come from the 
potential of Tysabri risk assessment and would increase health impact by 30 percent. With no 
correlation between treatment effects, the potential impact of personalized medicine would 
increase by a percentage point for both within ABCRE treatments and within oral treatments. 
As a result, the potential of personalized medicine would increase the health impact of treat-
ments by 55 percent.

Table 7.5 Health impact by type of innovation as a share of total health impact

 Novel and incremental innovation  (%)  

Innovation of Betaseron 26
Innovation of ACRE 6
Innovation of oral treatments 6
Innovation of infusion treatments 25

 Total  64  

 Potential impact of personalized medicine   

Within ABCRE treatments 9
Within oral treatments 6
Potential of Tysabri risk assessment 21

 Total  36  
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In the multiple sclerosis example, there are two types of  personalized 
medicine being considered: a diagnostic blood test and improved sorting 
of patients on existing treatments. Development costs for a diagnostic test 
are generally between $250 million and $300 million (or 10 to 12 percent of 
the cost of a new treatment; McKinsey and Company [2013]). Diagnostic 
blood tests are also significantly cheaper to consumers, generally costing 
less than $1,000 in a one- time fee compared to the roughly $60,000 per year 
cost of MS treatments (Hartung et al. 2015). Since patients spend around 
six years on a given treatment (Río et al. 2012), these results suggest that 
the diagnostic test for Tysabri costs around 0.3 percent of the total cost of 
Tysabri for the average patient.

Innovations that improve patient sorting by predicting a patient’s 
response to a treatment are harder to characterize. Innovations that use data 
on patient characteristics are likely to be significantly cheaper to develop. 
For example, the Rio Score is a scoring system that combines patient char-
acteristics, including clinical and MRI parameters, to predict whether a 
patient will fail on a treatment (Río et al. 2012).47 After one year of therapy,  
92 percent of patients with a Rio Score of 2 or 3 failed on their treatment, 
while 8 percent of patients with a Rio Score of 0 or 1 failed their treatment 
(Hyun et al. 2015). Tests that rely on patient data are relatively inexpensive 
to develop and inexpensive to implement. The main cost to these types of 
innovations is likely informing patients and consumers.

The multiple sclerosis example may not be representative of other types 
of personalized medicine. Many forms of personalized medicine use genetic, 
epigenetic, and protein biomarkers and require development costs that are 
similar or slightly below the development costs of standard treatments (see 
discussions in chapter 5, this volume, and Gupta et al. 2004). Understand-
ing the cost impact of these personalized treatments for the patient is still 
speculative, but due to the targeted nature of these treatments they are likely 
to have higher costs to patients than more traditional treatments.

7.6 Conclusion

The potential of personalized medicine comes from its ability to either 
create treatments that address the heterogeneity across patients or its ability 
to provide information to patients that can improve the health impact of 
existing treatments. This chapter explores the potential magnitude of the 
latter effect for MS treatments.

I find that several factors influence the health impact of  personalized 
medicine. Personalized medicine has a greater potential health impact when 
treatment effects are less correlated across treatments, the variance of the 

47. The Rio Score is the count of how many of the following conditions are met: (a) more 
than two active T2 lesions on an MRI, (b) at least one relapse, and (c) an increase of EDSS score 
by at least 1 point sustained over at least six months. Failure was defined as having any of the 
following: switched therapy due to failure, clinical relapse, or EDSS progression.
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distribution of health impacts is larger, there is less noise in an individual’s 
signal of their treatment effect, and there are more treatment options.

These results suggest that there is significant potential for personalized 
medicine in MS due to the heterogeneity in the MS population, disease 
course, and treatment response and twelve DMTs that vary in efficacy 
and administration. I find that personalized medicine has the potential to 
increase the health impact of MS patients by over 50 percent.

One extension of this work is understanding the value of me- too innova-
tions or evergreening, which are innovations that are considered to be slight 
modifications of existing treatments. The conventional wisdom is that these 
innovations provide little to no value and waste resources (see, e.g., Collier 
2013). With personalized medicine, me- too innovations can provide a health 
impact even if  they have a lower average treatment effect than similar existing 
products if  the treatment effects are not well correlated across treatments. 
This result suggests that me- too innovations are more valuable in a world 
with personalized medicine.

There are several areas for future research in personalized medicine. First, 
it would be valuable to gain a better understanding of  the research and 
development (R&D) costs of personalized medicine in order to measure the 
productivity of innovations in personalized medicine. This research would 
inform whether personalized medicine has a higher rate of return on R&D 
compared to other types of medical innovations and which types of person-
alized medicine have the highest rates of return.

Second, it is important to understand why there is not more innovation in 
personalized medicine if, as this chapter suggests, it has so much potential 
health impact. Two potential explanations are that innovations in personal-
ized medicine, like diagnostic tests, are difficult to create and that firms do 
not have an incentive to engage in personalized medicine innovation because 
they are not able to capture the gains from the innovation. This chapter 
touches on the second point. Some forms of innovation redistribute patients 
between treatments, which may have lower returns on innovation for a firm 
since they may only capture a share of the redistributed patients, while other 
forms of innovation, like a diagnostic test, are more likely to be tied to a 
specific treatment and, therefore, allow the innovating firm to capture the 
gains from the innovation.

Third, future research could use more patient- level data to understand 
how and why patients switch between treatments. This research would allow 
for a more nuanced model of how patients choose and move between treat-
ments, and how personalized medicine can improve the matching process 
between patients and treatments. This research could also provide more 
empirical research on the correlation between treatment effects.

Finally, there are currently eight established biomarkers and at least six 
potential biomarkers in MS, and it would be valuable to understand how 
much health impact could be gained if  these biomarkers could be more effec-
tively integrated into determining individual treatment effects (Derfuss 2012).
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Appendix B 

Data Summary

Health Impact/Efficacy Data. For the efficacy measurement, I mainly use the 
Tufts Medical Center Cost- Effectiveness Analysis Registry (CEAR) from 
the Center for the Evaluation of  Value and Risk in Health. The CEAR 
includes over 4,800 pharmaceutical cost- utility analyses in the peer- reviewed 
medical literature. It is intended to be a comprehensive data set of all cost- 
utility articles analyzed by trained professionals, who rate the quality of the 
study and provide information about the quality level and quality relative 
to the standard of care found in the study. The data set lists the drug’s name 
or active ingredient; the drug’s disease class, which can be uniquely mapped 
into my nineteen disease classes; and the year of  the study. The data set 
includes fifteen studies that list the QALY of treatments for all ABCRE 
treatments and Tysabri. I take the average across studies for treatments that 
have multiple studies. For the oral treatments, I use estimates from Pistoresi 
(2015) and for Lemtrada, I use an estimate from the Scottish Medicines 
Consortium (2014).

The estimates of standard deviations are taken from estimates in Prosser 
et al. (2004) and Pistoresi (2015).

Adherence Data. Adherence is a measure of whether patients are taking 
their treatment as prescribed and with the proper frequency. A patient is gen-
erally defined to be adherent if  he possesses medication for at least 80 percent 
of  the time they are active on treatment. I get adherence estimates from 
published studies in medical journals. Specifically, for all ABCRE treat-
ment, I use adherence estimates from Halpern et al. (2011), which estimates 
adherence rates from 6,680 MS patients from 2000 to 2008 on ABCRE treat-
ments. For oral and infusion treatments, I use estimates from Dionne et al. 
(2015), which compares adherence rates for 209 MS patients. These rates 
are generally consistent with those found in other published studies includ-
ing Treadaway et al. (2009), Devonshire et al. (2011), and Reynolds et al.  
(2010).

Patient Count Data. I take patient count published estimates from Sym-
phony Health Solutions.48 Since these data are in revenues, I convert them 
to patients using cost estimates from Hartung et al. (2015). I supplement 
this data with estimates from Biogen documents, the producer of Avonex, 
Plegridy, Tecfidera, and Tysabri, published by the SEC, which primarily use 
IMS data.49

48. See http:// symphonyhealth .com /wp -  content /uploads /2013 /06 /Tecfidera .inThought 
.4Mar .pdf.

49. See Biogen (2008).
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