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ABSTRACT 
 
The neoclassical growth accounting model used by the BLS to sort out the contributions of the 
various sources of growth in the U.S. economy accords a relatively small role to education.  This 
result seems at variance with the revolution in information technology and the emergence of the 
“knowledge economy”, or with the increase in educational attainment and the growth in the 
wage premium for higher education.  This paper revisits this result using an “old fashioned” 
activity analysis, rather than the neoclassical production function, as the technology underlying 
economic growth.  An important feature of this activity-based technology is that labor and 
capital are strong complements, and both inputs are therefore necessary for the operation of an 
activity.  The composition of the activities in operation at any point in time is thus a strong 
determinant of the demand for labor skills, and changes in the composition driven by technical 
innovation are a source of the increase in the demand for more complex skills documented in the 
literature.  A key result of this paper is that the empirical sources-of-growth results reported by 
BLS could equally have been generated by the activity-analysis model.  This allows the BLS 
results to be interpreted in a very different way, one that assigns a greater importance to labor 
skills and education. 
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I.  Introduction 
 
The rapid advance of information technology and globalization has led to major structural 

changes in the U.S. economy.  The extent of these changes is evident in the decline of 

manufacturing industry and the rise of selected service-producing sectors shown in Figures 1 and 

2.  The share of manufacturing in private GDP has been cut in half over the last half century, 

from 30% in 1960 to less than 15% in 2015, and the share of private employment has fallen from 

around 34% to 10%.  This decline was more than offset by increases in those service sectors that 

involve “expert” advice, information, or interventions — finance, business and professional, 

education, health, law, and information services:  the share of value added rose from around 13% 

to 37%, while the share of employment rose from under 14% of total private employment to over 

40%.1  These shifting patterns reflect, in part, the outsourcing of production to lower-wage 

countries, labor-saving technical change, and the evolution of demand for different products.2  

The trends in professional and business organizational services, also shown in Figures 1 and 2, 

indicate a significant shift in employment within firms toward non-production activities, and 

reflect the growth of in-firm research and development, product design, and the emergence of 

sophisticated organizational management systems. 

 The change in the structure of employment and valued added occurred during a period 

that also saw a parallel increase in higher-order cognitive and non-cognitive worker skills of the 

labor force, documented by Autor, Levy, and Murnane (2003) in their path-breaking paper, as 

well as a significant increase in educational attainment.  Moreover, the fraction of the U.S. 

population 25 years or older with at least a B.A. degree quadrupled (to 32%) over the period 

from 1960 to 2015;  the fraction of those with at least a high school degree more than doubled (to 

almost 90%), according to data from the Census Current Population Survey.  Evidence cited in 

this paper suggests that the upward trends in educational attainment and the demand for more 
                                                 
1  The part of the service sector designated “expert” in Figures 1 and 2 refers to those NAICS industries 51, 52, 54, 
55, 56, 61 and 62 (the organization services include NAICS 54, 55, and 56).  The statistics shown here are taken 
from the industry accounts of the Bureau of Economic Analysis.  They are expressed as a share of the private 
economy because the focus of this paper is on innovation, education, and growth accounting in the business sector.  
The ratio of private to total value added was 87% in 2015, and the corresponding ratio for full and part time 
employees was 86%, so the sectoral estimates are somewhat smaller when expressed as a ratio of the totals.  The 
time series shown in Figure 2 is pieced together from different parts of industry Table 6.5 and is thus subject to 
some discrepancies. 
 
2  Haskell et al. (2012) and Autor, Dorn, and Hanson (2013).     
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complex cognitive skills are connected to the structural changes in the economy evident in 

Figures 1 and 2;  those service sectors where the employment increase was most pronounced 

were also those where the high-skill, high-education professions are located.  The observed 

structural shifts are thus consistent with the growth of the knowledge economy.    

It is one thing to regard skill development and education as important for the functioning 

and growth of the economy, but how important are they compared to other factors that influence 

the growth of GDP?  Surprisingly, estimates from the Bureau of Labor Statistics Multifactor 

Productivity Program suggest that educational attainment may not be as important for economic 

growth as the recent focus on education and skills implies.  The BLS data indicate that changes 

in the composition of the labor force, largely due to education, accounted for only a small 

fraction (7%) of the growth in labor productivity in the U.S. private business sector over the 

period 1995 to 2007 (the last year before the Great Recession).  Robert Solow famously 

remarked in 1987 that “you can see the computer age everywhere but in the productivity 

statistics”;  in the current context, one might say that we can see the revolution in educational 

attainment everywhere but in the productivity statistics.  

 Acemoglu and Autor (2012) have questioned how education can have played only a 

relatively small role in the growth of the economy, given the knowledge-intensive nature of the 

information revolution.  Indeed, there is a large literature on the importance of education as a 

source of economic growth and on the importance of skill-biased technical change.  However, 

most of this analysis does not stray far from a production-function formulation of the problem 

and an emphasis on marginal productivities and factor substitutability.   

 The approach taken in this paper builds on the contributions of Acemoglu and Autor 

(2011, 2012), who focus on the role of skills and education at the task and occupations levels of 

the production process, with the goal of linking the growth in complex non-routine skills to skill-

biased technical change.  The activity-analysis model of this paper also starts at the micro level 

of production, but focuses on the substitution possibilities among inputs;  the goal is to show 

how limited substitution possibilities within the production techniques of an activity can lead to a 

much greater role for skill development and education than that implied by the neoclassical BLS 

approach, even though both use virtually the same growth accounting methods.  The basic idea is 

that the choice of technique determines the nature of the inputs required, and once a technique is 

adopted, substitution possibilities among the inputs are typically quite limited (accountants are 
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not substitutes for neurosurgeons).  The skills necessary for each type of activity come embodied 

in people, in part via their educational preparation, and access to people with the necessary skills 

and education becomes a critical factor enabling structural change and economic growth.  

Conversely, an inadequate supply of skilled workers with the requisite skills can serve as a drag 

on growth.  Education provides a pool of general cognitive and occupational expertise, and in 

some cases, specific vocational skills, from which firms can draw the workers they need.  It is 

hard to imagine the economy of 2017 operating with a pool of workers in which less than half 

had a high school degree, as in 1960, and less than 10% had a college degree.   

 These points are developed in greater detail in the sections that follow.  The Solow 

neoclassical growth accounting model used by BLS is described in Section II, along with a 

critique of the theory underpinning its labor force composition adjustment in Section III.  This is 

followed, in Section IV, by the activity-analysis framework proposed in this paper.  The fixed-

proportion nature of the framework is described and illustrated using several examples.  This 

“necessary input” model is contrasted with the aggregate production function approach, with 

special attention to its implication for skills and education.  A sources-of-growth framework 

based on the activity analysis model is derived, and shown to be essentially equivalent to the 

neoclassical version of the growth accounting model.  This result allows the BLS growth 

accounting estimates to be given a different interpretation, one that assigns a greater importance 

to labor skills and education than the conventional approach.  The three sections that follow 

Section IV are empirical, and examine the evidence on the trends in labor and capital to see if 

they are consistent with the predictions of the activity-analysis framework.  Section V traces the 

growing importance of higher educational attainment, higher order cognitive and non-cognitive 

skills, and professional occupations and employment over the last half century.  Section VI looks 

at the parallel development in the growth in Information and Communications Technology 

equipment (ICT) and intangible knowledge capital like R&D.  Sources-of-growth estimates 

expanded to include intangible capital are presented in Section VII, and interpreted in light of the 

activity-analysis framework.  A final section sums up.  

 
II.  The Neoclassical Growth Accounting Model 

 
Many factors affect the growth of GDP, including labor and its skills but also capital formation 

and technical change.  Any general assessment of the contribution of labor skills and education 
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should therefore be framed in the context of all of the relevant factors.  The main empirical 

framework that does this is the neoclassical growth accounting model developed by Solow 

(1957) and greatly extended by Jorgenson and Griliches (1967), who laid the groundwork for the 

official productivity program at the BLS. 

 Neoclassical growth models share a common feature:  they are rooted in the assumption 

of an aggregate production function relating aggregate outputs to the factor inputs of aggregate 

labor and capital, with a shift term that allows for changes in the productivity of the inputs:  Yt  = 

 F(Kt,Lt,t).  In describing the role of the shift term in the function, Solow states: 

“The variable t for time appears in F to allow for technical change. It will be seen that I am 
using the phrase ‘technical change’ as a short-hand expression for any kind of shift in the 
production function. Thus slowdowns, speed-ups, improvements in the education of the labor 
force, and all sorts of things will appear as "technical change." (p. 312) 

 
In its most succinct form, the aggregate formulation combines various types of capital into a 

single total K, and different types of labor into a single L.  Once formed, they are treated as 

substitutes, implying that the same amount of output can be produced by different combinations 

of capital and labor. 

The basic sources-of-growth model is derived from an aggregate production function 

which is assumed to exhibit constant returns to scale in capital and labor, and Hicks’-neutral 

productivity change as reflected in a shift term At.  Under the further assumption that capital and 

labor are paid the value of their marginal products, the resulting Yt =AtF(Kt,Lt) can be 

differentiated with respect to time to give the sources of growth equation: 

(1)                  . a     s k  s y LK

∗∗∗∗

++=
....

l  
 
Dots over variables indicate rates of growth and time subscripts are dropped for ease of 

exposition.  This formulation decomposes the growth rate of output into the growth rates of the 

inputs, weighted by their respective output elasticities (as proxied by income shares), and the 

growth in the productivity with which the inputs are used (total factor productivity, or TFP).  The 

former is interpreted as a movement along the production function and the latter, as a shift.  Both 

processes are assumed to occur smoothly.  All the elements of this equation except the last term 

can be measured using data on prices and quantities, or assumptions about parameters like 

capital depreciation.  This allows the productivity variable to be measured as a residual.  
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 There is no specific provision for the contributions of education or skills in the basic 

formulation.  This issue was addressed by Jorgenson and Griliches (1967), who proposed a 

version of the production function that allowed for different types of labor, differentiated by 

worker characteristics like education, which have different wage rates and marginal products.  

The production function then becomes Y = A F(K,L(H1, … ,HN)), where the Hi’s are the hours 

worked in each of the N categories, total hours are H = Σi  Hi, and L(•) is a function that 

aggregates the N groups into an index of total labor input.  The growth rate of L is the share-

weighted contribution of each group’s hours to total hours, where the sHi are each group’s share 

of total labor income: 

      (2)                          . q  + h    h - h  s  + h  = LCiHi

N

=1i

∗∗∗∗∗

=∑ )(l  

The growth rate of labor input is thus the sum of the growth rate of total unweighted hours plus 

the labor composition effect, qLC.  The associated growth equation is then 

(3)                             . a q  s h  s k  s y LCLLK

∗∗∗∗∗

+++=
.....

 
 
The variable qLC records the effect on output of a shift in worker hours among groups with 

different output elasticities (cum factor shares), and is positive when the composition of the labor 

force shifts toward higher productivity groups.  In practice, multiple worker characteristics are 

included in the index.   

 It is this framework that produced the BLS estimates, cited in the introduction, that show 

qLC accounted for only 7% of labor productivity growth in the private business sector over the 

period 1995 to 2007.  The overall composition effect is dominated by the education effect, and 

the 7% estimate reflects the combined effect of the increase in the wage share of the educated (its 

weight in qLC) and the growth rate of educational attainment as reflected in the H’s.  Estimates 

reported at the end of this paper also show an acceleration in the qLC effect in the 1970s, and a 

slowdown in the late 1990s averaging 7% for the period 1995-2007.  

 
III.   A Choice of Parables 

 
The relatively small contribution of education in recent years seems inconsistent with the growth 

of the knowledge economy.  Indeed, Hanushek and Woessmann (2015) begin their book on The 

Knowledge Capital of Nations with the statement that “knowledge is the key to economic 
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growth” and go on to note the positive correlation between educational attainment and income 

per capita in a cross-sectional comparison of countries.  Acemoglu and Autor (2012) have also 

expressed their reservations, as noted above.  Since it is hard to imagine the complex 

technologies and capital of the digital revolution being operated with a work force equipped with 

only the most rudimentary cognitive skills and knowledge, it therefore seems appropriate to 

examine the sources-of-growth framework more closely to see what features of the model might 

lead to that result.   

Solow himself recognized the simplification involved when he began his classic 1957 

paper with “it takes something more than a ‘willing suspension of disbelief’ to talk seriously of 

the aggregate production function”, and, in his 1987 Nobel Laureate Lecture, “I would be happy 

if you were to accept that [growth accounting results] point to a qualitative truth and give 

perhaps some guide to orders of magnitude” (Solow (1988), p. xxii).  Writing in defense of the 

aggregate approach, Samuelson (1962) argues that it is a parable whose purpose is insight 

building (more on this below). 

Parables are neither inherently right nor wrong, just more or less useful for illustrating 

some underlying truth.  The growth accounting model has enjoyed great success for its insights 

into the general contours of economic growth.  However, the aggregate model may be more 

successful in describing overall economic growth than in characterizing structural economic 

change and the implied role of education.  The problem is that some of the assumptions 

underlying the neoclassical model require a particularly large suspension of disbelief.  The first 

is the one-sector nature of the aggregate production function, Yt  =  F(Kt(•),Lt(•),t).  The single 

product, Yt, is a macroeconomic surrogate for the many products actually produced, and the 

surrogate aggregate production is a methodological parable for summarizing the complex 

processes that contribute to their production.  This formulation is a useful, indeed, essential, part 

of the conceptual framework that underpins the aggregate circular-flow of products and 

payments that characterize the macro economy.  However, its usefulness is questionable for 

addressing issues concerning changes in the structure of the flows that make up the aggregate  --  

in the composition of Yt  --  and the corresponding changes in the allocation of resources that are 

evident in Figure 2. 

A more general representation of the structure of production is needed in order to deal 

with these structural issues.  A step in this direction can be made by formulating the production 
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problem in terms of the production possibility frontier, ɸ[(Y1,t,...,Y,.t);Kt(•),Lt(•),t]].  In this 

formulation, the collection of outputs at any point in time, (Y1,t, ... , Ym,t), is produced by 

aggregate capital, Kt(•), whose components are categories of capital identified by type and 

industry of use, and aggregate labor, Lt(•), whose components are categories of labor identified 

by their characteristics (including education) and industry of use.  The technology shifter t is 

included to allow for increases in the efficiency with which labor and capital are used, although 

individual efficiency parameters Ai.t might be used instead (or the factor augmentation 

equivalents).  Underlying the PPF are separate industry production functions for each sectoral 

output, Yi.t  =  Fi(Ki.t(•),Li.t (•),t).3 

The multiproduct way of looking at the structure of production has an important 

implication for studying the importance of skills and education:  a movement along the 

production possibility frontier not only changes the composition of output, it shifts the 

composition of the inputs required to produce the output.  With these shifts come changes in the 

required composition of labor skills.  This means that a change in the mix of skills may occur 

without technical change, as for example, when the movement along ɸ is caused by changes in 

the structure of consumer preferences or changes brought about by a shift in the pattern of global 

trade, or by non-unitary income elasticities.  Indeed, aggregate output along the PPF may be 

unchanged.4 

 Then there is the question of technical change.  This is represented in the conventional 

aggregate formulation as a shift in the production function holding inputs constant (or, a similar 

shift in the PPF).  This convention implicitly views all technical change in terms of increases in 

the productivity of the input base, or “process innovation”.  This kind of innovation has made 

important contributions to economic growth during the course of the information revolution, but 

it is not the only kind of technical change, nor necessarily the most important.  Innovation in new 

or improved products has also played a central role in the revolution.5   

                                                 
3  The assumptions required to move from the individual sectoral production functions, Yi,t  = Fi(Ki,t(•),Li,t (•),t), to 
an exact form of the aggregate production function, Yt  =  F(Kt (•),Lt (•),t), are very restrictive (see Fisher (1969) for 
a detailed treatment and summary of this and other problems in the theory of aggregation).. 
 
4  The sources-of growth equation (1) is, formally, a Divisia Index (Hulten (1973)).  A movement along the PPF 
frontier ɸ from one point to another involves line integration that does not change the value of the output index (the 
invariance property).  
 
5  Data from the National Science Foundation’s Business R&D and Innovation Survey (BRDIS) suggest that 
process-oriented business R&D is a small share of the total, accounting for only 15% of the $224 billion in domestic 
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Product innovation changes the mix of outputs (Y1.t,...,Ym.t) over time.  Improved goods 

appear and ultimately displace their older counterparts, others drop out because of a lack of 

demand, while new goods enter the market.  In the process, a new vector appears, 

(Y1,t+1t,...,Ym+k,t+1), with a product list expanded by k to allow for new items.  The list of 

individual product functions is expanded accordingly, but with Yi.t+1 = 0 for displaced goods.  

The individual production functions for the new or improved goods may have a different set of 

skill requirements than those they displace.  Evidence suggests that this was, indeed, the case 

during the information revolution, during which the growth in digital-economy goods has led to 

increases in the demand for more cognitively complex skills sets.  However, it is important to 

note that, while the technology for producing the new goods became more complex and required 

more complex skills, the main impetus behind the increased demand for these skills was product 

innovation and not skill-biased process innovation. 

Two further suspensions of disbelief are also needed.  The first involves the assumption 

that the capital and labor are paid the values of their marginal products, thus allowing income 

shares to be used as a proxy for the underlying output elasticities in the sources-of-growth 

formulation.  This is a very strong assumption, mainly defensible as a macroeconomic 

approximation.  Prices may well deviate from marginal products due to monopolistic pricing, 

labor market rigidities, discrimination, and cyclical fluctuations in economic activity.  Moreover, 

the marginal social return to education may exceed the marginal private return implied by market 

wages because of externalities of the type noted by Lucas (1988), a point elaborated in a 

subsequent section.  

Second, the existence of separate aggregate labor and capital entities, L(•) and K(•), and 

of a unique qLC, requires the assumption of weak separability in the aggregate production 

function.  This, in turn, requires the marginal rate of substitution between one type of labor and 

another to be independent of the amount and composition of aggregate capital (Hulten (1973)).  

This is a mathematical proposition, but in economic terms, it means that if a worker in a lower 

education category acquires a higher degree in pursuit of a wage premium, output will increase 

without any change in capital or technology.  This is problematic because those workers with 
                                                                                                                                                             
R&D paid for by companies (Wolfe (2012)). The rest is for product development, though some of the new products 
are inputs to the production process (capital-embodied technical change, for example, or improved materials). The 
fraction of R&D devoted primarily to new consumer goods is not reported. 
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higher educational attainment often do, indeed usually, end up in jobs or occupations with more 

complex technological requirements and capital.  Simply educating more people will not, all else 

held equal, necessarily result in a significant increase in output, a point that will be elaborated in 

the activity-analysis model developed in the section that follows. 

 
IV.  The Activity-Analysis Approach to Production 

A.  The Model 
 
A close examination of the neoclassical model of production thus suggests that it may not 

capture the full effects of education buried in the underlying complexity of “reality”.  Indeed, 

one of the founders of the neoclassical aggregate approach, Paul Samuelson, has indeed 

“insisted” in his 1962 paper on “Parable and Realism in Capital Theory” that 

“capital theory can be rigorously developed without using any Clark-like concept of 
aggregate ‘capital’, instead relying upon a complete analysis of a great variety of 
heterogeneous physical capital goods and processes through time. Such an analysis leans 
heavily on the tools of modern linear and more general programming and might therefore 
be called neo-neo-classical. It takes the view that if we are to understand the trends in 
how incomes are distributed among different kinds of labor and different kinds of 
property owners, both in the aggregate and in the detailed composition, then studies of 
changing technologies, human and natural resources availabilities, taste patterns, and all 
the other matters of microeconomics are likely to be very important” (p. 193). 
 

This is essentially the view taken in this paper.  But, he goes on to say: 
 
“At the same time in various places I have subjected to detailed exposition certain 
simplified models involving only a few factors of production. Because of a Gresham's 
Law that operates in economics, one's easier expositions get more readers than one's 
harder.  And it is partly for this reason that such simple models or parables do, I think, 
have considerable heuristic value in giving insights into the fundamentals of interest 
theory in all its complexities” (p. 193), 

 
The tension between the two perspectives over the appropriate level of analysis is central to the 

objections against the neoclassical production function and the concept of aggregate capital 

raised during the Cambridge Controversies of the 1950s and 1960s (Harcourt (1969)).6  

                                                 
6  Opposition to the aggregate production function and the neoclassical view of economic growth has a long history, 
and is by no means limited to the Cambridge Controversies.  It is also present in the literatures on organizational 
theory, the importance of institutions in economic history, and in Schumpeterian analysis.  Nelson and Winter 
(1962) provide an in-depth analysis of the evolutionary nature of the process of economic growth that focuses on the 
firm and its activities, and the skills and competence of its workers.  The activity analysis model sketched in this 
paper is rooted in this view of the firm. 
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Given these questions and those that have been raised about the size of the neoclassical 

labor composition effect, it seems reasonable to take a closer look at the micro foundations of the 

aggregate production framework, essentially disaggregating it to get at its “primitive” activity-

analysis level.  When approached at this foundational level, many of the issues raised in this 

paper can be addressed, particularly those involving the way labor-skills interact with capital to 

make educational attainment necessary for many activities.  The “old fashioned” activity-

analysis model is well-suited to this task.7  

Where the neoclassical model offers a succinct and mathematically viable way of 

summarizing the supply-side of the economy, the activity analysis is neither succinct nor 

mathematically convenient.  It does provide a more detailed look into the underlying processes 

of growth and the shifting demands for the various skills and types of capital required by 

different production techniques.  It treats the firm and its various activities, not the aggregate 

production function, as the fundamental unit of analysis for studying the shifting demand for 

different types of labor and capital. 

An activity is defined in this paper as an operational segment of a firm that has an 

identifiable output or outcome produced by a technique that specifies a certain mix of inputs.  

What gives the activity-analysis parable its distinctive feature is the assumption that the inputs 

are combined in a fixed proportion.  This assumption implies that there is no substitution among 

inputs, so each input is necessary for the activity, and it thus contrasts strongly with the 

assumption of input substitutability in the neoclassical parable.  A firm may operate several 

activities simultaneously, as, for example, both production and non production (or overhead) 

activities, or the activities of multiple establishments within the firm, each producing a different 

product.  In light of the model of Acemoglu and Autor (2011), it is worth noting that the way the 

labor input functions within an activity may involve a specific set of tasks requiring a specific set 

of skills.8  

                                                 
7  Activity analysis has had a long and honorable, though somewhat neglected, history.  It was well positioned, in the 
early 1950s, to become the dominant supply-side paradigm for the economy.  The 1951 Cowles Commission 
conference volume, Activity Analysis of Production and Allocation, edited by Tjalling C. Koopmans, contains 
papers authored by four future Nobel Laureates in Economics.  Yet, it was neoclassical growth theory that prevailed 
over the next two decades.  

8  In their framework, a task is defined as a unit of work activity that produces an output.  This use of the term 
“activity” in the context of job performance differs from the way an activity is conceived of in this paper, which 
involves a fixed-proportions technology that may encompass many separate tasks and types of input.  However, the 
task-based activity of Acemoglu and Autor and the production-based activity approach are mutually consistent and 
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The following example illustrates the issues involved.  A given amount of earth can be 

moved using different techniques:  one technique uses a few skilled operators equipped with 

expensive bulldozers, the other uses many manual workers each equipped with cheap shovels.  In 

the aggregate representation of these different techniques, the “neoclassical” form of the 

technology for earth-moving would be Y=AF(KH,KL,HS,HU), or the factor augmentation 

equivalent (the capital subscripts denote “higher technology bulldozers” and “lower technology 

shovels”, and “skilled” and “unskilled” for the labor subscripts).  In order to speak of aggregate 

capital, K, and labor, L, this production function must have the previously noted separable form, 

which in this case is Y=A F(K(KH ,KL),L(HS ,HU)).  The different types of labor are substitutable 

among each other within the labor aggregate L(•), as are the different types of capital within K(•), 

and the aggregates themselves are substitutable along an isoquant connecting K and L.  The 

isoquant QQ shown in Figure 3A allows for this substitution, which occurs as the movement 

along the isoquant from A to B as relative factor prices change from aa to bb.  The broken L-

shaped lines represent two activities that use different techniques for producing the same amount 

of output, Y, and illustrate a version of activity analysis in which the neoclassical isoquant is the 

envelope of the various activities.   

As portrayed in Figure 3A, activity analysis is seen to be conceptually consistent with the 

aggregate production function when capital is treated as a homogeneous malleable entity that 

represents forgone consumption valued at investment cost.  While this is a useful 

macroeconomic way of looking at capital and technology  --  Samuelson’s surrogate production 

function  --  it glosses over the technical differences between shovels and bulldozers and the skill 

differences between the workers.  It is therefore not a helpful framework for studying how the 

choice of technique affects the demand for skilled labor.  

 Figure 3B illustrates a less flexible version of activity analysis in which different types of 

capital work with the requisite types of labor and skills and cannot be substituted across activities 

without a corresponding change in labor.9  This case implies that the separate inputs should not 

                                                                                                                                                             
can operate simultaneously, although the former is used to motivate aggregate skill biased technical change, with the 
implication that the BLS sources-of growth estimates understate the role of complex-skill development, while 
activity analysis in this paper is used to motivate the “necessary input” framework that also implies that the role of 
complex-skill development is understated, though it operates through a different channel. 

9    The two variants can be bridged under certain assumptions, as for example Solow et al. (1966).  However, Fisher 
(1969), who pays special attention to different types of labor input, shows that aggregation in the general case is 
problematic, 
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be combined using the K(KH ,KL) and L(HS ,HU) parings of the aggregate production function 

approach, but instead by the functional pairings a(KL ,HU) and b(KH ,HS).  This is represented in 

Figure 3B by the broken L-shaped lines showing the two techniques for producing the same 

amount of output, Y.  However, while both techniques produce the same kind (and amount) of 

output, the inputs on the axes refer to different types of capital and labor.  One implication is that 

the factor price lines aa and bb refer to different input prices.  Moreover, the strict 

complementarity of the techniques implies that the ratios of the marginal products of the 

different types of capital and labor are not well-defined and variations in the wage-rental cannot 

affect the input ratio. Thus, if the wage rate increases, there can be no substitution of capital for 

labor within a technique. 

An important implication for this paper is that, since a shift in techniques from a(KL ,HU) 

to b(KH ,HS) cannot occur without a shift from unskilled to skilled workers and from less to 

more technologically sophisticated capital, a deficiency of skilled workers will slow or prevent 

the adoption of the b(KH ,HS) technology.  It is also possible, in a more sophisticated rendering 

of the model, that a deficiency of workers with a particular skill set could induce innovation 

designed to compensate for the deficiency (the Habakkuk thesis), but the larger point is that in 

order for a firm to actually operate the activity b(KH ,HS), access to both KH and HS in the right 

proportions is necessary. 

 Figure 3C adds yet another complication.  The activities in the first two figures represent 

different techniques for producing the same type of output.  This is not a good assumption to 

apply to all activities in an era with a high rate of product innovation because switching from one 

quality, or model, of output to another often involves a switch in the way the goods are produced 

and in the inputs required.  For example, in summarizing their study of new IT-enhanced 

machinery, Bartel, Ichniowski, and Shaw (2007) make the following points: 

 
“First, plants that adopt new IT-enhanced equipment also shift their business strategies by 
producing more customized valve products. Second, new IT investments improve the 
efficiency of all stages of the production process by reducing setup times, run times, and 
inspection times. The reductions in setup times are theoretically important because they make 
it less costly to switch production from one product to another and support the change in 
business strategy to more customized production. Third, adoption of new IT-enhanced capital 
equipment coincides with increases in the skill requirements of machine operators, notably 
technical and problem-solving skills, and with the adoption of new human resource practices 
to support these skills.” 
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The ability to customize output to suit the needs of the buyer represents an important change in 

product quality, and is linked, in this case, to increased skill requirements.  The advent of the 

automatic teller machine, a labor saving device from the standpoint of production, is another 

example of how the quality of a product was also improved, in this case by making money 

accessible at all times of day or night.  These examples are illustrated in Figure 3C by activity-

specific output indexes. 

 B.  Aggregation and Dynamics 
 
The activities as portrayed in Figures 3A, 3B, and 3C illustrate the logic of the activity-analysis 

model.  From an operational standpoint, activities are generally combined to form a larger set 

that constitute the production plan of a firm.  In formal terms, the technology of a firm j can be 

characterized at any point in time by the activity set Aj,t, whose elements are the totality of 

activities it operates {ai,j,t(Ki,j,t ,Hi,j,t ,Mi,j,t)}.  An output or outcome is associated with each 

activity, although much of the output is delivered to other activities within the firm (e.g., 

overhead and different stages of production along an assembly line).  The vector Mi,j,t is added to 

allow for the presence of intermediate goods produced and used within the firm, but also the 

intermediate inputs acquired externally.  The set ai,j,t(Ki,j,t,Hi,j,t ,Mi,j,t)} is thus a disaggregated 

representation of the firm’s technology, but it is not, strictly speaking, a neoclassical production 

function relating total output to aggregated inputs. 

 The firm is the organizational entity responsible for choosing the appropriate mix and 

level of activities for Aj,t  from a larger set of possible techniques.  Selecting the right mix and 

level of activities is an essential organizational function of the firm, and once the selection has 

been made, the capital requirements of the firm {Ki,j,t} and staffing needs {Hi,j,t} are determined.  

Prescott and Visscher (1980) point to the acquisition and proper use of human capital as centrally 

important for the success of an organization, and Bloom and Van Reenen (2007) have pointed to 

the importance of good managers and management practices.  The role of human agency can 

sometimes get lost in the formal mathematical presentation of the various models. 

 Firms can be grouped into industries for purposes of analysis, though again, there are 

aggregation issues.  Indeed, many are similar to those encountered when aggregating the 

internally generated “output” of activities within firms, but with the additional complication 

posed by different ways of classifying industries (the company versus establishment problem).  
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However, these difficulties are not germane to the main interests of this paper, so we simply 

group firm-level activities into industry-level activities (however industry is defined), and then 

into an aggregate economy-wide activity set At whose elements include the totality of all 

activities, {ai,t(Ki,t ,Hi,t,Mi,t)}.  The significance of this formulation for the problem at hand is 

that, at any point in time, the total capital requirements {Ki,t} and staffing needs {Hi,t} of the 

economy are determined by the choice of activities at the firm level, the diversity of activities 

across firms in an industry, and the diversity of industries in the larger economy.  

 The mix of activities and skills can and does change over time, as witnessed by the 

structural changes in the economy evident in Figures 1 and 2.  This structural change is the 

visible result of the shifting composition of the aggregate activity set At occurring in response to 

the revolution in information and communication technology and the globalization of the world 

economy.  New or improved products have made older goods obsolete, new processes and 

activities within firms have replaced older techniques, and new forms of product distribution 

have displaced older outlets.  New firms and industries have appeared in this process of creative 

destruction, while older industries have declined and firms exited their industry or reinvented 

themselves.  The changes occurring in At have also changed the demands for labor and capital.  

This has meant a larger demand for those higher-order skills, occupations, and education that 

have been made necessary by the information revolution.  One of the major implications of the 

activity analysis framework, as it is set out above, is that the observed structural changes could 

not have occurred without the parallel development of the appropriate skills.  In other words, the 

“necessary input” way of looking at structural change implies that skill development and the 

associated contribution of education is an organic part of the dynamic evolution of the changing 

economy.  

 Education also contributes to this evolution in another way.  Much of the underlying 

innovation originates within firms through activities like R&D, product design, and strategic 

planning.  Much of the innovation that drives the dynamics of firms and the economy comes in 

the form of product innovation.  These activities are education-intensive (Nelson and Phelps 

(1966)), and some of the innovation may come in response to chronic deficits in some skill areas 

(e.g., process automation).  And, even when innovation does not originate in the firm, it is 

implemented and sustained by the efforts of its management. The activities, and the people that 
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operate them, endogenize the innovation process (as in Romer (1986, 1990)), and, in turn, create 

a demand for the skills and occupations of the digital economy. 

  However, it is also important to stress (once more) that education by itself is not 

sufficient for creating more output growth.  Moreover, it should also be noted that, while 

technical change and globalization have shifted the structure of activities toward those that 

require more complex skills, there are still activities that do not require higher levels of 

educational attainment (indeed, the large majority do not, as we will see in a subsequent section).  

The activity-analysis framework focuses on the necessity of the appropriate skills for the activity 

at hand, and this applies to the full range of activities in operation at any point in time, not just to 

those involving more complex labor skills. 

 
C.  Activities and the Measurement of GDP 

 
An output is associated with each activity in a firm’s activity set, Aj,t, even though some are 

shadow outputs delivered to other activities within the firm.  The value of the output sold 

externally (intermediate and other) can be measured using market transaction prices and the 

resulting revenue divided between deliveries to final demand and deliveries to intermediate 

demand.  This yields the accounting equation Pi,tQi,t = Pi,t QD
i,t +  Σj Pi,t QM

i,j,t, where QM
i,j,t is 

the delivery of the intermediate good from activity i to the other activities, and QD
i,t is the 

external output delivered to final demand (for a one product firm).  GDP is then defined as the 

summation across deliveries to final demand, giving GDPt = Σi Pi,t QD
i,t . 

On the input side, the cost of the inputs acquired externally  --  labor, capital, and 

intermediate inputs – can be summed to arrive at total cost, and this can be divided into the value 

added of labor and capital, on the one hand, and the cost of acquiring intermediate inputs on the 

other:  Ci,t = PK
i,tKi,t + PL

i,t Li,t + Σj P j,t QM
i,j,t.  Gross Domestic Income is then the sum of the 

value added components, yielding:  GDIt = Σi PK
i,t Ki,t + Σi PL

i,t Li,t .  Because the production 

and use of intermediate inputs cancel out, the value of aggregate output equals the value of 

aggregate factor income in each year, or, GDPt equals GDIt. 

Of what significance is this accounting result for the issues of importance to this paper?  

It can be used to show that the growth accounting results of BLS do not depend on the existence 

of Solow’s aggregate neoclassical production function.  The sources-of-growth decomposition in 

equation (1) can be derived directly from the accounting identities of the preceding paragraph 
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that equates GDP and GDI, but only when each side of this equation is expressed in “real” 

inflation-corrected terms (that is, when nominal prices are replaced with a base-year price index).  

When this is done, GDP0,t  = Σi Pi,0 QD
i,t  and GDI0,t = Σi PK

i,0 Ki,t +  Σi PL
i,0 Li,t. where , GDP0,t 

and GDI0,t are real GDP and real GDI in year t expressed in base-year prices.  The base-year 

final demand price indexes, PD
i,0, and base-year factor prices, PK

i,0 and PL
i,0, may have different 

time trends, and real GDP0,t  does not in general equal real GDI0,t , except in the base year.  In 

other years, there is a wedge between the two that gives rise to a version of TFP.  In its most 

general formulation, TFP is defined as the ratio of output per unit of total factor input, or equally, 

the ratio of real GDP to real GDI.:  At = GDP0,t/GDI0,t  =  Σi Pi,0 QD
i,t /[ Σi  PK

i,0 Ki,t +  Σi PL
i,0 

Li,t ].  This, indeed, was the way growth accounting was formulated prior to Solow’s 1957 paper 

(Hulten (2001)).10  The larger point is that the neoclassical production function approach is not 

necessary for the BLS-like growth accounting results to be obtained, and it is not the only way 

the TFP results can be interpreted, particularly those relating to the role of skills and education. 

 
V.   Structural Changes in Education, Skills, and Occupations  

 
The preceding sections are largely technical in nature.  The three sections that follow are 

empirical, and make use of the existing literature to examine the evidence on the trends in labor 

and capital to see if they are consistent with the predictions of the activity-analysis framework.  

The third of these sections shows the results of a version of the sources-of-growth account 

expanded to include intangible capital, and interprets the role of skills and education in light of 

the “necessary input” activity-analysis model. 

 

 

A. Educational Attainment 
 

A look back over the last half century reveals major changes in the educational status of the U.S. 

population and work force.  In 1960, only 40% of the non-institutionalized population 25 or 

older had a high school degree or more, and only 8% had college degree, according to 2015 CPS 

                                                 
10  What Solow did in his 1957 paper was to provide an interpretation of the growth accounting ratio by assuming 
the existence of an aggregate production function, Y = AF(K,L), in which case At = Yt /F(Kt,Lt).  Solow’s 
formulation of TFP is thus a special case of the more general formulation, one that summarizes and interprets the 
messy world of the full activity set, At, but also one that loses sight of the messy way activities are organized and the 
way different inputs and their characteristics actually relate to one another. 
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estimates;  by 1985, these figures rose to 74% and 19%;  and by 2013, almost 90% of this 

population had at least a high school degree, and more than 30% had at least a bachelor’s degree.  

Similar numbers are reported in Valletta (forthcoming) on an employment basis.  From 1980 to 

2015, the portion of the employed with a high school degree or more went from 80% to 90%;  

those with a four-year college degree went from 16% to 25%;  and those with a graduate degree 

went from 7% to 14%.  In any case, there has been a significant and on-going increase in 

educational attainment over the last three to five decades.  Valletta also reports that the increase 

may have slowed in recent years.11   

 Many have noted that the growth in educational attainment coincides with a growth in the 

return to a college education (Acemoglu and Autor (2012) provide an excellent in-depth look at 

the data and survey of the associated literature).  The estimates of Goldin and Katz (2010) show 

that the college wage premium relative to a high school degree increased from 40% in 1960 to 

almost 60% in 2005, and they attribute this growth to an imbalance in the demand for educated 

workers and the supply.12  Valletta’s estimates of wage-premia are, again, consistent with the 

Goldin-Katz results, and they also point to a very large premium for graduate degrees 

(particularly professional and doctorate degrees).  A rising wage-premia is also consistent with 

an increase in the derived demand for more highly educated workers in conjunction with a 

lagged response in the supply of college-educated people.  Limited substitution possibilities 

                                                 
11  While the quantity of education, as measured by the growth in degrees, has increased significantly, it should be 
recognized that formal schooling is not identical to education or human capital accumulation (e.g., family and peer 
environment also matter).  There is also an open question about the quality of education.  The 2013 NAEP report 
card suggests that the literacy and numeracy skills of U.S. 12th graders has been stagnant in recent years, and that a 
majority of students are stuck at skill levels that are rated below proficient, with one-quarter of students below 
“basic” in reading and one-third below “basic” in mathematics.  Similar results were reported in the 2015 NAEP 
assessment.  Indeed, the proportions have not changed significantly since the inception of the NAEP (1992 for 
reading and 2005 for math).  American students also lag those in many other countries.  The 2013 Programme of 
International Assessment of Adult Competencies (PIAAC) found that the U.S. ranked 16th of 23 countries in adult 
literacy, 21st of 23 countries in numeracy, and 14th of 23 in problem solving.  However, the same study also found 
that the U.S. stood out from other countries in its propensity to reward those with the highest skills (Broecke et al. 
(forthcoming)). 
 
12   The Goldin-Katz college wage premium reflects an average across those with college degrees.  This should not 
be confused with the marginal return to further education.  Heckman et al. (2016) find that ability is a major 
component of observed educational outcome differentials and argue that going to college is not necessarily a wise 
choice for everyone.  
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between skilled and under-skilled workers in many of the emerging activities of the knowledge 

economy were a likely contributing factor.13 
 

B.  Task-Related Skills and Education 
 
Structural changes in the distribution of task-related skills have received a great deal of attention 

in recent years, following the publication of Autor, Levy, and Murnane (2003).  The authors 

distinguish between non-routine and routine skills, and manual versus analytical skills, and show 

that the non-routine analytical skills have grown in importance in the last five decades at the 

expense of the others.  An updated version of these results, from Autor and Price (2013), found 

that the gap between non-routine cognitive and interpersonal skills and the other categories 

(routine and manual) increased from an index of 100 in 1960 to around 150 in 2010.  In studying 

the college and graduate school wage premia associated with these different skill categories, 

Valletta finds a growing premium for all skills, with the largest premia for non-routine cognitive 

skills.  The premia have increased over time, but have slowed in recent years.  

 There is an intuitive similarity between the patterns observed for higher education and 

higher-order skills, but the actual situation is more nuanced.  Skill levels and education are not 

identical, a point often made in the literature.14  Skills are appropriately defined as adeptness 

with respect to a specific task (complex or not), while education is a process though which 

information is transferred and capabilities developed.  Moreover, it is widely recognized that 

education is only one of the channels through which skills are developed, and that other factors 

like family background and peer environment, and idiosyncratic factors like health and cognitive 

ability, also matter.    

 Data from the recent BLS Occupational Requirements Survey (ORS) support this view.  

The ORS develops a metric “Specific Vocational Preparation” (or SVP) that measures the time 

spent in skill development, which is described as the time spent in pre-employment training 
                                                 
13  The importance of educational externalities noted by Lucas (1988) is worth repeating here.  Because of spillover 
externalities, the social return to education exceeds the private wage premium, and it is the total return that affects 
economic growth.   

14  Cappelli (2015) observes that, “The standard classification of job requirements into ‘knowledge, skills, and 
abilities’ reminds us that education, which has served as a proxy for skills in most discussions, only maps onto part 
of the “knowledge” category, leaving the other attributes of job requirements out of the picture. There are many 
important reasons for being concerned about education, but seeing it as the equivalent of skill is certainly a 
mistake.”   
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(formal education and certification and training programs), prior work experience in related jobs, 

and the time needed in the job itself to get to average performance (Gittleman, Monaco, and 

Nestoriak (forthcoming)).  When these three types of preparation are cross-classified with the 

actual time requirements, the authors report that post-employment training and prior work 

experience are the most important components of SVP, with formal education in third place.  

However, for those jobs requiring the highest levels of skills, formal education is in a distant 

second place and behind prior work experience.   

 That study presents another important finding:  those jobs requiring a B.A. degree or 

more account for less than 25% of all jobs (or less than 30% using the O*NET educational 

classification).  It is interesting to note, in this regard, that only about 30 percent of the adult 

population has one of these degrees.  Gittleman et al. also report that only 15 percent of jobs 

were classified in the most complex category.  This serves as a warning against an excessive 

focus on higher education and complex skills, as well as a reminder that a broad range of skills is 

needed for economic activity, and that those at the lower end are both economically and 

numerically significant.  

 However, while this evidence seems to downplay the importance of a college education, 

the ORS study also finds that higher educational attainment is positively correlated with the 

complexity of skills and choice of professional occupation.  This comes from the part of the 

study that looks at three mental and cognitive dimensions of job requirements:  “task 

complexity”, “work control”, and “regular contacts”.  The first is broken into categories ranging 

from very complex tasks to very simple; the second into categories ranging from very loose to 

very close control;  the third ranges from structured and very structured regular contacts to very 

unstructured.  One of the most interesting features of this analysis is the high correlation among 

the higher skill segments of “task complexity”, “work control”, “regular contacts” dimensions, as 

well as the higher skill components of educational attainment, SVP, and choice of occupation.  

The fit is not perfect, but a high degree of collinearity does suggest that certain regularities exist 

that characterize different jobs.  Thus, while education is but one of several channels through 

which skills and expertise are developed, the collinearity suggests a link between higher 

education and higher-order skill sets.  The ORS also reports data on the wage-skill gradient 

similar to those found in Autor and Handel (2013) and Goldin and Katz, and by Valletta.  Those 

in jobs with the highest task complex skills, the loosest degree of work control, and the least 
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structured interactions all earn significantly higher wages than those at the other end of these 

scales.15 
 

C.  Science, Technology, Engineering, and Mathematics 
 
Developments in science and technology are at the heart of the information revolution and thus 

merit a close look.  This is all the more important because STEM activities evoke highly 

educated workers in research labs and computer facilities working on complex problems.  

However, the 2013 study by Rothwell argues that there are actually two STEM economies.  One 

is a “professional” STEM economy associated with higher education and high levels of 

compensation, which “plays a vital function in keeping American businesses on the cutting edge 

of technological development and deployment. Its workers are generally compensated extremely 

well”.  The other STEM economy “draws from high schools, workshops, vocational schools, and 

community colleges”, and its members are “less likely to be directly involved in invention, but 

they are critical to the implementation of new ideas, and advise researchers on the feasibility of 

design options, cost estimates, and other practical aspects of technological development”.  They 

“produce, install, and repair the products and production machines patented by professional 

researchers, allowing firms to reach their markets, reduce product defects, create process 

innovations, and enhance productivity”.   

Hanson and Slaughter (forthcoming) report that employment in the STEM professions 

has grown from around 3.5% of the total hours worked in the U.S. in 1993 to around 6% in 2013.  

In the broader view of STEM employment, Rothwell finds that 20% percent of all 2012 jobs 

required a “high level of knowledge in any one STEM field” based on his index of the STEM 

skill content of various occupations (up from around 8% in 1900 and around 15% in 1950).  He 

also finds that half of the STEM jobs are “available to workers without a four-year college 

degree”. 

                                                 
15   Much attention has been given to the importance of cognitive skills.  However, recent research has also focused 
on the demand for non-cognitive skills, which include characteristics like self-discipline, perseverance, 
attentiveness, dependability, orderliness, persistence in the pursuit of long-term goals, and the ability to get along 
with others.  Non-routine interpersonal skills were found by Autor and Price to have grown in importance relative to 
non-routine cognitive skills.  Deming (2017) also shows that the labor market increasingly rewards social skills, and 
that jobs with high social skill requirements have shown greater relative growth throughout the wage distribution 
since 1980.  He also observes that the strongest employment and wage growth has occurred in jobs that require both 
high levels of hard cognitive skills and soft social skills.  The importance of non-cognitive skills is also noted in 
Lundberg (2013), Heckman and Kautz (2012). 
 



 21 

The domestic supply of new professionals to the first STEM “economy” has expanded in 

recent years.  NCES data on STEM degrees completed show an expansion from 1990 to 2011 in 

B.A.s (39% for engineering, a doubling for science/math), in M.A.s (90% for engineering, 87% 

science/math), and in Ph.D.s (76% for engineering, 60% science/math)).  This domestic growth 

in STEM skills has not, however, been sufficient to satisfy the demand for STEM workers.  

Hanson and Slaughter report that foreign-born workers currently account for one-half of the 

hours worked in STEM occupations among prime-age workers with an advanced degree, up 

from one-quarter in the 1990s and one-fifth in the 1980s.  In other words, immigration is an 

important source of skills that supplements domestic efforts at skill development.  

 
VI.  Structural Change in the Composition of Capital 

 
The activity-analysis model of Section IV ties labor of various skills to the capital appropriate to 

those skills.  The preceding section has documented the shift in the distribution of skills toward 

more complexity, as well as the occupations that embody them, and linked these shifts to the 

growth in educational attainment.  This section documents a parallel shift on the capital side, 

consistent with the complementarity between capital and labor in the activity-analysis view of 

production. 

 The last 40 years have seen a significant shift in the composition of investment in the 

U.S. private business sector, away from tangible structures and equipment towards investments 

in intangible capital.  There has also been a shift within tangible capital toward information 

technology (ICT) equipment.  Intangible capital is highly firm-specific and produced in-house, 

and includes such categories as computerized information, innovative property like R&D, and 

economic competencies (the categories proposed by Corrado, Hulten, and Sichel (2005, 2009)).  

The first is mainly software, and comprises 13% of the overall intangible investment rate in 

2010.  Innovative property is a diverse group that includes not only the conventional National 

Science Foundation (NSF) type of R&D, with its orientation to science and technology, but also 

other important forms of R&D such as investments in artistic originals (books, movies, and 

music), development of new financial products, and architectural and engineering designs.  The 

largest category of intangible capital is economic competencies, divided into brand equity 

(advertising, marketing, customer support), firm-specific human capital (worker training), and 

organizational structure, a rather amorphous grouping that includes investments in management 
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and human resource systems, strategic planning, and management consulting.  Many of these 

intangibles are the source of a firm’s intellectual property. 

 The rate of investment in these intangibles over the period 1977 to 2010 is shown in 

Figure 4.  The rate rose significantly over the period, starting at just over 8% in 1977 and 

reaching just under 14% by the end of the period.  The growth in importance of this type of 

capital is in sharp contrast to the declining rate of tangible capital investment shown in the 

figure, falling from the 11% to 13% range in the late 1970s to around 8% by the end of the 

period (9.6% in 2007, the last year before the Great Recession).  The overall trends reflect the 

decision by many companies to move up the global value-chain to higher valued added activities 

like product design and marketing, all overhead activities, as well as the decline in tangible 

capital-intensive manufacturing.  It is interesting to note that the overall rate of investment, 

tangible and intangible combined, remained relatively constant over the period, heightening the 

importance of structural change for understanding dynamic changes in the economy, and not just 

the growth of the economy. 

 When the rate of investment of ICT capital is broken out of total tangible capital in 

Figure 4 and shown separately, the ICT investment share is seen to have doubled between the 

mid 1970s and mid 1980s, then remained relatively constant, and then surged again in the late 

1990s before falling back to its post-1980 trend (while the intangible rate continued to increase, 

though at a much slower pace).  However, these patterns do not tell the whole story.  While the 

investment rate of the non-ICT tangible category (not shown) has declined in relative importance 

in recent years, this category of capital is far from technologically stagnant.  The digital 

revolution has found its way into such non-ICT tangible capital goods as autos and trucks, 

medical equipment, and machine tools (recall the 2007 paper by Bartel et al.), as well into some 

structures.  The extent to which technology is embodied in capital is hard to determine, but my 

own rather dated estimate found a large embodiment effect for the period 1947-1983:  the 

unadjusted annual growth rate of equipment, as estimated by the BLS, was 4.4%, while the 

quality-adjusted rate calculated in the paper was 7.3% (Hulten 1992)). The BEA does make a 

quality adjustment to some types of equipment, with those for computing equipment and 

software being notably large. 

The time path of the intangible investment rate is shown again in Figure 5, with the 1960 

value indexed to 100 in order to facilitate comparison with education and skill indicators.  The 
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four variables included in this figure --  the rate of intangible investment, “expert” industry 

employment, the college wage premium, and the Autor-Price gap between non-routine cognitive 

and non-cognitive skills, each indexed to an initial 100  - all show upward trends.  The visible 

association of these trends over the course of the information revolution is far from dispositive, 

but it does not require much of Solow’s suspension of disbelief to recognize in the aggregate data 

that which is readily apparent at the level of the research lab, corporate headquarters, or the plant 

floor. 

 
VII.  Growth Accounting and Activity Analysis  

 
A.  The Sources of Growth Model with Intangible Capital 

 
What does the importance of intangible capital, skills and education in the activity analysis 

parable imply for the sources of growth?  While neoclassical and activity-analysis models 

operate through different economic mechanisms, the sources-of-growth estimates associated with 

the former are consistent with those of the latter, as discussed in Section IV.  The conventional 

BLS sources of growth estimates can thus be interpreted in light of either model.  When this is 

done, the activity analysis reinterpretation assigns a much greater role to education. 

  The sources-of-growth estimates of this paper are shown in Table 1.  Unlike the 

conventional BLS growth accounts, the estimates of this table include the list of intangibles 

studied by Corrado, Hulten and Sichel (2009).16  The expanded growth rate of output per hour in 

the U.S. Private Business sector over the period 1948 to 2007 (the last year before the financial 

crisis) is decomposed into the contributions of tangible and intangible capital per labor hour, 

labor composition, and TFP growth. 17  The top panel shows the percent contribution of the first 

                                                 
16  The estimates shown in Table 1 are based on Corrado and Hulten (2010) and updates.  When the list of inputs is 
expanded to include the stock of intangible capital, the concept of output must be expanded to include the 
corresponding output of intangible investment. 
 
17  When interpreting the capital-labor ratios in Table 1 in terms of activity analysis, it is important to recognize that 
the table involves the ratio of different types of capital to total labor input; in the case of intangible capital, R, this is 
R/L.  This is not the ratio relevant for the activity analysis interpretation, which is, instead, the ratio of intangible 
capital to the labor actually used with intangible capital, R/Lr.  The former is related to the latter by the equation R/L 
= (R/Lr)(Lr/L).  In pure activity analysis, R/Lr is given by the technology, and any growth in the ratio is zero.  
Growth in R/L, as seen in Table 1, must therefore reflect a change in the employment ratio, Lr/L.  The data on 
employment patterns in Figure 2 show significant growth in the relative shares of both expert service and overhead 
organizational services, suggesting that this indeed may have happened.  These types of jobs are precisely those 
most likely to be used with intangible capital, so it is not implausible that much of the observed change in R/L was 
largely due to an increase in Lr/L.  However, this is only a surmise, since there is no tight match between different 
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four to the growth in output per hour, measured as the growth rate of each multiplied by its 

income share, with TFP measured as a residual.  It is apparent that the sources of growth 

changed appreciably over the course of the whole period.  The contribution of intangible capital 

increased almost threefold (10% to 27%) from the first sub-period, 1948-1973, to the last, 1995-

2007.  ICT capital experienced a similar proportionate increase (4% to 13%) and the combined 

contribution was 40% in the last period.  TFP’s contribution fell from 60% to 42%.  Labor 

composition enjoyed a “boom” in the middle period that saw its contribution increase three-fold 

to 17%, but this fell back to 7% during the last period.18 

 Figure 6 presents these trends in an annual time series format.  The annual growth rate of 

output per hour, shown at the top of the figure, follows a generally declining, but volatile, path.  

The same is true of the TFP growth path below it, with the volatility of the former reflected in 

the latter (no surprise, since TFP is measured as a residual).  The growing importance in 

knowledge capital deepening via intangibles is evident, increasing to the point where its 

contribution to growth rivals that of the declining TFP trend.  The relatively small contribution of 

labor quality is also shown, indicating an upward surge in the 1980s, before falling back during 

the 1990s.  

 The neoclassical interpretation of Table 1 and Figure 6 suggests an important role for 

capital deepening via the substitution of capital for labor, and a relatively small role for labor 

composition change.  The activity-analysis interpretation suggests a different view of the matter, 

one that interprets the same patterns in terms of the structural change in the composition of 

activities.  In this alternative view, the large contributions of intangible and ICT capital per 

worker hour evident in this table (and in Figure 6) were enabled by the growth in educational 

attainment, skills, and professional occupations. 19  Indeed, the latter were necessary for the 

                                                                                                                                                             
types of intangible of capital (which are quite heterogeneous) and the requisite types of labor skills (also 
heterogeneous).  Moreover, R/Lr itself may well have increased during the ICT Revolution as superior types of 
intangible and ICT capital entered production and enabled new activities or, alternatively, as the mix of activities 
shifted to those with a greater degree of capital intensity. 
 
18  Given the prominence of R&D spending in discussions of innovation, it is interesting to note the relatively small 
(6%) role played by scientific “NSF” R&D from 1995 to 2007. 
 
19  Beaudry et al. (2016) appeal to the link between knowledge capital and college-educated labor as an explanation 
for a slowdown in the demand for higher-order skills and higher education after 2000, which they term the “Great 
Reversal in the Demand for Skill and Cognitive Tasks”.  They attribute the “reversal” to the slowing growth in ICT 
equipment and software (which are treated as a general purpose organization technology within the firm).  They use 
a neoclassical optimization approach in their modeling of the link, and a more limited concept of intangible capital.  
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growth of the former, implying that education’s role in the growth process was almost certainly 

much larger than the rather small amount assigned to it by the aggregate approach of neoclassical 

growth accounting. 

The contribution of education may be even greater still, since some of its effects may be 

suppressed in the residual measure of TFP.  There are at least three channels through which this 

can happen.  One of the most important for this paper is the spillover externalities associated 

with an educated workforce identified in Lucas (1988).  In his model of economic development, 

educated workers interact in ways not captured by private wage premia, leading to a social return 

to education that exceeds the private return.  The increase in GDP associated with the excess 

return is not captured by the measured contribution of labor growth or the labor composition 

term, and is thus suppressed into the TFP residual (which is thereby overstated).   

Much the same can be said of R&D spillovers (Romer (1986, 1990)).  By its nature, 

knowledge is non-rival and subject to diffusion, and the social rate of return may therefore 

exceed the private rate of return to the original innovator.  Hall et al. (2010) review the literature 

on the relative private and social returns to R&D investment and conclude that the latter is 

“almost always estimated to be substantially greater than the private returns (p. 1073).”  This, 

too, is suppressed into the TFP residual.  Finally, Acemoglu and Autor (2011, 2012) show that 

task-oriented skill-biased technical change may be suppressed into the TFP residual.  Where the 

conventional Solow model assumes that technical change has the Hicks’-neutral form and is thus 

without a factor bias, they show that when there is a bias that favors skilled workers and 

occupations, education’s observed contribution to growth may be understated and measured TFP 

overstated.  

 
 

B.  The Sources of Growth:  Firm Dynamics 
 
The statistics of Table 1 portray growth as a rather “bloodless” and formulaic process in which 

inputs and technology are mathematically transformed into output.  The actual process of growth 

                                                                                                                                                             
The focus of this paper is on the contribution of education and skills to economic growth and productivity, using a 
much broader conception of knowledge capital (all intangible capital and ICT equipment) and stocks as well as 
flows.  The data underlying Figure 6 of this paper indicate that the contributions of ICT equipment and software did 
decline after 2000, but also there was not much of a decline in the contribution of the rest of non-software intangible 
capital (although there was a large amount of cyclical variability). 
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is anything but “bloodless”, involving, as it does, the birth and death of firms and the struggle for 

survival and success of incumbent firms.  Since this paper has emphasized the importance of 

structural changes in the micro activities that underpin the aggregate flows of inputs and output, 

and emphasized the importance of human agency in organizing and staffing these activities, a 

closer look at the firm dynamics that underpin the evolution of these activities is warranted. 

 The industries in the private economy are typically composed of both large and small 

firms, as well as older and newer ones.  Research has shown that all firms are not equal when it 

comes to growth, and that those that are relatively young and rapidly growing are responsible for 

a disproportionate amount of net job creation (Haltiwanger et al. (2010); Strangler, (2010); and 

Sadeghi et al., (2012)).  Strangler finds that, in a typical year, fast-growing young firms 

(“gazelles”) made up less than 1% of all companies, but generated about 10% of all new jobs.  

Sadeghi et al. report that the 0.5% of all companies classified as “high-growth firms” between 

2008 and 2011 were responsible for a third of all gross job creation among firms whose 

employment increased over the period.  Moreover, smaller firms are also an important source of 

R&D spending.  According to NSF data, small companies with fewer than 500 employees in 

2009 had an average R&D investment rate that was three times that of the largest firms and 

employed a third of R&D workers, despite their much smaller sales and overall employment.  

  Hathaway and Litan (2014) highlight the importance of firm births and deaths.  They 

note that one new business is born approximately every minute, and that another business fails 

every eighty seconds.  They go on to show that jobs are both created and destroyed in the 

process, with net job creation of 600 thousand jobs in 2012.  This “churn”, as they call it, 

suggests a Schumpeterian view of firm dynamics in which growth is neither smooth nor 

formulaic.  It is a process in which good decisions and good luck tend to be rewarded and 

inadequate or obsolete business models, punished.  By implication, human agency and 

competence in the formulation and execution of business models, and in making the investments 

needed to enhance a firm’s capabilities and products, are critical in order for new entrants to 

become gazelles and for incumbents to prosper.   

 The churning of firms through entry and exit has implications for economic growth.  It is 

an important mechanism through which new products and processes enter the economy, and 

through which new markets are developed.  Intangible capital and higher-order skills, cognitive 

and non-cognitive, play a major role in this process.  The most important asset of a successful 
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new enterprise is the capability (though not necessarily higher education) of those who start and 

guide its development, who manage its operation, and who foster technological and 

organizational innovation.  The study by Kerr and Kerr (2017) shows that these key ingredients 

are sometime “imported”, as witnessed by the finding that around a quarter of all entrepreneurs 

in 2008 were immigrants, up from some 17% in 1995.20  They also report that 38% of new firms 

had at least one immigrant entrepreneur, and that the share of employees in new firms who were 

immigrants was 26%. 

 
VIII.   Summary and Conclusions 

 
The neoclassical model and the activity-analysis model of this paper offer different windows on 

the role of education in the process of economic growth, two ways of looking into the same 

complex processes involved.  The activity-analysis perspective provides insights into the role of 

skill-development and education in the functioning of the economy, a perspective that is 

important because workers with different skills and levels of education are not free-standing 

ingredients in a recipe for making aggregate output.  They are the necessary ingredients of the 

specific recipe for which they are needed, in conjunction with the capital and other inputs 

required in order to operate the activity at a given scale.  A deficit in either the requisite skills or 

the associated capital limits the operation or growth of those activities.  To repeat, it is hard to 

imagine today’s emerging knowledge economy operating with a work force in which less than 

half the workers had a high school degree, and less than 10% had a college degree. 

 What the future actually holds for continued economic growth and employment is a 

matter of great conjecture.  Powerful technological and global forces continue to shape the world 

of work, and one can only guess where they will lead in the “Race against the machine” of 

Brynjolfsson and McAfee (2014).  Looking backward at the data, the importance of the high 

skill-occupation-education nexus for past economic growth seems well established.  Looking 

ahead, it may well be that robots will ultimately make most human work skills obsolete.  It may 

be that education will increasingly be seen as preparation for a productive life of leisure.  But for 

now, it seems reasonable to conclude that a strong educational system – one that provides a full 

                                                 
20  The notion of “entrepreneur” used here is defined as someone who is among the top three initial earners in the 
new business.  Kerr and Kerr also report that their findings are roughly comparable to those in the large literature 
they review, though a few report appreciably lower percentages. 
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range of skill-development – remains an essential part of America’s economic prosperity.  As 

Levy and Murnane (2013, p. 5) put it:  “For the foreseeable future, the challenge of ‘cybernation’ 

is not mass unemployment but the need to educate many more young people for the jobs 

computers cannot do”. 
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Table 1 

 
Sources of Growth in U.S. Private Business Sector 

(average of annual growth rates) 
 

 
1948-
2007 

1948-
1973 

1973-
1995 

1995-
2007 

     
1. Output per hour  2.41 2.99 1.56 2.76 
     
percentage point contribution to 
output per hour of: 

        

2. Tangible capital  0.65 0.76 0.52 0.64 
   a. ICT equipment 0.23 0.11 0.28 0.36 
   b. Non-ICT tangible capital 0.32 0.65 0.24 0.27 
3. Intangible capital  0.42 0.30 0.39 0.74 
   a. Computerized information 0.06 0.01 0.07 0.15 
   b. Innovative property 0.19 0.15 0.16 0.32 
       (1)  R&D (NSF/BEA) 0.10 0.08 0.07 0.17 
       (2) Other (incl. non-NSF 
R&D) 

0.09 0.07 0.09 0.15 

   c. Economic competencies 0.17 0.14 0.15 0.27 
4. Labor composition 0.20 0.15 0.26 0.20 
5. TFP  1.14 1.78 0.39 1.16 
     
percent of total contribution to 
output per hour of: 

        

2. Tangible capital 27% 25% 33% 23% 
   a. ICT equipment 10% 4% 18% 13% 
   b. Non-ICT tangible capital 13% 16% 13% 10% 
3. Intangible capital  17% 10% 25% 27% 
   a. Computerized information 2% 0% 4% 5% 
   b. Innovative property 8% 5% 10% 12% 
       (1)  R&D (NSF/BEA) 4% 3% 4% 6% 
       (2) Other 4% 2% 6% 5% 
   c. Economic competencies 7% 5% 10% 10% 
4. Labor composition 8% 5% 17% 7% 
5. TFP  47% 60% 25% 43% 

ICT refers to Information and Communications Technology Equipment, BEA to the 
Bureau of Economic Analysis, NSF to the National Science Foundation, TFP is Total 
Factor Productivity.  Detail may not add up due to rounding error. 
Source:  Corrado and Hulten (2010). 
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U.S. Private GDP Shares of Manufacturing, Expert Services, and 
Professional & Business Services, 1950-2015
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Source:  Bureau of Economic Analysis, GDP-by-Industry, Industry Data, Value Added by Industry as a 
Percentage of Gross Domestic Product.  The “expert” service sectors include the NAICS industries 51, 
52, 54, 55, 61, and 62, and organizational service sectors 54, 55, and 56.  MFG denotes manufacturing.   
 

 
 

U.S. Private Employment Shares of Manufacturing, 
Expert, and Professional & Business Services, 

1950-2015
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Source:  Bureau of Economic Analysis, Industry Economic Accounts, from various parts of Table 6.5, 
Full-Time Equivalent Employees by Industry.  See Figure 1. 
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Figure 3C 
                                                                    Activity-Analysis Model                                                      
                                           Two Activities and Malleable Inputs plus Different Outputs 
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Figure 4 

ICT is Information and Communications Technology Equipment 
Source:  Data Underlying Corrado and Hulten (2010, 2011). 
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Expert Services Employment, Non-
Routine Skill Gap, Intangible Investment, 

and College Wage Premia, During the 
Expansion of the Knowledge Economy
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Figure 5 

Sources: 
1. Expert Service Industries Employment:  Bureau of Economic Analysis, Industry Economic Accounts, 
Table 6.5, Full-Time Equivalent Employees by Industry (see Figure 2).  
2.  Skill Gap (ratio of non-routine cognitive and interpersonal indexes to the other indexes):  Autor, D.H. 
and B.M. Price,  “The Changing Task Composition of the US Labor Market: An Update of Autor, Levy, 
and Murnane (2003)”, MIT, June (2013).  
3.  Intangible investment rate;   see Figure 4.  
4.  Wage premium based on Valletta (2016) (average of college-only and graduate premia, 1980 =100) 
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Figure 6 

Source:  Data Underlying Corrado and Hulten (2010, 2011). 
(LP is output per hour, and LComp is the labor composition term) 


