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2.1 Introduction

If  the Human Genome Project gave us a book, scientists are now 
learning how to read it . . . and biologists are beginning to face up to the 
uncomfortable truth that they have only been looking at the nouns . . . 
now we are reading the spaces in between—verbs, adverbs, adjectives, 
pronouns and the rest, and they are complicated indeed. 
—Roger Highfield (former editor, New Scientist)1

The 2003 completion of the Human Genome Project (HGP) created a 
whirlwind of hope for the future of biology and medicine. Presenting the 
project’s first draft, Craig Venter stated that “the basic knowledge that we’re 
providing the world will have a profound impact on the human condition 
and the treatments for disease and our view on our place in the biological 
continuum.” At the same venue, President Clinton remarked that the HGP 
would “revolutionize the diagnosis, prevention and treatment of most, if  not 
all, human diseases.”2 The Human Genome was envisioned as a discovery 
platform, which would greatly facilitate the understanding of disease biol-
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ogy, and in turn illuminate, sharpen, and speed up the drug discovery/design 
process (Daiger 2005; Lander et al. 2001). Many scientists and analysts 
agreed with Venter and Clinton and predicted a swift revolution in human 
therapeutics—some even suggesting that it would materialize within the 
decade. For example, Randy Scott of Incyte Corporation claimed that “in 
10 years, we will understand the molecular basis for most human diseases” 
(Palmer 2013). However, despite large scientific advances, this revolution 
in human therapeutics remains manifestly unfulfilled almost fifteen years 
after the HGP’s completion (Lander 2011; Mardis 2011): disease mortality 
continues to be largely driven by the same causes of two decades ago, and 
the molecular basis for the most important diseases has not yet been fully 
elucidated (Wade 2010; Palmer 2013).

One reason that may justify the slower- than- expected progress is the large 
amount of biological complexity that has been progressively revealed by the 
so- called genetic revolution (Wade 2010; Hayden 2010). For example, only 
recently we learned that common mutations may explain a relatively small 
percent of predicted genetic variance (Manolio et al. 2009), that nonprotein- 
coding mutations may regulate protein- coding genes (Li et al. 2016), and 
that genetic mutations rarely map one- to- one into diseases (Bauer- Mehren 
et al. 2011).3 The recent “omnigenic” hypothesis (Boyle, Li, and Pritchard 
2017) complicates matters further by suggesting that seemingly unrelated 
“peripheral” genes (genes that are located outside core pathways and cannot 
be easily categorized based on known biology) may drive disease through 
cellular networks. Hayden (2010) illustrates this general idea by writing “(the 
HGP) opened the door to a vast labyrinth of new questions,” and “the com-
plexity of biology has seemed to grow by orders of magnitude.”

In this chapter, we investigate the extent to which biological complexity 
has mediated the translation of genetic epidemiological science into early 
stage drug innovation during the ten years that followed the HGP’s comple-
tion. Our analysis focuses on the knowledge created by the leading type 
of genetic epidemiological research, the genome- wide association studies 
(GWAS), which takes a prominent role in drug discovery (Manolio 2013). 
These studies search for genetic mutations underlying the manifestation of 
diseases, validating associations only if  stringent statistical standards are 
met. Exploiting variation at the targeted- disease level, we investigate the 
impact of GWAS knowledge accumulation on the number of therapies that 
enter the drug development process. We explore both the opportunities cre-
ated by GWAS and its limitations.

To characterize the variability in biological complexity across diseases, 

3. Boyle, Li, and Pritchard (2017) illustrate the dramatic paradigm shift referencing the 
case of autism: whereas the prediction of fifteen or more responsible mutations of Risch et al. 
(1999) was perceived as “strikingly high at the time” (Boyle, Li, and Pritchard 2017), based 
on recent research (Weiner et al. 2017) this number “seems quaintly low now” (Boyle, Li, and 
Pritchard 2017).
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we draw on insights from the emerging field of network medicine (Barabási, 
Gulbahce, and Loscalzo 2011), and rely on implementations of the human 
disease network (HDN; Goh et al. 2007). In the HDN diseases correspond 
to nodes, and disease- causing genes (or variants thereof) correspond to 
edges. We exploit the idea that therapeutic translation may be more com-
plex for diseases that are caused by a larger set of genes, or for those that 
are connected with a larger number of diseases in the HDN. Intuitively, a 
disease caused by a large number of genetic mutations could manifest itself  
through many biological pathways, making it less likely to find a “silver 
bullet” treatment. A similar reasoning applies with respect to HDN con-
nectivity. Therapeutic innovation targeting highly connected diseases runs 
the risk of interfering with related biological processes, and with it, the pos-
sibility of causing adverse side effects or other biological imbalances. Thus, 
to prove its safety, such therapy may have to overcome greater challenges 
than one targeting a scantly connected disease. At a broader level, it can be 
argued that translational complexity increases with these factors because 
they require developers to consider a larger set of biological factors in the 
process of discovering, designing, and testing new compounds. Indeed, to 
this point Bauer- Mehren et al. (2011, 2) write: “At the end of the day, how 
a disease is caused and thus how it can be treated can only be studied on the 
basis of the entire body of knowledge including all genes that are associated 
with the disease and their interactions through biological pathways.”

We construct these complexity metrics using the largest publicly avail-
able repository of human gene and variant- disease associations, DisGeNET, 
which contains results from tens of thousands of academic publications. 
Translation rates are estimated from a large sample of pharmaceutical pipe-
lines, which cover over 1,300 targeted diseases, spanning nineteen thera-
peutic areas. Our results suggest that complexity plays an important role in 
moderating therapeutic translation. In particular, for less complex diseases, 
we find a strong and positive association between cumulative knowledge 
and the amount of new therapies entering the discovery process each year. 
This association weakens as complexity increases and becomes statistically 
insignificant for highly complex diseases. We perform several checks to verify 
that our results are not driven by the influence of unobservable variables.

At a conceptual level, our research is related to Fleming and Sorenson 
(2001, 2004), who also address the interplay of science and complexity in 
the context of technological innovation. In the framework laid out by Flem-
ing and Sorenson (2004), science is useful because it helps to navigate the 
complexity that arises from the (recombinant) search process over a “tech-
nology landscape.” Instead, we view complexity as the defining trait of the 
“landscape’s topography,” and as a barrier to the practical applicability of 
scientific knowledge. By highlighting and empirically documenting the role 
of complexity, we also contribute to the literature that studies empirically 
the extent to which academic science translates into productivity growth or 
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innovation (Rosenberg 1974; Sveikauskas 1981; Jaffe 1989; Adams 1990; 
Mansfield 1995; Stephan 1996; Cohen, Nelson, and Walsh 2002; Ahmad-
poor and Jones 2017), and specifically to the literature with a focus on the 
pharmaceutical industry (Henderson and Cockburn 1994; Gambardella 
1995; Ward and Dranove 1995; Zucker and Darby 1996; Zucker, Darby, 
and Brewer 1998; Cockburn and Henderson 1998; Toole 2012; Azoulay et al. 
2015).4 Our contribution relative to the latter set of articles is to measure 
and ascertain the role of biological complexity on innovative productivity, 
which has so far been treated as unobserved heterogeneity.

By many accounts, genetics have already shaped a new era of drug innova-
tion. For example, genetics are now routinely used to identify drug targets 
and populations at higher risk of developing adverse events (Pollack 2010). 
Nevertheless, failure to meet the more optimistic expectations from early 
in the first decade of  the twenty- first century has led to impatience and 
criticism. Some observers have questioned the worthiness of the endeavor 
(Evans et al. 2011), and others even suggested that a “genomic bubble” 
may have “temporarily bogged down the drug industry with information 
overload” (Pollack 2010). Our findings suggest that biological complexity 
may be partly to blame, which is one of the limitations of GWAS. On the 
other hand, for less complex diseases, GWAS presents an opportunity to 
develop new therapies. By explicitly accounting for biological complexity, 
we provide a novel assessment of the progress made so far, while suggesting 
that polarized assessments can be reconciled.

The rest of the chapter is organized as follows. Section 2.2 describes and 
contextualizes GWAS science. Section 2.3 describes data sources and pro-
cessing. Section 2.4 lays out the empirical strategy. Results are presented in 
section 2.5, and conclusions in section 2.6.

2.2 Genome- Wide Association Studies

A genome- wide association study compares the DNA of a population 
that carries a certain trait (e.g., weight, aggressive personality, diabetes, acne, 
etc.) against that of a control population without it, under the assumption 
that individuals with a trait present similar genetic variations. Although the 
effectiveness of GWAS has been criticized, their scientific impact is widely 
recognized. For example, Visscher et al. (2012, 19) states: “The GWAS 
experimental design in human populations has led to new discoveries about 
genes and pathways involved in common diseases and other complex traits, 

4. Among these, Toole (2012) is the closest to the research herein. Relative to the work of 
Toole—which addresses the relationship between basic research funding and drug approv-
als, aggregating these at the therapeutic area level—our research enables a more translucent 
analysis by focusing on the relationship between two variables that are more directly related 
(scientific publication and early stage development), and by exploiting variation defined at a 
thinner aggregation level (targeted diseases).
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has provided a wealth of new biological insights, has led to discoveries with 
direct clinical utility, and has facilitated basic research in human genetics 
and genomics.”

Our empirical analysis relies on data available from the open- source 
GWAS Catalog (MacArthur et al. 2017). The earliest study in this cata-
log was published in 2005. The GWAS publications have since significantly 
impacted the way scientists think about the biological mechanisms behind 
certain diseases.5 An important reason to focus on GWAS publications is 
that these studies are “hypothesis free.” This means that GWAS do not 
rely on assumptions to design experiments, but instead they are a statistical 
analysis looking for high correlation between regions of DNA and diseases. 
In fact, mutations are validated under a strict threshold of statistical sig-
nificance (p < 5 × 10–8) and the results must be replicated in an independent 
sample before they are incorporated into the GWAS Catalog (McCarthy 
et al. 2008). These strict requirements make GWAS publications a source 
of credible results, which are recognized by most scientists.

Apart from GWAS, there are alternative methods to study the link 
between genes and diseases (Londin et al. 2013). Linkage analysis (LA) is a 
technique used to identify genetic variants for Mendelian disorders—that 
is, mutations caused by a single gene. Following the success of Kerem et al. 
(1989) in identifying the gene responsible for cystic fibrosis, LA studies have 
proved useful in identifying other Mendelian disorders. However, LA studies 
rely on related individuals: they do not provide “high resolution” (meaning, 
they identify broad regions of variations) and they have limited statistical 
power. Next- generation sequencing (NGS), the most recent method, has 
the advantage of identifying mutations at a high resolution (i.e., it allows 
researchers to identify specific gene mutations and variants). The main draw-
back of NGS has been the high cost of sequencing the complete genome 
for large samples (Koboldt et al. 2013). Recent advances in computer speed 
and storage capacity have lowered the costs, enabling large NGS studies.

2.3 Data and Variables

2.3.1 Therapies

We obtained pharmaceutical pipeline data from Thomson Reuters Cor-
tellis, a subscription service that offers pipeline information for a large 
number of biotechnology and pharmaceutical firms. The full data sample 
includes development histories of  over 90,000 therapies (i.e., compound/
targeted- disease combinations) entering the development process around 

5. For instance, Cao and Moult (2014) explores the use of GWAS in identifying drug targets. 
Visscher et al. (2017) and Zheng et al. (2009) review the remarkable discoveries that have been 
facilitated by GWAS publications.
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the world since the mid- 1970s. A “new therapy” in our data corresponds to 
a novel indication entering the earliest stage in the process, the “discovery” 
stage. At this stage, therapies are optimized: they are evaluated analytically 
and in animal models to assess further development.6

We restrict the sample to new therapies that were first observed entering 
the discovery stage between 2003 and 2012, and to the set of diseases for 
which at least one new therapy was observed during this period. This selected 
sample covers 1,306 different diseases and includes 26,120 new therapies, 
distributed across nineteen therapeutic areas. Cortellis also identifies each 
therapy’s molecular target, which allows us to differentiate between protein-  
and gene- targeted therapies. The former are designed to interact with pro-
teins along the cell- signaling cascade. The latter are designed to regulate 
or modify the expression of protein- encoding genes. Figure 2.1 describes 
the distribution of new therapies across therapeutic areas and emphasizes 
the imbalance of innovation efforts accross diseases. It also shows that the 
number of protein- targeted therapies in our sample exceeds that of gene- 
targeted therapies by about one order of magnitude.

The dependent variable in our econometric analysis, denoted by Ndkt, cor-
responds to the total number of new therapies for disease d that enter the 

6. Cortellis identifies these by collecting information of new therapies discussed in academic 
conferences or scientific publications reported by a clinical trial submitted to www .clinicaltrials 
.gov or other websites, featured by the media or regulatory updates, or announced in the spon-
soring firm’s website.

Fig. 2.1 Number of new therapies (by therapeutic area) observed entering the de-
velopment process in 2003–2012
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discovery stage during year t employing target k ∈ {p (protein), g (gene)}. 
Figure 2.2 describes the temporal evolution of  the total number of  new 
protein-  and gene- targeted therapies observed in the data. These series dis-
play a similar pattern—they are roughly stable through 2006, but increasing 
between 2007 and 2012.

2.3.2 Knowledge Stocks

In March of 2016, we downloaded genetic association studies from GWAS 
Central.7 The data include 2,044 studies covering 1,362 traits. We restricted 
our attention only to traits that correspond to human diseases.8 These stud-
ies associate a human disease with genetic variants (single- nucleotide poly-
morphisms): a variant- disease association (VDA). For our empirical anal-
ysis, we assume that each VDA associating a disease to a set of variants adds 
one unit to the cumulative stock of knowledge for the disease at the time 
when the corresponding GWAS is published.

Matching VDA data to the Cortellis pipeline presented two main chal-
lenges. The first regarding differences in spelling and use of synonyms (e.g., 
peanut allergy and peanut hypersensitivity, Wilms’ tumor and nephroblas-

7. http:// www .gwascentral .org/.
8. Traits that are not associated with human disease include, for example, “economic and 

political preferences,” “educational attainment,” “freckles,” “hand- grip strength,” among oth-
ers. We retain only those pertaining to human diseases as defined by Merriam- Webster’s: “an 
illness that affects a person, animal, or plant: a condition that prevents the body or mind from 
working normally.”

Fig. 2.2 Temporal patterns of therapeutic innovation and GWAS VDA publication
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toma, etc). The second, and more challenging, stemmed from differences 
between the disease ontologies used by GWAS Central and Cortellis. For 
example, we noticed that the GWAS trait “longevity” could inform the 
design of Cortellis therapies targeting “aging.” Similarly, the GWAS trait 
“5- htt brain serotonin transporter levels”—which is thought to underlie a 
variety of neuropsychiatric disorders—could inform the design of Cortel-
lis therapies compounds targeting “postnatal depression.” To systemically 
bridge these two ontologies we assembled a team of experts. Two indepen-
dent coders (MD residents) were asked to identify as many matches as pos-
sible from the data. A third expert (PhD in epidemiology) then curated these 
lists and resolved conflicts. As a result, 17 percent of the diseases targeted 
by the therapies in the Cortellis sample were matched to at least one GWAS 
VDA. Figure 2.3 shows the number of GWAS VDAs and the number of 
different diseases recorded for each therapeutic area.

We construct the variable VDAFLOWdt as the total number of  VDAs 
published for a disease d in year t. Following the approach of Adams (1990) 
and Toole (2012), we define a knowledge- stock variable VDASTOCK as

VDASTOCKdt = log(1 + (1 )t t VDAFLOWdt)t =2003,..,t ,

where δ ∈ [0, 1] corresponds to an “obsolescence rate” that accounts for the 
depreciation of the knowledge embedded in GWAS publications over time. 
The log transformation incorporates the idea that knowledge accumulation 
may be subject to marginally decreasing impacts on innovation. The GWAS 
began to be published in 2005, so VDASTOCK equals zero for all diseases 
in 2003 and 2004. The dashed line in figure 2.2 corresponds to VDASTOCK 

Fig. 2.3 Number of targeted diseases and GWAS GDAs by therapeutic area
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(assuming δ = 0). The figure shows a high correlation between VDASTOCK 
and the number of new therapies.

2.3.3 Human Disease Network and Biological Complexity

We construct proxies for biological complexity from an implementation 
of the human disease network (HDN)—an undirected network in which 
diseases are connected to each other through common gene mutations (Goh 
et al. 2007). To build the most complete (up- to- date) representation of this 
network, we retrieved data from DisGeNET,9 an aggregator that is widely 
considered the largest publicly available repository of scientific results link-
ing human diseases to their genetic underpinnings (Piñero et al. 2017). Dis-
GeNET aggregates VDAs (like GWAS) and the coarser gene- disease asso-
ciations (GDAs), from an array of specialized sources that focus on specific 
diseases or scientific approaches. At the time of data download, DisGeNET 
included 561,119 GDAs and 135,588 VDAs, covering over 20,000 diseases.

Table 2.1 presents descriptive statistics for the different data sources from 
where DisGeNET aggregates associations. These sources can be grouped 

9. http:// www .disgenet .org. We retrieved DisGeNET version 4.0 data on 6/12/17.

Table 2.1 DisGeNET GDA and VDA summary statistics

Source

Gene- disease associations (GDAs) Variant- disease associations (VDAs)

 Genes  Diseases  Associations  Variants  Diseases  Associations

A. Curated
CTD human 7,787 4,929 25,975
ClinVar 45,546 5,639 54,888
GWASCat 15,790 610 20,719
HPO 2,661 6,702 97,547
Orphanet 3,195 3,056 5,842
PsyGeNET 1,546 112 3,757
UniProt 2,481 3,259 3,517 16,546 3,044 17,205

B. Animal models
CTD mouse 63 107 168
CTD rat 22 13 31
MGD 1,464 1,323 1,994
RGD 1,076 629 4,291

C. Literature
GAD 8,173 2,689 56,821 5,145 410 6,242
LHGDN 5,941 1,799 31,468
BeFree 14,916 11,964 401,674 20,476 4,310 51,900

Total
  17,074  20,370  561,119  83,002  9,169  135,588

Source: Reproduced with permission from the DisGeNet website. Retrieved 6/12/2017.
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into three categories shown in panels A, B, and C, respectively.10 Curated 
sources (panel A) include the GWAS Catalog, CTD human, ClinVar, HPO, 
Orphanet, PsyGeNET, and UniProt. Although all of these rely on findings 
submitted by individual scientific groups, they differ in terms of their focus 
and curation process. For example, CTD human (Comparative Toxicoge-
nomics Database) focuses on promoting the understanding of the effects 
of chemicals on human health, while Orphanet focuses on rare diseases. In 
terms of the extent of curation, some data sources may select entries based 
on statistical significance (GWAS) and possibly reinterpret results for “accu-
rate and comprehensive representation of biological knowledge” (UniProt), 
whereas others accept all submitted GDAs (insofar as supporting evidence is 
provided) and abide by the interpretations provided by the submitting group 
(ClinVar). Panel B describes sources of results predicted from genomic anal-
ysis on laboratory mice and rats,11 while panel C describes sources that com-
pile GDAs and VDAs by text mining the scientific literature.

The HDN can be implemented by considering either the set of available 
GDAs or VDAs. In particular, a network can be constructed based on the 
premise that any two diseases that are associated with the same gene or 
variant thereof should be connected in the respective network, whereas any 
two diseases that do not share associations, should appear as disconnected. 
For example, our data shows that Parkinson’s disease and Waldenström’s 
disease are both associated to the EPO gene. These diseases will thus be 
connected in a network implemented with GDA data. We also observe that 
Parkinson’s disease and myopia are both associated to the HGF, KRAS, 
and PTEN genes. For simplicity, our implementations will assume that the 
strength or validity of the connections between Parkinson’s and Walden-
ström’s diseases, and Parkinson’s disease and myopia are the same. On the 
other hand, although anemia is associated to several genes, none of these is 
also associated with Parkinson’s disease. Thus, a network implementation 
based on GDA data would portray them as disconnected diseases.

We construct independent HDN versions using both types of associa-
tion data. We label the network implementation based on GDAs as GHDN 
and that based on VDAs, as VHDN. Differences between these arise not 
only because they rely on nonoverlapping sets of scientific results, but more 
importantly because VHDN imposes a more stringent requirement to estab-
lish connectedness between diseases.12 As a result, VHDN presents a much 
more sparse structure, with lower overall levels of connectedness. Indeed, 

10. This table is reproduced with permission from the DisGeNET website. Minor formatting 
changes have been introduced for clarity.

11. MGD and RGD correspond to Mouse and Rat Genome Database, respectively.
12. For two diseases to be connected in GHDN they ought to be associated to some mutation 

of the same gene. For them to be connected in VHDN, they need to be associated to the same 
mutation of the same gene.
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the number of connections in the VHDN is only about 2 percent that of 
the GHDN. Furthermore, whereas about 18 percent of diseases are isolated 
(disconnected from all other diseases) in the latter, 42 percent are isolated 
in the former.

Following the insights of  previous research (e.g.,Wachi, Yoneda, and 
Wu 2005; Jonsson and Bates 2006; Bauer- Mehren et al. 2011; Silverman 
and Loscalzo 2012), we use two network statistics to proxy for the bio-
logical complexity of each disease d. In particular, we define: (a) d ’s total 
number of genetic associations (NASSOC), and (b) d ’s degree of central-
ity (CENTRALITY). For the GHDN, NASSOC corresponds to the total 
number of genes associated with d ; for the VHDN, to the total number of 
associated variants. CENTRALITY corresponds to the total number of 
diseases d d to which d is directly linked through networks’ respective 
connectors.

Table 2.2 presents the distribution of  NASSOC and CENTRALITY 
under the GHDN implementation (panel A) or the VHDN implementa-
tion (panel B). In both cases, there is a wide dispersion and a long right tail, 
that is, there is a small number of diseases characterized by high biologi-
cal complexity. Consistent with the higher sparsity of the VHDN network, 
the centrality measure is much lower than the centrality under the GHDN 
implementation, but in both cases centrality measures are highly correlated 
at the disease level.13 Interestingly, for both implementations, values of 
CENTRALITY are generally larger than those of NASSOC. This occurs 
due to the existence of clusters of highly interconnected diseases, where one 
gene or variant enables the connection of one disease with many others. 
Figure 2.4 presents averages by therapeutic area. Among others, patterns 
in this figure suggest that variants of cancer rank high in both number of 
associations and network centrality.

13. The correlation for CENTRALITY is 0.73 ( p < 0.01). The correlation for NASSOC is 
0.63 ( p < 0.01).

Table 2.2 Distributions of network statistics

Percentile
1 5 10 25 50 75 90 95 99

Panel A. GHDN
NASSOC 0 0 0 3 32 131 390 750 1,774
CENTRALITY 0 0 0 720 2,982 5,740 8,540 10,420 12,827

Panel B. VHDN
NASSOC 0 0 0 0 1 15 70 145 495
CENTRALITY  0  0  0  0  4  145  412  617  1,004
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2.4 Empirical Strategy

To motivate our empirical strategy, figure 2.5 shows the patterns of inno-
vation and accumulation of GWAS publications for cardiovascular diseases. 
Panel A in figure 2.5 shows the cumulative number of published GWAS VDAs 
available each year for each of the ninety- eight cardiovascular diseases.14  

14. Within the sample period, GWAS VDAs became available for about 30 percent of dis-
eases in this area.

A

B

Fig. 2.4 Average network statistics for diseases in the pipelines sample. A, GHDN; 
B, VHDN.
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Panel B and panel C show the number of gene- targeted and protein- targeted 
therapies that enter the discovery stage. A visual inspection of these patterns 
suggests a rough correlation between the accumulation of published VDAs 
and the amount of innovation for each disease. Our empirical analysis dis-
tills this relationship by controlling for observed and unobserved condition-
ing factors employing count- data models.

Given that the data exhibits overdispersion, we estimate negative bino-
mial specifications. Furthermore, figure 2.5 shows that there is a large num-
ber of observations associated with Ndkt = 0. Although these occurrences 

A

B

C

Fig. 2.5 GWAS VDAs flows and innovation of cardiovascular therapies. A, cumu-
lative GWAS VDAs (exp(VDASTOCKdt)–1); B, new gene- targeted therapies (Ndgt); 
C, new protein- targeted therapies (Ndpt).
Notes: Each disease is represented by a different gray shade along the longer axis, whereas the 
temporal dimension unfolds along the depth of the graph. Diseases are arranged according to 
the total number of published VDAs in the sample period. Conditional on an equal number 
of published VDAs, diseases are ordered alphabetically. The same ordering of diseases is 
employed across all three panels.
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primarily manifest for gene- targeted therapies, they are not rare among 
protein- targeted therapies. To account for this feature of the data, we use a 
zero- inflated specification of the negative binomial model, which allows us 
to separately capture the determinants of Ndkt = 0 and Ndkt > 0 outcomes.15

Another distinctive pattern of figure 2.5 is that the number of new thera-
pies observed each year is unevenly distributed and temporally persistent 
across diseases. That is, some diseases exhibit systematically larger val-
ues of  Ndkt. Moreover, this heterogeneity is observed for both gene-  and 
protein- targeted therapies. To account for this form of “dk- specific,” time- 
invariant unobserved heterogeneity, we employ a “presample mean estima-
tor” approach of Blundell, Griffith, and Windmeijer (2002), where average 
presample values of the dependent variable are used to proxy for unobserved 
heterogeneity. In our context, this amounts to including the average of the 
logged dependent variable in a presample period as an independent variable 
in our regressions, while constraining its coefficient to one. We compute this 
presample mean using data from the 1990–2001 period.

For our econometric analysis, we estimate several versions of the follow-
ing specification:

(1) Ndkt = f ( Xdkt + t + a(d ) + ˆ dk),

where f corresponds to the zero- inflated negative- binomial functional form, 
λt is a year fixed effect, ηa(d) is a therapeutic area fixed effect, and ˆdk cor-
responds to the disease/target- specific presample level, given by

ˆ dk = log(1 + Ndk), with Ndk = 1
12

Ndktt=1990,..,2001 .

In equation (1), Θ is a vector of coefficients for the variables contained in X. 
Along with the first lag of VDASTOCK, X includes an indicator that identi-
fies gene- targeted therapies (GENETARGET), the disease- specific network 
statistics (NASSOC, CENTRALITY) that proxy for translational complex-
ity, and their interactions with VDASTOCK’s first lag.

To account for economic and public health “pulling forces,” we also include 
in X the first lags of MEPSPATS and MEPSEXPND, which respectively 
proxy for the epidemiological pervasiveness and market size associated with 
each disease, and are constructed using data from the Medical Expenditure 
Panel Survey (MEPS). MEPSPATS corresponds to the log total number of 
patients (in millions) in the United States that report suffering from condition 
d during year t; MEPSEXPND corresponds to the log total amount spent 
on prescription drugs for the condition during the same year (measured in 
billions of dollars, Consumer Price Index [CPI]- adjusted to year 2000).16

15. In the full sample, about 78 percent Ndkt observations equal 0 (61 percent for gene- targeted 
therapies, 95 percent for protein- targeted ones). The zero- inflated specification is supported 
by the Vuong test. The inflation model is specified to include a constant and an indicator for 
gene- targeted therapies.

16. MEPS (https:// meps .ahrq .gov /mepsweb/) is a large and representative sample of health 
care usage and insurance in the United States. MEPSPATS is constructed by using data from the 
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The parameters of  interest in equation (1) are those corresponding  
to VDASTOCK’s lag and those corresponding to the interaction between 
VDASTOCK’s lag and the network statistics for diseases. In particular, a 
statistically significant and positive coefficient for VDASTOCK’s lag would 
indicate that larger stocks of GWAS science increase the rate of therapeutic 
innovation. The coefficient’s specific value would then illustrate the extent 
of this translational effect. The parameter for its interactions with network 
statistics would identify the extent to which this effect is moderated by each 
disease’s network environment.

In the analysis, we avoid imposing assumptions regarding the relative 
adequacy of GHDN and VHDN as a means to characterize biological com-
plexity. Our approach is to first show that the main promoted effects hold 
when each of these are considered independently, and then that they con-
tinue to hold when the joint variation of GHDN and VHDN is summarized 
by an ordering of diseases, which we derive through a flexible, data- driven 
clustering method.

Last, by the structure of DisGeNET data, the computation of network 
statistics from the GHDN or VHDN do not hinge on GWAS science. This is 
suggested by figure 2.6, which compares the NASSOC and CENTRALITY 
values computed with and without accounting for GWAS results in the 

MEPS yearly “Medical Conditions Files,” which report the incidence of diseases on individuals 
at the three- digit ICD9 level. Thus, all diseases associated with a single three- digit ICD9 code 
are awarded the same value for MEPSPATS. MEPSEXPND is constructed with data from 
the yearly “Prescribed Medicines Files” using the same procedure. In both cases, individual 
variables are aggregated at the year level using individual representativeness weights.

Fig. 2.6 Influence of GWAS research on computed network statistics
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construction of VHDN (the 45 degree line).17 Although for some diseases 
GWAS results account for a nonnegligible share of observed associations, 
they do not significantly distort the overall ordering. Together, these obser-
vations suggest that GWAS science does not overtly condition our mea-
surement of biological complexity. In section 2.5.2 we analyze the potential 
inferential confounds introduced by this and other issues, finding no evi-
dence to suggest that they drive our main results.

2.5 Results

2.5.1 Translational Complexity

Table 2.3 presents the estimates of different versions of equation (1).18 
Column (1) presents the simplest specification, which does not include our 
measure of biological complexity, nor the presample proxy for unobserved 
heterogeneity. In column (1), the coefficient for GENETARGET is negative, 
large, and strongly significant, which is consistent with the systematically 
smaller number of  gene- targeted therapies. The estimated coefficient for 
VDASTOCK implies that a 1 percent increase in the stock of GWAS knowl-
edge is associated with a 1.4 percent increase in the number of new therapies 
entering the discovery stage. The estimated coefficient for the interaction 
between VDASTOCK and GENETARGET suggest that scientific knowl-
edge stocks have a larger impact on the innovation of protein- targeted rather 
than gene- targeted therapies. Furthermore, consistent with the results of 
Toole (2012), the coefficient estimates for MEPSPATS and MEPSEXPND 
are positive, indicating a disease’s epidemiological pervasiveness and mar-
ket size both increase the rate of therapeutical innovation. Although both 
of these are estimated precisely by this specification, MEPSPATS loses its 
statistical significance in the more comprehensive specifications.

In column (2) we control for disease- target, type- specific unobserved het-
erogeneity through the coefficient- constrained inclusion of logged presa-
mple means. Although most coefficients retain their sign and statistical 
significance, their magnitude becomes smaller, suggesting that this type 
of unobserved heterogeneity plays a relevant role in innovation rates. This 
is particularly noteworthy for the coefficient of VDASTOCK, which now 
is about half  the estimate of column (1), implying that a 1 percent larger 
knowledge stock can be linked to only a 0.7 percent increase in new therapies 
entering the drug development process.

The specifications of  columns (3) and (4) incorporate our measure of 

17. To facilitate the comparison, values are normalized by each variable’s largest values when 
all DisGeNET results are considered.

18. These and subsequent results are obtained by setting the “obsolescence rate” δ = 0.05. 
This value was determined by comparing information- based criteria of specifications estimated 
on a grid for plausible δ values.
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biological complexity, which is computed with the GHDN network imple-
mentation. Both CENTRALITY and NASSOC are measured in hundreds 
and these two measures are (by construction) highly correlated. To avoid 
multicollinearity issues, we considered these variables separately in columns 
(3) and (4). The specification of column (3) considers diseases’ network cen-
tralities. The positive and significant coefficient for CENTRALITY points 
to a particular dimension of unobserved heterogeneity, whereby more cen-
tral diseases are more frequently the focus of therapeutical innovation. The 
positive coefficient for its interaction with GENETARGET suggests that 
the effect is more pronounced for gene- targeted therapies.

This baseline effect of CENTRALITY could be rationalized by a com-
bination of  supply-  and- demand- side factors. The latter could ensue if  
MEPSEXPND underestimates the “true” market potential for more central 

Table 2.3 Drivers of therapeutic translation

  (1)  (2)  (3)  (4)  (5)  (6)

GENETARGETk –2.91*** –1.53*** –2.64*** –2.21*** –2.30*** –1.88***
(0.23) (0.25) (0.42) (0.21) (0.39) (0.27)

VDASTOCKd,t–1 1.43*** 0.71*** 0.98*** 0.85*** 0.80*** 0.71***
(0.17) (0.10) (0.13) (0.11) (0.11) (0.12)

GENETARGETk  
× VDASTOCKd,t–1 

–0.39* 0.11 0.03 0.15 0.07 0.09
(0.22) (0.17) (0.12) (0.15) (0.12) (0.17)

CENTRALITYd 0.01*** 0.16***
(0.00) (0.02)

GENETARGETk  
× CENTRALITYd 

0.01*** 0.10***
(0.00) (0.03)

CENTRALITYd  
× VDASTOCKd,t–1 

–0.01*** –0.09***
(0.00) (0.01)

NASSOCd 0.10*** 0.23***
(0.02) (0.05)

GENETARGETk  
× NASSOCd 

0.04 0.10*
(0.04) (0.05)

NASSOCd  
× VDASTOCKd,t–1 

–0.06*** –0.11***
(0.01) (0.02)

MEPSPATSd,t–1 0.03*** 0.01 0.00 0.00 0.00 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

MEPSEXPNDd,t–1 0.04*** 0.02*** 0.02*** 0.02*** 0.01*** 0.02***
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Network implementation N/A N/A GHDN GHDN VHDN VHDN
Presample estimator ✓ ✓ ✓ ✓ ✓

Observations  26,120  26,120  26,120  26,120  26,120  26,120

Notes: Results from negative binomial, zero- inflated specifications. All specifications include fixed effects 
for therapeutic areas and years. Clustered standard errors are presented in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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diseases. Noting that cancer variants tend to have higher network centrali-
ties (see figure 2.4), such underestimation is a real possibility in this context. 
This is because MEPSEXPND is computed from prescription drug data, 
which may omit much of the expenditure on drugs used for the treatment of 
cancer (typically administered via injections and thus, possibly, not available 
through prescription on a systematic basis).19 At a more fundamental level, 
the underestimation of market potential could be grounded in the possibil-
ity that new cancer therapies provide a particularly significant improvement 
to the standard, compared to other therapeutic areas, and so unlock value 
that is unaccounted for by historical spending patterns. Table 2.4 presents 
results obtained by reproducing the above analysis, but on a sample that 
omits diseases in the cancer area. Because results remain largely unchanged, 
they attenuate the concerns stemming from these potential confounds. 
Supply- side factors justifying the positive coefficient of  CENTRALITY 
could be rooted in potentially larger knowledge spillovers or scrap values 
for therapies targeting more central diseases. Under this view, the return to 
investment of these therapies may, in part, be driven by the broader useful-
ness of applied knowledge generated in the process, or by the ability to repur-
pose therapies for use in the treatment of different, but related, conditions.

In column (3), the coefficient associated with the interaction of 
VDASTOCK and CENTRALITY is negative and statistically significant. 
This suggests that the impacts of larger knowledge stocks on innovation rates 
are smaller for more central diseases. To the extent that CENTRALITY is 
accepted as a proxy for biological complexity, this coefficient shows evidence 
that new genetic epidemiological science has a smaller innovative impact 
among the more complex diseases. The same conclusion can be drawn 
from the estimates of column (4), which account for biological complexity 
through NASSOC. Columns (5) and (6) reproduce the analysis of columns 
(3) and (4), but use complexity metrics computed with the VHDN imple-
mentation. These estimates offer further support for the moderating role of 
complexity in translation.20

Although these results broadly support our main insight—that biologi-
cal complexity mediates the extent of translation of new GWAS knowledge 
into therapeutical innovation—they also entail the possibility that larger 
knowledge stocks may deter innovation. Concretely, the coefficient estimates 
of specifications (3) through (5) all imply that, evaluated at a large enough 

19. Dranove, Garthwaite, and Hermosilla (2014) provide some facts that suggest that mea-
sures for market potential for cancer indications that are based on prescription drug expendi-
tures may not be completely inadequate. For example, many of the top- selling biotechnology 
drugs are covered by Medicare prescription drug insurance. Some of this coverage may operate 
through the practice of “brown bagging,” by which patients purchase drugs in retail pharmacies 
and then have them immediately administered in an outpatient setting.

20. Differences in parameter values are largely driven by the different scaling of GHDN and 
VHDN metrics.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



Therapeutic Translation of Genomic Science    39

percentile of  CENTRALITY or NASSOC, an increase in VDASTOCK 
could deter innovation.

To further investigate the relationship between biological complexity and 
innovation, we cluster diseases into groups according to their measured net-
work presence. In particular, we apply a k- means clustering algorithm on 
the list of all four available network statistics to group diseases into different 
subsamples. As a result, we obtain a partition of diseases without imposing 
assumptions regarding the relative importance of different network statistics 
or implementations.21

21. We settled on five clusters because more clustering yields subsamples that are too small 
for estimation.

Table 2.4 Drivers of therapeutic translation (diseases in the cancer area are 
excluded from the sample)

  (1)  (2)  (3)  (4)

GENETARGETk –2.28*** –1.99*** –1.88*** –1.66***
(0.47) (0.29) (0.36) (0.30)

VDASTOCKd,t–1 0.95*** 0.82*** 0.86*** 0.80***
(0.15) (0.12) (0.10) (0.10)

GENETARGETk × VDASTOCKd,t–1 –0.02 0.05 0.03 0.07
(0.16) (0.16) (0.16) (0.20)

CENTRALITYd 0.01*** 0.17***
(0.00) (0.03)

GENETARGETk × CENTRALITYd 0.01*** 0.10**
(0.00) (0.05)

CENTRALITYd × VDASTOCKd,t–1 –0.01*** –0.10***
(0.00) (0.01)

NASSOCd 0.15*** 0.28***
(0.02) (0.07)

GENETARGETk × NASSOCd 0.08** 0.17*
(0.04) (0.09)

NASSOCd × VDASTOCKd,t–1 –0.07*** –0.15***
(0.01) (0.04)

MEPSPATSd,t–1 0.01 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01)

MEPSEXPNDd,t–1 0.01** 0.01* 0.01* 0.02***
(0.01) (0.01) (0.01) (0.01)

Network implementation GHDN GHDN VHDN VHDN
Presample estimator ✓ ✓ ✓ ✓

Observations  22,760  22,760  22,760  22,760

Notes: Results from negative binomial, zero- inflated specifications. All specifications include 
fixed effects for therapeutic areas and years. Clustered standard errors are presented in paren-
theses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Table 2.5 characterizes the result of this clustering procedure. The first 
and largest group (subsample 𝒮1) includes 35 percent of the diseases in the 
sample. Diseases in 𝒮1 exhibit the lowest average values for all network met-
rics, that is, they are the more peripheral or less connected than the remain-
ing diseases in the sample. Thus, diseases in 𝒮1 are associated with lower 
amounts of biological complexity. Diseases in subsample 𝒮1 have lower aver-
age values for all network metrics compared to diseases in subsample 𝒮i+1. 
Also, subsample 𝒮i contains more diseases than subsample 𝒮i+1. For example, 
subsample 𝒮5 includes 6 percent of the diseases in the sample, with average 
statistics exceeding those of 𝒮1 by at least two orders of magnitude. Thus, 
diseases in 𝒮5 correspond to the more central, more connected, and hence, 
the more complex diseases in the sample. Together, these statistics suggest 
that the clustering procedure yields a reasonable ordering of diseases into 
categories of distinct biological complexity.

We estimate a simplified version of specification (1) for each subsample. 
In particular, because there is relatively little variation in the network pres-
ence of diseases included within each subsample, we drop network metrics 
and their interactions from the set of dependent variables. The estimated 
coefficients for VDASTOCK in table 2.6 indicate that the impact of new 
GWAS science on rates of therapeutical innovation is decreasing in com-
plexity, which is consistent with the findings in table 2.3. This suggests that, 
for the set of diseases associated to the lower levels of measured complexity 
(subsample 𝒮1), a 1 percent increase in VDASTOCK is associated with a 
1.12 percent increase in the number of new therapies entering the discovery 
stage. The effect is generally decreasing with the average complexity of the 
subsamples. For diseases in 𝒮5, the effect is not significantly different from 
zero at usual statistical confidence levels. Thus, these results indicate that 

Table 2.5 Complexity clusters

Subsample 

Fraction 
of sample 
diseases  

Average of

GHDN 
CENTRALITY  

GHDN 
NASSOC  

VHDN 
CENTRALITY  

VHDN 
NASSOC

𝒮1 0.35 397.8 4.5 6.2 2.8
(506.7) (7.8) (30.8) (16.2)

𝒮2 0.24 2,693.8 41.1 42.9 7.8
(635.0) (43.7) (81.0) (18.7)

𝒮3 0.21 5,050.0 114.8 117.3 20.5
(710.7) (123.6) (165.1) (53.1)

𝒮4 0.14 7,892.2 312.7 256.2 58.9
(892.1) (267.3) (210.4) (108.3)

𝒮5 0.06 11,485.0 1,144.1 714.0 248.0
    (1262.0)  (708.2)  (285.3)  (309.9)

Notes: Subsamples created through a k- means clustering procedure on all GHDN and VHDN 
network statistics. Within- subsample standard deviations are presented in parentheses.
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the negative coefficients associated with interactions of VDASTOCK and 
network metrics in table 2.3 are primarily derived from variation at lower 
ranges of the considered network statistics, and cannot be taken to imply 
that larger stocks of GWAS knowledge could deter innovation.

A second aspect of interest in table 2.6 corresponds to the sequence of 
coefficients for MEPSEXPND. In particular, these coefficients suggest that 
innovation for more peripheral (less connected) diseases is more respon-
sive to market conditions when compared to innovation for more central 
(more connected) diseases. Based on the higher average centrality of cancer 
diseases, we conjecture that this pattern may reflect a possible correlation 
between diseases’ burden and network environment. If, like cancer, more 
burdensome diseases are also more connected or central in the HDN, they 
may have also constituted the more frequent historical targets of the indus-
try’s innovation efforts. In this scenario, the less connected, more periph-
eral set of diseases would have fewer therapeutical alternatives. Guided by 
expected market profitability, pharmaceutical developers may have therefore 
seen this set of diseases as more lucrative for the application of novel genetic 
epidemiological science.

Table 2.7 displays the marginal effects of knowledge accumulation. These 
are computed by increasing in one the number of available GWAS publica-
tions for each disease, and then computing the implied percentage differ-
ence in the number of new therapies (averaged across diseases within each 
cluster). Measured, both given the stocks of 2004 and 2012, these marginal 
effects largely coincide with the insights of table 2.6.

Table 2.6 Therapeutical translation across disease clusters of varying complexity

Subsample

  𝒮1  𝒮2  𝒮3  𝒮4  𝒮5

VDASTOCKd,t–1 1.12*** 0.74*** 0.32*** 0.52*** 0.06
(0.17) (0.17) (0.09) (0.15) (0.08)

GENETARGETk –1.99*** –0.96 –0.78 –1.60*** –1.40***
(0.76) (0.58) (0.53) (0.30) (0.08)

MEPSPATSd,t–1 0.01 0.02* –0.02 0.05*** –0.01
(0.02) (0.01) (0.01) (0.01) (0.01)

MEPSEXPNDd,t–1 0.03*** 0.02* 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01)

Presample estimator ✓ ✓ ✓ ✓ ✓

Observations  9,140  6,220  5,420  3,680  1,660

Notes: Results from negative binomial, zero- inflated specifications for the dependent variable 
Ndkt. All specifications include fixed effects for therapeutic areas and years. Clustered standard 
errors are presented in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Last, to provide a sense of the overall contribution of GWAS science to 
therapeutical innovation over the covered period, figure 2.7 decomposes 
the bulk of new therapies observed in the sample, singling out the share of 
those which, according to the above model estimates, can be attributed to 
GWAS knowledge. Panel A focuses on gene- targeted therapies, and panel B  
focuses on protein- targeted ones. Because there was virtually no GWAS 
science published before 2007, their innovative impacts are perceivable only 
after 2007. Following the progressive accumulation of knowledge, a higher 
percentage of new therapies can be linked to GWAS publications. By 2012, 
the contribution of GWAS was largest for gene- targeted therapies of lowest 
measured complexity (𝒮1), at around 25percent.

2.5.2 Do Unobservables Drive Our Results?

Our inference may be confounded by two main factors: the conditional 
independence of GWAS knowledge accumulation and the computed mea-
sures of  complexity. In this section, we provide evidence suggesting that 
these concerns are unlikely to overturn our main conclusions.

We begin by addressing the conditional independence of the computed 
network statistics. Because the HDN implementations used above rely in 
part on DisGeNET research published during the sample period (including 
GWAS), one may worry about the existence of unobserved trends driving 
the focus of this research, as well as that of the industry’s innovative efforts.

To investigate this concern we replicate earlier results, but only construct 
NASSOC and CENTRALITY from DisGeNET research published no later 
than 2005. To carry out this analysis, we find the publication date of each article 
in the DisGeNET database. The 2005 threshold was selected in consideration 
of two factors. First, only one GWAS result in our sample was published 
before 2006. Second, selecting earlier thresholds significantly reduced the set 
of DisGeNET results available to implement GHDN and VHDN, yielding 
relatively little variation on NASSOC and CENTRALITY. Indeed, even 
with the 2005 threshold, the computed NASSOC and CENTRALITY vari-
ables present considerably less variation than in the original sample, the pri-
mary reason being that these data contain no associations for a much larger 

Table 2.7 Marginal effects

 Year 

Subsample

𝒮1  𝒮2  𝒮3  𝒮4  𝒮5  

2004 1.17 0.65 0.27 0.43 0.04
 2012 1.14  0.62  0.26  0.35  0.02  

Notes: Marginal effects are computed by increasing in one the number of available GWAS 
publications for each disease, and then computing the implied percentage difference in the 
number of new therapies (averaged across diseases within each cluster).
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number of diseases. As a consequence, in this case, the resulting five- cluster 
grouping yields an 𝒮1 subsample that includes 68 percent of  diseases, 
whereas subsamples 𝒮4 and 𝒮5 include 7 percent and 3 percent, respectively. 
The higher degree of degeneracy of this partition prevents us from repli-
cating the cluster- based analysis of table 2.6, so we focus on the original 
specification (1) used by table 2.3.

A

B

Fig. 2.7 Innovation attributable to GWAS science. A, gene- targeted therapies; B, 
protein- targeted therapies.
Note: Black areas correspond to the share of new therapies associated with GWAS VDAs.
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Estimation results are presented in table 2.8. Although slightly smaller 
than in table 2.6, the estimated coefficients of VDASTOCK have similar 
values and significance. Furthermore, because the smaller set of DisGeNET 
results used to implement the networks yields lower- valued NASSOC and 
CENTRALITY, their associated coefficients have generally larger values 
than in table 2.6. Nevertheless, these retain their signs and statistical signifi-
cance, suggesting that the considered trend does not drive the translational 
complexity effect.

Owing to the usefulness of GWAS knowledge for therapeutical innova-
tion, a potential violation of their conditional independence is perhaps a 
bigger concern. In an extreme scenario, the documented positive impact of 
VDASTOCK on innovation could be entirely rooted in scientific or market 

Table 2.8 Drivers of therapeutic translation

  (1)  (2)  (3)  (4)

GENETARGETk –2.27*** –1.93*** –1.92*** –1.76***
(0.40) (0.27) (0.34) (0.26)

VDASTOCKd,t–1 0.77*** 0.71*** 0.71*** 0.70***
(0.11) (0.09) (0.09) (0.10)

 GENETARGETk × VDASTOCKd,t–1 0.02 0.08 0.12 0.07
(0.13) (0.15) (0.14) (0.15)

CENTRALITYd 0.09*** 0.71***
(0.01) (0.18)

GENETARGETk × CENTRALITYd 0.06*** 0.37*
(0.02) (0.21)

CENTRALITYd × VDASTOCKd,t–1 –0.04*** –0.36***
(0.01) (0.06)

NASSOCd 1.06*** 1.59***
(0.25) (0.31)

GENETARGETk × NASSOCd 0.43* 1.28***
(0.26) (0.49)

NASSOCd × VDASTOCKd,t–1 –0.51*** –0.76***
(0.10) (0.22)

MEPSPATSd,t–1 0.00 0.00 0.00 0.01
(0.01) (0.01) (0.01) (0.01)

MEPSEXPNDd,t–1 0.02*** 0.02*** 0.02*** 0.02***
(0.00) (0.00) (0.00) (0.00)

Network implementation GHDN GHDN VHDN VHDN
Presample estimator ✓ ✓ ✓ ✓

Observations  26,120  26,120  26,120  26,120

Notes: Results from negative binomial, zero- inflated specifications. All specifications include 
fixed effects for therapeutic areas and years. Clustered standard errors are presented in paren-
theses. Network statistics computed with DisGeNET research published 2005 or earlier.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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trends that are unaccounted for by our analysis, but prompt the conflux of 
higher innovation and GWAS publication rates among certain diseases. That 
is, in this extreme scenario, the identified translational rate could entirely 
represent the bias imposed by an omitted variable.

Before analyzing this issue, recall that our main insight—therapeutic 
translation rates are decreasing in biological complexity—relies on a com-
parison of translation rates across the support of measured biological com-
plexity. We argue that this result is unlikely to be overturned by the presence 
of  this type of  trend, as the latter would be required to exhibit a rather 
specific structure. Namely, it should manifest more intensively among the 
less complex groups of diseases. The series of analysis performed in turn 
provide some support to this point.

We first implement a falsification test, based on the following rationale: if  
the large translational effects observed among low- complexity diseases are 
driven by the described omitted trend, we should continue to observe them 
when publication sequences are randomized within diseases with similar 
patterns of  GWAS knowledge accumulation. This randomization would 
disband the empirically detectable causality of VDASTOCK on N, while 
roughly maintaining the structure of the alleged omitted trend.

We implement this test through tiered resampling. Tier 1 includes the 
approximately 83 percent of diseases in the sample for which there are no 
GWAS VDAs in the sample. Tiers 2 and 3 partition the remaining set of 
diseases in groups of approximately equal size, based on the total number 
of  available GWAS VDAs for each disease, and in such a way that Tier 
3 diseases all have more GWAS VDAs than those in Tier 2. Publication 
sequences are then resampled (with replacement) within diseases of each 
tier, so maintaining the average number of published GWAS VDAs within 
each. (This average is always 0 for Tier 1.) We generate 200 pseudosamples 
following this procedure, reproducing the analysis for subsamples 𝒮1 and 𝒮2 
(columns [1] and [2] of table 2.6) on each. Results indicate that the 1.14 and 
0.95 estimates of table 2.6 are largely improbable outcomes given the esti-
mated parameter distributions: in both cases, they are larger than 99 percent 
of the obtained estimates. This analysis suggests that our main insight is not 
driven by the conflux of higher publication and innovation rates caused by 
an omitted trend.

We further note that, although the number of GWAS publications may 
be correlated with innovation series through an omitted trend, such a trend 
is likely to be a less important determinant of the informational content of 
published GWAS results. That is, although scientific and economic tenden-
cies may prompt researchers to engage with specific research agendas at 
certain times, they are less likely to determine the quality of these agendas’ 
outcomes. Equivalently, these tendencies are less likely to determine the 
effective amount of usable knowledge that each GWAS publication adds to 
the knowledge base.
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Based on this premise, and on extensive research (e.g., Garfield 1972; 
Moed 2006) suggesting that citation counts can be taken as a proxy for 
articles’ contribution to existing knowledge base, we devise a test that 
exploits variation in GWAS articles’ (forward) citations. Because a series of 
VDASTOCK constructed from the more cited articles would be less affected 
by the cited omitted trend, observing that our results continue to hold when 
this series is used would help to alleviate the concern at hand.

From the vast scientific and medical bibliography available from PubMed, 
we identified the set of articles that cite each GWAS publication in our data. 
Because articles published in earlier years have had a longer time to accu-
mulate citations, we computed the number of citations observed within two 
years of publication. Considering the median number of citations obtained 
by articles contributing VDAs to each targeted disease, we next constructed 
two versions of  VDASTOCK: one based on the articles that obtained a 
below- median citation count, and the other based on those that obtained an 
above- median citation count. Although these two versions of VDASTOCK 
are constructed based on an approximately similar number of articles for 
each disease, their values at a given point in time usually differ because 
high-  and low- cited articles are not published at the same time. In the overall 
sample, there is no statistically significant difference between the average 
values of these two versions of VDASTOCK, suggesting that an article’s 
impact is independent of its publication date.

Panel A of table 2.9 presents the results obtained when we reproduce the 
specification of table 2.6, but replace VDASTOCK with high-  and low- cites 
articles (for exposition, other variables are excluded from the table). Main-
taining the basic result that complexity mediates translational rates, the set 
of estimated coefficients suggests that knowledge produced by the articles 
with more impact is associated with a generally larger effect on innovation. 
Thus, these results lend support to the idea that our main results are not 
driven by the influence of the described omitted trend.

We finish this section by considering a more specific form of omitted vari-
able. Namely, the possibility that published GWAS VDAs are themselves the 
output of firms’ decisions to innovate a new therapy. In particular, suppose 
that, in order to evaluate whether to introduce a candidate to the develop-
ment process, pharmaceutical firms conduct the same type of analysis con-
tained by GWAS publications. If this analysis demonstrates a genetic linkage 
for a specific disease, we may observe an increase in GWAS publications that 
precedes that for the introduction of new therapies into the development 
process. Such an effect could, by itself, rationalize our results.

We analyze this issue based on the idea that this rationale is more likely to 
be reflected among GWAS publications funded by the industry, rather than 
based on those funded by public entities. If  our main result primarily relied 
on VDASTOCK series constructed from the former, the validity of  our 
main insight should be discounted. To implement the test we mined articles’ 
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acknowledgments and PubMed records in order to identify the set of GWAS 
publications in our data where industry funding is acknowledged. About 
21 percent of the GWAS publications in the sample have these acknowledg-
ments. Next, as before, we constructed two versions of VDASTOCK, one 
based on the articles that report this type of funding, and another based 
on those that do not, and estimated an analog specification. Panel B of 
the table 2.9 presents the results. These, for the most part, suggest that the 
translational effect is attached to those articles that do not report industry 
funding. Therefore, these results do not offer support for the idea that our 
main result follows from the considered reverse causality hypothesis.

2.6 Conclusions

Notwithstanding a rich stream of  research investigating the extent 
and mechanics by which basic science fuels and shapes pharmaceutical 
innovation,22 the role of biological complexity has remained unexplored. 
We combine insights of network medicine with standard approaches for the 

22. This literature is referenced in the introduction.

Table 2.9 Assessing the influence of unobservables

Subsample

GWAS articles used to 
construct VDASTOCK  

𝒮1 𝒮2 𝒮3 𝒮4 𝒮5

(1)  (2)  (3)  (4)  (5)

Panel A. Number of two- year citations
Below- median two- year 

citations 
0.80*** 1.02** 0.16 0.12 0.04

(0.28) (0.48) (0.18) (0.22) (0.08)
Above- median two- year 

citations 
1.13*** 0.45*** 0.36* 0.57** 0.04

(0.22) (0.11) (0.21) (0.28) (0.06)

Panel B. Funding source
No industry funding 1.11*** 0.57*** 0.47*** 0.54*** –0.03

(0.19) (0.10) (0.12) (0.17) (0.08)
Some industry funding 0.61 1.53** –0.42 0.14 0.17

(0.76) (0.78) (0.35) (0.32) (0.11)

Presample estimator ✓ ✓ ✓ ✓ ✓

Observations  9,140  6,220  5,420  3,680  1,660

Notes: Results from negative binomial, zero- inflated specifications for the dependent variable 
Ndkt. All specifications include fixed effects for therapeutic areas and years, an indicator for 
gene- targeted therapies, and MEPS variables that proxy for epidemiological pervasiveness 
and market size. Clustered standard errors are presented in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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measurement of R&D returns (Blundell, Griffith, and Windmeijer 2002; 
Toole 2012) to take a step forward in this direction.

Our results posit that biological complexity is an important determinant 
of the rate of translation. This rate is large among diseases with lower mea-
sured complexity, decreasing as complexity rises, and indistinguishable from 
zero among diseases in the extreme of higher complexity. Particularly, in 
the current “genomic era,” biological complexity stands out as a potentially 
important conditioning factor for the assessment of innovative productivity 
in the industry, and the allocation of funding by scientific agencies. It may 
also represent a useful construct to retrospectively assess the overall impacts 
of the Human Genome Project, as well as to fine- tune expectations going 
forward.

As with much of  the research oriented at measuring the returns of 
R&D, our analysis grapples with significant identification challenges (Hall, 
Mairesse, and Mohnen 2010). Here, these arise primarily because the direc-
tion of scientific research and therapeutical innovation are likely determined 
by common factors, which are not observable in the data, and cannot be fully 
controlled for empirically. We must therefore promote a cautious interpreta-
tion of the estimated coefficients. Nevertheless, a series of checks suggest 
that our main insight—that the translation rate is decreasing in biological 
complexity—is unlikely to be overturned by biases introduced through these 
means. Empirical approaches that exploit exogenous variation stemming 
from the nuances of research- funding rules (as in Azoulay et al. 2015) may be 
useful to further assert the validity of these results. This approach may also 
allow us to address issues that we are forced to neglect here. For example, 
the speed of translation.

Two avenues for follow- up research stand out in our view. First, genetic 
epidemiological knowledge may be useful during clinical trial development, 
by guiding the identification of subpopulations at higher risk of develop-
ing adverse side effects.23 These events point to a two- layered translational 
effect, one operating through the amount of innovation, the other through 
potentially higher rates of clinical trial success. It is not clear a priori whether 
biological complexity will boost or temper the clinical trial success. Second, 
the presence and extent of scale and scope economies has been an important 
area of inquiry in the study of the pharmaceutical industry (e.g., Henderson 
and Cockburn 1996; Cockburn and Henderson 2001). However, most of this 

23. Pollack (2010) reports “Many drug companies now collect and analyze the DNA of 
patients in clinical trials, hoping to find genetic signatures that will allow drugs to be better 
tailored to specific patients.” Pollack (2010) rationalizes this trend with the case of the block-
buster antiplatelet drug Plavix, for which a variation of  the gene CYP- 2C19 was found to 
render patients at higher risk of heart attacks. The point is also illustrated by the 2004 market 
withdrawal of Merck’s Cox- 2 inhibitor Vioxx (rofecoxib) due to adverse cardiovascular events. 
Years later, the research of Brune et al. (2008) and Ruff et al. (2011) found that these events 
were associated with patients exhibiting high levels of an amino acid, which could be detected 
in advance through genetic diagnostics (Goldman et al. 2013).
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research utilizes pregenomic data sets that are highly aggregated. By virtue 
of its rich and exogenous structure, the human disease network permits the 
construction of spillover weights directly from the data at the disease- pair 
level. Applied to contemporaneous data, this approach could enable a more 
translucent, fine- grained analysis of pharmaceutical scale and scope econo-
mies in the genomic era.
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