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Measuring Moore’s Law: 

Evidence from Price, Cost, and Quality Indexes1 

 

Kenneth Flamm 

“Moore’s Law” in the semiconductor manufacturing industry is used to describe the predictable 

historical evolution of a single manufacturing technology platform (“silicon CMOS”) that has been 

continuously reducing the costs of fabricating electronic circuits since the mid-1960s. Some features of 

its future evolution were first correctly predicted by Gordon E. Moore (then at Fairchild Semiconductor) 

in 1965, and Moore’s Law became an industry synonym for continuous, periodic reduction in both size 

and cost for electronic circuit elements.  

Technological innovation for this manufacturing platform was coordinated and synchronized 

across a variety of different engineering fields, including materials, optical systems, ultraclean precision 

manufacturing, factory automation, electronic circuit design and simulation, and improved computer 

software for computational modelling in all of these fields. It was a self-reinforcing dynamical process, 

since the largest market for the semiconductor manufacturing industry’s products has always been the 

computer industry.2 Cheaper computing hardware meant cheaper modeling and engineering to further 

reduce the costs of the semiconductors manufactured for use in future computers.  New public-private 

institutions and organizations were developed to coordinate the simultaneous arrival of the very 

heterogeneous technological building blocks required for this increasingly complex semiconductor 

manufacturing technology platform. 

The result was an industrial dynamic that, since the mid-1960s, had effectively worked as a 

“virtual shrinking machine” for electronic circuits. On a regular basis, new “technology nodes” delivered 

30 percent reductions in the size of the smallest dimension (“critical feature size,” F) that could be 

reliably manufactured on a silicon wafer. This implied a 50 percent reduction in the area occupied by the 

smallest manufacturable electronic circuit feature (F2), and a doubling in density—the number of circuit 

elements (e.g., transistors) per area of silicon in a chip.  

Section 1 of this paper develops some stylized economic facts, reviewing why this progression in 

manufacturing technology delivered a 20 to 30 percent annual decline in the cost of manufacturing a 

transistor, on average, as long as it continued. It constructs a simple economic framework that explains 

 
1 I am most grateful to Anjum Khurshid, Kevin Williams, Caroline Alexander, Pablo Cruzat, Javier Beverinotti, 

Manuel Chavez, Changgui Dong, and Miha Vindis for their excellent research assistance over the years this data 

was collected and maintained, and to financial support from the Kauffman Foundation and the National Science 

Foundation. This research is based in part upon work supported by the National Science Foundation under Grant 

No. 0830389. I would also like to thank Ana Aizcorbe, David Byrne, Carol Corrado, Stephen Oliner, James Prieger, 

Marshall Reinsdorf, Steve Sawyer, Dan Sichel, Neil Thompson, participants in the CRIW “Measuring and Accounting 

for Innovation in the 21st Century” conference and the IMF Fifth Statistical Forum, “Measuring the Digital 

Economy”, and two anonymous referees, for their many useful comments on earlier versions of this paper. 

Supplemental appendix tables referred to in the text are available online at http://xxxxxxxxxx . 
2 Defining the computer industry expansively, to include the computer systems embedded in the smart electronic 

systems and mobile devices whose sales have grown most rapidly in recent decades. 
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how improvements in manufacturing technology, which resulted in feature size reductions, created 

manufacturing cost reductions for all types of electronic circuits. 

Section 2 reviews other economically significant benefits (in addition to increased density and 

lower cost per circuit element) that would be associated with smaller feature sizes. Some of those 

characteristics would be expected to have significant economic value, and historical trends for these 

characteristics are reviewed.  Chip speed, in particular, would have major impacts on computer 

performance. Econometric analysis of software benchmark data provided in this section of the paper 

shows rates of performance improvement in microprocessors fell off dramatically in the new 

millennium, a retreat from very high rates of increase measured in the late 1990s. Lower manufacturing 

costs alone pose no special challenges for price and innovation measurement, but these other benefits 

do, and motivate quality adjustment methods when semiconductor product prices are measured. 

Section 3 analyzes empirical evidence of recent changes to the historical Moore’s Law trajectory 

and finds corroborating evidence for a slowdown of Moore’s Law, in prices for the highest volume 

products: memory chips, custom chip designs outsourced to dedicated contract manufacturers 

(foundries), and Intel microprocessors. In this section, in addition to reviewing price indexes available in 

the public literature, I construct a new, high frequency hedonic price index for Intel desktop 

microprocessors utilizing very detailed chip characteristics. I use a variety of data sources, including both 

Intel list prices, and retail processor transaction prices. My results are consistent with the other public 

data I review and support the notion of a marked slowdown in Moore’s Law-driven price declines over 

the last decade. 

Section 4 reviews evidence to the contrary, which relates primarily to Intel microprocessors. It 

analyzes Intel’s own publicly released information on the topic, discusses economic reasons why Intel 

microprocessor prices might behave differently from prices for other types of semiconductor chips, and 

reviews other published studies, one of which came to the opposite conclusion: that quality-adjusted 

price decline for Intel processors continued to unchanged high rates in recent years. After investigating a 

variety of forms of evidence in detail, I conclude that the finding of an unchanged rate of price decline 

for Intel microprocessors is most likely an artifact of omitted variables in the estimated econometric 

model. 

Section 5 dives into Intel microprocessors in even greater depth, and tests the computer 

architecture textbook view of how a small set of specific chip characteristics affect performance of 

microprocessors in executing programs. I outline a simple structural model of microprocessor computing 

performance, then estimate that model empirically. Simple econometric models, using only a small set 

of explanatory chip characteristics, explain 99% of variance across processor models in performance on 

different, commonly used CPU performance benchmarks. However, the impact of different chip 

characteristics on performance varies quite dramatically across benchmarks. 

The economic implication is that these characteristics, which determine benchmark scores, 

should clearly be included in any hedonic price equation. Most of these chip characteristics would also 

be expected to affect chip production cost and therefore have an independent rationale for inclusion in 

a hedonic price equation. It may seem reasonable to assume that a scalar, fixed-weight average of 

different benchmark scores for a chip perfectly captures the impact of changing chip characteristics on 

computer performance, and therefore on user demand (though this is a very strong assumption, given 

substantial heterogeneity and change over time in the mix of computer applications relevant to 
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different computer market segments). But even if it were true that some fixed weighted average of 

benchmark scores was a perfect measure of changes in chip performance relevant to demand shifts, 

inclusion of this variable would not eliminate the need to also include cost-shifting product 

characteristics as additional controls in a hedonic model of market equilibrium chip prices. This 

argument is actually illustrated by a simulation created to depict the impact of perfect collinearity 

among chip characteristics on hedonic price coefficients, in section 3. 

A sixth and final section of the paper points to some economically important conclusions that 

can be drawn from this evidence. Available empirical evidence, on balance, suggests that Moore’s Law-

related historical declines in chip manufacturing cost have clearly been greatly attenuated over the last 

decade, resulting in much more slowly declining quality-adjusted chip prices. If we accept earlier 

economic research showing a strong link between technological innovation in semiconductors and IT, 

and productivity growth across the broader economy, then a slowdown in semiconductor 

manufacturing innovation, inducing slower quality-adjusted price declines for both chips and IT utilizing 

those chips, will affect measures of productivity growth in industrialized economies. Finally, the winding 

down of Moore’s Law means that much of the continuing hardware cost decline driving ever more-

intensive use of IT across the economy over the last 50 years will no longer hold, and that computing 

costs—including energy use per computation, the principal variable cost— will decline much more 

slowly in the future than was true in the past. Improvement in software, rather than dramatically 

cheapening hardware, may well emerge as the main focus for IT innovation over the next 50 years.  

1. Stylized Facts About Semiconductor Manufacturing Innovation 

  In 1965, five years after the integrated circuit’s invention, Gordon E. Moore (who would shortly 

move on to co-found Intel) predicted that the number of transistors (circuit elements) on a single chip 

would double every year.3 Later modifications of that early prediction—“Moore’s Law”—became 

shorthand for semiconductor manufacturing innovation. 

  Moore’s prediction requires other assumptions in order to create economically meaningful 

connections to the information age’s key economic variable: the cost (or price) of electronic 

functionality on a chip (embodied in the 20th century’s supreme electronic invention, the transistor).4 

Chip fabrication requires coordinating multiple technologies, combined in very complex manufacturing 

processes.  

  The pacing technology has been the photolithographic processes used to pattern chips. From 

the 1970s through the mid-1990s, a new “technology node”— a new generation of photolithographic 

and related equipment, and materials required for successful use—was introduced roughly every three 

years or so. Starting in the mid-1970s, this three year cycle coincided with the time interval between 

introductions of next-generation DRAM computer memory chips, storing four times the bits in the 

 
3 G. Moore (1965).  
4 Jorgenson (2001), Flamm (2003), (2004); Aizcorbe, Flamm, and Khurshid, (2007).  
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previous generation chip.5 This observed 18-month “doubling period” became a new, de facto, “revised” 

Moore’s law.6  

  The close early fit of DRAM product development cycles with leading edge chip manufacturing 

technology introductions was no coincidence. DRAMs at that time were the highest volume, 

standardized, commodity chip product manufactured, and a rapidly expanding computer market drove 

leading edge chip manufacturing technology development. Moore’s prediction morphed into an 

informal, and later, formal technology coordination mechanism (the International Technology Roadmap 

for Semiconductors, or ITRS) for the entire global semiconductor industry—equipment and material 

producers, chip makers, and their customers.  

Relationships between Moore’s Law and fabrication cost7 trends for integrated circuits can be 

described by the following identity, giving cost per circuit element (e.g., transistor):  

 

                                             $ processing cost                  x     silicon wafer area      

(1) $/element       =    area “yielded” good silicon                           chip                                         

                                                                       elements/chip  

Moore’s original “Law” described only the denominator—a prediction that elements per chip would 

quadruple every two years. Back in 1965, Moore hadn’t originally anticipated rapid future advances in 

technology nodes. Acknowledging that an IC containing 65,000 elements was implied by 1975, Moore 

wrote: “I believe that such a large circuit can be built on a single wafer. With the dimensional tolerances 

already being employed…65,000 components need occupy only about one-fourth a square inch.”8   

  Rewriting this more concisely without relying on Moore’s prediction about numbers of elements 

per chip (therefore eliminating the need for assumptions about chip size):   

                                     $ processing cost    x  silicon area           

(2) $/element          =         area yielded silicon      element  

which depends directly on the defining characteristic of a new technology node, smallest patternable 

feature size, as reflected in chip area per transistor.  This “Moore’s Law” variant came into use in the 

semiconductor industry as a way of analyzing the economic impact of new technology nodes. New 

technology nodes increased density of transistors fabricated in a given area of silicon in a readily 

predictable way. Time between new nodes—and a new node’s impact on wafer processing costs—

jointly determined decline rates in transistor fabrication cost.  

 

 
5 The DRAM memory was invented in 1968 by Robert Dennard at IBM, and first commercialized by Moore’s newly 

founded company, Intel, in 1970. 
6 A decade later, Moore himself revised his prediction to a doubling every two years. G. Moore (1975), pp. 11–13. 
7 Analysis of fabrication costs, which account for most chip cost, ignores assembly, packaging, and test.  
8 Moore (1965). The largest wafer sizes in use then were comparable in diameter to a modern snack mini-pizza 

appetizer. 
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  Through 1995, new technology nodes were introduced at roughly three year intervals. Each new 

node reduced the smallest planar dimension (“critical feature size,” F), in circuit elements by 30%, 

implying 50% smaller silicon areas (F2) per circuit element.   

  Completing the economic story, cost per silicon wafer area processed, averaged over long 

periods, increased only slowly.9 At new technology nodes, processing cost per silicon wafer area indeed 

increased. But, episodically, larger wafer sizes were introduced, sharply reducing processing costs per 

area. The net effect was nearly constant long run costs, with only slight increases. Figure 1, presented in 

2005 by Intel’s chief manufacturing technologist, shows new wafer sizes “resetting” wafer-processing 

costs. Significantly, larger diameter wafer sizes (450mm) were expected at the 22 nanometer (nm) node. 

However, 450mm wafers were not introduced as Intel adopted 22nm technology in 2012, had not been 

introduced by 2017, and even future introduction now seems highly uncertain. The most recent wafer 

size “reset,” adoption of 300mm diameter wafers, occurred at the 130nm technology node, around 

2002. 

 

  
Source: Holt (2005). 

Figure 1.  Wafer size conversions offset Intel’s increased wafer‐processing cost  

  Using these stylized trends—wafer-processing cost per area of silicon roughly constant, and 

silicon area per circuit element halved with new technology nodes introduced every three years— 

 
9 Over 1983-1998, wafer-processing cost/cm2 silicon increased 5.5 percent annually. Cunningham et. al. (2000), p. 

5.  This estimate relates to total silicon area processed (including defective chips). Since defect-free chips’ share of 

total processed area increased historically (chip fabrication yields increased), wafer-processing cost per good 

silicon area rose even more slowly, approximating constancy.  
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equation (2) above predicts that every three years, the cost of producing a transistor would fall by 50%, 

a 21% compound annual decline rate.   

  In reality, leading edge computer chips—like DRAM memory (the primary product originally 

produced at Intel after Moore and others founded that company, which immediately became the largest 

volume product in the semiconductor industry and the primary product driving Intel’s initial growth)—

dropped in price substantially faster than 20% pre-1985. The steeper decline rate in part reflected 

further increases in density due to circuit design improvements (e.g., reduction in memory cell 

footprint)10, 3-D interconnect layers enabling tighter packing of circuit elements,11 and gradual 

introduction of 3-D into physical designs of transistors and other circuit elements.12 In addition, 

operating characteristics of a given circuit design—in particular, switching speed and power 

requirements—improved with new manufacturing technology, and made additional contributions to 

quality-adjusted price. Finally, smaller and cheaper transistors made it economic to add ever greater 

electronic functionality to chips, and more and more of a complete electronic system was progressively 

integrated onto a single chip, which greatly improved system reliability.13 

 In the mid-1990s, the semiconductor manufacturing industry arrived at a significant 

technological inflection point.14 New technology nodes began arriving at two-year intervals, replacing 

three-year cycles. (Intel’s perception of this trend, as of 2005, is documented in Figure 2.) The origins of 

this change lie in the early 1990s, when the U.S. SEMATECH R&D consortium sponsored a roadmap 

coordination mechanism in pursuit of an acceleration in the introduction of new manufacturing 

technology, intended to benefit the competitiveness of US chip producers. By the mid-1990s, with the 

increasing reliance of semiconductor manufacturing on a global industrial supply chain, the American 

national roadmap evolved into the international ITRS.15 Explicitly coordinating the simultaneous 

development of the many complex technologies required to enable a new manufacturing technology 

 
10 Flamm (2010), Figure 2, documents a 62 percent decline in minimum memory bit cell footprint between 1995 

and 2004. 
11 Anticipated by Moore back in 1965: “no space wasted for interconnection…using multilayer metallization 

patterns separated by dielectric films.” Moore (1965). 
12 Recent examples of 3-D transistor structures include RCAT (recessed cell array transistor) and FinFET (fin field 

effect transistor) structures. 3-D capacitor designs have been used in DRAM since the late 1990s.  
13 Since electrical interconnections between components have historically been the most frequent point of failure 

in electronic systems. 
14 Industry roadmaps originally dated this transition to two-year node rollouts to 1995; post-2004 roadmaps 

revised that date to 1998. Aizcorbe, Oliner, and Sichel, (2008) have persuasively argued that the turning point was 

closer to mid-1990s than late in the decade.  

The mid-1990s were also a technological inflection point for Intel’s manufacturing capabilities.  Intel had 

exited the DRAM business in 1985, which previously had been driving its leading edge manufacturing technology 

development, and refocused its R&D on logic circuit design. Burgelman (1994), pp. 32-46. As a consequence, by the 

late 1980s, Intel manufacturing capability was trailing well behind the leading edge of the manufacturing 

technology it had once pioneered. 

In order to catch up, Intel began adopting new nodes every two years, even as the rest of the industry 

continued at the historical three-year pace. Comparing launch dates for Intel processors at new technology nodes 

with initial use of those nodes by DRAM makers: Intel was 2 years behind in 1989 (at 1000nm); 3 years behind in 

1991 (800nm); 1 year behind in 1995 (350nm). Intel caught up with the DRAM makers in 1997, at 250nm, and 

remained on a roughly 2-year cycle through 2014. Author’s calculations based on Intel (2008), IC Knowledge 

(2004), http://ark.intel.com.  
15 Flamm (2009); Spencer and Seidel (2004). 
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node every two years apparently succeeded in raising the tempo of semiconductor manufacturing 

innovation for over a decade.16  

 
Source: Holt (2005). 

Figure 2. Feature size scaling as observed by Intel in 2005 

 Using (2), but adopting shorter two-year cycles for new technology nodes, implies rates of 

annual decline in transistor cost accelerating to almost 30%. In short, if the historic pattern of 2-3 year 

technology node introductions, combined with a long run trend of wafer processing costs increasing 

very slowly were to have continued indefinitely, a minimum floor of perhaps a 20 to 30 percent annual 

decline in quality-adjusted costs for manufacturing electronic circuits would be predicted, due solely to 

these “Moore’s Law” fabrication cost reductions. On average, over long periods, the denser, “shrink” 

version of the same chip design fabricated year earlier would be expected to cost 20 to 30 percent less 

to manufacture, purely because of the improved manufacturing technology.  

 It now appears that this two-year cycle for technology nodes definitively ended in 2014, with 

deployment of the 14nm node. The most historically prominent adopter of leading edge chip 

manufacturing technology, Intel, currently projects a delayed introduction of its next 10nm processor 

products to no earlier than late 2019.17 This means that time between introductions of new technology 

 
16 The last (incomplete) official roadmap prepared by ITRS was released in 2012. Intel and others reportedly 

withdrew from ITRS around this time. 
17 See http://wccftech.com/intel-delays-10nm-cannon-lake-cpus-end-2018/  .  
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nodes now is approaching five years for Intel, a dramatic change from its two-year cadence through 

2014.18 

 At Intel, the post-1995 two-year technology development cycle had been explicitly incorporated 

into marketing efforts, and dubbed the Intel “tick-tock” development model in 2007.19 Every two years, 

there would be a new technology node introduced (“tick”), with the existing microprocessor computer 

architecture ported to the new node (effectively “die shrinks” using the new process), followed by an 

improved architecture fabricated with the same technology the following year (“tock”). The death of the 

“tick-tock” model was officially acknowledged by Intel in its 2016 annual report.20 

Intel publicly disclosed a version of equation (2) to its shareholders in 2015, purged of sensitive 

cost numbers by indexing all variables to equal one at the 130nm technology node, the technology node 

at which the transition to a larger wafer size occurred.21 The 2015 Intel decomposition of manufacturing 

cost per transistor, using equation (2), is shown as Figure 3, and in Table 1. Generally, Intel’s average 

silicon area per transistor did not decline by the predicted 50% between technology nodes, primarily 

because of the increasing complexity of interconnections in processor designs.22  If accurate, these 

numbers indicate average chip area per transistor shrank by 38% at each new node from 130nm 

through 22nm.23 Nor did Intel’s wafer-processing costs stay constant over the post-130nm period as a 

whole, since the adoption of 450mm wafers, and subsequent cost reset, never happened at 22nm, as 

had been predicted back in 2005. However, as long as average area per transistor declined at faster 

rates than processing costs per area increased, transistor cost would continue to decline. Intel’s cost per 

transistor estimates are revisited below. 

 How would reductions in production cost translate into price declines? One very simple way to 

think about it would be in terms of a “pass-through rate,” defined as dP/dC (incremental change in price 

per incremental change in production cost). The pass-through rate for an industry-wide decline in 

marginal cost is equal to one in a perfectly competitive industry with constant returns to scale, but can 

exceed or fall short of 1 in imperfectly competitive industries. Assuming the perfectly competitive case 

as a benchmark for long-run pass-through in “relatively competitive” semiconductor product markets, 

this would then imply an expectation of 20-30% annual declines in price, due solely to Moore’s Law.  

 

 
18 Intel chip manufacturing competitor TMC was said in early 2017 to be manufacturing a “10nm” node in volume 

for Apple (See R. Merritt, “TSMC, Samsung Diverge at 7nm,” EE Times, Feb. 8, 2017, 

(http://www.eetimes.com/document.asp?doc_id=1331324 ), but it is widely believed in the industry that its 

current technology is physically equivalent to a half node advancement over the previous generation Intel 

technology node. See https://www.semiwiki.com/forum/f293/intel-tsmc-samsung-10nm-update-8565.html ; 

http://wccftech.com/intel-losing-process-lead-analysis-7nm-2022/ ; Rogoway (2018); Cuttress and Shilov (2018). 
19 See http://www.intel.com/pressroom/archive/releases/2007/20070918corp_a.htm  . 
20 Intel (2016), p. 14. 
21 Intel actually produced microprocessors in volume on both 200mm (8”) and 300mm (12”) wafers using its 

130nm manufacturing process technology. See Natrajan, at. al., (2002), pp. 16-17. 
22 See Flamm (2017), p. 34, for a more detailed explanation. 
23 Absolute constancy in reported decline rates for average area per transistor over five generations of new Intel 

manufacturing technology is puzzling, suggesting long-run trend-based estimates rather than actual averages 

computed from empirical manufacturing data.  
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Source: Holt (2015). 

Figure 3. Intel 2015 version of equation (2)  

 

 
Table 1. Decomposing Intel Transistor Cost Declines into Wafer Cost and Transistor Size Changes 

 

Historically, most semiconductor chip production ultimately seems to have migrated to more 

advanced technology nodes.24 Other kinds of innovations in semiconductor manufacturing, or 

innovations in the design and functionality going into electronic circuits, might be expected to stimulate 

even greater rates of quality-adjusted price declines. Thus, the 20-30% annual decline in manufacturing 

 
24 At SEMATECH, the US semiconductor industry consortium (with which the author worked as a consultant in the 

first decade of the 2000’s), the planning rule of thumb was that a fab would be a candidate for an upgrade to a 

new technology node no more than twice over its lifetime, and then would be shut down as uneconomic. 

Compound Annual Percentage Change:

Year Intel 1
st 

Shipped 

Product at 

New Tech 

Node

Tech 

Node 

(nm)

Wafer 

Processing 

Cost ($ / 

mm
2
) X

Silicon Area 

(mm
2
 / 

transistor) =

$ Cost / 

Transistor

Wafer 

Processing 

Cost ($ / 

mm
2
)  

Silicon Area 

(mm
2
 / 

transistor) 

$ Cost / 

Transistor

2002 130 1 1 1

2004 90 1.09 0.62 0.68 5% -21% -18%

2006 65 1.24 0.38 0.47 7% -21% -16%

2008 45 1.43 0.24 0.34 7% -21% -15%

2010 32 1.64 0.15 0.24 7% -21% -16%

2012 22 1.93 0.09 0.18 8% -21% -14%

2014 14 2.49 0.04 0.11 14% -31% -22%

Source: Bill Holt, "Advancing Moore's Law," presentation to Intel Investor Meeting, 2015, 

Santa Clara, slide 6, graph digitized using WebPlotDigitizer. Year node introduced from ark.intel.com .
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cost associated with Moore’s Law could be interpreted as a floor on the quality-adjusted price declines 

in the most competitive segments of the semiconductor market. 

2. Other Benefits from “Moore’s Law” Manufacturing Innovation 

 

Impressive declines in transistor manufacturing cost, accompanying denser chips with smaller 

feature sizes at more advanced technology nodes, measure only a part of the economic benefits of the 

Moore’s Law innovation dynamic. With smaller transistor sizes also came faster switching times and 

lower power requirements.25 The complementary benefits of speed and power improvements were 

highly significant for chip consumers (like computer makers) and their customers.  

This was particularly true for chip makers manufacturing microprocessors. Existing computer 

architectures running at faster speeds run existing software faster and enable more data processing in 

any given time. Until 2004, computer processor clock rates increased rapidly, as did performance of 

computers incorporating these faster microprocessors. Figure 4 shows clock rates for Intel desktop 

microprocessors in computers tested on industry standard benchmark programs over the last twenty 

years, as well as benchmark scores for these computers. As clock rates increased, so did performance.26 

Cheaper processors were also faster—stimulating increased demand for new computers in offices, 

homes, and workplaces. 

Log (Processor Speed)           Log(Performance)  

    
Figure 4. Processor clock rate and performance for Intel desktop processors running SPEC CPU 

benchmarks, by first availability date of tested hardware   
Source: Author’s analysis of SPEC submissions, SPEC.org. Performance scores for 1995, 2000, and 2006 SPEC benchmarks have different values 

for same processor, and different vintage benchmark scores are not directly comparable. “minhdate” is date on which first SPEC benchmark for 

computer system with that processor is run. “log_SPECyyxx” is log of median SPEC year yy benchmark xx score, by processor model. SPEC06xx 

results include separate scores with compiler autoparallelization turned on (autop) and off (noautop) for same model, when reported. 

 

 
25 The underlying theory (“Dennard scaling”) suggested that a 30% reduction in transistor length and 50% 

reduction in transistor area would be accompanied by a 30% reduction in delay (40% increase in clock frequency), 

and 50% reduction in power. Esmaeilzadeh, et.al., (2013), p. 95. 
26 For given software and computer architecture, time required for programs to execute is inversely proportional 

to processor clock rate, assuming data transfer does not constrain performance. Lower rates of performance 

improvement after 2004, as processor clock rates plateaued, were obvious to computer designers. See Fuller and 

Millett (2011), chap. 2; Hennessey and Patterson (2012), chap. 1. 
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 The logarithmic scale used in Figure 4 obscures a fairly dramatic slowdown in improvement in 

CPU performance after the millennium. Table 2 shows compound annual growth rates in performance 

over time of Intel desktop processors on standard CPU benchmark software (the SPEC benchmarks).  

(See Appendix A1.) 

 

Three different versions of the SPEC CPU test suite were released—one around 1995, one in 

2000, and the most recent in 2006. Each suite contains a selection of “integer” application tests (e.g., 

programming and code processing, artificial intelligence, discrete-event simulation and optimization, 

gene sequence search, video compression), and a set of “floating point” math-intensive application tests 

(e.g., solution of systems modeling problems in physics, fluid dynamics, chemistry, and biology, finite 

element analysis, linear programming, ray tracing, weather prediction, speech recognition). These test 

suites are designed to test single process (programming task) performance on a CPU.27  

 

In addition, so-called “rate” versions of these test suites, which run multiple versions of the 

single process benchmarks simultaneously on a single CPU, are available. The “rate” benchmarks are 

intended to show how the CPU would perform as a server running multiple independent jobs, or 

alternatively, running an “embarrassingly parallel” programming problem—a task which could be 

divided up into multiple software processes not requiring any communication or coordination between 

processes.28 

 

Changes in trends over time in the SPEC benchmark performance scores for Intel desktop 

processors are quite dramatic.29 Over the 1995-2000 period, integer computing performance increased 

by about 58 percent annually, floating point performance by 64%. The suite was revised in 2000, and 

from the end of 2000 through 2004, both integer and floating point performance improvement rates 

were almost halved, to an increase of about 33-34% per year.30 Finally, over the most recent time 

period, after the 2006 revision of the SPEC benchmarks, from 2005 through 2016, annual performance 

gains were reduced substantially again, to rates of 17% (integer) and 25% (floating point) annual 

improvement.31   

 
27 The overall benchmark score is calculated as a geometric mean of scores on the individual programs within the 

benchmark. 
28 Unfortunately, there is no SPEC rule about how many instances of the single benchmark programs should be run 

for the rate benchmarks on a multicore CPU. It could be as many as the number of cores in the CPU, or twice that 

number (the number of threads that can be run simultaneously on a CPU with additional processor hardware 

supporting symmetric multi-threading—a feature called hyperthreading by Intel), or some number of instances 

less than either of those bounds. 
29 Pillai analyzed the apparent slowdown in microprocessor quality improvement (as measured by software 

benchmarks) from 2001-2008. See Pillai (2013), Figure 1. 
30 There was a statistically significant—but substantively insignificant—additional decline of under a percent per 

year after 2004, through 2007. 
31 There was another statistically significant, but substantively insignificant, decline by a fraction of a percent in 

performance improvement rates after 2012. 
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Table 2. Annual growth in processor performance improvement over different time periods and benchmarks 

Source: Author analysis of SPEC benchmark performance of Intel desktop processors. 

3. An End to Moore’s Law? 

 Unfortunately, the golden age of more rapidly cheapening transistors (which were also faster and drew 

less power) that began in the late 1990s did not survive unchallenged past the new millennium.  

 2004: the end of faster. The first casualty was the “faster thrown in for free,” along with smaller, 

cheaper, and greener. Around 2003-2004, higher clock rates stalled (see Figure 4), as disproportionately 

greater power was required to run processors reliably at ever higher frequencies. With tinier transistors 

running at higher power in denser chips, dissipating heat generated by higher power density became 

impossible without expensive cooling systems. (The highest processor speed shipped by Intel until very 

recently was 4 GHz; IBM’s fastest z-series mainframe CPU, with advanced cooling, hit 5.5 GHz in 2012, 

but subsequent CPUs ran at lower frequencies.32) Intel and others abandoned architectures reliant on 

frequency scaling to achieve better processor performance after 2004. Clock rates in subsequent 

processor architectures actually fell and processing more instructions per clock tick became the focus for 

improved computing performance.  

  Two-year node introductions continued to produce smaller and cheaper transistors, though. 

Ever cheaper transistors were utilized to create more CPUs—“cores”—per chip, thus processing more 

instructions per clock at lower clock frequencies. This new “multicore” strategy’s weakness was that 

 
32 Raley (2015), p. 23. 
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application software required “parallelization” to run on multiple cores simultaneously, and software 

applications vary greatly in the extent to which they can be easily parallelized. Further, improving 

software was more costly than simply adopting the cheaper hardware delivered by new technology 

nodes: quality-adjusted prices for software historically have fallen much more slowly than quality-

adjusted prices for processors.33 

  The difficulty and cost of parallelization of software is an economic factor limiting utilization of 

cheap multicore CPUs on hard-to-parallelize applications.34 In addition, a fundamental result in 

computer architecture (Amdahl’s Law) maintains that if there is any part of a computation that cannot 

be parallelized, then there will be diminishing returns to adding more processors to the task—and in 

many applications, decreasing returns are noticeable fairly quickly. One widely used computer 

architecture textbook summarized the challenges in utilizing multicore processors: “Given the slow 

progress on parallel software in the past 30-plus years, it is likely that exploiting thread-level parallelism 

broadly will remain challenging for years to come.”35  

  2012: the end of rapid cost declines? Until roughly 2012, transistor fabrication costs continued 

falling at rapid rates. At the 22/20nm technology node, which went into volume production around 2012 

(at Intel), continuing cost declines began to look uncertain. Figure 5 shows contract chipmaker 

GlobalFoundries’ 2015 transistor manufacturing costs at recent technology nodes.36 

  Numerous fabless chip design companies, which outsource chip production to contract 

manufacturing “foundries,” began to publicly complain that transistor manufacturing costs had actually 

increased at the 20/22nm node.37  (Fabless companies accounted for 25% of world semiconductor sales 

in 2015; foundries, which also build outsourced designs for semiconductor companies with fabs, had a 

32% share of global production capacity.38) Charts like Figure 6, showing increased costs at sub-28nm 

technology nodes, were frequently published between 2012 and 2016. Figure 6 is not inconsistent with 

Figure 5, since Figure 6 likely includes the fabless customer’s non-recurring fixed costs for designing a 

 
33 Economic studies of mass market, high volume packaged software prices have typically found quality adjusted 

rates of annual price decline in the 6 to 20 percent range. See for example, Neil Gandal, “Hedonic Price Indexes for 

Spreadsheets and an Empirical Test for Network Externalities,” RAND Journal of Economics, Vol. 25, No. 1 (Spring, 

1994); S. Oliner and D. Sichel, “Computers and Output Growth Revisited: How Big Is the Puzzle?”, Brookings Papers 

on Economic Activity, Vol. 25, No. 2, 1994; A. White, J. Abel, E. Berndt, and C. Monroe, “Hedonic Price Indexes for 

Personal Computer Operating Systems and Productivity Suites,” Annales D’Economie et de Statistique, No. 79/80 

(2005), A. Copeland, “Seasonality, Consumer Heterogeneity and Price Indexes: The Case of Prepackaged Software,” 

Journal of Productivity Analysis, vol. 39, no. 1, (2013), M. Prudhomme and K. Yu, “A Price Index for Computer 

Software Using Scanner Data,” Canadian Journal of Economics, vol. 38, no. 3 (2005). 
34 The opposite--software problems easily divided up across processors and run with little or no inter-processor 

communication or management required—are described in the computer engineering literature as 

“embarrassingly parallel”. 
35 Hennessey and Patterson (2012), p. 411. 
36 Like Table 1, this figure probably does not include R&D costs. 
37 Fabless chipmakers Nvidia, AMD, Qualcomm, and Broadcom all publicly complained about a slowdown or even 

halt to historical decline rates in their manufacturing costs at foundries. Shuler(2015), Or-Bach (2012), (2014), 

Hruska (2012), Lawson (2013), Qualcomm (2014), Jones (2014), (2015). 
38 Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016).  Charts like Figure 4 should 

be viewed cautiously, as underlying assumptions about products, volumes, and costs are rarely spelled out in 

published sources. 
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chip and making a set of photolithographic masks used in fabrication, while Figure 5—the foundry’s 

processing costs—would not.39 These fixed costs have grown exponentially at recent technology nodes 

and create enormous economies of scale.40 Some foundries have publicly acknowledged that recent 

technology nodes now deliver higher density or performance at the expense of higher cost per 

transistor.41 

  

Figure 5. Global Foundries’ transistor manufacturing cost at recent technology nodes  
Source: McCann (2015).  

 

Figure 6. Cost per logic gate, with projection for 10nm technology node 
Source: Jones (2015) 

 
39 Historically, a set of 10 to 30 different photomasks was typically employed in manufacturing a chip design.  For a 

low to moderate volume product, acquisition of a mask set is effectively a fixed cost.  
40 Brown and Linden (2009), chap. 3. McCann (2015) cites a Gartner study showing design costs for an advanced 

system chip design rising from under $30 million at the 90nm node in 2004, to $170 million at 32/28nm in 2010, to  

$270 million at the 16/14nm node in 2014.  
41 Samsung’s director of foundry marketing: “The cost per transistor has increased in 14nm FinFETs and will 

continue to do so.” Lipsky (2015).  “GlobalFoundries believes the 10nm node will be a disappointing repeat of 

20nm, so it will skip directly to a 7nm FinFET node that offers better density and performance compared with 

14nm.” Kanter (2016). 
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  Because of these trends, fabless graphics chip specialists Nvidia and AMD actually skipped the 

20/22nm technology node, waiting a high-tech eternity—five years—after launch of 28nm graphics 

processors in 2011 to move to a new technology node (14/16nm) for their 2016 products.  

2018: “dark silicon” and limits on green? The microprocessor industry’s response to the end of 

frequency scaling was to use ever cheaper transistors to build more cores on a chip. Though limited by 

software advances in parallelizing different kinds of applications, this strategy at first seemed effective. 

More recently, continued future improvement of CPU performance on even easy-to-parallelize 

applications has been questioned.  

As transistors get very small, power requirements to switch these transistors are not reduced at 

the same rate as transistor size. The “green” lower power benefit of smaller transistors diminishes. 

Furthermore, as the power density of chips increases, heat dissipation becomes an issue. Thus, the heat 

problem that blocked further frequency scaling returns in a new guise and prevents the increasing 

numbers of smaller cores squeezed into a multicore chip from simultaneously operating at a chip’s 

fastest feasible clock rate.   

  The fraction of a chip’s cores that must be powered off at all times in order for a chip to operate 

within thermal limits, dubbed “dark silicon” by researchers modeling the problem, had been projected 

to grow as large as 50% by 2018.42 Indeed, current PC users are already seeing their multicore machines 

“throttling” with attempts to use all cores for intensive computations at the highest clock rates, hitting 

thermal limits and then either falling back to lower clock rates, or idling cores. Continued reductions in 

power requirements are still feasible, but no longer are a free benefit of Moore’s Law—they now come 

at the cost of reduced speed, and additional on-chip circuitry needed to turn off power to unused 

portions of a processor chip. 

2021+: an end to smaller in conventional silicon? Even some manufacturing technologists from 

Intel now believe that the Moore’s Law cadence of technology nodes, with ever smaller feature sizes in 

conventional silicon, will end sometime in the next five years. Intel’s Bill Holt put it in these terms 

recently:  

“… Intel doesn’t yet know which new chip technology it will adopt, even though it will have to 

come into service in four or five years. He did point to two possible candidates: devices known 

as tunneling transistors and a technology called spintronics. Both would require big changes in 

how chips are designed and manufactured, and would likely be used alongside silicon 

transistors.”43 

 

Can We See A Slowing Down of Moore’s Law Cost Declines in Price Statistics? 

  If Moore’s Law has slowed or even stopped, we would expect to see it in economic metrics, like 

prices and manufacturing costs.44  

 
42 Esmaeilzadeh, et. al. (2013), pp. 93-4.  
43 Bourzac, (2016).   
44 A very useful bibliography of prior matched model and hedonic studies of semiconductor prices may be found in 

Aizcorbe (2014), pp. 107-108. 
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Prices 

 An obvious place to look is in the price statistics for computer memory chips, which remained 

the mass volume semiconductor product par excellence through the end of the 20th century. DRAMs 

were later superseded by flash memory as the technology driver for new memory manufacturing 

technology. After the millennium, new technology nodes were first adopted in flash memory chips 

before DRAMs; flash had become the highest volume commodity chip by sales around 2012.45  

  Table 3 shows changes in price indexes for high volume memory chips. The DRAM “composite” 

index is a matched model, chain-weighted price index based on consulting firm Dataquest’s quarterly 

average global sales price for different density (bits per chip) DRAM components available in the market 

over the years 1974-1999.46 This data has no longer been available in recent years.  

 

Table 3. Price indexes for memory chips 
Author’s calculations from sources described in text.  

Bank of Korea Flash export price index and Bank of Japan MOS memory PPI are for 2001:1-2005:1 

 

  In the mid-1980s, Korean producers Samsung and Hynix entered the DRAM business, and, along 

with US producer Micron Technology, now account for the vast bulk of current DRAM sales.47 The Bank 

 
45 See http://www.icinsights.com/news/bulletins/Total-Flash-Memory-Market-Will-Surpass-DRAM-For-First-Time-

In-2012/ . 
46 The data prior to 1990 is the same data used in Flamm (1995), Figure 5-2. From 1990 on, the data are taken from 

Aizcorbe (2002). 
47 Taiwanese firms entered the DRAM market in force in the early 1990s, but have since largely exited, as have all 

Japanese producers (US producer Micron acquired Japanese DRAM fab facilities). The last remaining European 

Compound Annual Decline Rate, Quarterly Price Indexes

Flamm-

Aizcorbe 

DRAM 

Composite

Bank of 

Korea, 

DRAM 

Export, $ 

Contract 

Price Index

Bank of 

Korea, 

Flash 

Export, $ 

Contract 

Price Index

Bank of 

Korea, 

DRAM 

Producer 

Price Index, 

Converted to 

$ at Current 

Market Rate

Bank of 

Korea, 

Flash 

Memory 

Producer 

Price 

Index, 

Converted 

to $ at 

Current 

Market 

Rate

Bank of 

Japan, 

Chain-Wtd 

MOS 

Memory 

Producer 

Price 

Index, 

Converted 

to $ at 

Current 

Market 

Rate

1974:1-1980:1 -45.51

1980:1-1985:1 -43.45

1985:1-1990:1 -24.74

1990:1-1995:1 -17.40 -10.81

1995:1-1999:4 -46.37 -44.28 -33.26

1999:4-2005:1 -28.94 -31.28 -31.76 -24.04

2005:1-2011:4 -37.94 -26.92 -30.65 -29.28 -28.79

2011:4-2016:4 2.33 -12.70 -1.42 -5.76 -13.57
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of Korea’s export price index (based on dollar basis contracts) and the Bank of Korea’s producer price 

index (PPI, converted to a dollar basis using quarterly average exchange rates) for DRAM and flash 

memory chips are available.48 

  Finally, since 2000, the Bank of Japan has published a chain-weighted “MOS memory PPI” with 

weights that are updated annually.  This index is likely to be predominantly a mix of DRAM and flash 

memory, tilting more toward flash in recent years. Generally, except for the period from 1985-1995, 

when a string of trade disputes (between the US and Europe, and Japanese, Korean, and Taiwanese 

memory chip producers) had significant impacts on global chip prices,49 prices for DRAMs and flash fell 

at average rates exceeding 20-30% annually. 

  It is notable that rates of decline in memory chip prices in the last five years generally have been 

half or less of their historical decline rates over the previous decades. Korean price indexes (which track 

the majority of the DRAM manufactured and sold) have basically been flat for the last five years. US 

memory chip manufacturer Micron (like other flash memory manufacturers) is no longer planning to 

invest in new technology nodes beyond 16nm in its leading edge flash memory production. Instead, a 

new device design built vertically (3-D NAND) using existing manufacturing process technology is more 

cost effective than the continued planar scaling of components at new technology nodes described by 

the Moore’s Law dynamic.50 In DRAM, the mantra that “technology-driven growth slows due to scaling 

limits” (“scaling limits” being industry jargon for a slowing or ending of Moore’s Law manufacturing cost 

reductions) had become a staple in Micron’s investor conferences.51  

  Another “commodity-like” price in the semiconductor industry in recent years has been the cost 

that chip design houses face in having their chips manufactured on their behalf at so-called “foundries”. 

The outsourced manufacturing of semiconductors designed at “fabless” semiconductor companies at 

foundries accounted for about 25% of world semiconductor sales in 2015. Foundries, which also build 

outsourced designs for semiconductor companies with fabs, held 32% of global production capacity in 

that year.52 

 
producer (Qimonda) filed for bankruptcy in early 2009. By 2011, the top 3 producers (Samsung, Hynix, and Micron) 

accounted for between 80 and 90% of global sales. See Competition Commission of Singapore (2013). 
48 These are not well documented, but are believed to be fixed weight Laspeyres indexes, with weights updated 

every five years, that have been spliced together (2010 is the current base year). The export indexes are actually 

measured in dollars, while the Korean won-denominated and Japanese yen-denominated producer price indexes 

have been converted to dollars at current exchange rates. As a practical matter, except for a brief period during 

the 1980s when export controls related to the US-Japan Semiconductor Trade Agreement were put in place, DRAM 

prices historically and through the present have been set and quoted in dollars in a highly integrated global 

market. See Flamm (1993), pp. 163-4, 167-8. Flamm (1995), chapter 5, analyzes empirical evidence that regional 

price differentials in DRAM briefly appeared and then disappeared when restrictive trade policies were applied and 

then removed in the 1980s. With minuscule transport costs relative to product value, zero tariff costs globally for 

most countries (under the Information Technology Agreement, concluded in 1996, and bound into the WTO), and 

a large number of active global distributor/broker arbitrageurs, the global DRAM market has always been the 

poster child for the relevance of a “law of one price”.  
49 See Flamm (1995). 
50 Micron 2015 Winter Analyst Conference (2015). 
51 Micron’s Raymond James Institutional Investor Conference (2016); Micron Analyst Conference (February, 2017).  
52 Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016).   
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  A recent study of quality-adjusted fabricated wafer prices (the form in which manufactured 

chips are sold to the semiconductor design houses that have outsourced their production) by Byrne, 

Kovak, and Michaels (2017) portrays a slowing decline in fabricated wafer prices prior to 2012. (See 

Table 4.) While the pattern seems consistent with a slowing down of Moore’s Law prior to 2012, this 

study unfortunately ends with data from 2010, and thus cannot be used as a check against the claims of 

the most vocal US fabless designers (see above) that the prices they pay for having their transistors 

manufactured in foundries were no longer declining significantly at new technology nodes post-2012. 

 

Table 4. A quality‐adjusted price index for fabricated “foundry” wafers 

Source: Byrne, Kovak, and Michaels (2017). 

 Price Indexes for Intel Processors. Since their invention in the 1970s, microprocessor sales have 

grown rapidly, and since the 1980s have constituted another huge market segment. Official government 

statistics show a tremendous slowdown in the rate at which microprocessor prices have been falling 

after the millenium, as well as a significant attenuation in the rate at which prices of the desktop and 

laptop PCs that make use of these processors have declined. The U.S. Producer Price Indexes for 

microprocessors show annual (January-to-January) changes in microprocessor prices steadily falling 

from 60-70 percent peak rates during the “golden age” of the late 1990s and early 2000s, to a low of 

about one percent annual decline for the year ending in January 2015. (The Bureau of Labor Statistics 

stopped reporting its PPI for microprocessors in April 2015, apparently because of confidentiality 

concerns.) A parallel fall in price declines for laptop and desktop computers seems also to have 

occurred, from peak annual decline rates of 40%, in the late 1990s, to rates mainly in the 10-20% range 

in the last few years. 

 Table 5 shows compound annual decline rates in the PPI for microprocessors (including 

microcontrollers) as constructed by BLS, along with similarly defined indexes for the commodity 

“microprocessors”. Annual decline rates slow from a rate near 50% in the late 1990s and first half 

decade of the new millennium, to a little over 10% in the second half of that first decade, to about 3% 

annually in recent years. This too is consistent with a substantial slowing down in the impact of Moore’s 

Law manufacturing technology innovation.   

The Bureau of Labor Statistics had historically been somewhat opaque about its methodology in 

constructing its microprocessor price series (there is no published methodology describing precisely how 

Annual 

Index

% Rate of 

Change

2004 100

2005 83.89521 -16.1048

2006 74.75891 -10.8901

2007 65.93704 -11.8004

2008 57.89118 -12.2023

2009 52.95437 -8.52774

2010 48.67003 -8.09062
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these numbers were constructed).53 It is believed that these were matched model indexes based on 

some weighted selection of products appearing on Intel list price sheets (the same data source I utilize 

below),54 but this is not entirely certain. There is also some evidence that the BLS may have 

experimented with several different methodologies for measuring its microprocessor price indexes over 

the 1995-2014 periods,55 before ceasing publication of the index for confidentiality reasons in 2015. 

 

Table 5. Annualized decline rates for microprocessors per the BLS 
Author’s calculation. Middle month for quarter used, except Dec. 2007 used for 2007:4. 

 

 As an alternative to the BLS measure, I have previously constructed alternative price indexes for 

Intel desktop microprocessors, tracing the contours of change over time in microprocessor prices using a 

unique, highly detailed data set I have collected over the last two decades.56 Since the mid-1990s, Intel 

has periodically published, or posted on the web, current list prices for its microprocessor product line, 

in 1000-unit trays. These list prices are available at a very disaggregated level of detail, distinguished 

between similar models manufactured with different packaging, for example, and were typically 

updated every 4 to 8 weeks—though price updates have sometimes come at much shorter or longer 

intervals.57 By combining these detailed prices with detailed attributes of different processor models, it 

 
53 Ironically, the BLS is now much more open about the details of how it constructs the current (unpublished) 

microprocessor price index than it was about some previous (published) versions. See Sawyer and So (2017). 
54 Based on a brief conversation with BLS officials, Cambridge, MA, July 2014. See also Sawyer and So (2017).  
55 The BLS web site showed three different “commodity” price indexes (as opposed to its single microprocessor 

producer price index) for microprocessors over this period. The most recent microprocessor “commodity” price 

index is based in December 2007, but is only reported on a monthly basis from September 2009 through 2015. 

There are also two discontinued microprocessor commodity price indexes, one based in December 2004, and 

running through June 2005, and another based in December 2000 and running from 1995 through December 2004. 

One might speculate that the BLS changed its methodology for measuring microprocessor prices three times 

during this period. 
56 See Flamm (2007). 
57 My data initially (over the 1995-1998 period) made use of compilations of this data collected by others and 

posted on the web; since 1998-99, most of this data was collected and archived directly off the Intel web site.  

Commodity Price Producer Price

Index 

(discont)

Index 

(current) Index

1995:1-1999:4 -50.0 -50.5

1999:4-2004:4 -48.6 -49.2

1999:4-2005:1 -47.8

2005:1-2007:4 -37.7

2007:4-2011:4 -10.8 -10.8

2011:4-2015:1 -3.0 -3.0

Microprocessors (including 

microcontrollers)
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is possible to construct a very rich data set relating processor prices to processor characteristics, over 

time. 

 This permits the construction of both “matched model” price indexes, the traditional means by 

which government statistical agencies measure industrial prices, and so-called “hedonic” price indexes, 

which relate processor prices to processor characteristics. It is now well understood in the price index 

literature that there is a close relationship between matched model indexes and hedonic price indexes.  

 The Intel dataset permits measuring differences in processor characteristics down to individual 

models of processors, controlling for such things as processor speed, clock multiplier, bus speed, 

differing amounts of level 1 (“L1”), level 2 (“L2”), and level 3 (“L3”) cache memory, architectural 

changes, and particular new processor features and instructions. The latter have become particularly 

important recently—beginning in mid-2004, Intel dropped processor clock speed as the principle 

characteristic used to differentiate processors in its marketing and introduced more complex “processor 

model number” systems that distinguish between very small and arguably minor differences between 

processors that proliferated at more recent product introductions.  

For comparison purposes, I begin by constructing a matched model price index for Intel desktop 

processors. Since I do not have sales or shipment data at the individual processor model level, I weight 

each observed model equally, by taking the geometric mean of price relatives for adjoining periods in 

which the models are observed.58 A price index based on the simple geometric mean of individual 

product price relatives (dubbed the Jevons price index), is chained across pairs of adjacent time periods, 

and depicted in Figure 8. It has the same qualitative behavior as the official government producer price 

index for microprocessors, falling at rates exceeding 60% in the late 1990s, and slowing to a decline rate 

under 10% since 2009.  

 This geometric mean matched model index actually falls a little more slowly than the official U.S. 

microprocessor PPI, which may be attributable to the fact that the geometric mean index weights all 

models equally, while the PPI probably uses a subset of the data, with some weighting scheme for 

models drawn (and replaced periodically) from subsets of processor types. The PPI also uses fixed 

weights from some base period to weight these price changes, while my Jevons index chains adjoining 

paired comparisons of models, and therefore implicitly allows weights given to different models over 

pairs of adjoining time periods to evolve over time. 

 I have also constructed a hedonic price index, using an econometric model which utilizes more 

of the information available in my sample of Intel list prices. The basic hedonic price model I estimated 

statistically was 

 

(H0) lpriceit = constant + dt + ba arch_di + bp * lproci + bm lmaxmhzi + bw lbwi + bco lcoresi + bh hti 

 + bca lcachei + bg int_graphi + btdp ltdpi + b64 em64ti + bst eisti + bv vti + uit 

 

 
58 Since there occasionally were multiple price sheets issued within a single month, I have averaged prices by 

model by month. Since Intel did not issue new prices sheets on a monthly basis, “adjoining time periods” means 

temporally adjacent observations. 
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with the following covariates, for chip model i, period t: 

dt  a time dummy indicator variable for the later period in a pair of adjacent time periods 

arch_di  architecture dummy for Intel chip architecture (e.g., Haswell, Coppermine, Ivy Bridge ) 

lproci  log of base processor clock rate 

lmaxmhz  log of maximum clock rate if processor has turbo mode, = lproc if not 

lbwi   log of memory bandwidth (8 x memory bus clock rate if older front side bus 

architecture, or max memory bandwidth if reported in Intel Ark database) 

lcoresi   log of number of physical cores on chip 

hti  hyperthreading (additional virtual core per physical chip core) hardware support, binary 

indicator variable 

lcachei  log of maximum cache memory for highest level cache on processor 

int_graphi  binary indicator variable for integrated graphics, 1 if on chip graphics 

ltdpi  log of thermal design power (watts), rating of chip 

em64ti  binary indicator dummy for Intel 64-bit memory architecture 

eisti  binary indicator dummy for enhanced Intel speedstep technology (dynamic frequency 

scaling and power reduction) feature  

vti  binary indicator dummy for hardware virtualization support, 1 if virtualization hardware 

support 

and uit a statistical disturbance term for chip model i, time period t.  

Choice of Characteristics. Choice of characteristics was primarily based on a review of the 

computer architecture literature (discussed below). The most widely used textbook in that literature 

holds that computer instruction processing performance is based primarily on the processor 

architecture (which determines how many software instructions can be executed per processor clock 

cycle: IPC, or instructions per clock) and the computer’s clock rate. Since the mid-2000s, desktop PC 

processors have further boosted performance by incorporating a turbo mode, increasing clock rate to 

some maximum above the chip’s baseline frequency for short periods of time. Frequently, software 

performance can also depend its on-chip (cache) memory size, and on the sustained speed at which a 

computer can transfer data from its off-chip, secondary memory—its maximum memory bandwidth. 

Over the last decade, additional processor units (cores) have been added to desktop computer 

processors, and if software can be parallelized and run simultaneously on multiple cores, this too will 

improve performance. In addition, adding hardware support for “virtual cores,” so that a hardware 

processor core can be time-shared simultaneously by two instruction-processing threads, can speed 

things up—Intel’s version of this feature is called hyperthreading. Several other features—hardware 

support for virtualization, a 64-bit memory architecture—can improve computer performance on 

particular applications, particularly when desktop processors are used in servers. Basic graphics are now 

integrated onto many processor chips, sparing the end user the need to purchase a costly discrete 

graphics card, which should also affect demand for a processor by consumers. Finally, power 

consumption is probably the major variable cost of computing (and drives use of relatively expensive 

cooling systems needed to dissipate heat from high-powered processors). Low thermal design power 

(TDP) in desktop processors is considered beneficial for this reason,59 and processor makers like Intel 

 
59 In addition, low power consumption has the additional very important benefit of producing longer battery life in 

a laptop computer, irrelevant for a battery-less desktop computer processor. 
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have also developed hardware support for power-saving features in the chip’s micro architecture (Intel’s 

proprietary version—enhanced Intel Speedstep—is abbreviated EIST).  

Note that maximum memory bandwidth, cache sizes, numbers of cores, and even TDP typically 

take on only a handful of discrete values in any two-period estimation sample interval, and are often 

perfectly collinear with binary indicators for processor architecture, 64-bit support, hardware 

virtualization, and integrated graphics. In addition, as I show below, performance on different SPEC 

processor benchmark suites is nearly perfectly predicted by a linear combination of a subset of five of 

these processor characteristics (chip architecture, clock rate, number cores, hyperthreading, turbo 

mode).  

The regression coefficients (weights) on each of these characteristics, however, vary 

substantially by software benchmark type. Since the mix of software programs run on computers has 

evolved substantially over time (these changes have led SPEC to periodically revise its various 

benchmarks), using the underlying characteristics determining processor benchmark performance 

(rather than a particular benchmark score) seems the more flexible way to accommodate the impact of 

changes over time in market demand for different types of software applications running on computers. 

The very same characteristics that one might expect to affect processor demand, would also be 

expected to affect processor cost, on the supply side. Faster chips supporting the highest clock rates are 

culled from larger numbers of chips fabricated in batches of wafers, through extensive testing (a process 

dubbed “binning” within the industry). Slower- and faster-running chips are are sorted into higher and 

lower performance bins and and sold as distinct chip models. Processors with defects in circuitry in their 

memory caches and feature circuits, too, have their defective circuitry fused off electronically and are 

then sold as lower performance chips (with less memory and features). Redundant circuits can be added 

to a chip design (at a cost, by increasing chip die area) to yield larger shares of chips on a wafer with 

functioning features. Every desirable feature of a processor also has some incremental cost incurred in 

order to increase the number of chips produced with that functioning feature—either through a bigger 

and therefore more costly chip footprint on a silicon wafer (driven by redundant circuitry needed to fix 

defects), or through the larger numbers of wafers that must be processed in order to get the desired 

target numbers of chips with functional features and characteristics. 

Computer architectures also affect processor cost, as well as performance, since numbers of 

transistors on a chip, and therefore chip manufacturing cost, are directly related to the chip’s 

architecture. In addition, since at least the early 2000s, Intel has marked the introduction of new 

manufacturing technology nodes by rolling out improved chip architectural designs when introducing 

the new node. So manufacturing technology nodes and chip architectural family will be perfectly 

collinear in a statistical analysis of Intel prices and costs. 

In short, the chip characteristics in this hedonic regression would be expected to affect both 

computing performance and power consumption, as well as processor cost, and are relevant to both the 

demand and supply cost sides of the market. For that reason, even if a single, perfectly accurate 

measure of average processor computing performance (a “market average” benchmark based on the 

relative mix of software applications run by final computer end users in computing service markets at 

that particular moment in time) existed, changing in perfect lockstep with the changing mix of 
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applications run by different end users,60 changes in processor characteristics would have additional 

impacts on price working through processor manufacturing cost, and therefore need to be accounted 

for separately in the estimated  hedonic price equation.  

One potentially important pitfall in using large numbers of characteristics in a hedonic equation 

is that many of these characteristics are likely to be perfectly collinear with others. This is a real world 

problem. For example, all the chips developed with a new architecture design may, at least initially, have 

a common size for their highest level cache, or may all have a 64-bit architecture, or may all have 

hyperthreading. Most regression software will drop perfectly collinear characteristics automatically, and 

the coefficients of the other covariates (the ones with which the dropped characteristics are perfectly 

collinear) will include the effects of the dropped covariates in their estimated values. 

This can make interpretation of signs and values of hedonic characteristics problematic, and 

liable to big jumps in value (and coefficient interpretation) in different estimation periods, depending on 

which characteristics are perfectly collinear, and which characteristics are dropped (often automatically) 

by the statistical software. It also may appear at first glance to look like undesirable “coefficient 

instability”.  

However, as long as the key variable of substantive interest (the last period time dummy 

variable in a regression model spanning two adjacent time periods, the coefficient of which is used to 

construct a hedonic price index) is not perfect collinear with the other included characteristics variables, 

there is no difficulty in interpreting the coefficient of the time dummy variable. Fortunately, it is 

straightforward to check that this is the case, by simply running an auxiliary linear regression of the time 

dummy on all other explanatory covariates and verifying that it is not perfectly predicted by other 

regression covariates. 

Perfect collinearity in a simple hedonic simulation. The problem of perfect collinearity—and its 

effects—is very real in my sample of Intel microprocessors. In every single pair of adjacent time periods 

multiple characteristics are dropped as perfectly collinear by statistical software. The problems this can 

create in interpreting regression results is easily illustrated in a simple simulation model.  

Consider a simplified, stylized processor market over two adjacent time periods. Suppose half of 

manufacturing capacity is used to fabricate a baseline processor architecture (arch_dummy=0), and half 

dedicated to a different architectural alternative (arch_dummy=1). Suppose that initially, half of 

fabricated chips from both architectures can run at clock rate of 1000, and half at 1500. All chips 

manufactured run 500 faster in the later period (i.e., half at 1500, half at 2000 (think of this as the result 

of manufacturing process improvement). Substantively, this means there will be a positive correlation 

between a binary time period indicator variable (first_period=0, last_period = 1) and processor clock 

rates. 

Let us also suppose that the only thing all processor buyers care about is processing speed on a 

single, common software application (so we are ignoring the problem of heterogeneity in demand—i.e., 

which benchmark to run). Further, let’s assume that this single measure of speed (software processing 

 
60 It is worth noting that the SPEC benchmarks report an unweighted geometric mean of performance in a variety 

of applications, and that these fixed (equal) weights remain fixed over long periods of time (since 2006, as of 

October 2018) for the SPEC benchmark composite scores. 
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performance) relevant to users is perfectly determined by a simple linear function of three processor 

characteristics— 

speed = clock_rate + 500*arch_dummy + 200*turbo  

(where ‘turbo’ is a binary indicator for a functioning turbo speedup feature that is enabled in half of the 

chips produced for each architecture and clock combination).  

Each unique combination of architecture, clock rate, and turbo capability under these 

assumptions can be thought of as a distinct “processor model”.61 With this setup, there are twelve 

distinct microprocessor models (2 processor architectures x 3 clock rates x 2 turbo values), sold over two 

periods. Half the models are sold in both periods (the ones running at 1500), and half sold only in the 

beginning or end periods (the models running at the 1000 and 2000 clock rates, respectively).62 

Unit manufacturing cost for the chip is assumed to be given by  

cost = 50 + 2 * clock_rate + 2000 * turbo + 500 * arch_dummy –10 * end_period. 

End-period manufacturing costs decline by $10 for any constant quality “computer model,” simulating a 

uniform $10 drop in manufacturing cost, given any set of fixed model characteristics, over time. 

In the spirit of Pakes (2003), we write out an extremely simple hedonic price reduced-form 

equation: 

 price = 600 + 2 * speed + cost   + random disturbance term,   

with the first two terms on the right hand side of the equation reflecting the further assumption that 

expected markup over incremental unit cost, reflecting user demand, is a linear function of speed alone. 

After substituting for unit cost (which we typically cannot observe in available data), this gives us a 

“hedonic price equation” as a function only of observable processor characteristics: 

(H1) price = 650 + 2 *speed + 2 * clock_rate + 2000 turbo + 500 * arch_dummy – 10 * end_period  

+ random disturbance term 

The disturbance term in the simulation is drawn from a zero mean uniform distribution. The assumed 

across-the-board $10 end-period average reduction in manufacturing cost, conditional on fixed 

processor characteristics, induces a $10 decline over time in quality-adjusted (constant characteristic) 

mean price, across all computer models (since markup by assumption depends only on speed, in turn a 

function of the other processor characteristics we are conditioning on). 

 
61 I draw a sample of a ten million observations, using pseudo-random draws from independent uniform 

distributions to create a simulated population of processor “models,” uniformly and independently distributed 

over architecture, clock rate and turbo feature. Another set of independent, pseudo-random draws from a uniform 

distribution create a mean zero disturbance term added into the realized sales price on the left-hand side of the 

hedonic price equation. 
62 Because clock rates increase over time, a binary indicator variable for the end period is positively correlated with 

clock rate, but uncorrelated with either architecture or the turbo feature (which are independently and randomly 

assigned to wafers/chips prior to fabrication). 
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 Most importantly, we cannot actually estimate (H1), because speed, architecture, frequency, 

and turbo characteristics, as a group, are perfectly collinear with one another (since speed is a linear 

function of arch dummy, clock rate, and turbo). Since these three chip characteristics exactly determine 

speed, any three of these four variables exactly determines the value of the fourth. If we were to 

substitute for speed as a function of its three determinants, and so drop it from the hedonic price 

equation, we get 

(H2) price = 650 + 4 * clock_rate + 1500 * arch_dummy + 2400 * turbo -10 * end_period . 

If we substitute for turbo in terms of the other three variables, we get  

(H3) price = 650 + 12 * speed - 8 * clock_rate  -  4500 * arch_dummy - 10 * end_period. 

If we substitute for clock_rate in terms of the other three characteristics , we get 

(H4) price = 650 + 4 * speed -500 * arch_dummy + 1600 * turbo – 10 * end_period. 

And substituting for architecture, 

(H5) price =650 + 3 * speed + clock_rate + 1800 * turbo – 10 * end_period. 

Table 6 summarizes a simple simulation demonstrating that with a large simulated sample (ten 

million observations), a regression model with any of the four above specifications (H2-H5) recovers the 

above parameters correctly.63 A key point of substantial practical relevance is that all four of these 

estimable specifications are correct, and produce exactly the same estimate for the coefficient of the 

time dummy variable, the parameter of greatest substantive interest. But, the coefficients of the 

perfectly collinear characteristics need to be interpreted differently in each case, as the joint effects of 

that characteristic plus the effects of the dropped, perfectly collinear characteristic. In fact there are 

wild swings in coefficient values (from 12 to 3 for speed, from 1600 to 2400 for turbo) and even sign 

(from 1500 to -4500 for arch dummy) as different candidates from the set of perfectly collinear variables 

get dropped from the estimated regression specification.  

This is important because with large numbers of characteristics in a hedonic regression, 

particularly with binary dummies, or nominally continuous covariates that in any given time frame take 

on only a fixed number of discrete values, perfect collinearity among characteristics is very common. 

Covariates are typically dropped from the regression automatically by the econometric software. If this 

is happening, and different subsets of the perfectly collinear covariates are used in two different time 

periods, then wild variation in coefficient estimates, rather than representing worrisome instability in 

(non-perfectly collinear) explanatory covariates selected and used in the estimated regression. 

 A second, even more important point, is that estimated coefficients for variables that are not in 

the set of perfectly collinear variables are not affected by which of the perfectly collinear variables is 

dropped. In this simulation, for example, the estimated effect of the time dummy—the variable of 

greatest substantive interest, since its coefficient would be used to estimate a hedonic price index—

does not change in value at all as the excluded perfectly collinear variable changes. It is likely to be 

relatively rare and fairly obvious when a time dummy variable is perfectly collinear with other 

covariates. In any event, it is easy to verify that the time dummy variable is not perfectly collinear with 

 
63 Appendix A2 contains the short Stata program giving these simulation results. 
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other included variables by simply running auxiliary regressions of the time dummy against all other 

explanatory variables, both those included and those dropped as perfectly collinear. 

 Finally, there is an important specification issue illustrated by this simulation.  If one uses speed 

as one of the explanatory covariates, it is also important to include the full, non-perfectly collinear 

subset of relevant characteristics affecting cost, even if speed entirely captures the impact of these 

characteristics from the user demand side. Table 6 demonstrates that when only speed and time are 

used as explanatory variables (last column in the table), bias from the omitted characteristics greatly 

confounds the coefficient estimate for the time dummy variable, incorrectly magnifying the drop of 

quality-adjusted price by a factor of 7.5! We return to this point below. 

Table 6. Simulation of Perfectly Collinear Characteristics in Hedonic Price Equation 

-------------------------------------------------------------------------------------------- 

                (drop speed)    (drop turbo)   (drop clock)     (drop arch)    (speed only)    

                        p               p               p               p               p    

-------------------------------------------------------------------------------------------- 

time               -10.22***       -10.22***       -10.22***       -10.22***       -75.24*** 

                  (0.258)         (0.258)         (0.258)         (0.258)         (0.677)    

 

clock_rate          4.000***       -7.999***                        1.000***                 

               (0.000365)      (0.000983)                      (0.000517)                    

 

architecture_      1500.0***      -4499.8***       -500.1***                                 

dummy             (0.183)         (0.492)         (0.258)                                    

 

turbo              2399.9***                       1599.9***       1799.9***                 

dummy             (0.183)                         (0.197)         (0.197)                    

 

speed                               12.00***        4.000***        3.000***        4.130*** 

                               (0.000913)      (0.000365)      (0.000365)      (0.000762)    

 

constant            650.0***        650.0***        650.0***        650.0***        992.5*** 

                  (0.492)         (0.492)         (0.492)         (0.492)         (1.281)    

-------------------------------------------------------------------------------------------- 

N                10000000        10000000        10000000        10000000        10000000    

R-sq                0.980           0.980           0.980           0.980           0.808    

-------------------------------------------------------------------------------------------- 

Standard errors in parentheses 

* p<0.05, ** p<0.01, *** p<0.001 

Stata code for this simulation in Appendix A2. 

 

A hedonic price index for Intel desktop processors. Model (H0) above was run for each of 162 

pairs of adjacent months in which I collected Intel’s desktop processor list prices.64 The first set of 

adjacent list prices are for January and February 1996.  The last pair of adjacent price sheets is for June 

 
64 The list prices refer to per chip prices, for processors packaged in quantity 1000 trays sold to original equipment 

manufacturers (OEMs). By adjacent month, I mean a month and the next month in which an updated list price was 

published. For example, if Intel issued a price sheet in January, March, April, August, and November of a year, 

there would be four adjacent month pairs: January-March, March-April, April-August, and August-November. 

Roughly ¾ of the monthly observation pairs were a month apart; the next most frequent value observed was two 

months; the largest time gap between adjacent price lists observed was four months. A hedonic model excluding 

TDP produced useful estimates for price relatives over 162 adjacent pairs of months. Results for a model with TDP 

are shown in the appendix tables based on an initial period ending in October 1998, but the problem of a large 

share of observations lacking a TDP measure does not really fade away until the pair of adjacent months ending in 

January 2000. 
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and July 2014.65 Overall R2 was uniformly high, and was not driven primarily by the inclusion of the 

architectural dummy variables—these were treated as fixed effects, and I also report a “within” R2 (after 

demeaning all variables by their group mean) which is also quite high. (See Appendix Tables A4 and A6.) 

The time dummy variables in the above regression were then exponentiated and used to 

construct price index relatives for adjacent time period pairs.66 The resulting price index relatives were 

then used to chain link these period-to-period indexes into a longer chained price index, shown in 

Appendix Table A3. 

 In addition, I report the values of other coefficients in the hedonic regression in Appendix Table 

A5 and A7, which shows how large qualitative jumps in coefficient values from estimation period-to-

period often occur as nonzero values for new characteristics, indicators, or architecture variables enter 

and exit the sample, due to perfect collinearity. But there is often perfect collinearity even when there is 

no new architecture or indicator entering or exiting the sample—this may be seen in the many blank 

coefficient estimates that appear when architecture or other indicators, or even continuous covariates 

(which often take on only a handful of discrete values in any single estimation period) are dropped due 

to perfect collinearity.  

The processor architecture family variables are treated as fixed effects and not reported. There 

were anywhere from 1 to 7 such architecture fixed effects, depending on the pairs of adjacent months 

used for estimation of the hedonic equation. 

Note that nominal power consumption for a processor (TDP, thermal design power) was simply 

unavailable for most Intel processors released prior to late 1999. I therefore estimated two versions of a 

hedonic index, one with TDP as a characteristic, and one without. TDP is statistically significant when it is 

used, and therefore the hedonic price index including TDP is the preferred index from 2000 on (the small 

numbers of observations with TDP reported prior to late 1999 make these pre-2000 estimates less 

reliable). I have linked the post-2000 index with TDP, to the pre-2000 index without TDP, and show this 

in the final column of Table A1 as a composite “best effort” index. The TDP-inclusive and -exclusive 

indexes are virtually identical from 2000 through January 2005, departing significantly from one another 

only afterwards. Prior to 2000, the earlier the time period, the more limited the available data, and the 

less reliable the resulting estimate. 

 
65 The number of processors in early years was very small and characteristics extremely collinear; numbers of 

processor prices (with TDP) in adjacent month pairs more than doubles from under 15 to over 30 in late 1999, and 

estimated price relatives after that date are probably much more reliable. See Appendix Table A4 and A6 for 

details on numbers of observations in different adjacent month samples. Entry and exit of architecture and 

indicator variables from estimation period to period has been color coded in this table. After the first non-zero 

observation for an indicator variable occurs, blanks indicate the variable was dropped as perfectly collinear. In no 

case was the time dummy variable perfectly collinear with other covariates; this was checked with auxiliary 

regressions. 
66 One half of the coefficient’s squared standard error was added to the exponentiated coefficient, to produce an 

unbiased estimate of the price relative (the exponentiated coefficient’s value). See the sources cited in Triplett 

(2006), p. 54, fn. 41, for details on the rationale for the correction. Sergio Correia’s reghdfe Stata command was 

used to estimate the hedonic regressions, because it removes non-informative singleton observations for dummy 

variables from the regression, because it provides detailed reports on perfectly collinear variables, and because it 

also calculates a “within” R2, i.e.,  explained variance of the dependent variable after demeaning all variables 

within fixed effect groups—in this case, the processor architecture indicator variables were treated as fixed effects. 
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 Figure 7 visualizes some of the estimation model summary statistics from Appendix Table A6 for 

the TDP variant of the price index (which is also the “composite” index over the period from 2000 on). 

The upper panel shows an overall R-squared that across estimation periods averaged .96, and ranged 

from .91 to .99 from 2000 on. “Within” R-squared (explained variance after demeaning all variables by 

architecture fixed effects group means) averaged .92 and ranged from .74 to .99. The lower panel, using 

a logarithmic scale, shows that anywhere from 1 to 7 processor architectures were being listed for sale 

as Intel desktop processors during two-month adjacent estimation periods over this time frame. The 

number of observations used in the individual hedonic regressions after 1999 ranged from 28 to 190, 

averaging 82.  The average number of processor models per architecture per month listed for sale 

during the post 1999 period ranged from 4.7 to 24.5, indicative of significant historical changes to Intel’s 

product differentiation strategies in marketing desktop processors, over time. 

 Some important substantive points are supported by Figure 7. First, there is substantial variation 

over time in how important the processor design (architecture) dummy variables are in accounting for 

price variation. While the overall explained variation in price in these hedonic regressions remained 

uniformly high, within relatively narrow bounds (.91 to .99) throughout the sample period, the role of 

architectural dummies varied greatly over different sub-periods. “Within” R-squared measures how 

much of the variation in price around architecture-specific means is explained by other covariates. The 

“within” R-squared coincides exactly with “overall” R-squared in the special case of their being only one 

“architecture” fixed effect (i.e., a single common constant intercept). The difference between overall 

and within R-squared can therefore be interpreted qualitatively as a measure of how important 

controlling for the multiple intercept levels (the processor architecture fixed effects) are in a hedonic 

model explaining price variation. 

 Figure 7 shows that, at times, a substantial share of overall explained variation (as much as a 

difference of .10 to .20 between overall R-squared and within R-squared) was accounted for by the 

processor architecture effects prior to 2003, and from late 2006 through 2012. Processor architecture 

effects from 2013 on are more modest contributors to explaining price variation, but not nil.  

 As is suggested visually by Figure 7, within R-squared (measuring the role of non-architectural 

characteristics in explaining price variation) has a negative and statistically significant correlation with 

the number of different desktop processor architectures present on Intel price sheets.67 Not surprisingly, 

perhaps, it appears that processor architectural variation is more important in explaining price during 

periods when Intel marketed a larger variety of processor architectural designs, and less important in 

periods with less architectural variation. Indeed, the two measures of R-squared are virtually identical 

from 2003 through 2005, the heyday of the Pentium 4 series and its “Netburst” design, when only one 

or two design families accounted for all Intel desktop processors listed on its price sheets (compared 

with 4 architectures in 2002, and as many as 7 architectures in late 2006).  

 
67 For the TDP-inclusive hedonic specification, for adjacent periods ending after December 2000, the correlation 

coefficient between within R-squared and number of processor architecture dummies used is -.53. We reject the 

hypothesis that it is equal to zero (p-value is .0000). 
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Figure 7      Summary Statistics for Hedonic Regressions 

Source: Appendix Table A.6. 

 

 Figure 8 visualizes the hedonic price indexes produced using these models. A dramatic slowing 

of declines in quality-adjusted price from 2004 through 2006 is quite apparent, followed by a temporary 

resumption of a somewhat faster rate of decline after 2006, and then another marked slowdown from 

2010 on.68  

 The first four columns in Table 7 compare my estimated hedonic and matched model price 

indexes and the BLS PPIs. As expected,69 the matched model geometric mean (Jevons) index price 

declines are mostly very close to the hedonic indexes, but generally decline more slowly than those 

 
68 It is not coincidental that in 2004, the Pentium 4’s architecture hit its clock rate ceiling, and power dissipation 

reached maximum limits compatible with inexpensive air cooling systems. The rollout of Intel’s next generation 

response—the Conroe architecture (two cores on a single die, at a much lower clock rate, but more instructions 

per clock processed)—happened in mid-2006. To many industry observers, Intel appeared to be lagging behind its 

effectively duopolist rival AMD, architecturally, in the early 2000s. AMD was first to market with a 64-bit 

architecture, and later, the first single die dual core chip. (AMD had brought its Athlon X2 processor out in 2005, a 

full year before Intel’s Core 2 Duo [Conroe architecture] chips.) For empirical evidence on AMD’s technological 

challenge to Intel in the early 2000s, see Nosko (2011), Pakes (2017), European Commission (2009). 
69 Since if there were no entering or exiting processor models (all sampled processor models were observed in 

both time periods), and all hedonic coefficients were the same in the two adjacent periods (assumed by the time 

dummy method), the time dummy hedonic price index would be equal to the Jevons price index. See DeHaan 

(2010), equation (23), and Triplett (2006), p. 55. 
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measured by the hedonic price index based on the same data set.  My estimates over comparable 

earlier time periods are quite similar to the matched model indexes of Aizcorbe, Corrado, and Doms 

(2003), and to the U.S. producer price indexes. Prior to 2004, my Jevons matched model (geometric 

mean) index and the PPI move quite closely, while my hedonic indexes showing a modestly higher rate 

of decline, as expected.  The hedonic price indexes based on Intel list prices with and without TDP are 

virtually identical over the period beginning in 2000, through the beginning of 2005.  

From 2004 through 2006, both my Jevons and hedonic price indexes decline much more slowly 

than the PPIs, while from 2006 through 2009 my Jevons and hedonic indexes fall at rates a little faster 

than the PPI. From 2009 to 2010 the Jevons and hedonic bracket the PPI. Finally, from 2010 through 

2014, my hedonic indexes fall more slowly than the PPI, but all decline rates are in the low single digits. 

These are not the only hedonic price indexes for Intel processors available over this time span, and I 

discuss alternative estimates that others have constructed below. 

Using almost the exact same hedonic regression model,70 I also estimated a hedonic index using 

weekly data on retail internet pricing for desktop processor models that I had collected over the same 

time span. The data came from a now-defunct web site (sharkyextreme.com), which published the 

minimum weekly price quoted by a selection of national US internet retailers, over the period from the 

end of 2001 through the end of 2010. Similarly, I calculated a Jevons index based only on matched 

models in adjacent periods. These prices are a relatively limited subset of the much larger set of list 

prices for all Intel desktop processors, and presumably are more representative of lower end models 

most popular in the retail marketplace. Generally, the pattern over time is similar (steepest declines 

over 2001-2004 and 2006-2009, slower declines over 2004-2006 and 2009-2010). 

 
70 With one additional characteristic—a binary “OEM” indicator variable, indicating whether the product sold by 

the retailer came in a “boxed” retail package with heatsink and fan, or it came in “OEM” packaging without a fan, 

heat sink, and retail box. Monthly average prices were calculated from published weekly reports. The published 

weekly price was the reported minimum in a sample of larger internet component retailers. 
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Figure 8. Matched model and hedonic price indexes for Intel desktop processors 
 January 2005=100 

 

 

 Table 7 

Annualized compound rates of change in microprocessor price indexes 

  

Intel OEM List 

Prices   Intel Retail BLS 

  

Hedonic 

w/TDP 

Hedonic 

w/o 

TDP 

Jevons 

Matched 

Model Hedonic 

Jevons 

Matched 

Model 

Microproc 

PPI 

1998m9-2001m12 -71.5% -66.2% -64.0%     -56.8% 

2001m12-2004m4 -49.6% -49.6% -48.9% -40.2% -35.5% -47.1% 

2004m4-2006m1 -9.6% -10.1% -10.7% -4.6% -11.1% -25.2% 

2006m1-2009m1 -35.4% -40.3% -31.5% -19.9% -24.2% -29.0% 

2009m1-2010m11 -13.3% -13.5% -6.2% -15.9% -11.3% -10.7% 

2010m11-2014m7 -3.5% -2.9% -2.3%     -4.2% 

 

Source: Author’s dataset and calculations, except Microprocessor PPI, from BLS. See Appendix Table A.3. 
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Figure 9 Jevons (Geometric Mean) and Hedonic Price Indexes with Alternative Base Periods 

One interesting observation that emerges from these results is that, except for the period from 

2006 through the end of 2007, all the Intel list price indexes, including both hedonic and geometric 

mean matched model (Jevons) indexes, move together in a fairly tight formation. This can be seen by 

comparing the original index (with January 2005=100) to rebased indexes with January 2010 = 100. (See 

Figure 9.) This is consistent with 2006-2007 being a highly atypical period, with many more older, exiting 

models (from now obsolete Pentium 4 branded architecture families), and new entering models (from 

its new Core 2 Duo branded architecture families) than has generally been the case for Intel historically, 

before or after this period. The change in Intel’s product design strategies from 2006 through 2007, in 

responding to AMD’s earlier technological challenge, has been commented upon by researchers,71 and 

appears to have had impacts that are visible in these price indexes. 

 Although there are substantial differences in the magnitude of declines across different time 

periods and data sources, all the various price indexes I have constructed concur in showing 

 
71 “Note that in June 2006 there was intense competition for high performance chips with AMD selling the highest 

priced product at just over $1000. Seven chips sold at prices between $1000 and $600, and another five between 

$600 and $400. July 2006 saw the introduction of the Core 2 Duo and Fig. 2 shows that by October 2006; (i) AMD 

no longer markets any high performance chips (their highest price chip in October is just over two hundred 

dollars), and (ii) there are no chips offered between $1000 and $600 dollars and only two between $600 and $400 

dollars. Shortly thereafter Intel replaces the non-Core 2 Duo chips with Core 2 Duo’s. 

Nosko goes on to explain how the returns from the research that went into the Core 2 Duo came primarily 

from the markups Intel was able to earn as a result of emptying out the space of middle priced chips and 

dominating the high priced end of the spectrum.” From Pakes (2017), pp. 251-254, see also Nosko (2011) pp. 8-9. 
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substantially higher rates of decline in desktop microprocessor price prior to 2004, a stop-and-start 

pattern after 2004, and a dramatically lower rate of decline after 2010.  

 Taken at face value, this creates a puzzle. Even if the rate of innovation had slowed in particular 

for microprocessors, if the underlying innovation in semiconductor manufacturing technology had 

continued at the late 1990s pace (i.e., a new technology node every two years and roughly constant 

wafer processing costs in the long run), then manufacturing costs would continue to decline at a 30 

percent annual rate, and the recent rates of decline in processor price just measured fall well short of 

that mark. Either the rate of innovation in semiconductor manufacturing must also have declined, or the 

declining manufacturing costs are no longer being passed along to consumers to the same extent, or 

both. The semiconductor industry and engineering consensus seems to be that the pace of innovation 

derived from continuing feature-size scaling in semiconductor manufacturing has slowed markedly. I 

next examine what other direct evidence is available. 

 Costs 

Evidence on Manufacturing Costs. Microprocessors are a semiconductor product sold in truly 

large volumes. The overwhelmingly dominant player in this market, Intel, released a slide in a 

presentation to its stockholders in 2012 that supports the narrative of a slowing down in Moore’s Law 

cost declines. (Table 8.) The figures from Intel’s 2012 Investor Meeting seem to show accelerating cost 

declines in the late 1990s, rapid declines near a 30 percent annual rate around the millennium, followed 

by substantially slower declines in cost per transistor after the 45nm technology node (introduced at the 

end of 2007). As discussed previously, the transition to use of a larger wafer size after the 130nm 

technology node was accompanied by a particularly large reduction in transistor cost at the next node, 

using the larger size wafers. 

 

 
Table 8. Annualized decline rates for Intel transistor manufacturing cost, 2012 
Source: Otellini (2012), digitized using WebPlotDigitizer. 

 

 

 

 

Otellini, 2012 Otellini, 2012 Otellini, 2012

Wafer Size Wafer Size Wafer Size

Intro Date Tech Node 200mm 300mm 200mm 300mm 200mm 300mm

1995q2 350 1575.35

1997q3 250 1033.14 -34.4 -17.1

1999q2 180 616.10 -40.4 -22.8

2001q1 130 311.09 -49.5 -32.3

2004q1 90 100.00 -67.9 -31.5

2006q1 65 48.87 -51.1 -30.1

2007q4 45 27.54 -43.6 -27.9

2010q1 32 17.69 -35.8 -17.9

2012q2 22 11.23 -36.5 -18.3

Intro dates: 130nm and up from http://www.intel.com/pressroom/kits/quickreffam.htm 

< 130nm from ark.intel.com 

Percent Transistor 

Cost Decline Rate 

Transistor Cost 

Index, 90nm = 100

Compound Annual 

Decline Rate
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Other Economic Evidence 

 

Depreciation rates for semiconductor R&D. Another innovation metric in semiconductors is the 

depreciation rate for corporate investments in semiconductor R&D. As the rate of innovation increases 

(decreases), the stock of knowledge created by R&D should be depreciating more rapidly (less rapidly). 

One recent economic study estimates R&D depreciation rates in a number of high tech sectors, including 

semiconductors. The authors conclude that “the depreciation rate of the semiconductor industry shows 

a clear declining trend after 2000 in both datasets, albeit imprecisely measured.”72 This is consistent 

with a slowing rate of innovation. 

 

Semiconductor fab lives. Faster (slower) technological change in semiconductor manufacturing 

should presumably shorten (lengthen) fab lifetimes. There are no recent studies of economic 

depreciation rates for semiconductor plant and equipment, but the anecdotal evidence on the 200mm 

fab capacity “reawakening” (detailed below) strongly suggests that fab lives have increased, consistent 

with a slowing rate of innovation in semiconductor manufacturing.  

In August of 2018, Global Foundries (one of four remaining firms that had committed to 

development of leading edge logic manufacturing process technology) announced that it was 

abandoning its effort to move to its next targeted technology node (7nm), and would stick instead with 

its current generation technology. “’The lion’s share of our customers…have no plans for’ 7nm chips. 

Industry-wide demand for the 14/16 node was half the volume of 28nm, and 7nm demand may be half 

the level of the 14/16nm node, Caulfield said. ‘When we look out to 2022, two-thirds of the foundry 

market will be in nodes at 12nm and above, so it’s not like we are conceding a big part of this market,’ 

he added.”73 This left only three remaining semiconductor manufacturing firms (Samsung, Intel, and 

TSMC) developing sub-10nm manufacturing technology, going forward into 2019. 

A slowing pace of innovation in semiconductor manufacturing was even undeniable at Intel. 

Intel had introduced its 14nm technology node back in 2014 but ran into difficulties bringing its next 

generation 10nm technology to market. In August of 2018, Intel acknowledged that it was now delaying 

volume manufacturing of 10nm technology products until late 2019, over five years after its last 

technology node (i.e., almost triple its previous two-year ‘tick-tock’ cadence between new technology 

nodes), and almost three years after its initial projection (see Table 9 below).74 

Personal computer replacement cycles. One reason for businesses and consumers replacing 

computers more frequently (less frequently) is if the rate of innovation in key components in computers, 

like microprocessors, increases (decreases), so performance improvements associated with replacement 

are more (less) economically compelling. While published studies of PC replacement cycles are scarce, 

Intel monitors replacement cycles for PCs, a major market for its desktop processors. In 2016, Intel CEO 

Brian Krzanich noted that PC replacement cycles had extended from four years, the previous average, to 

five or six years, the current average.75 This, again, is consistent with a slower rate of innovation. 

 
72 Li and Hall (2015), p. 13. 
73 Merritt (2018); see also Moore (2018). 
74 Rogoway (2018), see also Cuttress and Shilov (2018). 
75 Krzanich (2016). 
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4. Is Moore’s Law Still Alive?  Intel’s Perspective in Microprocessors 

The most significant evidence against any current slowdown in semiconductor manufacturing 

cost reduction from Moore’s Law had come from Intel. Fairly recent Intel statements about its 

manufacturing costs had been the primary factual evidence within the semiconductor manufacturing 

community countering the proposition that Moore’s Law is ending. Unfortunately, Intel had not been 

consistent in the data it had presented publicly on this issue. Since late 2017, Intel appears to have 

refrained from releasing any new public information on its manufacturing costs.  

 The problem with Intel’s previous statements is illustrated by Figure 10 and Table 9, which place 

side by side two exhibits on manufacturing costs per transistor that Intel has presented at its annual 

investor meetings—one in 2012 (by then-CEO Paul Otellini), and one in 2015 (by its top manufacturing 

executive, Bill Holt, see Figure 2). Some version of the right pane in Figure 10 had been the primary 

factual evidence in Intel assertions that Moore’s Law continues at its historical pace. The graphics in 

Figure 10 have been digitized76 and recorded in Table 9, then rebased to 100 at the 90nm technology 

node. Compound annual decline rates have been calculated in this table using quarterly introduction 

dates for the first processors manufactured by Intel at that technology node. 

 

Figure 10   Intel Transistor Manufacturing Costs, 2012 vs. 2015 Versions 
Source: Otellini (2012): Holt (2015). 

 

 
76 Using http://arohatgi.info/WebPlotDigitizer/. 
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The figures presented by Intel to shareholders in 2012 seem to show rapid declines in the 30 percent 

range around the millennium, then substantially slower declines in cost per transistor after the 45nm 

technology node (i.e., after 2007). In contrast, a more recent presentation by Intel in 2015 restates the 

more distant history to show very much slower declines in cost per transistor at earlier technology 

nodes. Intel has a stock disclaimer that numbers it presents are subject to revision, but in this case the 

revisions to the historical record are quite dramatic. 

 

Table 9.    Comparison of Intel Cost per Transistor at Various Technology Nodes, 2015 vs. 2012 

 The 2015 graphic substantially revises what in the semiconductor industry would be considered 

the distant historical past (i.e., five technology nodes back from the 22nm node that was in production 

at the time the earlier 2012 presentation was given). Intel’s most recent version of its history now shows 

transistors costs declining at 12-18% annual rates after the millennium, rather than the 30% annual 

declines it showed to its investors in 2012. Its transistor cost decline rate accelerates, rather than 

slowing further, at the most recent couple of technology nodes. 

It now seems likely that one important reason for the restatement by Intel of its historical cost 

declines in 2015 was a definitional change in technical information made public by Intel. Instead of 

reporting transistor density (transistors per die area) based on actual die area and the number of 

transistors processed on an actual microprocessor die (which allows one to calculate an actual average 

transistors fabricated per die area), Intel apparently began using an entirely theoretical measure of area 

per designed transistor that appears not take into account the increasingly relaxed (from design rules) 

layout of transistors in actual die designs, imposed in part by the need to allow for additional area 

Otellini, 2012 Holt, 2015 Otellini, 2012 Holt, 2015 Otellini, 2012 Holt, 2015

Wafer Size Wafer Size Wafer Size

Intro Date Tech Node 200mm 300mm 300mm? 200mm 300mm 300mm? 200mm 300mm 300mm?

1995q2 350 1575.35

1997q3 250 1033.14 -34.4 -17.1

1999q2 180 616.10 -40.4 -22.8

2001q1 130 311.09 146.93 -49.5 -32.3

2004q1 90 100.00 100.00 -67.9 -31.9 -31.5 -12.0

2006q1 65 48.87 71.26 -51.1 -28.7 -30.1 -15.6

2007q4 45 27.54 50.30 -43.6 -29.4 -27.9 -18.1

2010q1 32 17.69 35.64 -35.8 -29.1 -17.9 -14.2

2012q2 22 11.23 26.03 -36.5 -26.9 -18.3 -13.0

2014q3 14 16.13 -38.0 -19.2

2017q4? Intel 2015 estimate for 10nm 9.46 -41.4 -21.1

2019q4? Intel actual 10nm 9.46 -41.4 -9.7

300mm?: Assumed by author, based on Intel using both 200mm and 300mm wafers with its 130nm tech node. Natrajan, et. al. (2002).

2017q4?: Assumes 2015 Intel forecast of 3-years to next tech node intro date, for 10nm, and 2015 projections of transistor cost decline

2019q4?: estimated cost decline rate uses Holt (2015) projections of transistor cost declines at 10nm, but with actual 10nm ship date.

Intro dates: 130nm and up from http://www.intel.com/pressroom/kits/quickreffam.htm 

< 130nm from ark.intel.com 

Percent Transistor Cost 

Decline Rate Between Nodes

Transistor Cost Index,       

90nm = 100

 Compound Annual Decline 

Rate Between Nodes
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between transistors needed to fabricate increasingly complex interconnections.77  (For die designs 

released prior to 2010, Intel had previously disclosed both actual die size, and the number of transistors 

processed on the die, for many of its chip models.) 

Most interestingly, assume Intel’s 2015 forecast of 10nm transistor manufacturing costs was 

correct, and simply postpone its use in shipped processors from 2017, by an additional two years (2019 

was the actual ship date for Intel‘s first commercial 10nm processors). This delay slows the annual 

decline rate for its transistor manufacturing costs from 21 percent to 9.7 percent and implies a marked 

attenuation of Moore’s Law-driven cost declines, consistent with the other evidence discussed 

previously. 

An Intel Exception? 

 Interpreting the recent economic history of Moore’s Law, how can Intel’s description of 

accelerating declines in manufacturing cost per transistor (as recently as September 201778) be 

consistent with reports from other chip manufacturers, and their customers, of stagnating cost declines, 

or even cost increases? Increasingly important scale economies provide one plausible and coherent 

explanation.  

  Scale economies at the company level are obvious. The cost of a production scale 

semiconductor fab has increased dramatically at recent technology nodes, and only the very largest chip 

“IDMs” (Integrated Device Manufacturers) can depend on their internal demand to justify a fab 

investment. Intel made this case quite accurately at its 2012 Investor Meeting, predicting that only 

Samsung, TSMC, and itself would have the production volumes required to economically justify 

investment in leading edge fab technology for logic chips, by 2016.79 (Intel overlooked GlobalFoundries, 

which by acquiring IBM’s semiconductor business in 2015, substantially increased its scale.)80 Both TSMC 

and GlobalFoundries are “pure” foundries, and achieve their volumes entirely by aggregating the 

demands of external chip design customers.  

  Many U.S.-based semiconductor companies have exited chip manufacturing (e.g. AMD, IBM) or 

stopped investing in leading edge fabrication while continuing to operate older fabs (Texas 

Instruments pioneered this so-called “fab-lite” strategy). Other “pure play” U.S. foundries (e.g., 

TowerJazz, On Semiconductor) operate mature foundry capacity that remains cost effective for lower 

 
77 See Flamm (2017), p. 34, for a brief explanation of this issue. Intel’s latest redefinition of its publicly disclosed 

“transistor density metric” is entirely theoretical:  .6 x (transistors in a NAND logic cell/area of a NAND logic gate) + 

.4 x (transistors in a complex scan logic flip-flop cell/area of complex scan logic flip-flop cell) = # transistors/mm2. 

Such a definition does not allow for the practical effects of relaxation (from theoretical design rules) in actual cell 

layout needed, for example, to accommodate metal interconnections between logic cells. On Intel’s new transistor 

density definition, see Mark Bohr, “Moore’s Law Leadership,” March 2017, available at 

https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf. 
78 See Smith (2017), slide 6, “Is Moore’s Law Dead? No!”. Interestingly, since September of 2017, Intel has not—to 

the best of my knowledge—published a claim that its manufacturing cost per transistor continues to decline at 

rates exceeding previous historical decline rates, or is even falling at new technology nodes. 
79 Krzanich (2012), slide 19. 
80 What constitutes leading edge technology in memory chips is somewhat more nebulous, and several large 

memory specialist IDMs (Hynix, Toshiba, Micron) might also arguably be categorized as being near the leading 

edge. Global Foundries has since announced that it is dropping out of future development of new manufacturing 

technology nodes. 
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volume chips. Long-established American chip companies, such as Motorola, National Semiconductor, 

and Freescale, disappeared in the course of mergers or acquisitions that continue to reshape the 

industry.   

  This consolidation in leading edge IC fabrication is global. In Europe, there are no manufacturers 

currently investing in leading edge technology.81 In Asia, there are arguably only Toshiba in Japan, 

Samsung and Hynix in Korea, and foundry TSMC in Taiwan. Firm level scale economies explain why fewer 

firms can afford leading edge fabs, but can’t explain why Intel’s cost per transistor would have declined 

much faster than at other producers still investing in leading edge fabs, particularly the foundries. It’s 

possible that Intel has unique, proprietary technological advantages. A more mundane explanation is 

that product level scale economies drive these differences.   

  In particular, there has been an exponential increase in the costs of the ever more complex 

photomasks needed to pattern wafers using lithography tools—a set of masks cost $450,000 to 

$700,000 back in 2001, at 130nm, compared with a wafer production cost of $2,500 to $4,000 per 

wafer.82 At 14nm, (updating wafer production costs using Intel costs in Table 9 implies 150% increases) 

wafer production cost would be $6,225 to $9,960. By contrast, costs for a mask set at 14nm are 

estimated to run from $10 million to $18 million, a 22- to 40-fold multiple of 130nm mask costs!27 

Lithography cost models suggest that with 5000 wafers exposed per photomask set (a relatively high 

volume product at recent technology nodes), mask costs per unit of output will exceed both average 

equipment capital cost, and average depreciation cost. With smaller production runs for a product, 

photomask costs become the overwhelmingly dominant element of silicon wafer-processing cost at 

leading edge technology nodes.83   

  Intel, with the largest production runs in the industry (perhaps 300 to 400 million processors in 

201484), has huge volumes of wafers to amortize the cost of its masks, and is certainly benefitting from 

significant economies of scale.  A single Intel processor design (and mask set) is the basis for scores of 

different processor models sold to computer makers. Processor features, on-board memory sizes, 

processor speeds, and numbers of functioning cores can be enabled or disabled in the final stages of 

chip manufacture, and manufacturing process parameters can even be altered to shift the mix of 

functioning parts in desired ways.85   

  For Intel, this creates average manufacturing costs per chip that are vastly smaller than costs for 

fabless competitors running much smaller product volumes using the same technology node at 

 
81 The last remaining leading edge chipmaker headquartered in Europe, ST Microelectronics, announced in 2015 

that it will be relying on foundries for future advance manufacturing needs.  
82 Both 130 nm mask and wafer cost estimates were presented by an engineer in Intel’s in-house Mask Operation 

unit; Yang (2001).  Mask set cost estimates at 14nm are taken from Black (2013), slide 6.  
83 Lattard (2014), slide 6.  
84 Based on the fact that Intel publicly revealed that it had shipped 100 million processors a quarter, a record-

setting event, in the third quarter of 2014.  Intel (2014), p. 1. 
85 When chips are tested after manufacture, the speed, power consumption, and functioning memory and feature 

characteristics are used to “bin” the processor into one of many different part numbers. As process yields improve 

over time with experience, new part numbers with faster speeds or lower power consumption, etc., are 

introduced. VanWagoner (2014) is a concise discussion by a former Intel manufacturing engineer of how a large 

variety of processor models are manufactured from a single unique processor design.   
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foundries. Foundries recoup those much higher per unit mask costs through one-time charges, or 

through high finished wafer prices charged to its fabless designer-customers. The customer directly 

bears the much higher design costs per unit if the latest technology node is chosen for the product.  

  Exponentially growing design and mask costs at leading edge nodes now make older technology 

nodes economically attractive for lower volume products. Higher variable wafer-processing costs per 

transistor at older nodes are more than offset by much lower fixed design and photomask costs.  

  Such scale-driven cost disadvantages are increasingly pushing low volume chip production to 

older chipmaking technology running in depreciated fabs. This is reshaping the economics of chip 

production, extending the economic lives of aging fabs. Older 200mm wafer fab capacity is now growing 

rapidly, forecast to expand almost 20% by 2020!86  

  Historically, this is unprecedented. The additional 200mm capacity coming into service cannot 

use more advanced process technologies designed for 300mm wafer processing equipment. Much lower 

fixed design and photomask costs with older technology are the primary factor making it economically 

attractive for fabricating low volume products. As inexpensive computing penetrates into everyday 

appliances, “Internet of Things” chip designers are generating low volume foundry orders for chip 

designs tailored to market niches, filling these old fabs with chip orders that don’t require the greatest 

possible density.   

 Is Intel an exceptional case in the semiconductor industry? Is its portrait of recently accelerating 

manufacturing cost declines reflected in the actual behavior of its product prices? The problem is, Intel 

does not disclose data on its product pricing to either the public, or government statistical agencies, so 

analysis of what an economist would call a quality-adjusted price is quite difficult. 

 Alternative Hedonic Price Indexes for Microprocessors. Apart from Intel’s pre-2018 

declarations of optimism, a second piece of evidence arguing against a slowdown in Moore’s Law is a 

study by Byrne, Oliner, and Sichel (BOS, 2018), which also utilizes the same list price data from Intel 

(that I used) in making its argument. Using only the first four quarters of prices for recently introduced 

models, they run an annual time dummy hedonic price model over adjoining pairs of years, and find 

quality-adjusted prices declining at the same rate in 2000-04 as in 2009-13, at about a 42 percent annual 

rate of decline, and an even more impressive 46% decline over 2004-2009.87 This is higher than any of 

the rates shown for 2004-2009, and very much higher than the decline rates post-2009 in Table 7.  

The key differences between my hedonic price indexes and the BOS hedonic price indexes are: 

(1) BOS use only a subset of the desktop processors for which their chosen software benchmark scores 

are available (vs. all desktop processors listed on Intel’s current price sheets); (2) BOS include quarterly 

average list prices for individual processors only during the first four quarters after their introduction 

onto the market (vs. using all available monthly average list prices); and (3) BOS use only a single 

processor characteristic (geometric mean of benchmark software performance scores88) in their hedonic 

 
86 Dieseldorff (2016).  
87 Ibid. BOS (2018) use only the first four quarterly average prices for individual processors, and a single 

explanatory characteristic—performance on a software benchmark—in their hedonic regression.  
88 They take the geometric mean of processor performance on industry consortium SPEC’s benchmark scores on 

single program integer and floating point software test suites. Their procedure for splicing the two or three distinct 

sets of benchmarks used over their sample period (SPEC2000 and SPEC2006, and possibly SPEC95) over their 2000-
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model (vs. using a much larger set of processor characteristics that I argue is likely to be relevant to both 

demand and unit cost).   

 Sample Selection: SPEC benchmark vs no SPEC available. BOS acknowledge that there are some 

differences between chips which have benchmark (SPEC) scores available, and chips without (SPEC 

scores are primarily used to compare processor performance in servers and technical computing 

workstations, which generally use higher end processors than the consumer market).89 They report that 

a matched model price index using only the SPEC chips generally falls faster than an index using the non-

SPEC chips in all time periods. They also report that their matched model indexes produce a qualitative 

pattern in price declines over time that is very similar to what is shown in Table 7, above, for all Intel 

desktop processors. Thus, these results suggest that the restriction of the price sample to higher 

performance processors with SPEC scores may bias estimates of quality-adjusted price declines toward 

higher rates of price decline, but is not responsible for the very different qualitative behavior over time 

(relatively constant, versus dramatic reductions in rates of decline after 2004). 

 First 4 quarters only, vs. all prices. BOS observe that individual Intel processor list prices very 

rarely change over time, on price sheets, after 2011, in contrast to the prior decade. They identify two 

scenarios they believe may explain this. In one scenario, “Intel offers progressively larger [but 

unobserved] discounts to selected purchasers as models age,”90 producing a measurement error for 

older processors, but not recently introduced models. This would complicate estimation of hedonic price 

indexes using list price data. “The introduction period index would be unbiased even if there are 

unobserved discounts at the time of introduction provided that these discounts do not vary 

systematically over time or across models,”91  while an index using all periods would presumably be 

biased. 

Alternatively, they argue that even if the posted list prices are actual transactional prices, the 

older chips must be getting progressively more expensive in quality-adjusted terms if their nominal 

prices do not change, so relative demand for these models must be falling.  “By focusing on prices [only] 

at the beginning of each model’s life cycle, a regression that applies equal weights to all observations 

avoids over-weighting models whose quantities have dropped off.”92 These arguments are used to 

justify using only prices observed during the first four quarters after a model’s introduction, discarding 

the majority of their sample of Intel list prices. 

However, in a recent study, Sawyer and So (2017) replicate the substance of the BOS results 

over the period after 2009, in a sample utilizing only “early” (first 4 quarters after introduction) Intel list 

prices.93 However, when processor characteristics are added to SPEC scores as explanatory covariates , 

Sawyer and So show that standard statistical tests decisively reject the exclusion of processor 

characteristics from a hedonic price equation which also includes SPEC scores.94 When these other 

 
2013 sample period is not explicitly described. See Figure 4 above for evidence that both levels and slopes of these 

benchmarks change over time when they are compared. 
89 BOS (2018), Table 2. 
90 Byrne et. al. (2018), p. 690. 
91 Ibid. 
92 Ibid.  
93 Sawyer and So (2017), p. 8. 
94 Ibid., p. 11. 
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processor characteristics are not excluded, estimates of recent decline rates for quality-adjusted 

processor prices over time are dramatically smaller than those estimated by BOS.95 We can reasonably 

conclude that it is the restriction of hedonic characteristics to benchmark scores only, and not the 

restriction to early prices, that is producing the pattern of unremittingly high price declines found in 

BOS(2018) over the post-2004 time period. 

Sawyer and So also note that Intel processors are typically sold in their largest volumes only 

after the first four quarters in which they are available for sale.96 Intel’s own economic expert made this 

point in its antitrust case before the European Commission, noting that processor production begins 

with a “ramp-up” phase that “begins with low volumes and typically lasts three to five quarters”.97 

Therefore, using price data for a processor only during the first four quarters following its introduction 

likely would place relatively high weights on products actually being sold in relatively low volumes, 

compared to other products. 

It seems reasonable to suggest that this may be a real world example of omitted variable bias, 

akin to that created in the last column of the perfect collinearity simulation in Table 6.  However, BOS 

articulate some real concerns about use of Intel list price data to measure processor pricing trends. They 

note “a sharp change over the course of the 2000s in the life-cycle properties of Intel’s posted prices…In 

the early period prices fell steeply over a model’s life cycle. However, by 2011-2012, price paths are flat 

or nearly so, with only a few instances of sizable price declines.”98 These observations are spot on. 

Figure 11 shows the fraction of incumbent (i.e., omitting newly introduced products) desktop 

processor prices that changed from one list price sheet to the next one issued, from 1998 through mid-

2014. Through mid-2014, it is evident that Intel’s propensity to alter list prices on existing processors 

diminished over time, though it never entirely stopped adjusting list prices on its existing product line 

through mid-2014. In 2008 and 2009, for example, there were price sheets on which anywhere from 35 

to 40 percent of already introduced desktop processor prices changed from the previous sheet.99 Since 

2014, however, existing processor prices rarely if ever change from one price sheet to the next. 

 Indeed, if one had to choose a date based on this chart for a climacteric in Intel pricing practices, 

2010—the year after its antitrust cases were settled—would seem a promising choice. That year also 

apparently coincides with the beginning of a determined campaign by Intel to raise its profit margins, an 

effort that seems to have had some success (aided at that point by a greatly diminished competitive 

threat from its historical rival, AMD). (See Figure 12.) Raising its average sales prices (ASP) was a key 

element of this strategy. (See Figure 13.) 

 In earlier versions of their research, BOS focused on the evident change in Intel pricing strategies 

during the first decade of the 2000’s as the motivation for restricting their Intel prices to “early” initial 

 
95 Ibid., p. 10. 
96 Ibid., pp. 14-15. 
97 European Commission (2009), p. 326. 
98 BOS (2018), p. 687. 
99 BOS (2018), Figure 4, show a similar set of patterns over time in the share of Intel desktop processors with a list 

price decline within 4 quarters of introduction. 
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processor prices.100 Their hypothesis, that Intel may have changed its pricing strategy during the first 

decade of the new millennium, actually seems quite plausible, given that the European Commission 

launched a major antitrust case against Intel over it processor price discounting practices during the 

2002-2006 period, culminating in a preliminary decision against Intel in 2007, and a final decision in 

2009.101 A related private U.S. antitrust case by Intel’s rival, AMD, was filed, then settled in 2009.   

 

Figure 11. Fraction of Intel desktop processor prices changing from one price list to the next. 
Source: Author’s tabulation from Intel list price dataset. 

 

 
100 In the earlier 2017 Federal Reserve working paper version of their study, BOS speculated that “[i]t is possible 

that Intel actually changed its life-cycle pricing strategy to extract more revenue from older models, with the 

posted prices reflecting this change.” Byrne, Oliner, and Sichel (2017), p. 8. 
101 See European Commission (2009). The same antitrust concerns also resulted in government antitrust actions in 

Japan and Korea, and by the U.S. Federal Trade Commission. Acting on an appeal by Intel, the European Court of 

Justice sent the EU case back to a lower court for further consideration in 2017, so this seems destined to be 

litigated for years to come. 
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Figure 12. Intel’s post‐2010 gross margin elevation objective 
Source: Smith (2015). 

 

 

 

Figure 13. Intel’s 2015 explanation to its shareholders for success in maintaining high profit margins 
Smith (2015). 

 

The BOS (2018) scenario of “progressively larger discounts to selected purchasers as models 

age” is difficult to test, since no data on Intel transaction prices for its wholesale sales to large buyers 

are publicly available. We do know that evidence produced in the EU antitrust investigation seems to 

show that even the newest chips sold to large OEM customers were heavily discounted from list prices 
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prior to 2006, at times with conditional exclusivity rebates that were not publicly reported by Intel or its 

customers.102  

 However, there is one public source of Intel transactional price data that is real, observed, and 

does not require any assumptions about unobserved behavior. Retail prices in the electronics industry 

are linked to wholesale prices, directly and indirectly. Most directly, the very largest retailers can 

purchase boxed processors directly from Intel, or like smaller retailers, from distributors. (Approximately 

20% of Intel processors in recent years, by volume, were sold directly as boxed processors, primarily to 

small computer makers and electronic retailers.103) Computer original equipment manufacturers 

(OEMs), electronics system manufacturers, and electronic parts distributors who purchase processors 

directly from Intel can resell excess inventories to other distributors, resellers, and retailers, and these 

actually show up on the retail market labeled as “OEM package” (vs. “Retail Box” packaging).  

Both boxed and OEM-packaged processors are sold by retailers, distributors, and brokers, with a 

price that is advertised publicly and directly observable in the marketplace. (The retail data used in 

constructing my matched model price index include both OEM and retail packaged chips sold by internet 

retailers.) The retail data used in Table 7 also seem to clearly point to a deceleration in microprocessor 

price declines after 2004. 

 It seems reasonable to presume that retail transaction prices (which are observable in the 

market), at least in the long run should have some stable stochastic relationship to wholesale producer 

transactional prices. Indeed, a least one previous study found such linkages between OEM contract 

transactional prices and retail prices for high volume chips sold in the semiconductor industry.104  

 There are market-driven economic reasons behind this linkage. Both semiconductor 

manufacturers and their OEM customers sell their excess inventories of chips to brokers and distributors 

during industry downturns, pushing small buyer spot prices down in distributor and retail sales channels 

as excess OEM inventories of chips are absorbed in those sales channels. In tight markets, conversely, 

when semiconductor manufacturers are capacity constrained, wholesale contract prices to large OEMs 

rise. To meet surging demand, OEMs may even try to purchase additional volumes of chips, beyond the 

volumes negotiated in contracts with chip manufacturers, in retail and distribution markets. As both 

large OEMs and smaller buyers compete fiercely over the remaining, unallocated output, upward 

 
102 See European Commission (2009). See also SEC v. Dell Inc. et al. Complaint (2010), which asserts that 

unreported exclusivity rebates given by Intel to Dell had climbed to about ¾ of Dell’s operating income by 2006. 
103 “Although it sells microprocessors directly to the largest computer manufacturers, such as Dell, 

Hewlett Packard, and Lenovo, its Channel Supply Demand Operations (CSDO) organization is responsible for 

satisfying the branded boxed CPU demands of Intel’s vast customer network of distributors, resellers, dealers, and 

local integrators. Intel’s boxed processor shipment volume represents approximately 20 percent of its total CPU 

shipments…Processors ship from CW1 to one of four CW2 “boxing” sites, which kit the processors with cooling 

solutions (e.g., fan, heat sink) and place them in retail boxes and distribution containers. Such boxing sites are 

typically subcontracted companies that ship the boxed products to nearby Intel CW3 finished-goods warehouses 

where they are used to fulfill customer orders. Channel customers range in size and need; they are mostly low-

volume computer manufacturers and electronics retailers.” B.Wieland, P. Mastrantonio, S. P. Willems, and K. G. 

Kempf, “Optimizing Inventory Levels Within Intel’s Channel Supply Demand Operations,” Interfaces, Vol. 42, No. 6, 

Nov–Dec 2012, pp. 517–18. 
104 See Flamm (1993), for a study documenting linkages between retail prices and OEM contract prices for DRAM 

memory chips. 
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pressure on retail and distributor prices is felt. In short, both direct and indirect linkages between small 

buyer (retail and distributor) markets, and large buyer (contracts with OEMs) markets, as well as 

arbitrage across distribution channels would lead an economist to expect to observe a structural 

relationship between observed retail processor prices, and unobserved large OEM wholesale prices. 

In a still earlier version of their research, BOS (2015) had speculated that the change in Intel 

pricing behavior (resulting in a systematic change in the relationship between Intel list prices and 

unobserved OEM contract prices) may have occurred after 2006.105 This is actually an interesting and 

plausible choice of dates for a change in Intel pricing behavior, since it coincides approximately with the 

end of the exclusivity rebates that had been the subject of the government and private antitrust actions 

mentioned earlier. There is also a significant drop in the maximum fraction of Intel list prices changing 

between adjacent price sheets evident after 2006 visible in Figure 11 (the last occasions on which 60% 

of prices for existing processors were changed were at the end of 2006 and early 2007). If there was a 

structural shift in Intel pricing practices that caused list price to diverge more sharply from actual 

transactional prices after 2006, we might then also expect to see a change in the relationship between 

movements in observed transactional prices in the retail market, and Intel list prices after 2006. This is 

testable using observational data. 

 I explored the possibility that there was some detectable change in the relationship between 

Intel list (posted wholesale) prices and observed retail prices after 2006 by constructing a panel of 

monthly observations on average retail price and posted list price covering 163 distinct Intel desktop 

processor models sold by Internet retailers over the years 2000 through 2010.106 I allow for model fixed 

effects (which permits a particular low-end Celeron model, for example, to be related to Intel list price 

with a different retail margin than a high end Core i7 model). The model that I estimated specified the 

log of retail price as 

    ln(Rit) = ai + b ln(Iit) + c Ageit + d OEM + After2006 + e After2006 x ln(Iit) + f After2006 x  Ageit  + uit , 

with Rit an observation on average retail price for model i in month t; Iit the average posted Intel list price 

in a month in which list price had been posted at least once; Ageit the number of elapsed months since 

the month the model’s price had been first posted on a published Intel price sheet; After2006 a binary 

indicator variable with value 1 in 2006 and thereafter, zero before; OEM a binary indicator for whether 

the product sold was the retail boxed version, or the bare chip in OEM packaging; and uit a random 

disturbance term. If post-2006 transaction prices reflect age discounts from Intel list price that pre-2006 

prices did not, we would expect to find a statistically significant shift coefficient on the interaction of 

After2006 with Age.  

 Table 10 shows the results of estimating this model.107 The After2006 shift variable, and all of its 

interactions, including interactions with processor model Age, are close to zero and statistically 

 
105 “By 2006, this pattern had completely changed; the posted price of a specific model tended to remain constant, 

even after a new, higher performance model became available at a similar price.” BOS (2016), p. 9. 
106 This is the same sharkyextreme.com data I previously used to construct Jevons and hedonic retail price indexes. 
107 Robust standard errors clustered on processor model are shown in Figure 8. 
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insignificant individually, and jointly.108 The relatively flatter trajectories over time for Intel list prices 

after 2006 are mirrored in the behavior of flatter retail price trajectories for the same chips. 

 Therefore, based on the only evidence on actual transaction prices that is publicly available, i.e., 

advertised retail prices from Internet-based vendors, there is no evidence of some structural change 

occurring after 2006 in the relationship between observed Intel list price and observed retail market 

prices. Of course, this does not directly prove that there was no change in the relationship between Intel 

list prices and (unobserved) discounted OEM contract prices for processors, but it certainly weighs 

against it. 

 Figure 11 and our earlier discussion suggests that 2010-11 is another candidate time period in 

which to search for shift in Intel pricing practices. Unfortunately, the retail data analyzed in Table 10 

does not extend past this date. 

 

Table 10 

Fixed Effects Model of Log Retail Price For Intel Desktop Processors 
               (Full Model)   (Constrained Model)    

                   lp_ret          lp_ret    

-------------------------------------------- 

log Intel           0.763***        0.768*** 

Tray Price        (15.37)         (17.93)    

 

OEM dummy         -0.0497***      -0.0496*** 

                  (-6.70)         (-6.77)    

 

age              -0.00676***     -0.00582*** 

                  (-3.70)         (-4.91)    

 

aft2006 dummy      0.0204                    

                   (0.13)                    

 

aft2006 x age     0.00162                    

                   (0.83)                    

 

aft2006 x log     -0.0108                    

Intel Tray Price  (-0.39)                    

 

constant            1.347***        1.303*** 

                   (4.87)          (5.55)    

-------------------------------------------- 

N                    1580            1580    

R-squared           0.987           0.987    

adj. R-squared      0.986           0.986    

-------------------------------------------- 

t statistics in parentheses 

* p<0.05, ** p<0.01, *** p<0.001 

 

SPEC scores vs. chip characteristics. As previously remarked, Sawyer and So (2017) have shown 

that the BOS results showing no slowdown in quality-adjusted Intel processor price declines since 2000 

 
108 The Wald F(3,162)  test statistic for the joint hypothesis that all After2006 terms were zero was .82, the p-value 

.49.  
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are not the result of using only “early” Intel list prices, but instead are driven primarily by use of SPEC 

benchmark scores as the sole characteristic in a hedonic model, in lieu of a more extensive set of chip 

characteristics.  

The use of SPEC scores instead of actual chip characteristics is based on the argument that direct 

performance measures are easier to get right than relevant chip characteristics. But this argument 

overlooks three fundamental reasons why chip characteristics should still be included in a hedonic price 

equation. 

First, there is a computer architecture literature that tells us that benchmark scores of a CPU on 

any given task should be well explained by a small set of chip characteristics, including numbers of cores 

and threads, computer architectural design, chip clock rate, and on-chip memory cache sizes.  This 

literature actually identifies the chip characteristics that are relevant, and even uses them to model 

computer CPU performance out of sample.109  As I next show, scores on various SPEC processor 

benchmarks are almost perfectly predicted by a linear function of the small set of chip characteristics 

that the computer design literature predicts are its determinants. 

Second, economics tells us that the characteristics that belong in a hedonic price equation are 

there because they are relevant to user demand, but that they have an additional effect on price if they 

alter supplier marginal cost.110 At best, software benchmark scores might correctly serve as a perfect 

summary measure of quality perceived by users, on the demand side. But there is no reason, 

technological or economic, why a measure of chip performance relevant to demand should also 

perfectly capture the separate effects of underlying characteristics that determine performance, on chip 

cost. Omitting variation in processor characteristics that affects chip cost will induce omitted variable 

bias in the hedonic coefficient estimates, if the omitted characteristics’ effects on cost are correlated 

(but not perfectly collinear) with the included benchmark scores. 

That is, assume for the sake of argument that the mix of user demands for various types of 

computer applications was fixed over time, and that processor performance on this fixed weight mix of 

computer applications was correctly captured in some SPEC benchmark. Even with the heroic 

assumption that this aggregated benchmark correctly captured everything relevant to chip quality on 

the demand side (and it is clear it does not111), there is no plausible technological or economic reason 

why variations across chip models in marginal production costs related to chip characteristics that 

determine benchmark scores, should be perfectly mirrored by variation in SPEC benchmark scores.  

Indeed, the computer architecture literature teaches us that a variety of chip characteristics can 

affect performance, and that, therefore, the same SPEC score can potentially be produced with diverse, 

non-unique combinations of numbers of cores, threads, cache memory, clock frequency, etc. In fact, if 

we look at actual SPEC scores, multiple distinct chip models can produce approximately the same score. 

 
109 Hennessey and Patterson(2003), in the Third Edition of their classic computer architecture textbook, pp. 59-60, 

do exactly this to compare the Pentium III with a Pentium 4 operating at the same clock rate. 
110 Pakes (2003), p. 1581, equation 3, notes that the hedonic price function can be interpreted as the sum of the 

expected marginal cost, conditional on characteristics, and expected markup (derived from the demand function), 

conditional on characteristics. The key point is that the product characteristics are arguments in the separate cost 

and demand function terms in the hedonic price equation. 
111 Since power draw minimization, graphics, and hardware virtualization capabilities clearly are desirable to large 

subsets of computer users, yet will have no direct impact on SPEC scores if missing or disabled in a processor. 
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But variation in each of these chips’ characteristics—cores, threads, on-chip memory, and clock 

frequencies—may have very different impacts on production cost for the processor compared with 

impact on SPEC scores.   

Third, if benchmark scores are determined by chip characteristics, using chip characteristics 

directly in the hedonic equation—instead of, or in addition to a single benchmark score —effectively 

allows coefficients in the hedonic equation to change to mirror changes in the average mix of tasks run 

by computer users over time. Use of a single benchmark or fixed-weight index of benchmarks effectively 

assumes the mix of tasks relevant to performance for users is fixed over time.112 

For all these reasons, use of the SPEC score as the sole characteristic in a hedonic price equation 

is not a highly plausible economic assumption. In addition, because SPEC scores are only available for 

the subset of Intel desktop processors used by OEMs in servers, the use of SPEC scores in a desktop 

processor hedonic price regression will considerably reduce sample size compared with statistical 

models using chip characteristics but not SPEC scores. In the Intel list price data, the number of Intel 

desktop processors with SPEC scores available for analysis is a fraction of all Intel desktop processors 

with list prices available in any time period. When using other publicly available retail or distributor 

desktop processor price data, an even larger fraction of the available data may not have SPEC scores 

available. 113 

To support this point, I next demonstrate that SPEC processor benchmark scores are almost 

perfectly predicted by a small number of underlying chip characteristics, and provide little or no 

additional information. In making this claim, I note that I make use of a set of processor 

microarchitecture dummy variables in the set of chip characteristics used. Neither Sawyer and So, nor 

BOS, use processor architecture dummy variables (which I have shown make an important contribution 

to the explanatory power of a hedonic price model) in the set of characteristics they employ when 

estimating a chip characteristic-based hedonic model. It is quite possible that adding a software 

benchmark score to a set of chip characteristics that excludes the architectural dummies has the effect 

of capturing much of the effect of these dummy variables in the hedonic price model. 

The role of different chip characteristics on different SPEC benchmarks, however, varies greatly 

across different types of SPEC benchmarks, which argues for direct use of the underlying characteristics 

in a hedonic equation. It is an argument for letting the data decide what the correct weights on 

 
112 That is, assume we have two benchmarks, b1 and b2, and two processor characteristics, c1 and c2. Assume b1 = 

a1 c1 + a2 c2, while b2 = e1 c1 + e2 c2. Assume users in the aggregate run b1 applications 50% of the time, b2 

applications the other 50%. Then we can represent performance on the “average market workload” with a 

performance index that looks like .5 b1 + .5 b2, or equivalently, .5 (a1 c1 + a2 c2) + .5 (e1 c1 + e2 c2) = [.5 (a1+e1)] 

c1 + [.5 (a2 + e2)] c2. That is, the benchmark index is equal to a simple linear function of the two characteristics. 

Now, if the weights of b1 and b2 change to 25% and 75% on the new “market workload,” workload performance 

will be incorrectly captured by the original performance index (50% weights) even if scaled by some arbitrary 

constant. However, performance on “market workload” is still correctly captured by a linear function of the two 

underlying chip characteristics (though the coefficients of the characteristics in this function change). The 

specification that is linear in the underlying characteristics is simply more flexible in representing shifts in demand. 
113 Because the selection of processors commonly sold to consumers for use in desktop PCs may include relatively 

fewer desktop processors used in servers (the ones which would have SPEC scores available). 
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processor characteristics in a hedonic price equation are, rather than adopting the implicit weights 

embedded within a time invariant weighted average benchmark score. 

5. Chip Characteristics and Computer Performance: Building Blocks for A Hedonic Analysis 

By forcing us to focus on the relationship between performance of microprocessors on 

representative software benchmarks—which all agree should be an important determinant of chip 

demand-- and chip characteristics, BOS have a done us a great service in providing focus for a discussion 

of what chip characteristics should be used when estimating a hedonic price equation for 

microprocessors. 

The theoretical computer architecture literature makes use of a processor performance equation to 

predict processor performance. Effectively, this relationship models the execution time a computer 

processing unit takes to perform some given software benchmark program (i.e., a given sequence of 

programming instructions) as the product of two parameters: average clock ticks per instruction and the 

seconds per clock tick in the processor’s clock.114 Since a processor performance benchmark score is 

proportional to the inverse of time required to run a benchmark program on a particular computer 

processor, we can invert the processor performance equation and then have  

Performance ~ IPC x clock rate , 

where IPC is processed instructions per clock tick, clock rate is measured in ticks per second, and the 

performance index basically compares benchmark instructions executed per unit time across processors. 

Indeed, given a particular computer architecture, computer engineers simply scale measured 

performance linearly by clock rate in order to model the approximate impact of raising clock rate on 

processor performance.115 

 IPC will depend on both the design (architecture) of the computer processor and the particular 

mix of instructions being executed in the benchmark software. The specified clock rate of a processor 

model is typically fixed after testing, at the end of the chip fabrication process.116 “Binning” during 

testing of finished chips creates different speed grade bins, which are subsequently sold as different 

processor models to computer manufacturers and other consumers. The effective, yielded mix of non-

defective, more valuable fast processors, and less valuable slow processors, on a fabricated wafer 

containing hundreds or thousands of these processors, is a determinant of processor manufacturing 

costs. 

 Speed is not the only chip processor characteristic that is affected by random fabrication 

process variation. There may also be random manufacturing variation affecting the voltage needed to 

 
114 See Hennessey and Patterson (2012), section 1.9, pp. 48-52. 
115 Hennessey and Patterson(2003), in the Third Edition of their classic computer architecture textbook, pp. 59-60, 

do exactly this to compare Pentium III performance with a Pentium 4 operating at the same clock rate. 
116 Random variation in a highly complex semiconductor manufacturing process leads to a distribution of functional 

chips by the maximum clock rate at which they can successfully execute some test suite. A “fast” processor can 

operate at a higher than average clock frequency, while a “slow” processor can only operate correctly at a slower 

than average clock rate. 
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run the chip properly, varying from die to die on the same wafer. Chips which require less power to 

perform correctly may be identified through testing, and sold as low power models of the processor.117  

Microprocessor chips generally have on-chip caches of fast local memory which can also affect 

the execution time for given software. The portion of on-chip cache memory which is defect-free, and 

therefore usable by the chip, can also vary with the incidence of manufacturing defects during the 

fabrication process, and testing then leads to additional binning of finished chips by usable, functional 

cache memory.  

Similarly, particular sections of chip circuitry associated with some advanced features of the chip 

may not be fully functional due to random processing defects. In order to maximize revenue from all 

usable products yielded from a finished silicon wafer, a complex system of testing “bins” based on 

speed, memory, power requirements, and working feature functionality is used to define distinct 

processor models sold as different chips to final consumers. Indeed, chips are generally designed with 

some redundant circuitry and electrical “fusing” options intended to maximize saleable product, and 

revenues, from a processed wafer with dies that may not be perfect. A dozen processor models may be 

derived from a single, artfully designed die manufactured in the thousands on a single wafer.118 

 At Intel, microprocessor designs are identified with a “microarchitecture,” which historically is 

associated with a publicly available codename. (For example, the processor microarchitecture launched 

by Intel in October 2017 was given the codename “Coffee Lake”.119) Prior to 2010, Intel also made public 

information on its processors’ die sizes and the number of transistors on the die processed in its 

manufacture. Based on this information (which is no longer publicly released), it appears the many 

dozens of microprocessor models for each of its microarchitectures were based on somewhere between 

one and three basic die designs.120 That is, the dozens of different processor models corresponding to a 

single microarchitecture product family were manufactured from just one to three basic chip designs 

fabricated on silicon wafers. 

 It is straightforward to analyze the relationship between SPEC scores and microprocessor 

characteristics. Table 10 shows the results from estimating a linear regression model explaining log SPEC 

scores with a set of explanatory variables suggested by the computer engineering literature: a full set of 

microarchitecture dummy variables (since IPC is going to depend on computer microarchitecture), log of 

the base processor clock rate, a dummy variable indicating a “turbo” feature is enabled on the chip (the 

highest clock rate achievable by a single core on the chip will differ from the base processor clock rate if 

 
117 And processing of the wafer can be optimized to produce relatively more chips requiring less power. 
118 The design of a chip will segment the circuitry into functional blocks which can be disabled electronically (e.g., 

with programmable “fuses”) during the manufacture and testing process. Some redundant circuitry is typically 

made part of the design, to maximize yield of usable parts after test. A more capable chip can generally be made 

less capable by disabling portions of its circuitry at the final stages of manufacture. This may done deliberately by 

manufacturers to create additional supplies of lower end chips when customer demand for lower end parts 

exceeds the portion of output physically binned into low end chip models on the basis of test results.  
119  https://gizmodo.com/intels-latest-coffee-lake-processors-are-fast-as-hell-1819129322 . 
120 Prior to 2010, Intel publicly released the exact die area and number of “processing transistors” used in 

manufacturing most of its microprocessor models. All processors with exactly the same microarchitecture, die 

area, and numbers of processing transistors can be assumed to be derived from a single die design. Analysis of this 

data shows anywhere from 1 to 3 unique microarchitecture/die size/processing transistor combinations were 

being used to produce many dozens of processor models. 
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this feature is available), log of on-chip memory cache size,121 log of number of physical processor cores 

on the chip, and a dummy variable indicating that multithreaded “virtual” logical cores are available on a 

chip.122 In addition, a binary indicator variable for use of “autoparallelization” in compiling the SPEC 

benchmark software code is included, since that can enable a speedup on multicore processors, or on 

processors with multithreading.123 

 A simple log linear regression model that explains SPEC benchmark performance as a function of 

six processor characteristics (and a full set of 29 to 31 dummy variables for different Intel x86 processor 

microarchitectures)  accounts for a remarkable 97 to 98 percent of the variation in SPEC2006 benchmark 

scores for thousands of computer models using Intel x86 processors over the 2005-2017 period. (Table 

11.) Note that this regression utilizes all Intel x86 desktop, server, and mobile processors in the 

SPEC2006 database, and further, that it is estimated using every different individual computer making 

use of an included processor as the underlying set of observations used in estimating the model. 

Table 11 Log of SPEC 2006 benchmark as function of processor characteristics 

Six Characteristics Model 

Dependent variable is log of 

                          SPECf06         SPECi06        SPECfr06        SPECir06    

------------------------------------------------------------------------------------ 

Log base processor speed    0.196***        0.115**         0.383***        0.429*** 

                         (0.0401)        (0.0396)        (0.0590)        (0.0746)    

Log cache memory size      0.0965**        0.0861***        0.140**         0.109*** 

                         (0.0283)        (0.0232)        (0.0442)        (0.0208)    

Log number physical cores   0.157***       0.0385           0.642***        0.826*** 

                         (0.0284)        (0.0285)        (0.0357)        (0.0249)    

Hyperthreading dummy       0.0644**        0.0318**         0.132***        0.201*** 

                         (0.0179)        (0.0111)        (0.0169)        (0.0130)    

Log max speed w/turbo      0.514***        0.722***        0.101           0.328*** 

                         (0.0651)        (0.0560)         (0.103)        (0.0747)    

Autoparallelization dummy 0.0649*        0.00310          0.0107         -0.0134    

                         (0.0262)        (0.0534)        (0.0211)        (0.0362)    

Microarchitecture dummies Y  Y  Y  Y  

------------------------------------------------------------------------------------ 

Observations                 1160            1190            2207            2417    

R-squared                   0.966           0.960           0.982           0.974    

N_clusters                     31              31              29              30    

R-squared within            0.687           0.697           0.896           0.893    

------------------------------------------------------------------------------------ 

Cluster robust standard errors in parentheses, clustered on Intel microarchitecture. 

* p<0.05, ** p<0.01, *** p<0.001 

 

log base processor speed is processor base clock rate 

log of max speed is log of maximum clock rate if turbo mode available 

log cache memory is log of amount of last level cache memory on processor chip 

autoparallelization dummy =1 if feature enabled in compiler when SPEC software was compiled 

 
121 Actually, I am using the size of the “last level cache,” since microprocessors can have a hierarchy of successively 

larger (and slower) caches onboard. 
122 Hyperthreading is Intel’s name for multithreading capability, additional circuitry added to the processor which 

creates two logical (or “virtual”) processors that can access every physical core. One logical processor can begin 

processing the next instruction while the other logical processor is actually executing an instruction in a core, thus 

allowing a form of chip-level parallelism which can speed up performance when a computer program spawns 

multiple threads. 
123 Indeed, after a short number of months at the beginning of the SPEC 2006 suite in 2006, almost all the single 

process SPEC benchmark scores have autoparallelization turned on.  
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 That is, variation in chipsets, motherboards, configured memory, and other components in the 

computer systems from different manufacturers making use of any particular chip model, which is 

reflected in the residual, accounted for no more than 2 to 4 percent of observed variation in SPEC 

scores. This analysis utilizes individual tested computer system data; i.e., on average there are 4 to 5 

different computer systems using a specific processor model. 

 We can alternatively calculate a median or mean score across all computer systems utilizing 

each processor chip model, to more closely resemble the BOS procedure for deriving a single SPEC score 

for each chip model. Using that as the basis for our SPEC2006 performance regression model, we get an 

even higher R2, of about .99.124 (Table 12.) It is clear that computer architecture dummies and five 

processor characteristics, together, essentially perfectly predict SPEC benchmark scores. 

 

 

Table 12 Log of median SPEC 2006 benchmark as function of processor characteristics 

Five Characteristics Model 

Dependent variable is log of median computer system score for particular processor model 

                          SPECf06         SPECi06        SPECfr06        SPECir06    

------------------------------------------------------------------------------------ 

Log base processor speed    0.279***        0.156***        0.507***        0.460*** 

                         (0.0347)        (0.0338)        (0.0767)        (0.0565)    

Log cache memory size      0.0783**        0.0575**         0.155**         0.122*** 

                         (0.0259)        (0.0194)        (0.0531)        (0.0184)    

Log number physical cores   0.190***       0.0697*          0.644***        0.810*** 

                         (0.0254)        (0.0274)        (0.0513)        (0.0167)    

Hyperthreading dummy       0.0721***       0.0371***        0.134***        0.211*** 

                         (0.0133)       (0.00727)        (0.0132)       (0.00788)    

Log max speed w/turbo       0.421***        0.677***      -0.0109           0.286*** 

                         (0.0716)        (0.0526)         (0.105)        (0.0575)    

Microarchitecture dummies Y  Y  Y  Y  

------------------------------------------------------------------------------------ 

Observations                  331             340             449             454    

R-squared                   0.988           0.985           0.990           0.994    

N_clusters                     30              30              28              28    

R-squared_within            0.843           0.853           0.941           0.975   

------------------------------------------------------------------------------------    

Cluster robust standard errors in parentheses, clustered on Intel microarchitecture. 

* p<0.05, ** p<0.01, *** p<0.001 

 

Two points are significant. First, the coefficients of (weights assigned to) different processor 

characteristics in determining SPEC scores are very different for different SPEC benchmarks. The clear 

implication is that different processor characteristics can have very different effects on performance for 

different types of workloads. A flexible hedonic price model, reflecting a changing distribution of chip 

consumers across distinct types of workloads, would best let the empirical data decide the weights users 

place on particular characteristics, rather than aggregating the characteristics into a single benchmark 

score with the time-invariant weights implicitly used to perform the aggregation into a performance 

metric. 

 
124 I drop all chips shown as underclocked or overclocked by computer system maker (having reported clock rate 

more than 10Mz slower or faster than the Intel-specified base clock rate), and ignore autoparallelization in 

calculating medians or means in Table 12. Table 12 reports results using logs of medians; using logs of means 

would give almost identical results. 
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Second, these characteristics also will affect cost. Every distinct Intel microarchitecture is 

manufactured using a single fabrication technology node, so in addition to representing the processor’s 

design architecture, the microarchitecture dummies also capture variation in microprocessor 

manufacturing cost that is induced by variation in chip microarchitectures and manufacturing 

technology. As previously described, different quality grades (measured by processor clock rates, 

amounts of on-chip cache memory, and chip features) produced by testing and binning are also 

associated with cost differences. Coefficients on these characteristics in a hedonic reduced form price 

equation should be regarded as reflecting both demand and cost effects. 

Finally, in addition to the chip characteristics determining SPEC performance, there are a small 

set of additional chip characteristics that we would certainly want to include in a hedonic price equation 

for microprocessors. Power dissipated by a chip determines whether expensive cooling solutions are 

required, shifting demand for that processor; power requirements are also important (for battery life) in 

mobile applications. Electricity use, the principle variable cost of computing, will vary with power 

consumed. Further, power dissipation varies with random manufacturing process variations, so the 

power rating of a chip is also going to be related to chip cost. Whether or not a graphics processor is 

integrated into the microprocessor will also affect both demand and cost for that chip. Support for 

hardware virtualization will have no practical effect on processor performance on SPEC benchmarks, but 

is a valuable feature for business customers wishing to increase server efficiency by running numerous 

“virtual machines” on their servers simultaneously. 

In conclusion, we should remember that SPEC scores are maintained by organizations that sell 

servers, processors used in servers, and the largest server customers, so a SPEC-selected sample will be 

skewed toward the models of chips that perform best as server processors. The SPEC performance 

regressions in Tables 11 and 12 would then seem to tell us that desktop and server performance should 

be modelled separately, with different weights placed on different chip characteristics.  

This suggests a natural segmentation of microprocessors for purposes of price measurement.  a 

desktop segment oriented toward single software program application performance, a mobile (laptop 

and tablet) segment tilted toward both performance and low power, and a server segment with a 

greater emphasis on performance on embarrassingly parallel workloads (servers running a mix of 

uncoordinated applications with performance more like the SPEC “rate” benchmarks). In terms of 

finding public data useful in estimating a hedonic price equation, retail/distribution prices will be most 

readily observable and useful in estimating desktop microprocessor prices. Retail data will be much 

more limited and less useful for mobile processors, and even more limited and therefore least useful, for 

hedonic measurement of server processor prices.  

The absence of a reliable source of producer transactional data for microprocessors, for use in 

government price indexes, is a serious and increasingly formidable barrier to measuring prices and 

innovation correctly in the semiconductor industry. 

6. Conclusion 

 There is considerable evidence that semiconductor manufacturing innovation has historically 

been responsible for perhaps a 20-30% annual decline in the cost of manufacturing transistors on a chip. 

One would expect that this predictable cost decline would be transformed into a similar price decline in 

a competitive industry, at least in the long run, and therefore, that a decline of this magnitude would 
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serve as a floor on the long-run trajectory of semiconductor prices for high volume semiconductor 

products. Innovations in the architecture and designs being manufactured on the chip, new kinds of chip 

designs, and superior performance characteristics of existing designs fabricated using more advanced 

fabrication technology, would be additional factors explaining even higher long run rates of decline in 

quality-adjusted semiconductor prices. 

 

 Historically, most high-volume semiconductor applications ultimately migrated to more 

advanced manufacturing technology nodes, pulled there by the simple economics of continuing declines 

in cost using more advanced fabrication technology. This migration pressure now seems to have 

lessened, in part the result of rapidly escalating fixed costs that must be sunk into the design of new 

chips using the most advanced manufacturing technology, and, in part due to an apparent slackening in 

the rate of cost decline at the technological frontier of semiconductor manufacturing. 

 

  The available empirical evidence, on balance, suggests that Moore’s Law-related historical 

declines in chip manufacturing cost have clearly been attenuated over the last decade. For chips where 

market price data are collected, decline rates in chip prices over time seem to have greatly diminished.  

The evidence for exceptionality in Intel microprocessor price declines is shaky, indicative primarily of the 

increasingly poor quality of publicly available processor price data, changing Intel policies on public 

release of meaningful list prices for its older processors, and likely, of omitted variables in hedonic price 

models using Intel list price data.  

A substantial economic literature has connected faster innovation in semiconductor 

manufacturing to rapidly improving price-performance for semiconductors, to larger price declines for 

information technology, to increased uptake of IT across the economy, and higher rates of labor 

productivity growth. If correct, this implies that a slowdown in semiconductor manufacturing innovation, 

and attenuation of price declines in both chips and IT, may play an important role in current stagnation 

in labor productivity growth. 

  Finally, it is now almost an article of faith in high tech industry that an expanding cloud of 

computing and machine intelligence is in the process of transforming our economy and society. Much of 

this faith is built on projection into the future based on past experience with increasingly powerful and 

pervasive computing capability that both cost less and used less energy, year after year.  The winding 

down of Moore’s Law means that the technological scaling that drove these historical declines, and 

implicitly underlie the most optimistic assumptions about the spread of ubiquitous computing in the 

future, may no longer hold. Both cost and energy use now seem more likely to increase in lockstep with 

the scale of cloud computing in the future. Unless there are continuing, significant improvements in 

software technology, computing costs—and energy use per computation—are unlikely to decline, or 

even stay constant as computing capacity increases, as was true in the past. Investments in entirely new 

technologies will be needed, as will a renaissance of creativity and innovation in software. Software, the 

neglected sibling living in the shadow cast by Moore’s Law—and dramatically cheapening hardware—for 

the last 50 years, must increasingly shoulder the burden of delivering comparable economic benefits 

from continuing technological innovation in information technology.  
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Appendix Table A1. 

 

   SPEC CPU  |      Coef.   Robust         z    P>|z|     [95% Conf. Interval]  N       R2 #                               

   Benchmark |     CAGR     Std. Err.           CPUs 

-------------+----------------------------------------------------------------------------------- 

1995m5-2000m3 

int95        |   .5826577   .0175146    33.27   0.000     .5483296    .6169857  152 .92 41 

fp95         |   .6397016   .0231907    27.58   0.000     .5942486    .6851546 142 .90 41 

int95_rate   |   .6241582   .0273672    22.81   0.000     .5705194     .677797  54 .87 20 

fp95_rate    |   .7227752      .0331    21.84   0.000     .6579003    .7876501  47 .83 18 

2000m11-2004m11 

int2000      |   .3304092   .0173773    19.01   0.000     .2963503    .3644681 215 .80 76 

fp2000       |   .3429411    .023522    14.58   0.000     .2968389    .3890433 203 .81 73 

int2000_rate |   .4697731   .0512966     9.16   0.000     .3692337    .5703125 160 .77 59 

fp2000_rate  |   .3989549   .0351676    11.34   0.000     .3300276    .4678822 162 .84 59 

-------------+----------------------------------------------------------------------------------- 

2005m2-2007m1 

int2000      |   .3222474    .016442    19.60   0.000     .2900217    .3544732 

fp2000       |   .3365855    .022279    15.11   0.000     .2929195    .3802515 

int2000_rate |   .4650892   .0475414     9.78   0.000     .3719098    .5582686 

fp2000_rate  |   .3986346    .032545    12.25   0.000     .3348476    .4624217 

2005m6-2012m11 

int2006      |   .1709304   .0069587    24.56   0.000     .1572916    .1845691 689  .84 254 

fp2006       |   .2467286   .0077563    31.81   0.000     .2315266    .2619306 690  .87 254 

int2006_rate |   .2472256    .013015    19.00   0.000     .2217167    .272734 728  .62 278 

fp2006_rate  |   .2537211   .0101781    24.93   0.000     .2337725    .2736698    711  .76 261 

-------------+----------------------------------------------------------------------------------- 

2013m1-2016m5 

int2006      |   .1687175   .0064265    26.25   0.000     .1561218    .1813133 

fp2006       |   .2414989   .0070952    34.04   0.000     .2275926    .2554053 

int2006_rate |   .2417978   .0119286    20.27   0.000     .2184181    .2651774 

fp2006_rate  |   .2480768   .0093352    26.57   0.000     .2297801    .2663735 

 

Notes: 

intxx and fpxx are SPEC CPU integer and floating point base scores (no special compiler optimizations used) when single instance of benchmark 

run on CPU. 

 

intxx_rate and fpxx_rate are SPEC CPU scores with multiple instances of benchmark programs run simultaneously; number of instances is 

entirely at discretion of entity running benchmark—may be as high as maximum number of threads, but may also be maximum number of 

cores, or any number less than that (on processors with symmetric multithreading capability—Intel version is branded as “hyperthreading”—

additional program execution hardware in a CPU core allows as many as two threads to simultaneously share a single core’s remaining 

hardware). 

 

Model estimated was  

ln(SPEC CPU benchmark) = a + b * monthly date of initial CPU availability in any manufacturer’s computer hardware + c * autoparallelization 

indicator + d * time shift indicator x monthly date of initial CPU availability in tested hardware.  

 

where 

autoparallelization = 1 if autoparallelization turned on at compile time for 2006 benchmark, 0 otherwise 

time shift indicator = 1 if year > 2004 for SPEC 2000 benchmarks, 0 otherwise 

                     = 1 if year > 2012 for SPEC 2006 benchmarks, 0 otherwise 

Annualized growth rate estimated as exp(b + d* timeshift indicator)^12 -1 

 

Time shift indicators were statistically significant, as were autoparallelization indicators. 
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Appendix Table A2 
Stata Simulation Code for Simulated Hedonic Model With Perfect Collinearity 

 

clear all 

set obs 10000000 

set seed 3492673 

gen  arch_dum =  round(runiform()) 

gen  time =round(runiform()) 

gen  clock_rate = 1000+500*round(runiform()) +500*time 

gen  turbo =  round(runiform())   

tab arch_dum time 

tab clock_rate time 

tab turbo time 

 

gen  speed = clock_rate + 500*arch_dum + 200*turbo  

gen  mfg_cost = 50 +  2* clock_rate + 2000* turbo + 500*arch_dum -10 * time 

gen  p= 100 + 2 *speed + mfg_cost + 1000*runiform()   

* = 600 + 2 *speed + mfg_cost + mean zero uniform disturbance 

* = 650 + 4* clock_rate + 1500 archdum + 22* turbo -10 * time //drop speed 

 

corr time turbo arch_dum clock_rate speed 

regress p speed time clock_rate arch_dum   

estimates store drop_turbo 

regress p speed time arch_dum turbo  

estimates store drop_clock 

regress p speed time clock_rate turbo  

estimates store drop_arch 

regress p time clock_rate arch_dum turbo  

estimates store drop_speed 

* with misspecification 

regress p speed time 

estimates store speed_only 

regress p speed time turbo  

estimates store speed_turbo 

regress p speed time arch_dum  

estimates store speed_arch 

regress p speed time clock_rate  

estimates store speed_clock 

esttab drop_speed drop_turbo drop_clock drop_arch  speed_only , se r2 star 
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Appendix Table A.3 Chained Price Indexes (Jan 2005=100) 

  

Date

Jevons 

Matched 

Model 

Intel List

Hedonic 

Intel List 

w/TDP

Hedonic 

Intel List 

w/o TDP

Composite 

Hedonic 

Intel List

Jevons 

Matched 

Model 

Retail

Hedonic 

Retail Date

Jevons 

Matched 

Model 

Intel List

Hedonic 

Intel List 

w/TDP

Hedonic 

Intel List 

w/o TDP

Composite 

Hedonic 

Intel List

Jevons 

Matched 

Model 

Retail

Hedonic 

Retail 

January-96 196383.56 232447.02 231447.62 November-05 89.20 91.89

February-96 159569.90 191462.78 190639.58 December-05 90.92 89.80 89.21 89.80 89.72 89.96

May-96 129798.20 150059.80 149414.61 January-06 90.92 89.52 88.78 89.52 89.98 90.81

June-96 132226.40 143241.33 142625.47 February-06 86.42 86.93

August-96 112359.33 131195.84 130631.77 March-06 83.70 84.67

November-96 112359.33 131486.64 130921.31 April-06 75.21 71.79 70.46 71.79 81.47 81.55

February-97 84382.60 99329.64 98902.57 May-06 72.00 72.80

May-97 64371.61 76736.96 76407.03 June-06 74.09 72.58 71.32 72.58 69.19 70.00

August-97 39060.86 46984.07 46782.06 July-06 62.14 60.99 59.36 60.99 66.88 68.78

November-97 32751.36 39463.75 39294.07 August-06 64.06 68.22

February-98 28491.35 34435.32 34287.27 September-06 63.26 68.48

May-98 23179.48 28976.31 28851.73 October-06 60.06 58.53 57.14 58.53 62.21 68.03

June-98 18954.30 23740.89 23638.82 November-06 59.74 57.36 56.22 57.36 62.36 66.54

July-98 15152.91 18823.58 18742.65 December-06 59.74 57.46 56.36 57.46 61.08 65.09

August-98 15152.91 18830.84 18749.88 January-07 45.37 42.79 39.79 42.79 60.04 64.27

September-98 13352.15 28349.97 16362.79 16292.44 February-07 59.27 65.26

October-98 11403.35 24872.67 13991.48 13931.32 March-07 57.38 63.25

November-98 11331.73 24872.67 13761.40 13702.23 April-07 42.07 39.24 36.59 39.24 54.96 61.28

December-98 10514.36 16480.79 12793.36 12738.35 May-07 39.31 36.72 34.25 36.72 52.40 58.14

January-99 9878.41 13411.71 11784.04 11733.37 June-07 39.13 36.12 33.70 36.12 51.30 55.86

February-99 8111.81 10616.32 9459.32 9418.65 July-07 37.57 34.29 31.81 34.29 50.52 55.51

March-99 8088.11 10555.94 9433.53 9392.97 August-07 49.20 55.51

April-99 6943.28 8955.80 8040.34 8005.77 September-07 37.09 33.60 31.17 33.60

May-99 5964.09 8006.00 6988.77 6958.72 October-07 36.58 31.48 28.66 31.48 48.63 55.04

June-99 5694.12 7696.46 6682.05 6653.32 November-07 36.58 31.50 28.72 31.50 48.39 54.96

July-99 5411.72 7295.62 6361.84 6334.49 December-07 48.80 55.63

August-99 4582.74 5928.07 5268.22 5245.57 January-08 36.39 31.41 27.45 31.41 48.74 54.64

September-99 4076.54 4954.04 4694.43 4674.25 February-08 48.55 53.17

October-99 3749.09 4418.23 4322.18 4303.59 March-08 36.13 30.95 27.94 30.95 48.11 52.71

December-99 3693.52 4260.07 4219.85 4201.70 April-08 34.16 28.70 25.22 28.70 45.97 50.78

January-00 3552.64 3998.98 4016.25 3998.98 May-08 43.16 48.37

February-00 2518.33 2798.82 2840.01 2798.82 June-08 42.79 48.10

March-00 2518.33 2807.36 2849.88 2807.36 July-08 33.15 27.18 23.56 27.18 42.01 47.09

April-00 2120.15 2355.55 2400.74 2355.55 August-08 32.24 26.95 22.40 26.95 40.91 47.14

May-00 1775.42 1982.94 2031.68 1982.94 September-08 32.19 26.92 22.42 26.92 40.51 46.80

June-00 1759.27 1847.23 1882.56 1847.23 October-08 31.56 25.68 20.81 25.68 40.80 47.24

July-00 1627.95 1710.10 1742.91 1710.10 November-08 31.56 25.60 20.66 25.60 40.41 47.95

August-00 1382.75 1460.25 1486.94 1460.25 December-08 31.56 25.41 21.14 25.41 40.06 47.62

October-00 1235.76 1301.81 1327.46 1301.81 January-09 29.23 24.19 18.92 24.19 39.24 46.60

November-00 1079.50 1137.71 1160.14 1137.71 February-09 29.23 23.82 18.58 23.82 37.49 45.23

December-00 1051.38 1108.52 1130.41 1108.52 March-09 29.23 23.86 18.61 23.86 37.36 46.09

January-01 918.65 969.08 987.77 969.08 April-09 28.59 23.11 17.95 23.11 37.17 45.58

March-01 866.15 906.17 923.62 906.17 May-09 28.59 23.10 17.95 23.10 37.01 44.99

April-01 766.52 793.57 808.82 793.57 June-09 28.59 22.84 17.73 22.84 36.21 42.45

May-01 687.62 710.82 724.23 710.82 July-09 27.33 21.18 16.39 21.18 35.68 41.25

June-01 687.62 709.58 722.75 709.58 August-09 27.33 21.11 16.35 21.11 34.70 39.74

July-01 678.95 721.34 734.86 721.34 September-09 27.33 21.25 16.50 21.25 34.80 39.82

August-01 595.44 616.80 625.27 616.80 October-09 27.27 20.90 16.22 20.90 34.59 39.61

September-01 549.37 553.45 559.49 553.45 November-09 27.27 20.91 16.23 20.91 34.15 39.64

October-01 524.04 519.80 522.31 519.80 297.08 December-09 34.06 39.18

November-01 304.24 310.65 January-10 27.10 20.61 16.00 20.61 33.10 36.67

December-01 482.80 479.26 481.76 479.26 291.62 303.23 February-10 26.97 20.39 15.82 20.39 34.83 38.81

January-02 478.88 470.72 472.45 470.72 286.75 297.98 March-10 26.97 20.09 15.59 20.09 34.85 38.46

February-02 478.88 470.95 472.81 470.95 270.88 278.13 April-10 26.97 20.11 15.61 20.11 34.18 38.11

March-02 401.62 384.38 384.60 384.38 268.82 269.14 May-10 26.97 19.96 15.51 19.96 34.13 37.70

April-02 401.62 379.62 379.83 379.62 254.87 252.82 June-10 26.97 19.97 15.52 19.97 33.96 37.84

May-02 381.46 349.44 346.87 349.44 247.15 239.21 July-10 26.35 19.27 14.99 19.27 33.77 37.65

June-02 339.33 314.99 311.33 314.99 222.93 211.45 August-10 26.35 19.03 14.82 19.03 33.08 36.75

July-02 213.61 197.87 September-10 26.35 18.92 14.74 18.92 32.10 35.69

August-02 201.82 185.72 October-10 25.98 18.66 14.54 18.66 31.75 34.91

September-02 339.33 317.17 310.47 317.17 178.12 165.45 November-10 25.98 18.62 14.51 18.62 31.51 33.93

October-02 174.96 163.73 December-10 31.24 33.65

November-02 204.88 208.53 206.03 208.53 167.25 158.28 January-11 25.98 18.63 14.52 18.63

December-02 161.35 154.59 February-11 25.51 18.43 14.37 18.43

January-03 204.88 208.63 206.16 208.63 158.85 153.42 March-11 25.51 18.45 14.39 18.45

February-03 182.28 185.78 183.61 185.78 156.96 150.71 April-11 25.51 18.46 14.39 18.46

March-03 149.93 143.22 May-11 25.51 18.51 14.39 18.51

April-03 172.62 167.50 164.64 167.50 145.13 138.08 June-11 25.51 18.19 14.19 18.19

May-03 140.15 131.24 July-11 25.51 18.20 14.20 18.20

June-03 136.78 123.30 September-11 25.37 17.99 14.07 17.99

July-03 148.35 141.66 136.97 141.66 137.66 122.50 October-11 25.18 17.87 13.98 17.87

August-03 144.53 138.15 133.61 138.15 137.03 123.68 November-11 25.18 17.70 13.87 17.70

September-03 136.13 121.44 December-11 25.18 17.79 13.83 17.79

October-03 133.83 126.95 123.19 126.95 128.82 113.45 January-12 25.18 17.83 13.83 17.83

November-03 117.26 102.81 February-12 25.18 17.60 13.66 17.60

December-03 117.41 104.27 March-12 24.98 17.47 13.55 17.47

January-04 117.39 104.00 April-12 24.98 17.47 13.56 17.47

February-04 112.91 108.68 108.94 108.68 112.79 99.37 May-12 24.98 17.48 13.56 17.48

March-04 113.34 100.94 June-12 24.79 17.32 13.52 17.32

April-04 112.91 108.89 110.06 108.89 113.26 100.56 July-12 24.79 17.32 13.52 17.32

May-04 112.91 109.02 110.26 109.02 109.86 97.81 September-12 24.61 17.28 13.50 17.28

June-04 112.91 112.39 113.36 112.39 108.52 99.62 October-12 24.56 17.06 13.37 17.06

July-04 109.25 102.80 November-12 24.56 17.14 13.44 17.14

August-04 100.00 100.44 99.93 100.44 107.86 102.06 December-12 24.56 17.15 13.44 17.15

September-04 101.70 94.38 January-13 24.53 16.94 13.25 16.94

October-04 100.00 100.37 100.52 100.37 99.24 93.23 April-13 24.48 16.92 13.24 16.92

November-04 99.70 96.37 May-13 24.50 16.94 13.26 16.94

December-04 100.00 99.95 99.94 99.95 99.59 97.14 June-13 24.26 16.73 13.19 16.73

January-05 100.00 100.00 100.00 100.00 100.00 100.00 September-13 24.13 16.57 13.14 16.57

February-05 96.84 98.27 98.42 98.27 100.40 103.38 November-13 24.13 16.53 13.12 16.53

March-05 96.84 98.30 98.46 98.30 99.31 100.94 January-14 24.01 16.42 13.03 16.42

April-05 99.15 100.96 February-14 24.01 16.42 13.03 16.42

May-05 96.84 98.54 98.68 98.54 99.00 100.26 March-14 24.01 16.43 13.04 16.43

June-05 96.84 95.26 95.46 95.26 97.40 101.43 April-14 23.96 16.18 12.92 16.18

July-05 95.66 92.93 93.62 92.93 96.01 99.96 May-14 23.91 16.17 12.86 16.17

August-05 90.92 88.38 89.05 88.38 91.72 95.69 June-14 23.93 16.18 12.87 16.18

September-05 90.92 88.42 89.11 88.42 90.16 93.78 July-14 23.85 16.36 13.05 16.36

October-05 89.56 92.30
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Appendix Table A.4  Regression Summary Statistics, Estimated Time Dummy Coefficients, and Price Relatives 

                                     Intel List Price Hedonic Model without TDP 

 
 

month 

ending

time 

dummy

std 

error

degs 

of 

free

dom

t-

statistic p value

num 

obs

number 

arch 

fixed 

effects

r2 

total

r2 

within

bias-

corrected 

price 

relative

percent 

change 

from prev 

observation

month 

ending

time 

dummy

std 

error

degs 

of 

free

dom

t-

statisti

c p value

num 

obs

number 

arch 

fixed 

effects

r2 

total

r2 

within

bias-

corrected 

price 

relative

percent 

change 

from prev 

observation

1996m2 -0.195 0.04 2 -4.43 0.05 5 1 0.99 0.99 0.82 -17.63 2006m1 -0.006 0.04 78 -0.14 0.89 90 4 0.95 0.94 1.00 -0.48

1996m5 -0.249 0.09 4 -2.68 0.06 7 1 0.91 0.91 0.78 -21.62 2006m4 -0.232 0.04 77 -5.31 0.00 89 4 0.95 0.93 0.79 -20.64

1996m6 -0.061 0.17 2 -0.37 0.75 5 1 0.94 0.94 0.95 -4.54 2006m6 0.011 0.04 68 0.30 0.76 80 4 0.97 0.96 1.01 1.21

1996m8 -0.099 0.14 2 -0.70 0.56 5 1 0.97 0.97 0.92 -8.41 2006m7 -0.185 0.05 78 -3.39 0.00 91 5 0.93 0.91 0.83 -16.77

1996m11 0.000 0.07 5 0.00 1.00 8 1 0.95 0.95 1.00 0.22 2006m10 -0.040 0.06 88 -0.70 0.48 101 5 0.92 0.88 0.96 -3.73

1997m2 -0.286 0.09 6 -3.04 0.02 10 2 0.93 0.93 0.76 -24.46 2006m11 -0.019 0.07 69 -0.26 0.79 82 5 0.91 0.89 0.98 -1.62

1997m5 -0.271 0.14 8 -1.94 0.09 13 3 0.95 0.83 0.77 -22.75 2006m12 0.000 0.07 52 0.00 1.00 64 6 0.92 0.89 1.00 0.25

1997m8 -0.500 0.10 11 -4.78 0.00 16 3 0.96 0.78 0.61 -38.77 2007m1 -0.353 0.08 48 -4.19 0.00 61 6 0.91 0.83 0.71 -29.40

1997m11 -0.176 0.05 11 -3.25 0.01 16 3 0.99 0.75 0.84 -16.01 2007m4 -0.085 0.05 45 -1.76 0.09 57 6 0.97 0.87 0.92 -8.03

1998m2 -0.139 0.07 13 -1.91 0.08 20 4 0.98 0.57 0.87 -12.74 2007m5 -0.068 0.05 45 -1.28 0.21 56 6 0.97 0.83 0.94 -6.41

1998m5 -0.176 0.08 13 -2.21 0.05 20 4 0.98 0.64 0.84 -15.85 2007m6 -0.018 0.06 46 -0.30 0.76 57 5 0.96 0.88 0.98 -1.60

1998m6 -0.200 0.03 13 -7.48 0.00 19 3 0.99 0.96 0.82 -18.07 2007m7 -0.060 0.06 55 -0.96 0.34 67 5 0.95 0.86 0.94 -5.61

1998m7 -0.233 0.03 16 -6.79 0.00 22 3 0.99 0.92 0.79 -20.71 2007m9 -0.022 0.06 63 -0.36 0.72 75 5 0.93 0.84 0.98 -2.00

1998m8 0.000 0.03 19 0.00 1.00 26 4 0.99 0.92 1.00 0.04 2007m10 -0.087 0.07 50 -1.19 0.24 61 4 0.93 0.85 0.92 -8.05

1998m9 -0.141 0.04 20 -3.61 0.00 27 4 0.98 0.89 0.87 -13.11 2007m11 0.000 0.06 39 0.00 1.00 48 3 0.95 0.89 1.00 0.19

1998m10 -0.158 0.05 19 -3.47 0.00 26 4 0.97 0.91 0.86 -14.49 2008m1 -0.048 0.07 48 -0.69 0.50 59 5 0.93 0.84 0.96 -4.42

1998m11 -0.018 0.04 18 -0.40 0.69 25 4 0.98 0.92 0.98 -1.64 2008m3 0.016 0.07 61 0.23 0.82 72 5 0.92 0.78 1.02 1.81

1998m12 -0.075 0.06 16 -1.25 0.23 22 3 0.97 0.89 0.93 -7.03 2008m4 -0.105 0.07 61 -1.45 0.15 71 4 0.92 0.77 0.90 -9.74

1999m1 -0.084 0.05 17 -1.65 0.12 24 4 0.98 0.94 0.92 -7.89 2008m7 -0.071 0.07 56 -1.02 0.31 66 4 0.93 0.79 0.93 -6.59

1999m2 -0.221 0.04 18 -6.28 0.00 25 4 0.99 0.97 0.80 -19.73 2008m8 -0.053 0.07 61 -0.77 0.45 71 4 0.93 0.78 0.95 -4.92

1999m3 -0.003 0.02 19 -0.15 0.88 24 3 1.00 0.99 1.00 -0.27 2008m9 -0.001 0.07 68 -0.02 0.98 78 4 0.92 0.77 1.00 0.07

1999m4 -0.160 0.03 20 -5.70 0.00 25 3 0.99 0.97 0.85 -14.77 2008m10 -0.077 0.07 62 -1.10 0.28 72 4 0.92 0.77 0.93 -7.17

1999m5 -0.141 0.05 22 -3.03 0.01 27 3 0.97 0.90 0.87 -13.08 2008m11 -0.009 0.07 60 -0.14 0.89 72 5 0.93 0.79 0.99 -0.72

1999m6 -0.046 0.05 23 -0.88 0.39 28 3 0.96 0.84 0.96 -4.39 2008m12 0.021 0.07 58 0.32 0.75 70 5 0.94 0.79 1.02 2.35

1999m7 -0.051 0.06 23 -0.88 0.39 28 3 0.95 0.78 0.95 -4.79 2009m1 -0.114 0.07 53 -1.71 0.09 65 5 0.94 0.75 0.89 -10.53

1999m8 -0.191 0.07 21 -2.84 0.01 26 3 0.95 0.78 0.83 -17.19 2009m2 -0.020 0.06 53 -0.33 0.74 65 5 0.94 0.76 0.98 -1.80

1999m9 -0.117 0.06 19 -2.11 0.05 25 3 0.96 0.87 0.89 -10.89 2009m3 0.000 0.06 49 0.00 1.00 60 4 0.95 0.80 1.00 0.17

1999m10 -0.084 0.05 26 -1.85 0.08 33 4 0.98 0.89 0.92 -7.93 2009m4 -0.038 0.06 50 -0.66 0.51 61 4 0.95 0.81 0.96 -3.56

1999m12 -0.024 0.03 35 -0.82 0.42 42 4 0.99 0.92 0.98 -2.37 2009m5 -0.001 0.05 52 -0.02 0.98 63 4 0.95 0.82 1.00 0.02

2000m1 -0.050 0.03 38 -1.58 0.12 45 4 0.98 0.92 0.95 -4.82 2009m6 -0.014 0.05 57 -0.27 0.79 68 4 0.96 0.82 0.99 -1.24

2000m2 -0.348 0.04 31 -8.95 0.00 38 4 0.98 0.93 0.71 -29.29 2009m7 -0.079 0.04 58 -1.89 0.06 69 4 0.97 0.84 0.92 -7.51

2000m3 0.003 0.03 38 0.12 0.91 45 3 0.99 0.97 1.00 0.35 2009m8 -0.003 0.03 56 -0.12 0.90 67 4 0.99 0.92 1.00 -0.27

2000m4 -0.172 0.03 53 -5.39 0.00 60 3 0.97 0.95 0.84 -15.76 2009m9 0.009 0.03 60 0.32 0.75 73 5 0.98 0.92 1.01 0.90

2000m5 -0.168 0.05 55 -3.63 0.00 62 3 0.94 0.90 0.85 -15.37 2009m10 -0.017 0.03 64 -0.59 0.56 77 5 0.98 0.91 0.98 -1.68

2000m6 -0.078 0.05 54 -1.59 0.12 61 3 0.94 0.90 0.93 -7.34 2009m11 0.000 0.03 63 0.00 1.00 76 5 0.98 0.90 1.00 0.05

2000m7 -0.078 0.03 51 -2.57 0.01 58 3 0.97 0.96 0.93 -7.42 2010m1 -0.015 0.04 74 -0.40 0.69 88 6 0.96 0.84 0.99 -1.41

2000m8 -0.160 0.04 52 -4.31 0.00 59 3 0.96 0.94 0.85 -14.69 2010m2 -0.012 0.03 87 -0.35 0.73 101 6 0.96 0.83 0.99 -1.11

2000m10 -0.114 0.03 52 -3.76 0.00 59 3 0.97 0.96 0.89 -10.73 2010m3 -0.015 0.04 80 -0.42 0.68 94 6 0.96 0.84 0.99 -1.46

2000m11 -0.135 0.03 51 -4.76 0.00 58 3 0.97 0.95 0.87 -12.60 2010m4 0.001 0.04 73 0.02 0.98 87 7 0.96 0.86 1.00 0.15

2000m12 -0.026 0.03 53 -0.91 0.37 60 3 0.97 0.94 0.97 -2.56 2010m5 -0.007 0.04 78 -0.20 0.84 91 6 0.95 0.85 0.99 -0.67

2001m1 -0.135 0.03 56 -4.52 0.00 63 3 0.96 0.93 0.87 -12.62 2010m6 0.000 0.04 83 0.00 1.00 96 6 0.95 0.84 1.00 0.06

2001m3 -0.067 0.02 54 -2.89 0.01 60 2 0.97 0.95 0.94 -6.49 2010m7 -0.035 0.04 83 -0.97 0.34 96 6 0.95 0.83 0.97 -3.40

2001m4 -0.133 0.03 48 -4.34 0.00 54 2 0.95 0.92 0.88 -12.43 2010m8 -0.012 0.04 87 -0.34 0.74 100 6 0.95 0.82 0.99 -1.13

2001m5 -0.111 0.03 44 -3.88 0.00 50 2 0.96 0.93 0.90 -10.46 2010m9 -0.006 0.03 88 -0.18 0.86 101 6 0.95 0.82 0.99 -0.57

2001m6 -0.002 0.02 41 -0.10 0.92 47 2 0.97 0.96 1.00 -0.20 2010m10 -0.014 0.03 85 -0.41 0.68 98 6 0.95 0.83 0.99 -1.35

2001m7 0.016 0.03 44 0.49 0.63 50 2 0.95 0.92 1.02 1.68 2010m11 -0.002 0.03 86 -0.07 0.94 99 6 0.95 0.83 1.00 -0.19

2001m8 -0.162 0.04 53 -4.06 0.00 60 3 0.95 0.91 0.85 -14.91 2011m1 0.000 0.03 96 0.00 1.00 111 7 0.95 0.83 1.00 0.06

2001m9 -0.112 0.04 64 -2.85 0.01 71 3 0.93 0.88 0.89 -10.52 2011m2 -0.011 0.03 109 -0.34 0.73 125 7 0.94 0.81 0.99 -1.01

2001m10 -0.070 0.05 70 -1.50 0.14 77 3 0.88 0.82 0.93 -6.64 2011m3 0.000 0.03 111 0.01 0.99 127 7 0.94 0.81 1.00 0.09

2001m12 -0.082 0.05 71 -1.78 0.08 78 3 0.86 0.78 0.92 -7.76 2011m4 0.000 0.03 110 0.00 1.00 126 7 0.94 0.80 1.00 0.05

2002m1 -0.020 0.04 74 -0.49 0.63 82 4 0.89 0.77 0.98 -1.93 2011m5 -0.001 0.03 117 -0.02 0.98 133 7 0.94 0.83 1.00 -0.02

2002m2 0.000 0.04 78 0.00 1.00 86 4 0.90 0.76 1.00 0.08 2011m6 -0.015 0.03 105 -0.42 0.67 121 7 0.94 0.84 0.99 -1.39

2002m3 -0.208 0.05 59 -3.80 0.00 67 4 0.87 0.72 0.81 -18.66 2011m7 0.000 0.03 88 0.00 1.00 102 6 0.94 0.83 1.00 0.06

2002m4 -0.013 0.03 41 -0.39 0.70 48 4 0.95 0.83 0.99 -1.24 2011m9 -0.009 0.03 98 -0.28 0.78 113 6 0.95 0.87 0.99 -0.88

2002m5 -0.092 0.04 45 -2.28 0.03 53 4 0.95 0.85 0.91 -8.68 2011m10 -0.007 0.03 110 -0.23 0.82 125 6 0.95 0.89 0.99 -0.64

2002m6 -0.109 0.05 48 -2.37 0.02 56 4 0.92 0.83 0.90 -10.25 2011m11 -0.009 0.04 82 -0.23 0.82 98 7 0.96 0.92 0.99 -0.84

2002m9 -0.004 0.05 47 -0.08 0.94 55 4 0.92 0.82 1.00 -0.28 2011m12 -0.003 0.03 60 -0.11 0.91 71 3 0.98 0.96 1.00 -0.29

2002m11 -0.416 0.09 34 -4.67 0.00 43 4 0.92 0.90 0.66 -33.64 2012m1 0.000 0.03 58 0.00 1.00 70 3 0.98 0.97 1.00 0.03

2003m1 0.000 0.03 24 0.00 1.00 30 1 0.98 0.98 1.00 0.06 2012m2 -0.013 0.03 58 -0.44 0.66 69 2 0.98 0.97 0.99 -1.26

2003m2 -0.117 0.04 24 -2.75 0.01 30 1 0.97 0.97 0.89 -10.94 2012m3 -0.008 0.03 59 -0.26 0.80 70 2 0.97 0.96 0.99 -0.76

2003m4 -0.111 0.05 22 -2.09 0.05 28 1 0.96 0.96 0.90 -10.33 2012m4 0.000 0.03 68 0.00 1.00 80 3 0.97 0.96 1.00 0.04

2003m7 -0.186 0.05 23 -3.40 0.00 29 1 0.96 0.96 0.83 -16.80 2012m5 0.000 0.03 78 0.00 1.00 90 3 0.97 0.96 1.00 0.03

2003m8 -0.026 0.05 26 -0.53 0.60 32 1 0.96 0.96 0.98 -2.45 2012m6 -0.004 0.02 90 -0.16 0.87 102 3 0.97 0.96 1.00 -0.35

2003m10 -0.082 0.05 28 -1.76 0.09 34 1 0.96 0.96 0.92 -7.80 2012m7 0.000 0.02 102 0.00 1.00 114 3 0.98 0.96 1.00 0.02

2004m2 -0.125 0.06 34 -2.10 0.04 41 2 0.95 0.95 0.88 -11.57 2012m9 -0.001 0.02 118 -0.06 0.95 130 3 0.98 0.96 1.00 -0.11

2004m4 0.009 0.06 37 0.15 0.89 44 2 0.95 0.94 1.01 1.03 2012m10 -0.010 0.02 118 -0.49 0.62 130 3 0.98 0.96 0.99 -1.00

2004m5 0.000 0.06 35 0.00 1.00 42 2 0.95 0.95 1.00 0.18 2012m11 0.005 0.02 102 0.21 0.83 113 3 0.98 0.94 1.01 0.53

2004m6 0.026 0.06 45 0.47 0.64 52 2 0.95 0.95 1.03 2.81 2012m12 0.000 0.02 101 0.00 1.00 112 3 0.98 0.93 1.00 0.03

2004m8 -0.127 0.05 60 -2.77 0.01 67 2 0.95 0.95 0.88 -11.85 2013m1 -0.015 0.02 108 -0.61 0.54 119 3 0.97 0.94 0.99 -1.45

2004m10 0.005 0.04 70 0.14 0.89 77 2 0.95 0.95 1.01 0.59 2013m4 -0.001 0.03 87 -0.03 0.98 98 3 0.97 0.94 1.00 -0.04

2004m12 -0.006 0.04 76 -0.18 0.86 83 2 0.95 0.95 0.99 -0.57 2013m5 0.001 0.04 61 0.02 0.98 70 2 0.96 0.93 1.00 0.15

2005m1 0.000 0.03 77 0.00 1.00 84 2 0.96 0.96 1.00 0.06 2013m6 -0.006 0.03 83 -0.19 0.85 95 4 0.96 0.92 0.99 -0.58

2005m2 -0.016 0.03 75 -0.53 0.60 82 2 0.97 0.97 0.98 -1.58 2013m9 -0.004 0.03 130 -0.15 0.88 145 7 0.96 0.93 1.00 -0.36

2005m3 0.000 0.03 76 0.00 1.00 85 2 0.98 0.98 1.00 0.04 2013m11 -0.002 0.02 150 -0.07 0.95 165 7 0.96 0.93 1.00 -0.13

2005m5 0.002 0.03 75 0.07 0.95 84 2 0.98 0.98 1.00 0.23 2014m1 -0.007 0.02 154 -0.31 0.76 168 7 0.96 0.93 0.99 -0.68

2005m6 -0.034 0.04 80 -0.83 0.41 90 3 0.96 0.95 0.97 -3.26 2014m2 0.000 0.02 160 0.00 1.00 174 7 0.97 0.94 1.00 0.02

2005m7 -0.020 0.04 89 -0.48 0.63 99 3 0.94 0.94 0.98 -1.93 2014m3 0.000 0.02 157 0.00 1.00 171 7 0.97 0.94 1.00 0.02

2005m8 -0.051 0.04 89 -1.32 0.19 98 2 0.94 0.93 0.95 -4.88 2014m4 -0.009 0.02 176 -0.44 0.66 190 7 0.97 0.95 0.99 -0.88

2005m9 0.000 0.04 89 0.00 1.00 98 2 0.95 0.94 1.00 0.07 2014m5 -0.005 0.02 176 -0.26 0.79 189 6 0.97 0.95 1.00 -0.50

2005m12 0.000 0.04 79 0.01 0.99 89 2 0.95 0.94 1.00 0.12 2014m6 0.001 0.02 157 0.04 0.97 170 6 0.97 0.95 1.00 0.09

2014m7 0.013 0.02 142 0.67 0.51 155 6 0.97 0.94 1.01 1.38
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Appendix Table A.5  Other Estimated Regression Coefficients, Intel List Price Hedonic Model without TDP 

                          Color-Coding for Entry and Exit of Characteristics/Microarchitectures from Sample 

 

period 

ending lproc lmaxmhz lbw lcores ht lcache

int 

graph em64t eist vt

period 

ending lproc lmaxmhz lbw lcores ht lcache

int 

graph em64t eist vt

1996m2 3.06 2006m1 3.83 1.40 0.36 -0.19 0.04 0.03 0.17

1996m5 2.25 2006m4 3.58 1.49 0.47 -0.15 0.04 0.10 0.05

1996m6 2.03 2006m6 3.34 4.17 0.01 -0.42 0.01 0.30 -0.12

1996m8 2.28 2006m7 3.31 1.45 0.96 -0.36 -0.08 0.39 0.14

1996m11 2.28 2006m10 3.44 1.27 1.06 -0.39 -0.17 0.53 0.29

1997m2 2.84 2006m11 3.76 1.34 0.93 -0.35 -0.21 0.56 0.29

1997m5 2.83 2006m12 4.36 1.88 0.60 -0.37 0.53

1997m8 1.72 2007m1 4.40 1.64 0.53 -0.38 0.34 -0.87

1997m11 1.04 2007m4 3.32 0.16 0.42 -0.01 -0.21

1998m2 1.10 -0.33 2007m5 3.45 0.53 0.43 -0.09

1998m5 1.60 0.03 2007m6 3.37 0.63 1.08 0.30 -0.03

1998m6 2.45 0.24 2007m7 3.26 -2.34 1.06 1.60 -0.08 0.96

1998m7 1.97 0.45 2007m9 3.18 -2.22 0.92 1.53 -0.05 0.99

1998m8 1.63 0.64 2007m10 2.74 -1.71 0.84 1.30 -0.05 0.97

1998m9 2.15 0.55 2007m11 2.19 -1.00 0.87 -0.08 0.85

1998m10 3.03 0.32 2008m1 1.95 -0.61 0.53 0.18 0.49

1998m11 3.32 0.18 2008m3 1.79 0.14 0.40 0.24 0.23

1998m12 3.47 0.11 2008m4 1.86 0.44 0.32 0.27 0.05

1999m1 3.34 0.13 2008m7 2.09 1.13 0.33 0.21 -0.34

1999m2 3.54 0.06 2008m8 2.09 1.36 0.34 0.20 -0.41

1999m3 3.75 2008m9 2.13 1.17 0.32 0.22 -0.34

1999m4 3.46 2008m10 2.29 1.04 0.28 0.20 -0.26

1999m5 3.04 2008m11 45.56 -43.10 0.78 0.15 0.24 -0.19

1999m6 2.73 2008m12 45.42 -42.95 0.74 0.10 0.32 -0.23

1999m7 2.47 2009m1 47.44 -45.20 1.18 0.11 0.35 -0.26

1999m8 2.74 2009m2 46.86 -44.55 1.45 0.06 0.21 -0.22

1999m9 3.53 -0.02 2009m3 36.71 -33.26 1.42 -0.15 0.06 -0.29

1999m10 3.22 -0.07 2009m4 35.59 -32.01 1.37 -0.18 0.10 -0.33

1999m12 2.88 -0.22 2009m5 33.83 -30.06 1.32 -0.22 0.11 -0.35

2000m1 3.02 -0.21 2009m6 32.67 -29.19 1.30 -0.25 0.16 -0.34

2000m2 3.09 -0.03 2009m7 38.24 -35.59 1.23 -0.22 0.25 -0.27

2000m3 2.92 0.01 0.45 2009m8 46.47 -44.70 1.12 -0.13 0.33 -0.19

2000m4 2.91 0.00 0.62 2009m9 50.41 -48.76 1.00 -0.10 1.76 0.33 -0.15

2000m5 2.71 0.07 0.76 2009m10 43.63 -41.83 0.91 -0.15 1.58 0.30 -0.13

2000m6 2.97 0.01 0.56 2009m11 36.44 -34.38 0.91 -0.27 1.38 0.27 -0.15

2000m7 3.72 -0.31 0.48 2010m1 0.48 2.40 0.74 -0.44 0.21 0.20 -0.21

2000m8 3.21 -0.27 0.66 2010m2 0.38 2.51 0.72 -0.44 0.13 0.22 -0.22

2000m10 2.88 -0.26 0.79 2010m3 0.54 2.54 0.62 -0.49 0.12 0.23 -0.19

2000m11 2.49 -0.11 0.70 2010m4 0.77 2.72 0.26 0.10 0.28 -0.08

2000m12 2.26 0.02 0.65 2010m5 0.63 2.85 0.20 0.10 0.29 -0.09

2001m1 1.83 0.15 0.58 2010m6 0.44 2.93 0.16 0.12 0.32 -0.09

2001m3 1.47 0.20 0.56 2010m7 -0.10 3.43 0.21 0.10 0.32 -0.09

2001m4 1.35 0.22 0.61 2010m8 -0.81 3.91 0.31 0.08 0.35 -0.11

2001m5 1.17 0.18 0.82 2010m9 -1.23 3.90 0.36 0.12 0.38 -0.10

2001m6 1.09 0.05 1.04 2010m10 -1.58 3.94 0.48 0.13 0.40 -0.10

2001m7 1.39 -0.02 1.06 2010m11 -1.72 4.00 0.60 0.13 0.40 -0.13

2001m8 2.03 -0.29 1.19 2011m1 -0.94 3.16 0.66 0.14 0.39 -0.09 -0.14

2001m9 2.55 -0.54 1.32 2011m2 -0.76 2.56 0.74 -0.11 0.18 0.41 -0.08 -0.11

2001m10 2.35 -0.30 1.30 2011m3 -0.79 2.36 0.78 -0.05 0.20 0.42 -0.08 -0.10

2001m12 1.88 -0.10 1.15 2011m4 -0.79 2.36 0.77 -0.06 0.20 0.43 -0.08 -0.12

2002m1 1.58 0.03 1.00 2011m5 -0.84 2.28 0.73 0.00 0.23 0.44 -0.08 -0.11

2002m2 1.46 0.13 0.97 2011m6 -0.86 2.23 0.57 0.04 0.24 0.46 -0.06 -0.14

2002m3 1.68 0.57 0.84 2011m7 -0.75 2.48 0.07 0.34 0.26 0.15 0.06

2002m4 2.68 1.95 2011m9 -0.72 2.21 0.20 0.30 0.29 0.27 0.01 -0.56

2002m5 2.02 1.75 0.60 2011m10 -0.69 1.96 0.29 0.31 0.32 0.35 -0.02 -0.57

2002m6 1.68 1.78 0.53 2011m11 -0.65 1.63 0.44 0.32 0.34 0.44 -0.05 -0.56

2002m9 1.52 1.87 0.45 2011m12 -0.51 1.06 0.91 0.23 0.33 0.63 -0.53

2002m11 2.01 1.07 0.39 0.37 2012m1 -0.48 1.11 0.97 0.25 0.32 0.60 -0.06 -0.56

2003m1 2.75 -0.01 0.38 0.35 2012m2 -0.52 1.06 1.10 0.46 0.36 0.46 -0.05 -0.56

2003m2 2.75 0.04 0.43 0.28 2012m3 -0.57 1.13 1.08 0.56 0.38 0.39 -0.06 -0.59

2003m4 2.97 0.06 0.24 0.22 2012m4 -0.47 1.17 1.11 0.56 0.35 0.36 -0.04 -0.62

2003m7 3.24 0.26 0.09 0.30 2012m5 -0.40 1.13 1.15 0.58 0.33 0.34 -0.03 -0.63

2003m8 3.19 0.10 0.17 0.40 2012m6 -0.47 1.24 1.12 0.51 0.34 0.37 -0.04 -0.64

2003m10 2.83 0.11 0.17 0.44 2012m7 -0.52 1.31 1.09 0.46 0.34 0.40 -0.06 -0.65

2004m2 2.54 -0.19 0.17 0.53 2012m9 -0.44 1.04 1.23 0.50 0.35 0.43 -0.05 -0.63

2004m4 2.64 -0.37 0.03 0.62 2012m10 -0.47 1.01 1.18 0.45 0.36 0.49 -0.04 -0.63

2004m5 2.65 -0.31 -0.07 0.65 2012m11 -0.56 1.15 1.06 0.37 0.36 0.53 -0.02

2004m6 3.07 -0.31 -0.15 0.64 2012m12 -0.56 1.14 1.05 0.37 0.36 0.54 -0.02

2004m8 2.83 -0.31 -0.31 0.73 2013m1 -0.60 1.27 0.81 0.36 0.38 0.57 -0.05

2004m10 2.49 -0.30 -0.44 0.81 2013m4 -0.51 1.32 0.61 0.45 0.40 0.52 -0.05

2004m12 2.89 -0.18 -0.52 0.79 2013m5 -0.28 1.35 0.74 0.42 0.29 -0.03

2005m1 3.34 -0.07 -0.59 0.78 2013m6 -0.34 1.42 0.93 0.68 0.38 0.31 -0.03

2005m2 3.25 -0.09 -0.65 0.84 2013m9 -0.39 1.47 0.88 0.55 0.35 0.40 -0.05

2005m3 3.24 -0.13 -0.73 0.92 0.33 -0.68 2013m11 -0.42 1.48 0.82 0.49 0.34 0.45 -0.05

2005m5 3.40 -0.21 -0.70 0.91 0.32 -0.69 2014m1 -0.47 1.57 0.89 0.42 0.32 0.50

2005m6 3.88 -0.63 -0.29 0.79 0.13 -0.46 2014m2 -0.52 1.65 0.92 0.37 0.31 0.52

2005m7 3.93 -0.45 -0.06 0.60 0.04 -0.23 2014m3 -0.47 1.57 0.92 0.39 0.32 0.52

2005m8 3.71 1.07 0.40 -0.14 0.06 0.11 2014m4 -0.43 1.40 0.93 0.43 0.33 0.53

2005m9 3.64 1.80 0.45 -0.37 0.06 0.12 2014m5 -0.42 1.29 0.94 0.42 0.33 0.56

2005m12 3.72 1.78 0.45 -0.36 0.06 0.11 0.20 2014m6 -0.42 1.24 0.94 0.40 0.33 0.59

: microarchitecture enters or exits sample 2014m7 -0.35 1.05 1.15 0.57 0.35 0.48

: non-zero values for indicator vars, lcores; lmaxmhz different from lproc blank: indicates variable dropped as perfectly collinear



 

65 

 

Appendix Table A.6  Regression Summary Statistics, Estimated Time Dummy Coefficients, and Price Relatives 

                                     Intel List Price Hedonic Model including TDP 

 

period 

ending

time 

dummy std err

deg of 

freedom

t-

statistic

 p 

value

num 

obs

number 

arch 

fixed 

effects

r2 

total

r2 

within

bias-

corrected 

price 

relative

pct change 

from prev 

observation

period 

ending

time 

dummy std err

deg of 

freedom

t-

statistic  p value

num 

obs

number 

arch 

fixed 

effects

r2 

total

r2 

within

bias-

corrected 

price 

relative

pct change 

from prev 

observation

1998m10 -0.13 0.06 1 -2.37 0.25 4 1 0.95 0.95 0.88 -12.27 2007m4 -0.09 0.05 44 -1.85 0.07 57 6 0.98 0.88 0.92 -8.28

1998m11 0.00 0.00 1 0.02 0.99 4 1 1.00 1.00 1.00 0.00 2007m5 -0.07 0.05 44 -1.32 0.20 56 6 0.97 0.84 0.94 -6.42

1998m12 -0.41 0.02 1 -26.25 0.02 4 1 1.00 1.00 0.66 -33.74 2007m6 -0.02 0.06 45 -0.32 0.75 57 5 0.97 0.89 0.98 -1.64

1999m1 -0.21 0.02 2 -8.53 0.01 6 1 1.00 1.00 0.81 -18.62 2007m7 -0.05 0.06 54 -0.92 0.36 67 5 0.95 0.88 0.95 -5.06

1999m2 -0.23 0.03 5 -7.56 0.00 10 2 1.00 0.99 0.79 -20.84 2007m9 -0.02 0.06 62 -0.39 0.70 75 5 0.95 0.87 0.98 -2.01

1999m3 -0.01 0.02 7 -0.34 0.74 12 2 1.00 0.99 0.99 -0.57 2007m10 -0.07 0.06 49 -1.07 0.29 61 4 0.95 0.89 0.94 -6.33

1999m4 -0.17 0.04 7 -4.12 0.00 12 2 1.00 0.97 0.85 -15.16 2007m11 0.00 0.03 38 0.00 1.00 48 3 0.98 0.97 1.00 0.06

1999m5 -0.12 0.08 8 -1.41 0.20 13 2 0.98 0.88 0.89 -10.61 2008m1 0.00 0.04 47 -0.08 0.94 59 5 0.97 0.94 1.00 -0.26

1999m6 -0.04 0.08 9 -0.51 0.62 14 2 0.98 0.86 0.96 -3.87 2008m3 -0.02 0.04 60 -0.40 0.69 72 5 0.97 0.93 0.99 -1.49

1999m7 -0.06 0.09 9 -0.63 0.55 14 2 0.97 0.82 0.95 -5.21 2008m4 -0.08 0.04 60 -1.86 0.07 71 4 0.97 0.93 0.93 -7.24

1999m8 -0.21 0.09 9 -2.42 0.04 14 2 0.98 0.91 0.81 -18.74 2008m7 -0.06 0.04 55 -1.44 0.16 66 4 0.98 0.94 0.95 -5.32

1999m9 -0.18 0.04 9 -4.40 0.00 15 2 0.99 0.98 0.84 -16.43 2008m8 -0.01 0.03 60 -0.28 0.78 71 4 0.98 0.95 0.99 -0.84

1999m10 -0.12 0.04 16 -2.64 0.02 23 3 0.99 0.96 0.89 -10.82 2008m9 0.00 0.03 67 -0.05 0.96 78 4 0.98 0.95 1.00 -0.10

1999m12 -0.04 0.03 25 -1.37 0.18 32 3 0.99 0.96 0.96 -3.58 2008m10 -0.05 0.03 61 -1.55 0.13 72 4 0.98 0.96 0.95 -4.60

2000m1 -0.06 0.03 28 -2.14 0.04 35 3 0.99 0.96 0.94 -6.13 2008m11 0.00 0.03 59 -0.13 0.90 72 5 0.99 0.97 1.00 -0.30

2000m2 -0.36 0.04 25 -9.82 0.00 32 3 0.98 0.95 0.70 -30.01 2008m12 -0.01 0.03 57 -0.30 0.77 70 5 0.99 0.97 0.99 -0.75

2000m3 0.00 0.03 35 0.10 0.92 43 3 0.99 0.98 1.00 0.31 2009m1 -0.05 0.06 52 -0.92 0.36 65 5 0.96 0.84 0.95 -4.82

2000m4 -0.18 0.03 50 -5.44 0.00 58 3 0.97 0.95 0.84 -16.09 2009m2 -0.02 0.06 52 -0.30 0.77 65 5 0.95 0.79 0.98 -1.51

2000m5 -0.17 0.05 52 -3.66 0.00 60 3 0.94 0.90 0.84 -15.82 2009m3 0.00 0.06 48 0.00 1.00 60 4 0.95 0.81 1.00 0.16

2000m6 -0.07 0.05 52 -1.46 0.15 60 3 0.94 0.90 0.93 -6.84 2009m4 -0.03 0.05 49 -0.61 0.55 61 4 0.96 0.83 0.97 -3.14

2000m7 -0.08 0.03 50 -2.72 0.01 58 3 0.98 0.97 0.93 -7.42 2009m5 0.00 0.05 51 -0.04 0.97 63 4 0.96 0.84 1.00 -0.06

2000m8 -0.16 0.04 51 -4.37 0.00 59 3 0.96 0.94 0.85 -14.61 2009m6 -0.01 0.05 56 -0.26 0.80 68 4 0.96 0.84 0.99 -1.12

2000m10 -0.12 0.03 51 -3.81 0.00 59 3 0.97 0.96 0.89 -10.85 2009m7 -0.08 0.04 57 -1.82 0.07 69 4 0.97 0.85 0.93 -7.28

2000m11 -0.14 0.03 50 -4.80 0.00 58 3 0.97 0.96 0.87 -12.61 2009m8 0.00 0.02 55 -0.16 0.87 67 4 0.99 0.95 1.00 -0.30

2000m12 -0.03 0.03 52 -0.94 0.35 60 3 0.97 0.95 0.97 -2.57 2009m9 0.01 0.02 59 0.29 0.77 73 5 0.99 0.95 1.01 0.65

2001m1 -0.13 0.03 55 -4.50 0.00 63 3 0.96 0.93 0.87 -12.58 2009m10 -0.02 0.02 63 -0.69 0.49 77 5 0.99 0.94 0.98 -1.64

2001m3 -0.07 0.02 53 -2.87 0.01 60 2 0.97 0.95 0.94 -6.49 2009m11 0.00 0.03 62 0.00 1.00 76 5 0.98 0.93 1.00 0.03

2001m4 -0.13 0.03 47 -4.29 0.00 54 2 0.95 0.92 0.88 -12.43 2010m1 -0.01 0.03 73 -0.43 0.67 88 6 0.97 0.87 0.99 -1.39

2001m5 -0.11 0.03 43 -3.84 0.00 50 2 0.96 0.93 0.90 -10.43 2010m2 -0.01 0.03 86 -0.38 0.71 101 6 0.97 0.86 0.99 -1.10

2001m6 0.00 0.02 40 -0.09 0.93 47 2 0.97 0.96 1.00 -0.17 2010m3 -0.02 0.03 79 -0.45 0.66 94 6 0.96 0.86 0.99 -1.45

2001m7 0.02 0.03 43 0.48 0.63 50 2 0.95 0.92 1.02 1.66 2010m4 0.00 0.03 72 0.01 0.99 87 7 0.97 0.88 1.00 0.08

2001m8 -0.16 0.04 52 -4.05 0.00 60 3 0.96 0.92 0.86 -14.49 2010m5 -0.01 0.03 77 -0.24 0.81 91 6 0.96 0.87 0.99 -0.76

2001m9 -0.11 0.03 63 -3.15 0.00 71 3 0.95 0.91 0.90 -10.27 2010m6 0.00 0.03 82 0.00 1.00 96 6 0.96 0.86 1.00 0.06

2001m10 -0.06 0.04 69 -1.64 0.10 77 3 0.92 0.88 0.94 -6.08 2010m7 -0.04 0.03 82 -1.04 0.30 96 6 0.96 0.85 0.97 -3.48

2001m12 -0.08 0.04 70 -2.19 0.03 78 3 0.91 0.86 0.92 -7.80 2010m8 -0.01 0.03 86 -0.38 0.70 100 6 0.95 0.84 0.99 -1.24

2002m1 -0.02 0.03 73 -0.55 0.58 82 4 0.93 0.85 0.98 -1.78 2010m9 -0.01 0.03 87 -0.19 0.85 101 6 0.96 0.83 0.99 -0.59

2002m2 0.00 0.03 77 0.00 1.00 86 4 0.94 0.85 1.00 0.05 2010m10 -0.01 0.03 84 -0.43 0.67 98 6 0.96 0.84 0.99 -1.35

2002m3 -0.20 0.04 58 -4.66 0.00 67 4 0.92 0.83 0.82 -18.38 2010m11 0.00 0.03 85 -0.08 0.94 99 6 0.96 0.84 1.00 -0.22

2002m4 -0.01 0.03 40 -0.38 0.70 48 4 0.95 0.83 0.99 -1.24 2011m1 0.00 0.03 95 0.00 1.00 111 7 0.95 0.83 1.00 0.05

2002m5 -0.08 0.03 44 -2.40 0.02 53 4 0.96 0.89 0.92 -7.95 2011m2 -0.01 0.03 108 -0.37 0.71 125 7 0.95 0.82 0.99 -1.08

2002m6 -0.10 0.04 47 -2.77 0.01 56 4 0.95 0.89 0.90 -9.86 2011m3 0.00 0.03 110 0.01 0.99 127 7 0.94 0.82 1.00 0.08

2002m9 0.01 0.04 46 0.17 0.87 55 4 0.95 0.89 1.01 0.69 2011m4 0.00 0.03 109 0.00 1.00 126 7 0.94 0.82 1.00 0.05

2002m11 -0.43 0.09 33 -4.78 0.00 43 4 0.93 0.90 0.66 -34.25 2011m5 0.00 0.03 116 0.09 0.93 133 7 0.94 0.84 1.00 0.30

2003m1 0.00 0.03 23 0.00 1.00 30 1 0.99 0.99 1.00 0.05 2011m6 -0.02 0.03 104 -0.54 0.59 121 7 0.94 0.85 0.98 -1.73

2003m2 -0.12 0.04 23 -2.97 0.01 30 1 0.98 0.98 0.89 -10.95 2011m7 0.00 0.03 87 0.00 1.00 102 6 0.95 0.85 1.00 0.05

2003m4 -0.10 0.05 21 -2.24 0.04 28 1 0.97 0.97 0.90 -9.84 2011m9 -0.01 0.03 97 -0.40 0.69 113 6 0.96 0.89 0.99 -1.17

2003m7 -0.17 0.05 22 -3.12 0.01 29 1 0.97 0.97 0.85 -15.43 2011m10 -0.01 0.03 109 -0.26 0.80 125 6 0.96 0.91 0.99 -0.66

2003m8 -0.03 0.04 25 -0.58 0.56 32 1 0.97 0.97 0.98 -2.47 2011m11 -0.01 0.03 81 -0.29 0.78 98 7 0.97 0.94 0.99 -0.92

2003m10 -0.09 0.04 27 -1.98 0.06 34 1 0.97 0.97 0.92 -8.11 2011m12 0.00 0.03 59 0.18 0.85 71 3 0.99 0.97 1.00 0.49

2004m2 -0.16 0.05 33 -3.00 0.01 41 2 0.96 0.96 0.86 -14.39 2012m1 0.00 0.02 57 0.07 0.94 70 3 0.99 0.98 1.00 0.20

2004m4 0.00 0.05 36 0.02 0.99 44 2 0.97 0.96 1.00 0.19 2012m2 -0.01 0.03 57 -0.49 0.62 69 2 0.98 0.97 0.99 -1.27

2004m5 0.00 0.05 34 0.00 1.00 42 2 0.97 0.96 1.00 0.12 2012m3 -0.01 0.03 58 -0.27 0.79 70 2 0.98 0.97 0.99 -0.76

2004m6 0.03 0.05 44 0.60 0.55 52 2 0.96 0.96 1.03 3.09 2012m4 0.00 0.03 67 0.00 1.00 80 3 0.98 0.97 1.00 0.04

2004m8 -0.11 0.04 59 -2.73 0.01 67 2 0.96 0.96 0.89 -10.63 2012m5 0.00 0.02 77 0.00 1.00 90 3 0.98 0.96 1.00 0.03

2004m10 0.00 0.04 69 -0.04 0.97 77 2 0.96 0.96 1.00 -0.07 2012m6 -0.01 0.02 89 -0.42 0.67 102 3 0.98 0.97 0.99 -0.94

2004m12 0.00 0.03 75 -0.14 0.89 83 2 0.96 0.96 1.00 -0.42 2012m7 0.00 0.02 101 0.00 1.00 114 3 0.98 0.97 1.00 0.02

2005m1 0.00 0.03 76 0.00 1.00 84 2 0.97 0.97 1.00 0.05 2012m9 0.00 0.02 117 -0.13 0.90 130 3 0.98 0.97 1.00 -0.24

2005m2 -0.02 0.03 74 -0.61 0.54 82 2 0.97 0.97 0.98 -1.73 2012m10 -0.01 0.02 117 -0.65 0.52 130 3 0.98 0.97 0.99 -1.26

2005m3 0.00 0.03 75 0.00 1.00 85 2 0.98 0.98 1.00 0.03 2012m11 0.00 0.02 101 0.21 0.83 113 3 0.98 0.95 1.00 0.49

2005m5 0.00 0.03 74 0.08 0.93 84 2 0.98 0.98 1.00 0.24 2012m12 0.00 0.02 100 0.00 1.00 112 3 0.98 0.94 1.00 0.03

2005m6 -0.03 0.04 79 -0.96 0.34 90 3 0.97 0.96 0.97 -3.32 2013m1 -0.01 0.02 107 -0.54 0.59 119 3 0.98 0.95 0.99 -1.20

2005m7 -0.03 0.04 88 -0.70 0.49 99 3 0.96 0.96 0.98 -2.45 2013m4 0.00 0.03 86 -0.06 0.96 98 3 0.97 0.95 1.00 -0.13

2005m8 -0.05 0.03 88 -1.49 0.14 98 2 0.95 0.95 0.95 -4.90 2013m5 0.00 0.03 60 0.02 0.98 70 2 0.97 0.94 1.00 0.14

2005m9 0.00 0.03 88 0.00 1.00 98 2 0.96 0.95 1.00 0.05 2013m6 -0.01 0.03 82 -0.43 0.67 95 4 0.97 0.94 0.99 -1.25

2005m12 0.01 0.04 78 0.42 0.68 89 2 0.96 0.95 1.02 1.56 2013m9 -0.01 0.02 129 -0.42 0.68 145 7 0.97 0.94 0.99 -0.93

2006m1 0.00 0.04 77 -0.11 0.92 90 4 0.96 0.95 1.00 -0.32 2013m11 0.00 0.02 149 -0.14 0.89 165 7 0.97 0.94 1.00 -0.28

2006m4 -0.22 0.04 76 -5.48 0.00 89 4 0.95 0.94 0.80 -19.81 2014m1 -0.01 0.02 153 -0.32 0.75 168 7 0.97 0.94 0.99 -0.66

2006m6 0.01 0.03 67 0.32 0.75 80 4 0.98 0.97 1.01 1.10 2014m2 0.00 0.02 159 0.00 1.00 174 7 0.97 0.95 1.00 0.02

2006m7 -0.18 0.05 77 -3.60 0.00 91 5 0.95 0.93 0.84 -15.96 2014m3 0.00 0.02 156 0.00 1.00 171 7 0.97 0.95 1.00 0.02

2006m10 -0.04 0.05 87 -0.82 0.41 101 5 0.93 0.90 0.96 -4.04 2014m4 -0.02 0.02 175 -0.79 0.43 190 7 0.97 0.95 0.99 -1.49

2006m11 -0.02 0.06 68 -0.35 0.73 82 5 0.93 0.91 0.98 -2.00 2014m5 0.00 0.02 175 -0.06 0.96 189 6 0.97 0.96 1.00 -0.09

2006m12 0.00 0.06 51 0.00 1.00 64 6 0.95 0.92 1.00 0.17 2014m6 0.00 0.02 156 0.04 0.97 170 6 0.97 0.95 1.00 0.09

2007m1 -0.30 0.08 47 -3.86 0.00 61 6 0.93 0.86 0.74 -25.54 2014m7 0.01 0.02 141 0.56 0.57 155 6 0.97 0.95 1.01 1.09
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Appendix Table A.7  Other Estimated Regression Coefficients, Intel List Price Hedonic Model including TDP 

                          Color-Coding for Entry and Exit of Characteristics/Microarchitectures from Sample 

 
 

period 

ending lproc lmaxmhz lbw lcores ht lcache

int 

graph ltdp em64t eist vt

period 

ending lproc lmaxmhz lbw lcores ht lcache

int 

graph ltdp em64t eist vt

1998m10 1.89 2007m4 3.32 0.16 0.41 -0.03 0.54 -0.16

1998m11 1.36 2007m5 3.39 0.54 0.36 -0.11 0.71

1998m12 1.51 2007m6 3.30 0.64 0.34 0.21 -0.04 0.85

1999m1 -28.12 30.98 2007m7 3.17 -2.32 -0.07 1.45 -0.08 1.27 0.96

1999m2 3.83 -0.86 2007m9 3.06 -2.23 -0.54 1.33 -0.04 1.63 0.99

1999m3 3.38 -0.14 2007m10 2.57 -1.83 -1.07 1.05 -0.01 2.09 1.00

1999m4 4.12 -1.14 2007m11 1.79 -1.44 -2.86 0.07 3.99 0.94

1999m5 4.15 -0.91 2008m1 1.50 -0.78 -2.29 0.25 3.12 0.55

1999m6 2.06 1.60 2008m3 1.26 -0.51 -2.32 0.34 3.03 0.42

1999m7 0.71 2.85 2008m4 1.15 -0.55 -2.36 0.42 2.98 0.35

1999m8 1.62 2.21 2008m7 1.17 -0.11 -2.28 0.43 2.90 0.07

1999m9 2.96 0.10 1.25 2008m8 1.24 0.51 -2.21 0.35 2.90 -0.14

1999m10 3.80 -0.10 -0.25 2008m9 1.32 0.55 -2.25 0.33 2.94 -0.14

1999m12 3.14 -0.24 -0.06 2008m10 1.37 0.46 -2.23 0.32 2.86 -0.08

2000m1 3.09 -0.23 0.10 2008m11 55.10 -53.71 0.33 -2.20 0.34 2.73 -0.01

2000m2 3.30 -0.04 -0.15 2008m12 55.09 -53.70 0.36 -2.20 0.33 2.71 -0.01

2000m3 3.19 0.04 0.39 -0.28 2009m1 52.49 -50.81 1.01 -0.95 0.34 1.23 -0.19

2000m4 3.34 0.06 0.52 -0.40 2009m2 49.51 -47.50 1.38 -0.43 0.24 0.55 -0.22

2000m5 3.10 0.11 0.67 -0.34 2009m3 40.11 -37.05 1.37 -0.52 0.10 0.45 -0.28

2000m6 3.00 0.01 0.56 -0.02 2009m4 38.80 -35.58 1.33 -0.56 0.11 0.47 -0.30

2000m7 3.22 -0.45 0.58 0.54 2009m5 36.88 -33.46 1.29 -0.59 0.12 0.47 -0.33

2000m8 2.81 -0.38 0.74 0.45 2009m6 35.74 -32.58 1.27 -0.64 0.16 0.49 -0.31

2000m10 2.69 -0.31 0.83 0.21 2009m7 38.81 -36.21 1.22 -0.36 0.25 0.17 -0.26

2000m11 2.26 -0.17 0.75 0.25 2009m8 47.09 -45.37 1.07 0.39 0.34 -0.58 -0.17

2000m12 1.89 -0.07 0.73 0.39 2009m9 51.11 -49.53 0.96 0.44 1.78 0.34 -0.60 -0.13

2001m1 1.66 0.12 0.60 0.17 2009m10 44.47 -42.75 0.88 0.40 1.61 0.32 -0.60 -0.12

2001m3 1.48 0.20 0.56 0.00 2009m11 37.42 -35.46 0.87 0.28 1.42 0.29 -0.60 -0.13

2001m4 1.34 0.21 0.61 0.00 2010m1 0.92 1.99 0.70 0.11 0.23 0.21 -0.62 -0.20

2001m5 1.30 0.21 0.80 -0.14 2010m2 0.83 2.15 0.67 0.12 0.15 0.22 -0.65 -0.21

2001m6 1.31 0.10 1.02 -0.22 2010m3 1.00 2.18 0.59 0.07 0.14 0.22 -0.66 -0.19

2001m7 1.66 0.04 1.02 -0.27 2010m4 1.26 2.35 0.25 0.11 0.26 -0.66 -0.08

2001m8 2.68 -0.15 1.12 -0.70 2010m5 1.10 2.50 0.18 0.12 0.28 -0.65 -0.09

2001m9 4.60 -0.11 1.20 -2.22 2010m6 0.88 2.60 0.14 0.13 0.31 -0.63 -0.10

2001m10 5.33 0.24 1.15 -3.21 2010m7 0.41 3.05 0.20 0.11 0.32 -0.64 -0.10

2001m12 4.96 0.40 1.02 -3.29 2010m8 -0.31 3.54 0.29 0.09 0.34 -0.62 -0.12

2002m1 4.45 0.47 0.88 -3.06 2010m9 -0.78 3.57 0.35 0.12 0.37 -0.56 -0.10

2002m2 4.35 0.56 0.85 -3.07 2010m10 -1.16 3.64 0.46 0.13 0.39 -0.52 -0.10

2002m3 4.90 0.74 0.85 -3.52 2010m11 -1.31 3.71 0.59 0.13 0.39 -0.50 -0.14

2002m4 2.69 1.95 -0.01 2011m1 -0.35 2.70 0.65 0.15 0.38 -0.07 -0.34 -0.14

2002m5 7.06 0.93 -0.85 -7.24 2011m2 0.03 2.02 0.72 0.28 0.18 0.39 -0.06 -0.39 -0.13

2002m6 8.41 0.79 -1.41 -9.75 2011m3 0.11 1.82 0.76 0.37 0.19 0.40 -0.06 -0.44 -0.12

2002m9 8.46 0.94 -1.53 -9.89 2011m4 0.10 1.82 0.75 0.37 0.19 0.40 -0.06 -0.44 -0.13

2002m11 2.30 1.09 0.52 0.32 -0.66 2011m5 0.17 1.71 0.71 0.42 0.20 0.41 -0.05 -0.47 -0.13

2003m1 2.75 -0.11 0.20 0.34 0.68 2011m6 0.23 1.68 0.55 0.45 0.20 0.41 -0.03 -0.49 -0.17

2003m2 2.75 -0.06 0.24 0.27 0.70 2011m7 0.80 1.83 -0.05 0.99 0.20 -0.01 0.13 -0.67

2003m4 2.84 -0.05 -0.01 0.21 1.09 2011m9 0.95 1.66 -0.02 1.01 0.20 0.05 0.12 -0.72 -1.05

2003m7 1.88 0.26 -0.09 0.31 1.70 2011m10 1.10 1.49 0.00 1.07 0.21 0.08 0.11 -0.76 -1.12

2003m8 1.22 0.34 -0.15 0.35 2.61 2011m11 1.20 1.21 0.06 1.06 0.22 0.17 0.10 -0.76 -1.13

2003m10 1.05 0.31 -0.11 0.40 2.32 2011m12 0.54 0.83 0.59 0.56 0.27 0.55 -0.48 -0.82

2004m2 0.32 0.26 -0.19 0.38 2.73 2012m1 0.36 0.84 0.70 0.48 0.28 0.59 -0.05 -0.41 -0.75

2004m4 -0.08 0.19 -0.32 0.37 3.32 2012m2 0.28 0.77 0.81 0.66 0.32 0.47 -0.05 -0.39 -0.73

2004m5 0.03 0.18 -0.36 0.39 3.24 2012m3 0.09 0.89 0.85 0.72 0.35 0.40 -0.05 -0.32 -0.73

2004m6 1.40 -0.03 -0.29 0.48 1.97 2012m4 0.06 0.98 0.92 0.70 0.32 0.37 -0.04 -0.27 -0.74

2004m8 1.65 -0.16 -0.36 0.62 1.35 2012m5 0.15 0.93 0.95 0.73 0.31 0.35 -0.03 -0.29 -0.75

2004m10 1.68 -0.25 -0.43 0.73 0.93 2012m6 0.04 1.09 0.92 0.69 0.32 0.35 -0.05 -0.27 -0.78

2004m12 2.22 -0.21 -0.49 0.73 0.80 2012m7 0.00 1.19 0.87 0.66 0.33 0.36 -0.06 -0.27 -0.80

2005m1 2.70 -0.12 -0.55 0.71 0.76 2012m9 -0.02 0.95 1.06 0.65 0.35 0.41 -0.05 -0.23 -0.76

2005m2 2.73 -0.13 -0.60 0.78 0.63 2012m10 -0.10 0.96 1.00 0.59 0.35 0.47 -0.05 -0.22 -0.76

2005m3 2.81 -0.16 -0.67 0.86 0.50 0.34 -0.63 2012m11 -0.16 1.14 0.82 0.51 0.35 0.51 -0.02 -0.25

2005m5 2.87 -0.27 -0.62 0.85 0.60 0.35 -0.63 2012m12 -0.16 1.14 0.81 0.50 0.35 0.52 -0.02 -0.25

2005m6 2.86 -0.96 -0.23 0.78 1.07 0.19 -0.46 2013m1 -0.14 1.26 0.57 0.51 0.36 0.54 -0.05 -0.28

2005m7 2.97 -1.00 -0.04 0.70 1.07 0.06 -0.28 2013m4 0.09 1.27 0.34 0.65 0.37 0.47 -0.04 -0.36

2005m8 2.97 0.03 0.24 0.24 0.95 0.05 -0.11 2013m5 1.16 1.08 1.24 0.32 0.20 0.04 -0.78

2005m9 2.91 0.77 0.29 0.01 0.93 0.04 -0.10 2013m6 1.01 1.05 0.45 1.28 0.32 0.16 0.04 -0.72

2005m12 2.96 0.68 0.27 0.04 0.99 0.03 -0.12 0.07 2013m9 0.66 1.27 0.74 1.08 0.30 0.24 0.02 -0.58

2006m1 3.02 0.47 0.23 0.12 1.04 0.00 -0.16 0.05 2013m11 0.54 1.38 0.71 0.98 0.29 0.31 0.01 -0.55

2006m4 2.88 0.86 0.41 0.02 0.86 0.02 -0.03 -0.02 2014m1 0.36 1.52 0.78 0.84 0.27 0.37 -0.49

2006m6 2.66 1.81 0.44 -0.08 0.90 -0.05 0.09 -0.20 2014m2 0.20 1.62 0.83 0.73 0.26 0.41 -0.43

2006m7 2.55 1.28 0.67 -0.12 1.32 -0.23 0.18 -0.05 2014m3 0.35 1.52 0.80 0.81 0.26 0.39 -0.49

2006m10 2.74 1.08 0.78 -0.17 1.32 -0.32 0.33 0.08 2014m4 0.44 1.30 0.78 0.87 0.27 0.41 -0.49

2006m11 2.92 1.13 0.59 -0.07 1.52 -0.40 0.33 0.05 2014m5 0.34 1.23 0.79 0.81 0.28 0.45 -0.43

2006m12 3.38 1.55 0.28 -0.07 1.65 0.35 2014m6 0.28 1.25 0.78 0.77 0.28 0.48 -0.41

2007m1 3.87 1.30 0.42 -0.27 1.50 0.30 -0.69 2014m7 0.41 0.98 0.90 0.93 0.29 0.42 -0.43

: microarchitecture enters or exits sample

: non-zero values for indicator vars, lcores; lmaxmhz different from lproc blank: indicates variable dropped as perfectly collinear
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Key to variables in column headings, Appendix Tables 5 and 7 

 

lproc: log base processor clock rate 

lmaxmhz: log of maximum clock rate if turbo mode available 

lbw: log of memory bandwidth 

lcores: log of number of physical cores in processor 

ht: binary dummy variable for hyperthreading 

lcache: log of amount of last level cache memory on processor chip 

int graph: dummy variable for integrated on-chip graphics 

ltdp: log of thermal design power 

em64t: extended memory 64 technology, dummy variable 

eist: enhanced Intel speedstep technology (dynamic frequency scaling), dummy variable 

vt: virtualization technology (hardware virtualization capabilities), dummy variable 

 

 


