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Kenneth Flamm

“Moore’s Law” in the semiconductor manufacturing industry is used to describe the predictable
historical evolution of a single manufacturing technology platform (“silicon CMOS”) that has been
continuously reducing the costs of fabricating electronic circuits since the mid-1960s. Some features of
its future evolution were first correctly predicted by Gordon E. Moore (then at Fairchild Semiconductor)
in 1965, and Moore’s Law became an industry synonym for continuous, periodic reduction in both size
and cost for electronic circuit elements.

Technological innovation for this manufacturing platform was coordinated and synchronized
across a variety of different engineering fields, including materials, optical systems, ultraclean precision
manufacturing, factory automation, electronic circuit design and simulation, and improved computer
software for computational modelling in all of these fields. It was a self-reinforcing dynamical process,
since the largest market for the semiconductor manufacturing industry’s products has always been the
computer industry.? Cheaper computing hardware meant cheaper modeling and engineering to further
reduce the costs of the semiconductors manufactured for use in future computers. New public-private
institutions and organizations were developed to coordinate the simultaneous arrival of the very
heterogeneous technological building blocks required for this increasingly complex semiconductor
manufacturing technology platform.

The result was an industrial dynamic that, since the mid-1960s, had effectively worked as a
“virtual shrinking machine” for electronic circuits. On a regular basis, new “technology nodes” delivered
30 percent reductions in the size of the smallest dimension (“critical feature size,” F) that could be
reliably manufactured on a silicon wafer. This implied a 50 percent reduction in the area occupied by the
smallest manufacturable electronic circuit feature (F?), and a doubling in density—the number of circuit
elements (e.g., transistors) per area of silicon in a chip. Section 1 develops some stylized economic facts,
reviewing why this progression in manufacturing technology delivered a 20 to 30 percent annual decline
in the cost of manufacturing a transistor, on average, as long as it continued.

Section 2 reviews other economically significant benefits (in addition to increased density and
lower cost per circuit element) that would be associated with smaller feature sizes. Some of those
characteristics would be expected to have significant economic value, and historical trends for these
characteristics are reviewed. Chip speed, in particular, would have major impacts on computer

1] am most grateful to Anjum Khurshid, Kevin Williams, Caroline Alexander, Pablo Cruzat, Javier Beverinotti,
Manuel Chavez, Changgui Dong, and Miha Vindis for their excellent research assistance over the years this data
was collected and maintained, and to financial support from the Kauffman Foundation and the National Science
Foundation. This research is based in part upon work supported by the National Science Foundation under Grant
No. 0830389. | would also like to thank Ana Aizcorbe, David Byrne, Carol Corrado, Stephen Oliner, James Prieger,
Marshall Reinsdorf, Steve Sawyer, Dan Sichel, Neil Thompson, and participants in the CRIW “Measuring and
Accounting for Innovation in the 215 Century” conference, and the IMF Fifth Statistical Forum, “Measuring the
Digital Economy”, for their many useful comments on earlier versions of this paper.

2 Defining the computer industry expansively, to include the computer systems embedded in the smart electronic
systems and mobile devices whose sales have grown most rapidly in recent decades.



performance. Econometric analysis of software benchmark data shows rates of performance
improvement in CPUs declining dramatically in the new millennium, a retreat from very high rates of
increase measured in the late 1990s. Lower manufacturing costs alone pose no special challenges for
price and innovation measurement, but these other benefits do, and motivate quality adjustment
methods when semiconductor product prices are measured.

Section 3 analyzes empirical evidence of recent changes to the historical Moore’s Law trajectory,
and finds corroborating evidence for a slowdown in Moore’s Law in prices for the highest volume
products: memory chips, custom chip designs outsourced to dedicated contract manufacturers
(foundries), and Intel microprocessors. Section 4 reviews evidence to the contrary, which relates
primarily to Intel microprocessors, and discusses economic reasons why Intel microprocessor prices
might behave differently from prices for other types of semiconductor chips.

Section 5 dives into microprocessors in greater depth, and tests the computer architecture
textbook view of how a small set of specific chip characteristics affect performance of microprocessors
in executing programs, by outlining a structural model of microprocessor computing performance, then
estimating that model empirically. This simple econometric model, using only a small set of explanatory
chip characteristics, explains 99% of variance across processor models in performance on commonly
used CPU performance benchmarks. These characteristics, which determine benchmark scores, should
clearly be included in any hedonic price equation. Most of these chip characteristics would also be
expected to affect chip production cost, and would therefore have an additional rationale for inclusion
in a hedonic price equation supplanting their role in determining computer performance benchmark
scores.

1. Stylized Facts About Semiconductor Manufacturing Innovation

In 1965, five years after the integrated circuit’s invention, Gordon E. Moore (who would shortly
move on to co-found Intel) predicted that the number of transistors (circuit elements) on a single chip
would double every year.? Later modifications of that early prediction—“Moore’s Law” —became
shorthand for semiconductor manufacturing innovation.

Moore’s prediction requires other assumptions in order to create economically meaningful
connections to the information age’s key economic variable: the cost (or price) of electronic
functionality on a chip (embodied in the 20%" century’s supreme electronic invention, the transistor).*
Chip fabrication requires coordinating multiple technologies, combined in very complex manufacturing
processes.

The pacing technology has been the photolithographic processes used to pattern chips. From
the 1970s through the mid-1990s, a new “technology node” — a new generation of photolithographic
and related equipment, and materials required for successful use—was introduced roughly every three
years or so. Starting in the mid-1970s, this three year cycle coincided with the time interval between
introductions of next-generation DRAM computer memory chips, storing four times the bits in the

3 G. Moore (1965).
4 Jorgenson (2001), Flamm (2003), (2004); Aizcorbe, Flamm, and Khurshid, (2007).



previous generation chip.® This observed 18-month “doubling period” became a new, de facto, “revised”
Moore’s law.®

The close early fit of DRAM product development cycles with leading edge chip manufacturing
technology introductions was no coincidence. DRAMs at that time were the highest volume,
standardized, commodity chip product manufactured, and a rapidly expanding computer market drove
leading edge chip manufacturing technology development. Moore’s prediction morphed into an
informal, and later, formal technology coordination mechanism (the International Technology Roadmap
for Semiconductors, or ITRS) for the entire global semiconductor industry—equipment and material
producers, chip makers, and their customers.

Relationships between Moore’s Law and fabrication cost’ trends for integrated circuits can be
described by the following identity, giving cost per circuit element (e.g., transistor):

S processing cost x silicon wafer area

(1) S/element = area “yielded” good silicon chip

elements/chip

Moore’s original “Law” described only the denominator—a prediction that elements per chip would
guadruple every two years. Back in 1965, Moore hadn’t originally anticipated rapid future advances in
technology nodes. Acknowledging that an IC containing 65,000 elements was implied by 1975, Moore
wrote: “I believe that such a large circuit can be built on a single wafer. With the dimensional tolerances
already being employed...65,000 components need occupy only about one-fourth a square inch.”®

Rewriting this more concisely without relying on Moore’s prediction about numbers of elements
per chip (therefore eliminating the need for assumptions about chip size):

S processing cost  x silicon area
(2) $/element = area yielded silicon  element

which depends directly on the defining characteristic of a new technology node, smallest patternable
feature size, as reflected in chip area per transistor. This “Moore’s Law” variant came into use in the
semiconductor industry as a way of analyzing the economic impact of new technology nodes. New
technology nodes increased density of transistors fabricated in a given area of silicon in a readily
predictable way. Time between new nodes—and a new node’s impact on wafer processing costs—
jointly determined decline rates in transistor fabrication cost.

Through 1995, new technology nodes were introduced at roughly three year intervals. Each new
node reduced the smallest planar dimension (“critical feature size,” F), in circuit elements by 30%,
implying 50% smaller silicon areas (F?) per circuit element.

5 The DRAM memory was invented in 1968 by Robert Dennard at IBM, and first commercialized by Moore’s newly
founded company, Intel, in 1970.

6 A decade later, Moore himself revised his prediction to a doubling every two years. G. Moore (1975), pp. 11-13.
7 Analysis of fabrication costs, which account for most chip cost, ignores assembly, packaging, and test.

8 Moore (1965). The largest wafer sizes in use then were comparable in diameter to a modern snack mini-pizza
appetizer.
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Figure 1. Wafer size conversions offset Intel’s increased wafer-processing cost

Completing the economic story, cost per silicon wafer area processed, averaged over long
periods, increased only slowly.® At new technology nodes, processing cost per silicon wafer area indeed
increased. But, episodically, larger wafer sizes were introduced, sharply reducing processing costs per
area. The net effect was nearly constant long run costs, with only slight increases. Figure 1, presented in
2005 by Intel’s chief manufacturing technologist, shows new wafer sizes “resetting” wafer-processing
costs. Significantly, larger diameter wafer sizes (450mm) were expected at the 22 nanometer (nm) node.
However, 450mm wafers were not introduced as Intel adopted 22nm technology in 2012, had not been
introduced by 2017, and even future introduction now seems highly uncertain. The most recent wafer
size “reset,” adoption of 300mm diameter wafers, occurred at the 130nm technology node, around
2002.

Using these stylized trends—wafer-processing cost per area of silicon roughly constant, and
silicon area per circuit element halved with new technology nodes introduced every three years—
equation (2) above predicts that every three years, the cost of producing a transistor would fall by 50%,
a 21% compound annual decline rate.

In reality, leading edge computer chips—like DRAM memory (the primary product originally
produced at Intel after Moore and others founded that company, which immediately became the largest
volume product in the semiconductor industry and the primary product driving Intel’s initial growth)—

9 Over 1983-1998, wafer-processing cost/cm? silicon increased 5.5 percent annually. Cunningham et. al. (2000), p.
5. This estimate relates to total silicon area processed (including defective chips). Since defect-free chips’ share of
total processed area increased historically (chip fabrication yields increased), wafer-processing cost per good
silicon area rose even more slowly, approximating constancy.



dropped in price substantially faster than 20% pre-1985. The steeper decline rate in part reflected
further increases in density due to circuit design improvements (e.g., reduction in memory cell
footprint)!, 3-D interconnect layers enabling tighter packing of circuit elements,** and gradual
introduction of 3-D into physical designs of transistors and other circuit elements.?? In addition,
operating characteristics of a given circuit design—in particular, switching speed and power
requirements—improved with new manufacturing technology, and made additional contributions to
quality-adjusted price. Finally, smaller and cheaper transistors made it economic to add ever greater
electronic functionality to chips, and more and more of a complete electronic system was progressively
integrated onto a single chip, which greatly improved system reliability.

In the mid-1990s, the semiconductor manufacturing industry arrived at a significant
technological inflection point.** New technology nodes began arriving at two-year intervals, replacing
three-year cycles. (Intel’s perception of this trend, as of 2005, is documented in Figure 2.) The origins of
this change lie in the early 1990s, when the U.S. SEMATECH R&D consortium sponsored a roadmap
coordination mechanism in pursuit of an acceleration in the introduction of new manufacturing
technology, intended to benefit the competitiveness of US chip producers. By the mid-1990s, with the
increasing reliance of semiconductor manufacturing on a global industrial supply chain, the American
national roadmap evolved into the international ITRS.'® Explicitly coordinating the simultaneous
development of the many complex technologies required to enable a new manufacturing technology
node every two years apparently succeeded in raising the tempo of semiconductor manufacturing
innovation for over a decade.'®

10 Flamm (2010), Figure 2, documents a 62 percent decline in minimum memory bit cell footprint between 1995
and 2004.

11 Anticipated by Moore back in 1965: “no space wasted for interconnection...using multilayer metallization
patterns separated by dielectric films.” Moore (1965).

12 Recent examples of 3-D transistor structures include RCAT (recessed cell array transistor) and FinFET (fin field
effect transistor) structures. 3-D capacitor designs have been used in DRAM since the late 1990s.

13 Since electrical interconnections between components have historically been the most frequent point of failure
in electronic systems.

¥ Industry roadmaps originally dated this transition to two-year node rollouts to 1995; post-2004 roadmaps
revised that date to 1998. Aizcorbe, Oliner, and Sichel, (2008) have persuasively argued that the turning point was
closer to mid-1990s than late in the decade.

The mid-1990s were also a technological inflection point for Intel’s manufacturing capabilities. Intel had
exited the DRAM business in 1985, which previously had been driving its leading edge manufacturing technology
development, and refocused its R&D on logic circuit design. Burgelman (1994), pp. 32-46. As a consequence, by the
late 1980s, Intel manufacturing capability was trailing well behind the leading edge of the manufacturing
technology it had once pioneered.

In order to catch up, Intel began adopting new nodes every two years, even as the rest of the industry
continued at the historical three-year pace. Comparing launch dates for Intel processors at new technology nodes
with initial use of those nodes by DRAM makers: Intel was 2 years behind in 1989 (at 1000nm); 3 years behind in
1991 (800nm); 1 year behind in 1995 (350nm). Intel caught up with the DRAM makers in 1997, at 250nm, and
remained on a roughly 2-year cycle through 2014. Author’s calculations based on Intel (2008), IC Knowledge
(2004), http://ark.intel.com.

15 Flamm (2009); Spencer and Seidel (2004).
16 The last (incomplete) official roadmap prepared by ITRS was released in 2012. Intel and others reportedly
withdrew from ITRS around this time.
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Source: Holt (2005).
Figure 2. Feature size scaling as observed by Intel in 2005

Using (2), but adopting shorter two-year cycles for new technology nodes, implies rates of
annual decline in transistor cost accelerating to almost 30%. In short, if the historic pattern of 2-3 year
technology node introductions, combined with a long run trend of wafer processing costs increasing
very slowly were to have continued indefinitely, a minimum floor of perhaps a 20 to 30 percent annual
decline in quality-adjusted costs for manufacturing electronic circuits would be predicted, due solely to
these “Moore’s Law” fabrication cost reductions. On average, over long periods, the denser, “shrink”
version of the same chip design fabricated year earlier would be expected to cost 20 to 30 percent less
to manufacture, purely because of the improved manufacturing technology.

It now appears that this two-year cycle for technology nodes definitively ended in 2014, with
deployment of the 14nm node. The most historically prominent adopter of leading edge chip
manufacturing technology, Intel, currently projects a delayed introduction of its next 10nm processor
products to no earlier than late 2019.Y” This means that time between introductions of new technology
nodes now is approaching 5 years for Intel, a dramatic change from its two-year cadence through
2014.%®

17 See http://wccftech.com/intel-delays-10nm-cannon-lake-cpus-end-2018/ .

18 Intel chip manufacturing competitor TSMC was said in early 2017 to be manufacturing a “10nm” node in volume
for Apple (See R. Merritt, “TSMC, Samsung Diverge at 7nm,” EE Times, Feb. 8, 2017,
(http://www.eetimes.com/document.asp?doc_id=1331324 ), but it is widely believed in the industry that its




At Intel, the post-1995 two-year technology development cycle had been explicitly incorporated
into marketing efforts, and dubbed the Intel “tick-tock” development model in 2007.%° Every two years,
there would be a new technology node introduced (“tick”), with the existing microprocessor computer
architecture ported to the new node (effectively “die shrinks” using the new process), followed by an
improved architecture fabricated with the same technology the following year (“tock”). The death of the
“tick-tock” model was officially acknowledged by Intel in its 2016 annual report.?°

Intel publicly disclosed a version of equation (2) to its shareholders in 2015, purged of sensitive
cost numbers by indexing all variables to equal one at the 130nm technology node, the technology node
at which the transition to a larger wafer size occurred.?! The 2015 Intel decomposition of manufacturing
cost per transistor, using equation (2), is shown as Figure 3, and in Table 1. Generally, Intel’s average
silicon area per transistor did not decline by the predicted 50% between technology nodes, primarily
because of the increasing complexity of interconnections in processor designs.?? If accurate, these
numbers indicate average chip area per transistor shrank by 38% at each new node from 130nm
through 22nm.% Nor did Intel’s wafer-processing costs stay constant over the post-130nm period as a
whole, since the adoption of 450mm wafers, and subsequent cost reset, never happened at 22nm, as
had been predicted back in 2005. However, as long as average area per transistor declined at faster
rates than processing costs per area increased, transistor cost would continue to decline. Intel’s cost per
transistor estimates are revisited below.

$ / mm2 mm2 / Transistor $ / Transistor
(normalized) (normalized) (normalized)

Source: Holt (2015).

current technology is physically equivalent to a half node advancement over the previous generation Intel
technology node. See https://www.semiwiki.com/forum/f293/intel-tsmc-samsung-10nm-update-8565.html ;
http://wccftech.com/intel-losing-process-lead-analysis-7nm-2022/ ; Rogoway (2018); Cuttress and Shilov (2018).
19 See http://www.intel.com/pressroom/archive/releases/2007/20070918corp _a.htm .

2 ntel (2016), p. 14.

21 Intel actually produced microprocessors in volume on both 200mm (8”) and 300mm (12”) wafers using its
130nm manufacturing process technology. See Natrajan, at. al., (2002), pp. 16-17.

22 See Flamm (2017), p. 34, for a more detailed explanation.

23 Absolute constancy in reported decline rates for average area per transistor over five generations of new Intel
manufacturing technology is puzzling, suggesting long-run trend-based estimates rather than actual averages
computed from empirical manufacturing data.




Figure 3. Intel 2015 version of equation (2)
Compound Annual Percentage Change:

Year Intel 1% Wafer Wafer

Shipped New Tech Processin Transistor Processing Transistor

Productat Node gCost($/ size(mm?/ $Cost/ Cost($/ size (mm?/ $ Cost/

Tech Node (hm) mm?) X transistor) = Transistor mm?) transistor) Transistor
2002 130 1 1 1
2004 90 1.09 0.62 0.68 5% -21% -18%
2006 65 1.24 0.38 0.47 7% -21% -16%
2008 45 1.43 0.24 0.34 7% -21% -15%
2010 32 1.64 0.15 0.24 7% -21% -16%
2012 22 1.93 0.09 0.18 8% -21% -14%
2014 14 2.49 0.04 0.11 14% -31% -22%

Source: Bill Holt, "Advancing Moore's Law," presentation to Intel Investor Meeting, 2015,
Santa Clara, slide 6, graph digitized using WebPlotDigitizer. Year node introduced from ark.intel.com.

Table 1. Decomposing Intel Transistor Cost Declines into Wafer Cost and Transistor Size Changes

How would reductions in production cost translate into price declines? One very simple way to
think about it would be in terms of a “pass-through rate,” defined as dP/dC (incremental change in price
per incremental change in production cost). The pass-through rate for an industry-wide decline in
marginal cost is equal to one in a perfectly competitive industry with constant returns to scale, but can
exceed or fall short of 1 in imperfectly competitive industries. Assuming the perfectly competitive case
as a benchmark for long-run pass-through in “relatively competitive” semiconductor product markets,
this would then imply an expectation of 20-30% annual declines in price, due solely to Moore’s Law.

Historically, most semiconductor chip production ultimately seems to have migrated to more
advanced technology nodes.?* Other kinds of innovations in semiconductor manufacturing, or
innovations in the design and functionality going into electronic circuits, might be expected to stimulate
even greater rates of quality-adjusted price declines. Thus, the 20-30% annual decline in manufacturing
cost associated with Moore’s Law could be interpreted as a floor on the quality-adjusted price declines
in the most competitive segments of the semiconductor market.

2. Other Benefits from “Moore’s Law” Manufacturing Innovation

Impressive declines in transistor manufacturing cost, accompanying denser chips with smaller
feature sizes at more advanced technology nodes, measure only a part of the economic benefits of the
Moore’s Law innovation dynamic. With smaller transistor sizes also came faster switching times and

24 At SEMATECH, the US semiconductor industry consortium (with which the author worked as a consultant in the
first decade of the 2000’s), the planning rule of thumb was that a fab would be a candidate for an upgrade to a
new technology node no more than twice over its lifetime, and then would be shut down as uneconomic.



lower power requirements.?’> The complementary benefits of speed and power improvements were
highly significant for chip consumers (like computer makers) and their customers.

This was particularly true for chip makers manufacturing microprocessors. Existing computer
architectures running at faster speeds run existing software faster and enable more data processing in
any given time. Until 2004, computer processor clock rates increased rapidly, as did performance of
computers incorporating these faster microprocessors. Figure 4 shows clock rates for Intel desktop
microprocessors in computers tested on industry standard benchmark programs over the last twenty
years, as well as benchmark scores for these computers. As clock rates increased, so did performance.
Cheaper processors were also faster—stimulating increased demand for new computers in offices,
homes, and workplaces.
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Figure 4. Processor clock rate and performance for Intel desktop processors running SPEC CPU

benchmarks, by first availability date of tested hardware

Source: Author’s analysis of SPEC submissions, SPEC.org. Performance scores for 1995, 2000, and 2006 SPEC benchmarks have different values
for same processor, and different vintage benchmark scores are not directly comparable.

The logarithmic scale used in Figure 4 obscures a fairly dramatic slowdown in improvement in
CPU performance after the millennium. Table 2 shows compound annual growth rates in performance
over time of Intel desktop processors on standard CPU benchmark software (the SPEC benchmarks).
(See Appendix Al.)

Three different versions of the SPEC CPU test suite were released—one around 1995, one in
2000, and the most recent in 2006. Each suite contains a selection of “integer” application tests (e.g.,
programming and code processing, artificial intelligence, discrete-event simulation and optimization,

25 The underlying theory (“Dennard scaling”) suggested that a 30% reduction in transistor length and 50%
reduction in transistor area would be accompanied by a 30% reduction in delay (40% increase in clock frequency),
and 50% reduction in power. Esmaeilzadeh, et.al., (2013), p. 95.

26 For given software and computer architecture, time required for programs to execute is inversely proportional
to processor clock rate, assuming data transfer does not constrain performance. Lower rates of performance
improvement after 2004, as processor clock rates plateaued, were obvious to computer designers. See Fuller and
Millett (2011), chap. 2; Hennessey and Patterson (2012), chap. 1.



gene sequence search, video compression), and a set of “floating point” math-intensive application tests
(e.g., solution of systems modeling problems in physics, fluid dynamics, chemistry, and biology, finite
element analysis, linear programming, ray tracing, weather prediction, speech recognition). These test
suites are designed to test single process (programming task) performance on a CPU.?’

In addition, so-called “rate” versions of these test suites, which run multiple versions of the
single process benchmarks simultaneously on a single CPU, are available. The “rate” benchmarks are
intended to show how the CPU would perform as a server running multiple independent jobs, or
alternatively, running an “embarrassingly parallel” programming problem—a task which could be
divided up into multiple software processes not requiring any communication or coordination between
processes.?®

Changes in trends over time in the SPEC benchmark performance scores for Intel desktop
processors are quite dramatic.?® Over the 1995-2000 period, integer computing performance increased
by about 58 percent annually, floating point performance by 64%. The suite was revised in 2000, and
from the end of 2000 through 2004, both integer and floating point performance improvement rates
were almost halved, to an increase of about 33-34% per year.* Finally, over the most recent time
period, after the 2006 revision of the SPEC benchmarks, from 2005 through 2016, annual performance
gains were reduced substantially again, to rates of 17% (integer) and 25% (floating point) annual

improvement.3!

27 The overall benchmark score is calculated as a geometric mean of scores on the individual programs within the
benchmark.

28 Unfortunately, there is no SPEC rule about how many instances of the single benchmark programs should be run
for the rate benchmarks on a multicore CPU. It could be as many as the number of cores in the CPU, or twice that
number (the number of threads that can be run simultaneously on a CPU with additional processor hardware
supporting symmetric multi-threading—a feature called hyperthreading by Intel), or some number of instances
less than either of those bounds.

29 pillai analyzed the apparent slowdown in microprocessor quality improvement (as measured by software
benchmarks) from 2001-2008. See Pillai (2013), Figure 1.

30 There was a statistically significant—but substantively insignificant—additional decline of under a percent per
year after 2004, through 2007.

31 There was another statistically significant, but substantively insignificant, decline by a fraction of a percent in
performance improvement rates after 2012.
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int2006_rate | 2472256 .013015
fpiﬂﬂé_rate | 2537211 .0101781
_____________ e —————
2013ml1-2016m5
int2006 | 1687175 .0064265
fp2006 | .2414989 .0070952
iﬁt?ﬂﬂé_rate | .2417978 .01192886
|

fp2006_rate
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Table 2. Annual growth in processor performance improvement over different time periods and benchmarks
Source: Author analysis of SPEC benchmark performance of Intel desktop processors.

3. AnEnd To Moore’s Law?

Unfortunately, the golden age of more rapidly cheapening transistors (which were also faster and drew
less power) that began in the late 1990s did not survive unchallenged past the new millennium.

2004: the end of faster. The first casualty was the “faster thrown in for free,” along with smaller,
cheaper, and greener. Around 2003-2004, higher clock rates stalled (see Figure 4), as disproportionately
greater power was required to run processors reliably at ever higher frequencies. With tinier transistors
running at higher power in denser chips, dissipating heat generated by higher power density became
impossible without expensive cooling systems. (The highest processor speed shipped by Intel until very
recently was 4 GHz; IBM’s fastest z-series mainframe CPU, with advanced cooling, hit 5.5 GHz in 2012,
but subsequent CPUs ran at lower frequencies.®?) Intel and others abandoned architectures reliant on
frequency scaling to achieve better processor performance after 2004. Clock rates in subsequent
processor architectures actually fell and processing more instructions per clock tick became the focus for
improved computing performance.

Two-year node introductions continued to produce smaller and cheaper transistors, though.
Ever cheaper transistors were utilized to create more CPUs—“cores” —per chip, thus processing more

32 Raley (2015), p. 23.
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instructions per clock at lower clock frequencies. This new “multicore” strategy’s weakness was that
application software required “parallelization” to run on multiple cores simultaneously, and software
applications vary greatly in the extent to which they can be easily parallelized. Further, improving
software was more costly than simply adopting the cheaper hardware delivered by new technology
nodes: quality-adjusted prices for software historically have fallen much more slowly than quality-
adjusted prices for processors.3

The difficulty and cost of parallelization of software is an economic factor limiting utilization of
cheap multicore CPUs on hard-to-parallelize applications.3 In addition, a fundamental result in
computer architecture (Amdahl’s Law) maintains that if there is any part of a computation that cannot
be parallelized, then there will be diminishing returns to adding more processors to the task—and in
many applications, decreasing returns are noticeable fairly quickly. One widely used computer
architecture textbook summarized the challenges in utilizing multicore processors: “Given the slow
progress on parallel software in the past 30-plus years, it is likely that exploiting thread-level parallelism
broadly will remain challenging for years to come.”%*

2012: the end of rapid cost declines? Until roughly 2012, transistor fabrication costs continued
falling at rapid rates. At the 22/20nm technology node, which went into volume production around 2012
(at Intel), continuing cost declines began to look uncertain. Figure 5 shows contract chipmaker
GlobalFoundries’ 2015 transistor manufacturing costs at recent technology nodes.®

Numerous fabless chip design companies, which outsource chip production to contract
manufacturing “foundries,” began to publicly complain that transistor manufacturing costs had actually
increased at the 20/22nm node.?’ (Fabless companies accounted for 25% of world semiconductor sales
in 2015; foundries, which also build outsourced designs for semiconductor companies with fabs, had a
32% share of global production capacity.) Charts like Figure 6, showing increased costs at sub-28nm
technology nodes, were frequently published between 2012 and 2016. Figure 6 is not inconsistent with

33 Economic studies of mass market, high volume packaged software prices have typically found quality adjusted
rates of annual price decline in the 6 to 20 percent range. See for example, Neil Gandal, “Hedonic Price Indexes for
Spreadsheets and an Empirical Test for Network Externalities,” RAND Journal of Economics, Vol. 25, No. 1 (Spring,
1994); S. Oliner and D. Sichel, “Computers and Output Growth Revisited: How Big Is the Puzzle?”, Brookings Papers
on Economic Activity, Vol. 25, No. 2, 1994; A. White, J. Abel, E. Berndt, and C. Monroe, “Hedonic Price Indexes for
Personal Computer Operating Systems and Productivity Suites,” Annales D’Economie et de Statistique, No. 79/80
(2005), A. Copeland, “Seasonality, Consumer Heterogeneity and Price Indexes: The Case of Prepackaged Software,”
Journal of Productivity Analysis, vol. 39, no. 1, (2013), M. Prudhomme and K. Yu, “A Price Index for Computer
Software Using Scanner Data,” Canadian Journal of Economics, vol. 38, no. 3 (2005).

34 The opposite--software problems easily divided up across processors and run with little or no inter-processor
communication or management required—are described in the computer engineering literature as
“embarrassingly parallel”.

35 Hennessey and Patterson (2012), p. 411.

36 Like Table 1, this figure probably does not include R&D costs.

37 Fabless chipmakers Nvidia, AMD, Qualcomm, and Broadcom all publicly complained about a slowdown or even

halt to historical decline rates in their manufacturing costs at foundries. Shuler(2015), Or-Bach (2012), (2014),
Hruska (2012), Lawson (2013), Qualcomm (2014), Jones (2014), (2015).

38 Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016). Charts like Figure 4 should
be viewed cautiously, as underlying assumptions about products, volumes, and costs are rarely spelled out in
published sources.
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Figure 5, since Figure 6 likely includes the fabless customer’s non-recurring fixed costs for designing a
chip and making a set of photolithographic masks used in fabrication, while Figure 5—the foundry’s
processing costs—would not.?® These fixed costs have grown exponentially at recent technology nodes
and create enormous economies of scale.*® Some foundries have publicly acknowledged that recent
technology nodes now deliver higher density or performance at the expense of higher cost per
transistor.”

g
E.

FinFET

Figure 5. Global Foundries’ transistor manufacturing cost at recent technology nodes
Source: McCann (2015).

$4.50

Cost per 1,000 gates

90nm 65nm 45/40nm 28 nm 20nm 16/14 nm 10 nm

39 Historically, a set of 10 to 30 different photomasks was typically employed in manufacturing a chip design. For a
low to moderate volume product, acquisition of a mask set is effectively a fixed cost.

40 Brown and Linden (2009), chap. 3. McCann (2015) cites a Gartner study showing design costs for an advanced
system chip design rising from under $30 million at the 90nm node in 2004, to $170 million at 32/28nm in 2010, to
$270 million at the 16/14nm node in 2014.

41 Samsung’s director of foundry marketing: “The cost per transistor has increased in 14nm FinFETs and will
continue to do so.” Lipsky (2015). “GlobalFoundries believes the 10nm node will be a disappointing repeat of
20nm, so it will skip directly to a 7nm FinFET node that offers better density and performance compared with
14nm.” Kanter (2016).
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Figure 6. Cost per logic gate, with projection for 10nm technology node
Source: Jones (2015)

Because of these trends, fabless graphics chip specialists Nvidia and AMD actually skipped the
20/22nm technology node, waiting a high-tech eternity—five years—after launch of 28nm graphics
processors in 2011 to move to a new technology node (14/16nm) for their 2016 products.

2018: “dark silicon” and limits on green? The microprocessor industry’s response to the end of
frequency scaling was to use ever cheaper transistors to build more cores on a chip. Though limited by
software advances in parallelizing different kinds of applications, this strategy at first seemed effective.
More recently, continued future improvement of CPU performance on even easy-to-parallelize
applications has been questioned.

As transistors get very small, power requirements to switch these transistors are not reduced at
the same rate as transistor size. The “green” lower power benefit of smaller transistors diminishes.
Furthermore, as the power density of chips increases, heat dissipation becomes an issue. Thus, the heat
problem that blocked further frequency scaling returns in a new guise and prevents the increasing
numbers of smaller cores squeezed into a multicore chip from simultaneously operating at a chip’s
fastest feasible clock rate.

The fraction of a chip’s cores that must be powered off at all times in order for a chip to operate
within thermal limits, dubbed “dark silicon” by researchers modeling the problem, had been projected
to grow as large as 50% by 2018.*? Indeed, current PC users are already seeing their multicore machines
“throttling” with attempts to use all cores for intensive computations at the highest clock rates, hitting
thermal limits and then either falling back to lower clock rates, or idling cores. Continued reductions in
power requirements are still feasible, but no longer are a free benefit of Moore’s Law—they now come
at the cost of reduced speed, and additional on-chip circuitry needed to turn off power to unused
portions of a processor chip.

2021+: an end to smaller in conventional silicon? Even some manufacturing technologists from
Intel now believe that the Moore’s Law cadence of technology nodes, with ever smaller feature sizes in
conventional silicon, will end sometime in the next five years. Intel’s Bill Holt put it in these terms
recently:

“... Intel doesn’t yet know which new chip technology it will adopt, even though it will have to
come into service in four or five years. He did point to two possible candidates: devices known
as tunneling transistors and a technology called spintronics. Both would require big changes in
how chips are designed and manufactured, and would likely be used alongside silicon
transistors.”*®

Can We See A Slowing Down of Moore’s Law Cost Declines in Price Statistics?

42 Esmaeilzadeh, et. al. (2013), pp. 93-4.
43 Bourzac, (2016).
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If Moore’s Law has slowed or even stopped, we would expect to see it in economic metrics, like
prices and manufacturing costs.*

Prices

An obvious place to look is in the price statistics for computer memory chips, which remained
the mass volume semiconductor product par excellence through the end of the 20™" century. DRAMs
were later superseded by flash memory as the technology driver for new memory manufacturing
technology. After the millennium, new technology nodes were first adopted in flash memory chips
before DRAMs; flash had become the highest volume commodity chip by sales around 2012.%°

Table 3 shows changes in price indexes for high volume memory chips. The DRAM “composite”
index is a matched model, chain-weighted price index based on consulting firm Dataquest’s quarterly
average global sales price for different density (bits per chip) DRAM components available in the market
over the years 1974-1999.%® This data has no longer been available in recent years.

Compound Annual Decline Rate

Flamm- BoJ
Aizcorbe Chain-
DRAM BoK $EPI BoK $EPI BoK DRAM BoK Wtd MOS
Composite DRAM Flash PPI Flash PPl Mem PPI

1974:1-1980:1 -45.51

1980:1-1985:1 -43.45

1985:1-1990:1 -24.74

1990:1-1995:1 -17.40  -10.81

1995:1-1999:4 -46.37  -44.28 -33.26

1999:4-2005:1 -28.94  -31.28' -31.76 -24.04°

2005:1-2011:4 -37.94  -26.92 -30.65  -29.28  -28.79

2011:4-2016:4 233  -12.70 -1.42 -5.76  -13.57

Table 3. Price indexes for memory chips

In the mid-1980s, Korean producers Samsung and Hynix entered the DRAM business, and, along
with US producer Micron Technology, now account for the vast bulk of current DRAM sales.*” The Bank
of Korea's export price index (based on dollar basis contracts) and the Bank of Korea’s producer price

4 A very useful bibliography of prior matched model and hedonic studies of semiconductor prices may be found in
Aizcorbe (2014), pp. 107-108.

45 See http://www.icinsights.com/news/bulletins/Total-Flash-Memory-Market-Will-Surpass-DRAM-For-First-Time-
In-2012/ .

46 The data prior to 1990 is the same data used in Flamm (1995), Figure 5-2. From 1990 on, the data are taken from
Aizcorbe (2002).

47 Taiwanese firms entered the DRAM market in force in the early 1990s, but have since largely exited, as have all
Japanese producers (US producer Micron acquired Japanese DRAM fab facilities). The last remaining European
producer (Qimonda) filed for bankruptcy in early 2009. By 2011, the top 3 producers (Samsung, Hynix, and Micron)
accounted for between 80 and 90% of global sales. See Competition Commission of Singapore (2013).
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index (PPI, converted to a dollar basis using quarterly average exchange rates) for DRAM and flash
memory chips are available.*®

Finally, since 2000, the Bank of Japan has published a chain-weighted “MOS memory PPI” with
weights that are updated annually. This index is likely to be predominantly a mix of DRAM and flash
memory, tilting more toward flash in recent years. Generally, except for the period from 1985-1995,
when a string of trade disputes (between the US and Europe, and Japanese, Korean, and Taiwanese
memory chip producers) had significant impacts on global chip prices,* prices for DRAMs and flash fell
at average rates exceeding 20-30% annually.

It is notable that rates of decline in memory chip prices in the last five years generally have been
half or less of their historical decline rates over the previous decades. Korean price indexes (which track
the majority of the DRAM manufactured and sold) have basically been flat for the last five years. US
memory chip manufacturer Micron (like other flash memory manufacturers) is no longer planning to
invest in new technology nodes beyond 16nm in its leading edge flash memory production. Instead, a
new device design built vertically (3-D NAND) using existing manufacturing process technology is more
cost effective than the continued planar scaling of components at new technology nodes described by
the Moore’s Law dynamic.® In DRAM, the mantra that “technology-driven growth slows due to scaling
limits” (“scaling limits” being industry jargon for a slowing or ending of Moore’s Law manufacturing cost
reductions) had become a staple in Micron’s investor conferences.>*

Another “commaodity-like” price in the semiconductor industry in recent years has been the cost
that chip design houses face in having their chips manufactured on their behalf at so-called “foundries”.
The outsourced manufacturing of semiconductors designed at “fabless” semiconductor companies at
foundries accounted for about 25% of world semiconductor sales in 2015. Foundries, which also build
outsourced designs for semiconductor companies with fabs, held 32% of global production capacity in
that year.>?

A recent study of quality-adjusted fabricated wafer prices (the form in which manufactured
chips are sold to the semiconductor design houses that have outsourced their production) by Byrne,
Kovak, and Michaels (2017) portrays a slowing decline in fabricated wafer prices prior to 2012. (See
Table 4.) While the pattern seems consistent with a slowing down of Moore’s Law prior to 2012, this

48 These are not well documented, but are believed to be fixed weight Laspeyres indexes, with weights updated
every five years, that have been spliced together (2010 is the current base year). The export indexes are actually
measured in dollars, while the Korean won-denominated and Japanese yen-denominated producer price indexes
have been converted to dollars at current exchange rates. As a practical matter, except for a brief period during
the 1980s when export controls related to the US-Japan Semiconductor Trade Agreement were put in place, DRAM
prices historically and through the present have been set and quoted in dollars in a highly integrated global
market. See Flamm (1993), pp. 163-4, 167-8. Flamm (1995), chapter 5, analyzes empirical evidence that regional
price differentials in DRAM briefly appeared and then disappeared when restrictive trade policies were applied and
then removed in the 1980s. With minuscule transport costs relative to product value, zero tariff costs globally for
most countries (under the Information Technology Agreement, concluded in 1996, and bound into the WTO), and
a large number of active global distributor/broker arbitrageurs, the global DRAM market has always been the
poster child for the relevance of a “law of one price”.

49 See Flamm (1995).

50 Micron 2015 Winter Analyst Conference (2015).

51 Micron’s Raymond James Institutional Investor Conference (2016); Micron Analyst Conference (February, 2017).
52 Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016).
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study unfortunately ends with data from 2010, and thus cannot be used as a check against the claims of
the most vocal US fabless designers (see above) that the prices they pay for having their transistors
manufactured in foundries were no longer declining significantly at new technology nodes post-2012.

Annual % Rate of

Index Change
2004 100
2005 83.89521 -16.1048
2006 74.75891 -10.8901
2007 65.93704 -11.8004
2008 57.89118 -12.2023
2009 52.95437 -8.52774
2010 48.67003 -8.09062

Table 4. A quality-adjusted price index for fabricated “foundry” wafers

Source: Byrne, Kovak, and Michaels (2017).

Price Indexes for Intel Processors. Since their invention in the 1970s, microprocessor sales have
grown rapidly, and since the 1980s have constituted another huge market segment. Official government
statistics show a tremendous slowdown in the rate at which microprocessor prices have been falling
after the millenium, as well as a significant attenuation in the rate at which prices of the desktop and
laptop PCs that make use of these processors have declined. The U.S. Producer Price Indexes for
microprocessors show annual (January-to-January) changes in microprocessor prices steadily falling
from 60-70 percent peak rates during the “golden age” of the late 1990s and early 2000s, to a low of
about one percent annual decline for the year ending in January 2015. (The Bureau of Labor Statistics
stopped reporting its PPI for microprocessors in April 2015, apparently because of confidentiality
concerns.) A parallel fall in price declines for laptop and desktop computers seems also to have
occurred, from peak annual decline rates of 40%, in the late 1990s, to rates mainly in the 10-20% range
in the last few years.

Table 5 shows compound annual decline rates in the PPl for microprocessors (including
microcontrollers) as constructed by BLS, along with similarly defined indexes for the commodity
“microprocessors”. Annual decline rates slow from a rate near 50% in the late 1990s and first half
decade of the new millennium, to a little over 10% in the second half of that first decade, to about 3%
annually in recent years. This too is consistent with a substantial slowing down in the impact of Moore’s
Law manufacturing technology innovation.

The Bureau of Labor Statistics had historically been somewhat opaque about its methodology in
constructing its microprocessor price series (there is no published methodology describing precisely how
these numbers were constructed).” It is believed that these were matched model indexes based on
some weighted selection of products appearing on Intel list price sheets (the same data source | utilize
below),>* but this is not entirely certain. There is also some evidence that the BLS may have

53 Ironically, the BLS is now much more open about the details of how it constructs the current (unpublished)
microprocessor price index than it was about some previous (published) versions. See Sawyer and So (2017).
54 Based on a brief conversation with BLS officials, Cambridge, MA, July 2014. See also Sawyer and So (2017).
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experimented with several different methodologies for measuring its microprocessor price indexes over
the 1995-2014 periods,>> before ceasing publication of the index for confidentiality reasons in 2015.

Microprocessors (including
microcontrollers)

Commodity Price  Producer Price
Index Index
(discont) (current) Index

1995:1-1999:4 -50.0 -50.5
1999:4-2004:4 -48.6 -49.2
1999:4-2005:1 -47.8
2005:1-2007:4 -37.7
2007:4-2011:4 -10.8 -10.8
2011:4-2015:1 -3.0 -3.0

Table 5. Annualized decline rates for microprocessors per the BLS
Author’s calculation. Middle month for quarter used, except Dec. 2007 used for 2007:4.

As an alternative to the BLS measure, | have previously constructed alternative price indexes for
Intel desktop microprocessors, tracing the contours of change over time in microprocessor prices using a
unique, highly detailed data set | have collected over the last two decades.>® Since the mid-1990s, Intel
has periodically published, or posted on the web, current list prices for its microprocessor product line,
in 1000-unit trays. These list prices are available at a very disaggregated level of detail, distinguished
between similar models manufactured with different packaging, for example, and were typically
updated every 4 to 8 weeks—though price updates have sometimes come at much shorter or longer
intervals.>” By combining these detailed prices with detailed attributes of different processor models, it
is possible to construct a very rich data set relating processor prices to processor characteristics, over
time.

This permits the construction of both “matched model” price indexes, the traditional means by
which government statistical agencies measure industrial prices, and so-called “hedonic” price indexes,

55 The BLS web site showed three different “commodity” price indexes (as opposed to its single microprocessor
producer price index) for microprocessors over this period. The most recent microprocessor “commodity” price
index is based in December 2007, but is only reported on a monthly basis from September 2009 through 2015.
There are also two discontinued microprocessor commodity price indexes, one based in December 2004, and
running through June 2005, and another based in December 2000 and running from 1995 through December 2004.
One might speculate that the BLS changed its methodology for measuring microprocessor prices three times
during this period.

56 See Flamm (2007).

57 My data initially (over the 1995-1998 period) made use of compilations of this data collected by others and
posted on the web; since 1998-99, most of this data was collected and archived directly off the Intel web site.
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which relate processor prices to processor characteristics. It is now well understood in the price index
literature that there is a close relationship between matched model indexes and hedonic price indexes.

The Intel dataset permits measuring differences in processor characteristics down to individual
models of processors, controlling for such things as processor speed, clock multiplier, bus speed,
differing amounts of level 1 (“L1”), level 2 (“L2”), and level 3 (“L3”) cache memory, architectural
changes, and particular new processor features and instructions. The latter have become particularly
important recently—beginning in mid-2004, Intel dropped processor clock speed as the principle
characteristic used to differentiate processors in its marketing and introduced more complex “processor
model number” systems that distinguish between very small and arguably minor differences between
processors that proliferated at more recent product introductions.

For comparison purposes, | begin by constructing a matched model price index for Intel desktop
processors. Since | do not have sales or shipment data at the individual processor model level, | weight
each observed model equally, by taking the geometric mean of price relatives for adjoining periods in
which the models are observed.>® A price index based on the simple geometric mean of individual
product price relatives (dubbed the Jevons price index), is chained across pairs of adjacent time periods,
and depicted in Figure 8. It has the same qualitative behavior as the official government producer price
index for microprocessors, falling at rates exceeding 60% in the late 1990s, and slowing to a decline rate
under 10% since 2009.

This geometric mean matched model index actually falls a little more slowly than the official U.S.
microprocessor PPI, which may be attributable to the fact that the geometric mean index weights all
models equally, while the PPl probably uses a subset of the data, with some weighting scheme for
models drawn (and replaced periodically) from subsets of processor types. The PPl also uses fixed
weights from some base period to weight these price changes, while my Jevons index chains adjoining
paired comparisons of models, and therefore implicitly allows weights given to different models over
pairs of adjoining time periods to evolve over time.

| have also constructed a hedonic price index, using an econometric model which utilizes more
of the information available in my sample of Intel list prices. The basic hedonic price model | estimated
statistically was

(HO) Ipricei: = constant + d: + by arch_d; + b, * Iproc; + bm Imaxmhz; + by, Ibw; + b, Icores; + by, ht;
+ bea Icache; + bg int_graph; + brap Itdpi + bes em64t; + bs: eisti + by vt; + Uiz

with the following covariates, for chip model i, period t:

de a time dummy indicator variable for the later period in a pair of adjacent time periods
arch_d; architecture dummy for Intel chip architecture (e.g., Haswell, Coppermine, lvy Bridge )
Iproc; log of base processor clock rate

Imaxmhz log of maximum clock rate if processor has turbo mode, = Iproc if not

58 Since there occasionally were multiple price sheets issued within a single month, | have averaged prices by
model by month. Since Intel did not issue new prices sheets on a monthly basis, “adjoining time periods” means
temporally adjacent observations.
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lbw; log of memory bandwidth (8 x memory bus clock rate if older front side bus
architecture, or max memory bandwidth if reported in Intel Ark database)

Icores; log of number of physical cores on chip

ht; hyperthreading (additional virtual core per physical chip core) hardware support, binary
indicator variable

Icache; log of maximum cache memory for highest level cache on processor

int_graph; binary indicator variable for integrated graphics, 1 if on chip graphics

Itdpi log of thermal design power (watts), rating of chip

emb64t; binary indicator dummy for Intel 64-bit memory architecture

eist; binary indicator dummy for enhanced Intel speedstep technology (dynamic frequency
scaling and power reduction) feature

vt binary indicator dummy for hardware virtualization support, 1 if virtualization hardware
support

and u; a statistical disturbance term for chip model i, time period t.

Choice of Characteristics. Choice of characteristics was primarily based on a review of the
computer architecture literature (discussed below). The most widely used textbook in that literature
holds that computer instruction processing performance is based primarily on the processor
architecture (which determines how many software instructions can be executed per processor clock
cycle: IPC, or instructions per clock) and the computer’s clock rate. Since the mid-2000s, desktop PC
processors have further boosted performance by incorporating a turbo mode, increasing clock rate to
some maximum above the chip’s baseline frequency for short periods of time. Frequently, software
performance can also depend its on-chip (cache) memory size, and on the sustained speed at which a
computer can transfer data from its off-chip, secondary memory—its maximum memory bandwidth.
Over the last decade, additional processor units (cores) have been added to desktop computer
processors, and if software can be parallelized and run simultaneously on multiple cores, this too will
improve performance. In addition, adding hardware support for “virtual cores,” so that a hardware
processor core can be time-shared simultaneously by two instruction-processing threads, can speed
things up—Intel’s version of this feature is called hyperthreading. Several other features—hardware
support for virtualization, a 64-bit memory architecture—can improve computer performance on
particular applications, particularly when desktop processors are used in servers. Basic graphics are now
integrated onto many processor chips, sparing the end user the need to purchase a costly discrete
graphics card, which should also affect demand for a processor by consumers. Finally, power
consumption is probably the major variable cost of computing (and drives use of relatively expensive
cooling systems needed to dissipate heat from high-powered processors). Low thermal design power
(TDP) in desktop processors is considered beneficial for this reason,® and processor makers like Intel
have also developed hardware support for power-saving features in the chip’s micro architecture (Intel’s
proprietary version—enhanced Intel Speedstep—is abbreviated EIST).

Note that maximum memory bandwidth, cache sizes, numbers of cores, and even TDP typically
take on only a handful of discrete values in any two-period estimation sample interval, and are often
perfectly collinear with binary indicators for processor architecture, 64-bit support, hardware
virtualization, and integrated graphics. In addition, as | show below, performance on different SPEC

%9 |n addition, low power consumption has the additional very important benefit of producing longer battery life in
a laptop computer, irrelevant for a battery-less desktop computer processor.
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processor benchmark suites is nearly perfectly predicted by a linear combination of a subset of five of
these processor characteristics (chip architecture, clock rate, number cores, hyperthreading, turbo
mode).

The regression coefficients (weights) on each of these characteristics, however, vary
substantially by software benchmark type. Since the mix of software programs run on computers has
evolved substantially over time (these changes have led SPEC to periodically revise its various
benchmarks), using the underlying characteristics determining processor benchmark performance
(rather than a particular benchmark score) seems the more flexible way to accommodate the impact of
changes over time in market demand for different types of software applications running on computers.

The very same characteristics that one might expect to affect processor demand, would also be
expected to affect processor cost, on the supply side. Faster chips supporting the highest clock rates are
culled from larger numbers of chips fabricated in batches of wafers, through extensive testing (a process
dubbed “binning” within the industry). Slower- and faster-running chips are are sorted into higher and
lower performance bins and and sold as distinct chip models. Processors with defects in circuitry in their
memory caches and feature circuits, too, have their defective circuitry fused off electronically and are
then sold as lower performance chips (with less memory and features). Redundant circuits can be added
to a chip design (at a cost, by increasing chip die area) to yield larger shares of chips on a wafer with
functioning features. Every desirable feature of a processor also has some incremental cost incurred in
order to increase the number of chips produced with that functioning feature—either through a bigger
and therefore more costly chip footprint on a silicon wafer (driven by redundant circuitry needed to fix
defects), or through the larger numbers of wafers that must be processed in order to get the desired
target numbers of chips with functional features and characteristics.

Computer architectures also affect processor cost, as well as performance, since numbers of
transistors on a chip, and therefore chip manufacturing cost, are directly related to the chip’s
architecture. In addition, since at least the early 2000s, Intel has marked the introduction of new
manufacturing technology nodes by rolling out improved chip architectural designs when introducing
the new node. So manufacturing technology nodes and chip architectural family will be perfectly
collinear in a statistical analysis of Intel prices and costs.

In short, the chip characteristics in this hedonic regression would be expected to affect both
computing performance and power consumption, as well as processor cost, and are relevant to both the
demand and supply cost sides of the market. For that reason, even if a single, perfectly accurate
measure of average processor computing performance (a “market average” benchmark based on the
relative mix of software applications run by final computer end users in computing service markets at
that particular moment in time) existed, changing in perfect lockstep with the changing mix of
applications run by different end users,®® changes in processor characteristics would have additional
impacts on price working through processor manufacturing cost, and therefore need to be accounted
for separately in the estimated hedonic price equation.

60 It is worth noting that the SPEC benchmarks report an unweighted geometric mean of performance in a variety
of applications, and that these fixed (equal) weights remain fixed over long periods of time (since 2006, as of
October 2018) for the SPEC benchmark composite scores.
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One potentially important pitfall in using large numbers of characteristics in a hedonic equation
is that many of these characteristics are likely to be perfectly collinear with others. This is a real world
problem. For example, all the chips developed with a new architecture design may, at least initially, have
a common size for their highest level cache, or may all have a 64-bit architecture, or may all have
hyperthreading. Most regression software will drop perfectly collinear characteristics automatically, and
the coefficients of the other covariates (the ones with which the dropped characteristics are perfectly
collinear) will include the effects of the dropped covariates in their estimated values.

This can make interpretation of signs and values of hedonic characteristics problematic, and
liable to big jumps in value (and coefficient interpretation) in different estimation periods, depending on
which characteristics are perfectly collinear, and which characteristics are dropped (often automatically)
by the statistical software. It also may appear at first glance to look like undesirable “coefficient
instability”.

However, as long as the key variable of substantive interest (the last period time dummy
variable in a regression model spanning two adjacent time periods, the coefficient of which is used to
construct a hedonic price index) is not perfect collinear with the other included characteristics variables,
there is no difficulty in interpreting the coefficient of the time dummy variable. Fortunately, it is
straightforward to check that this is the case, by simply running an auxiliary linear regression of the time
dummy on all other explanatory covariates and verifying that it is not perfectly predicted by other
regression covariates.

Perfect collinearity in a simple hedonic simulation. The problem of perfect collinearity—and its
effects—is very real in my sample of Intel microprocessors. In every single pair of adjacent time periods
multiple characteristics are dropped as perfectly collinear by statistical software. The problems this can
create in interpreting regression results is easily illustrated in a simple simulation model.

Consider a simplified, stylized processor market over two adjacent time periods. Suppose half of
manufacturing capacity is used to fabricate a baseline processor architecture (arch_dummy=0), and half
dedicated to a different architectural alternative (arch_dummy=1). Suppose that initially, half of
fabricated chips from both architectures can run at clock rate of 1000, and half at 1500. All chips
manufactured run 500 faster in the later period (i.e., half at 1500, half at 2000 (think of this as the result
of manufacturing process improvement). Substantively, this means there will be a positive correlation
between a binary time period indicator variable (first_period=0, last_period = 1) and processor clock
rates.

Let us also suppose that the only thing all processor buyers care about is processing speed on a
single, common software application (so we are ignoring the problem of heterogeneity in demand—i.e.,
which benchmark to run). Further, let’s assume that this single measure of speed (software processing
performance) relevant to users is perfectly determined by a simple linear function of three processor
characteristics—

speed = clock _rate + 500*arch_dummy + 200*turbo

(where ‘turbo’ is a binary indicator for a functioning turbo speedup feature that is enabled in half of the
chips produced for each architecture and clock combination).
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Each unique combination of architecture, clock rate, and turbo capability under these
assumptions can be thought of as a distinct “processor model”.®! With this setup, there are twelve
distinct microprocessor models (2 processor architectures x 3 clock rates x 2 turbo values), sold over two
periods. Half the models are sold in both periods (the ones running at 1500), and half sold only in the
beginning or end periods (the models running at the 1000 and 2000 clock rates, respectively).5?

Unit manufacturing cost for the chip is assumed to be given by
cost =50 + 2 * clock_rate + 2000 * turbo + 500 * arch_dummy —10 * end_period.

End-period manufacturing costs decline by $10 for any constant quality “computer model,” simulating a
uniform $10 drop in manufacturing cost, given any set of fixed model characteristics, over time.

In the spirit of Pakes (2003), we write out an extremely simple hedonic price reduced-form equation
price = 600 + 2 * speed + cost + random disturbance term,

with the first two terms on the right hand side of the equation reflecting the further assumption that
expected markup over incremental unit cost, reflecting user demand, is a linear function of speed alone.
After substituting for unit cost (which we typically cannot observe in available data), this gives us a
“hedonic price equation” as a function only of observable processor characteristics:

(H1) price = 650 + 2 *speed + 2 * clock_rate + 2000 turbo + 500 * arch_dummy — 10 * end_period
+ random disturbance term

The disturbance term in the simulation is drawn from a zero mean uniform distribution. The assumed
across-the-board $10 end-period average reduction in manufacturing cost, conditional on fixed
processor characteristics, induces a $10 decline over time in quality-adjusted (constant characteristic)
mean price, across all computer models (since markup by assumption depends only on speed, in turn a
function of the other processor characteristics we are conditioning on).

Most importantly, we cannot actually estimate (H1), because speed, architecture, frequency,
and turbo characteristics, as a group, are perfectly collinear with one another (since speed is a linear
function of arch_dummy, clock_rate, and turbo). Since these three chip characteristics exactly
determine speed, any three of these four variables exactly determines the value of the fourth. If we
were to substitute for speed as a function of its three determinants, and so drop it from the hedonic
price equation, we get

(H2) price = 650 + 4 * clock_rate + 1500 * arch_dummy + 2400 * turbo -10 * end_period .

61 | draw a sample of a ten million observations, using pseudo-random draws from independent uniform
distributions to create a simulated population of processor “models,” uniformly and independently distributed
over architecture, clock rate and turbo feature. Another set of independent, pseudo-random draws from a uniform
distribution create a mean zero disturbance term added into the realized sales price on the left-hand side of the
hedonic price equation.

62 Because clock rates increase over time, a binary indicator variable for the end period is positively correlated with
clock rate, but uncorrelated with either architecture or the turbo feature (which are independently and randomly
assigned to wafers/chips prior to fabrication).
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If we substitute for turbo in terms of the other three variables, we get

(H3) price = 650 + 12 * speed - 8 * clock _rate - 4500 * arch_dummy - 10 * end_period.
If we substitute for clock_rate in terms of the other three characteristics , we get

(H4) price = 650 + 4 * speed -500 * arch_dummy + 1600 * turbo — 10 * end_period.
And substituting for architecture,

(H5) price =650 + 3 * speed + clock_rate + 1800 * turbo — 10 * end_period.

Table 6 summarizes a simple simulation demonstrating that with a large simulated sample (ten
million observations), a regression model with any of the four above specifications (H2-H5) recovers the
above parameters correctly.5® A key point of substantial practical relevance is that all four of these
estimable specifications are correct, and produce exactly the same estimate for the coefficient of the
time dummy variable, the parameter of greatest substantive interest. But, the coefficients of the
perfectly collinear characteristics need to be interpreted differently in each case, as the joint effects of
that characteristic plus the effects of the dropped, perfectly collinear characteristic. In fact there are
wild swings in coefficient values (from 12 to 3 for speed, from 1600 to 2400 for turbo) and even sign
(from 1500 to -4500 for arch_dummy) as different candidates from the set of perfectly collinear
variables get dropped from the estimated regression specification.

This is important because with large numbers of characteristics in a hedonic regression,
particularly with binary dummies, or nominally continuous covariates that in any given time frame take
on only a fixed number of discrete values, perfect collinearity among characteristics is very common.
Covariates are typically dropped from the regression automatically by the econometric software. If this
is happening, and different subsets of the perfectly collinear covariates are used in two different time
periods, then wild variation in coefficient estimates, rather than representing worrisome instability in
(non-perfectly collinear) explanatory covariates selected and used in the estimated regression.

A second, even more important point, is that estimated coefficients for variables that are not in
the set of perfectly collinear variables are not affected by which of the perfectly collinear variables is
dropped. In this simulation, for example, the estimated effect of the time dummy—the variable of
greatest substantive interest, since its coefficient would be used to estimate a hedonic price index—
does not change in value at all as the excluded perfectly collinear variable changes. It is likely to be
relatively rare and fairly obvious when a time dummy variable is perfectly collinear with other
covariates. In any event, it is easy to verify that the time dummy variable is not perfectly collinear with
other included variables by simply running auxiliary regressions of the time dummy against all other
explanatory variables, both those included and those dropped as perfectly collinear.

Finally, there is an important specification issue illustrated by this simulation. If one uses speed
as one of the explanatory covariates, it is also important to include the full, non-perfectly collinear
subset of relevant characteristics affecting cost, even if speed entirely captures the impact of these
characteristics from the user demand side. Table 6 demonstrates that when only speed and time are
used as explanatory variables (last column in the table), bias from the omitted characteristics greatly

63 Appendix A2 contains the short Stata program giving these simulation results.
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confounds the coefficient estimate for the time dummy variable, incorrectly magnifying the drop of

quality-adjusted price by a factor of 7.5! We return to this point below.

Table 6. Simulation of Perfectly Collinear Characteristics in Hedonic Price Equation

(drop speed) (drop turbo) (drop clock) (drop arch) (speed only)
p P p P p
time =10.22%%%* =10.22%%* =10.22%** =10.22%** =75.24%%*
(0.258) (0.258) (0.258) (0.258) (0.677)
clock rate 4.000%*x* =7.999%*x* 1.000**x*
(0.000365) (0.000983) (0.000517)
arch_dum 1500.0%*~* —4499.8*** =500.1%*~*
(0.183) (0.492) (0.258)
turbo 2399.9**x* 1599.9%x*xx* 1799.9%*x*
(0.183) (0.197) (0.197)
speed 12.00**x* 4.000*** 3.000*** 4.130**x*
(0.000913) (0.000365) (0.000365) (0.000762)
_cons 650.0%** 650.0%*x* 650.0%** 650.0%*x* 992 . 5%*x*
(0.492) (0.492) (0.492) (0.492) (1.281)
N 10000000 10000000 10000000 10000000 10000000
R-sqg 0.980 0.980 0.980 0.980 0.808

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
Stata code for this simulation in Appendix A2.

A hedonic price index for Intel desktop processors. Model (HO) above was run for each of 162
pairs of adjacent months in which | collected Intel’s desktop processor list prices.®* The first set of
adjacent list prices are for January and February 1996. The last pair of adjacent price sheets is for June
and July 2014.% Overall R? was uniformly high, and was not driven primarily by the inclusion of the

54 The list prices refer to per chip prices, for processors packaged in quantity 1000 trays sold to original equipment
manufacturers (OEMs). By adjacent month, | mean a month and the next month in which an updated list price was
published. For example, if Intel issued a price sheet in January, March, April, August, and November of a year,
there would be four adjacent month pairs: January-March, March-April, April-August, and August-November.
Roughly % of the monthly observation pairs were a month apart; the next most frequent value observed was two
months; the largest time gap between adjacent price lists observed was four months. A hedonic model excluding
TDP produced useful estimates for price relatives over 162 adjacent pairs of months. Results for a model with TDP
are shown in the appendix tables based on an initial period ending in October 1998, but the problem of a large
share of observations lacking a TDP measure does not really fade away until the pair of adjacent months ending in
January 2000.

55 The number of processors in early years was very small and characteristics extremely collinear; numbers of
processor prices (with TDP) in adjacent month pairs more than doubles from under 15 to over 30 in late 1999, and
estimated price relatives after that date are probably much more reliable. See Appendix Table A4 and A6 for
details on numbers of observations in different adjacent month samples. Entry and exit of architecture and
indicator variables from estimation period to period has been color coded in this table. After the first non-zero
observation for an indicator variable occurs, blanks indicate the variable was dropped as perfectly collinear. In no
case was the time dummy variable perfectly collinear with other covariates; this was checked with auxiliary
regressions.

25



architectural dummy variables—these were treated as fixed effects, and | also report a “within” R? (after
demeaning all variables by their group mean) which is also quite high. (See Appendix Tables A4 and A6.)

The time dummy variables in the above regression were then exponentiated and used to
construct price index relatives for adjacent time period pairs.®® The resulting price index relatives were
then used to chain link these period-to-period indexes into a longer chained price index, shown in
Appendix Table A3.

In addition, | report the values of other coefficients in the hedonic regression in Appendix Table
A5 and A7, which shows how large qualitative jumps in coefficient values from estimation period-to-
period often occur as nonzero values for new characteristics, indicators, or architecture variables enter
and exit the sample, due to perfect collinearity. But there is often perfect collinearity even when there is
no new architecture or indicator entering or exiting the sample—this may be seen in the many blank
coefficient estimates that appear when architecture or other indicators, or even continuous covariates
(which often take on only a handful of discrete values in any single estimation period) are dropped due
to perfect collinearity.

The processor architecture family variables are treated as fixed effects and not reported. There
were anywhere from 1 to 7 such architecture fixed effects, depending on the pairs of adjacent months
used for estimation of the hedonic equation.

Note that nominal power consumption for a processor (TDP, thermal design power) was simply
unavailable for most Intel processors released prior to late 1999. | therefore estimated two versions of a
hedonic index, one with TDP as a characteristic, and one without. TDP is statistically significant when it is
used, and therefore the hedonic price index including TDP is the preferred index from 2000 on (the small
numbers of observations with TDP reported prior to late 1999 make these pre-2000 estimates less
reliable). | have linked the post-2000 index with TDP, to the pre-2000 index without TDP, and show this
in the final column of Table Al as a composite “best effort” index. The TDP-inclusive and -exclusive
indexes are virtually identical from 2000 through January 2005, departing significantly from one another
only afterwards. Prior to 2000, the earlier the time period, the more limited the available data, and the
less reliable the resulting estimate.

Figure 7 visualizes some of the estimation model summary statistics from Appendix Table A6 for
the TDP variant of the price index (which is also the “composite” index over the period from 2000 on).
The upper panel shows an overall R-squared that across estimation periods averaged .96, and ranged
from .91 to .99 from 2000 on. “Within” R-squared (explained variance after demeaning all variables by
architecture fixed effects group means) averaged .92 and ranged from .74 to .99. The lower panel, using
a logarithmic scale, shows that anywhere from 1 to 7 processor architectures were being listed for sale
as Intel desktop processors during two-month adjacent estimation periods over this time frame. The
number of observations used in the individual hedonic regressions after 1999 ranged from 28 to 190,

56 One half of the coefficient’s squared standard error was added to the exponentiated coefficient, to produce an
unbiased estimate of the price relative (the exponentiated coefficient’s value). See the sources cited in Triplett
(2006), p. 54, fn. 41, for details on the rationale for the correction. Sergio Correia’s reghdfe Stata command was
used to estimate the hedonic regressions, because it removes non-informative singleton observations for dummy
variables from the regression, because it provides detailed reports on perfectly collinear variables, and because it
also calculates a “within” R?, i.e., explained variance of the dependent variable after demeaning all variables
within fixed effect groups—in this case, the processor architecture indicator variables were treated as fixed effects.
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averaging 82. The average number of processor models per architecture per month listed for sale
during the post 1999 period ranged from 4.7 to 24.5, indicative of significant historical changes to Intel’s
product differentiation strategies in marketing desktop processors, over time.

Some important substantive points are supported by Figure 7. First, there is substantial variation
over time in how important the processor design (architecture) dummy variables are in accounting for
price variation. While the overall explained variation in price in these hedonic regressions remained
uniformly high, within relatively narrow bounds (.91 to .99) throughout the sample period, the role of
architectural dummies varied greatly over different sub-periods. “Within” R-squared measures how
much of the variation in price around architecture-specific means is explained by other covariates. The
“within” R-squared coincides exactly with “overall” R-squared in the special case of their being only one
“architecture” fixed effect (i.e., a single common constant intercept). The difference between overall
and within R-squared can therefore be interpreted qualitatively as a measure of how important
controlling for the multiple intercept levels (the processor architecture fixed effects) are in a hedonic
model explaining price variation.

Figure 7 shows that, at times, a substantial share of overall explained variation (as much as a
difference of .10 to .20 between overall R-squared and within R-squared) was accounted for by the
processor architecture effects prior to 2003, and from late 2006 through 2012. Processor architecture
effects from 2013 on are more modest contributors to explaining price variation, but not nil.

As is suggested visually by Figure 7, within R-squared (measuring the role of non-architectural
characteristics in explaining price variation) has a negative and statistically significant correlation with
the number of different desktop processor architectures present on Intel price sheets.®” Not surprisingly,
perhaps, it appears that processor architectural variation is more important in explaining price during
periods when Intel marketed a larger variety of processor architectural designs, and less important in
periods with less architectural variation. Indeed, the two measures of R-squared are virtually identical
from 2003 through 2005, the heyday of the Pentium 4 series and its “Netburst” design, when only one
or two design families accounted for all Intel desktop processors listed on its price sheets (compared
with 4 architectures in 2002, and as many as 7 architectures in late 2006).

57 For the TDP-inclusive hedonic specification, for adjacent periods ending after December 2000, the correlation
coefficient between within R-squared and number of processor architecture dummies used is -.53. We reject the
hypothesis that it is equal to zero (p-value is .0000).
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Figure7 Summary Statistics for Hedonic Regressions
Source: Appendix Table A.6.

Figure 8 visualizes the hedonic price indexes produced using these models. A dramatic slowing
of declines in quality-adjusted price from 2004 through 2006 is quite apparent, followed by a temporary
resumption of a somewhat faster rate of decline after 2006, and then another marked slowdown from
2010 on.%®

The first four columns in Table 7 compare my estimated hedonic and matched model price
indexes and the BLS PPIs. As expected,®® the matched model geometric mean (Jevons) index price
declines are mostly very close to the hedonic indexes, but generally decline more slowly than those
measured by the hedonic price index based on the same data set. My estimates over comparable
earlier time periods are quite similar to the matched model indexes of Aizcorbe, Corrado, and Doms

%8 It is not coincidental that in 2004, the Pentium 4’s architecture hit its clock rate ceiling, and power dissipation
reached maximum limits compatible with inexpensive air cooling systems. The rollout of Intel’s next generation
response—the Conroe architecture (two cores on a single die, at a much lower clock rate, but more instructions
per clock processed)—happened in mid-2006. To many industry observers, Intel appeared to be lagging behind its
effectively duopolist rival AMD, architecturally, in the early 2000s. AMD was first to market with a 64-bit
architecture, and later, the first single die dual core chip. (AMD had brought its Athlon X2 processor out in 2005, a
full year before Intel’s Core 2 Duo [Conroe architecture] chips.) For empirical evidence on AMD’s technological
challenge to Intel in the early 2000s, see Nosko (2011), Pakes (2017), European Commission (2009).

89 Since if there were no entering or exiting processor models (all sampled processor models were observed in
both time periods), and all hedonic coefficients were the same in the two adjacent periods (assumed by the time
dummy method), the time dummy hedonic price index would be equal to the Jevons price index. See DeHaan
(2010), equation (23), and Triplett (2006), p. 55.
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(2003), and to the U.S. producer price indexes. Prior to 2004, my Jevons matched model (geometric
mean) index and the PPl move quite closely, while my hedonic indexes showing a modestly higher rate
of decline, as expected. The hedonic price indexes based on Intel list prices with and without TDP are
virtually identical over the period beginning in 2000, through the beginning of 2005.

From 2004 through 2006, both my Jevons and hedonic price indexes decline much more slowly
than the PPls, while from 2006 through 2009 my Jevons and hedonic indexes fall at rates a little faster
than the PPI. From 2009 to 2010 the Jevons and hedonic bracket the PPI. Finally, from 2010 through
2014, my hedonic indexes fall more slowly than the PPI, but all decline rates are in the low single digits.
These are not the only hedonic price indexes for Intel processors available over this time span, and |
discuss alternative estimates that others have constructed below.

Using almost the exact same hedonic regression model,”° | also estimated a hedonic index using
weekly data on retail internet pricing for desktop processor models that | had collected over the same
time span. The data came from a now-defunct web site (sharkyextreme.com), which published the
minimum weekly price quoted by a selection of national US internet retailers, over the period from the
end of 2001 through the end of 2010. Similarly, | calculated a Jevons index based only on matched
models in adjacent periods. These prices are a relatively limited subset of the much larger set of list
prices for all Intel desktop processors, and presumably are more representative of lower end models
most popular in the retail marketplace. Generally, the pattern over time is similar (steepest declines
over 2001-2004 and 2006-2009, slower declines over 2004-2006 and 2009-2010).

70 With one additional characteristic—a binary “OEM” indicator variable, indicating whether the product sold by
the retailer came in a “boxed” retail package with heatsink and fan, or it came in “OEM” packaging without a fan,
heat sink, and retail box. Monthly average prices were calculated from published weekly reports. The published
weekly price was the reported minimum in a sample of larger internet component retailers.
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Table 7

Annualized compound rates of change in microprocessor price indexes

1998m9-2001mi2
2001m12-2004m4
2004m4-2006m1
2006m1-2009m1
2009m1-2010m11
2010m11-2014m7

Source: Author’s dataset and calculations, except Microprocessor PPI, from BLS.

Intel OEM List
Prices Intel Retail BLS
Hedonic Jevons Jevons
Hedonic w/o Matched Matched Microproc
w/TDP  TDP Model Hedonic Model PPI
-71.5%  -66.2% -64.0% -56.8%
-49.6%  -49.6% -48.9%  -40.2% -35.5% -47.1%
-9.6% -10.1% -10.7% -4.6% -11.1% -25.2%
-35.4%  -40.3% -31.5%  -19.9% -24.2% -29.0%
-13.3%  -13.5% -6.2%  -15.9% -11.3% -10.7%
-3.5% -2.9% -2.3% -4.2%

See Appendix Table A.3.
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Figure 9 Jevons (Geometric Mean) and Hedonic Price Indexes with Alternative Base Periods

One interesting observation that emerges from these results is that, except for the period from
2006 through the end of 2007, all the Intel list price indexes, including both hedonic and geometric
mean matched model (Jevons) indexes, move together in a fairly tight formation. This can be seen by
comparing the original index (with January 2005=100) to rebased indexes with January 2010 = 100. (See
Figure 9.) This is consistent with 2006-2007 being a highly atypical period, with many more older, exiting
models (from now obsolete Pentium 4 branded architecture families), and new entering models (from
its new Core 2 Duo branded architecture families) than has generally been the case for Intel historically,
before or after this period. The change in Intel’s product design strategies from 2006 through 2007, in
responding to AMD’s earlier technological challenge, has been commented upon by researchers,’* and
appears to have had impacts that are visible in these price indexes.

Although there are substantial differences in the magnitude of declines across different time
periods and data sources, all the various price indexes | have constructed concur in showing

71 “Note that in June 2006 there was intense competition for high performance chips with AMD selling the highest
priced product at just over $1000. Seven chips sold at prices between $1000 and $600, and another five between
$600 and $400. July 2006 saw the introduction of the Core 2 Duo and Fig. 2 shows that by October 2006; (i) AMD
no longer markets any high performance chips (their highest price chip in October is just over two hundred
dollars), and (ii) there are no chips offered between $1000 and $600 dollars and only two between $600 and $400
dollars. Shortly thereafter Intel replaces the non-Core 2 Duo chips with Core 2 Duo’s.

Nosko goes on to explain how the returns from the research that went into the Core 2 Duo came primarily
from the markups Intel was able to earn as a result of emptying out the space of middle priced chips and
dominating the high priced end of the spectrum.” From Pakes (2017), pp. 251-254, see also Nosko (2011) pp. 8-9.
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substantially higher rates of decline in desktop microprocessor price prior to 2004, a stop-and-start
pattern after 2004, and a dramatically lower rate of decline after 2010.

Taken at face value, this creates a puzzle. Even if the rate of innovation had slowed in particular
for microprocessors, if the underlying innovation in semiconductor manufacturing technology had
continued at the late 1990s pace (i.e., a new technology node every two years and roughly constant
wafer processing costs in the long run), then manufacturing costs would continue to decline at a 30
percent annual rate, and the recent rates of decline in processor price just measured fall well short of
that mark. Either the rate of innovation in semiconductor manufacturing must also have declined, or the
declining manufacturing costs are no longer being passed along to consumers to the same extent, or
both. The semiconductor industry and engineering consensus seems to be that the pace of innovation
derived from continuing feature-size scaling in semiconductor manufacturing has slowed markedly. |
next examine what other direct evidence is available.

Costs

Evidence on Manufacturing Costs. Microprocessors are a semiconductor product sold in truly
large volumes. The overwhelmingly dominant player in this market, Intel, released a slide in a
presentation to its stockholders in 2012 that supports the narrative of a slowing down in Moore’s Law
cost declines. (Table 8.) The figures from Intel’s 2012 Investor Meeting seem to show accelerating cost
declines in the late 1990s, rapid declines near a 30 percent annual rate around the millennium, followed
by substantially slower declines in cost per transistor after the 45nm technology node (introduced at the
end of 2007). As discussed previously, the transition to use of a larger wafer size after the 130nm
technology node was accompanied by a particularly large reduction in transistor cost at the next node,
using the larger size wafers.

Transistor Cost Percent Transistor Compound Annual
Index, 90nm =100 Cost Decline Rate Decline Rate
Otellini, 2012 Otellini, 2012 Otellini, 2012
Wafer Size Wafer Size Wafer Size
Intro Date Tech Node 200mm  300mm  200mm  300mm  200mm  300mm
1995qg2 350 1575.35
1997q3 250 1033.14 -34.4 -17.1
1999q2 180 616.10 -40.4 -22.8
200191 130 311.09 -49.5 -32.3
2004q1 90 100.00 -67.9 -31.5
200691 65 48.87 -51.1 -30.1
200794 45 27.54 -43.6 -27.9
2010q1 32 17.69 -35.8 -17.9
201292 22 11.23 -36.5 -18.3

Intro dates: 130nm and up from http://www.intel.com/pressroom/kits/quickreffam.htm
< 130nm from ark.intel.com

Table 8. Annualized decline rates for Intel transistor manufacturing cost, 2012
Source: Otellini (2012), digitized using WebPlotDigitizer.
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Other Economic Evidence

Depreciation rates for semiconductor R&D. Another innovation metric in semiconductors is the
depreciation rate for corporate investments in semiconductor R&D. As the rate of innovation increases
(decreases), the stock of knowledge created by R&D should be depreciating more rapidly (less rapidly).
One recent economic study estimates R&D depreciation rates in a number of high tech sectors, including
semiconductors. The authors conclude that “the depreciation rate of the semiconductor industry shows
a clear declining trend after 2000 in both datasets, albeit imprecisely measured.””? This is consistent
with a slowing rate of innovation.

Semiconductor fab lives. Faster (slower) technological change in semiconductor manufacturing
should presumably shorten (lengthen) fab lifetimes. There are no recent studies of economic
depreciation rates for semiconductor plant and equipment, but the anecdotal evidence on the 200mm
fab capacity “reawakening” (detailed below) strongly suggests that fab lives have increased, consistent
with a slowing rate of innovation in semiconductor manufacturing.

In August of 2018, Global Foundries (one of four remaining firms that had committed to
development of leading edge logic manufacturing process technology) announced that it was
abandoning its effort to move to its next targeted technology node (7nm), and would stick instead with
its current generation technology. “’The lion’s share of our customers...have no plans for’ 7nm chips.
Industry-wide demand for the 14/16 node was half the volume of 28nm, and 7nm demand may be half
the level of the 14/16nm node, Caulfield said. ‘When we look out to 2022, two-thirds of the foundry
market will be in nodes at 12nm and above, so it’s not like we are conceding a big part of this market,’
he added.””® This left only three remaining semiconductor manufacturing firms (Samsung, Intel, and
TSMC) developing sub-10nm manufacturing technology, going forward into 2019.

A slowing pace of innovation in semiconductor manufacturing was even undeniable at Intel.
Intel had introduced its 14nm technology node back in 2014 but ran into difficulties bringing its next
generation 10nm technology to market. In August of 2018, Intel acknowledged that it was now delaying
volume manufacturing of 10nm technology products until late 2019, over five years after its last
technology node (i.e., almost triple its previous two-year ‘tick-tock’ cadence between new technology
nodes), and almost three years after its initial projection (see Table 9 below).”

Personal computer replacement cycles. One reason for businesses and consumers replacing
computers more frequently (less frequently) is if the rate of innovation in key components in computers,
like microprocessors, increases (decreases), so performance improvements associated with replacement
are more (less) economically compelling. While published studies of PC replacement cycles are scarce,
Intel monitors replacement cycles for PCs, a major market for its desktop processors. In 2016, Intel CEO
Brian Krzanich noted that PC replacement cycles had extended from four years, the previous average, to
five or six years, the current average.” This, again, is consistent with a slower rate of innovation.

72 Lj and Hall (2015), p. 13.

73 Merritt (2018); see also Moore (2018).

74 Rogoway (2018), see also Cuttress and Shilov (2018).
75 Krzanich (2016).
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4. Is Moore’s Law Still Alive? Intel’s Perspective in Microprocessors

The most significant evidence against any current slowdown in semiconductor manufacturing
cost reduction from Moore’s Law had come from Intel. Fairly recent Intel statements about its
manufacturing costs had been the primary factual evidence within the semiconductor manufacturing
community countering the proposition that Moore’s Law is ending. Unfortunately, Intel had not been
consistent in the data it had presented publicly on this issue. Since late 2017, Intel appears to have
refrained from releasing any new public information on its manufacturing costs.

The problem with Intel’s previous statements is illustrated by Figure 10 and Table 9, which place
side by side two exhibits on manufacturing costs per transistor that Intel has presented at its annual
investor meetings—one in 2012 (by then-CEO Paul Otellini), and one in 2015 (by its top manufacturing
executive, Bill Holt, see Figure 2). Some version of the right pane in Figure 10 had been the primary
factual evidence in Intel assertions that Moore’s Law continues at its historical pace. The graphics in
Figure 10 have been digitized”® and recorded in Table 9, then rebased to 100 at the 90nm technology
node. Compound annual decline rates have been calculated in this table using quarterly introduction
dates for the first processors manufactured by Intel at that technology node.

Intel Presentations to Investors
2002 VS.

Cost Per Transistor

0.001

35um 18um S0nm 45nm 2enm 10nm
Lo bt Foretast =——=3»

Figure 10 Intel Transistor Manufacturing Costs, 2012 vs. 2015 Versions
Source: Otellini (2012): Holt (2015).

76 Using http://arohatgi.info/WebPlotDigitizer/.
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The figures presented by Intel to shareholders in 2012 seem to show rapid declines in the 30 percent
range around the millennium, then substantially slower declines in cost per transistor after the 45nm
technology node (i.e., after 2007). In contrast, a more recent presentation by Intel in 2015 restates the
more distant history to show very much slower declines in cost per transistor at earlier technology
nodes. Intel has a stock disclaimer that numbers it presents are subject to revision, but in this case the
revisions to the historical record are quite dramatic.

Transistor Cost Index, 90nm =  Percent Transistor Cost Decline
100 Rate Between Nodes Compound Annual Decline Rate
Otellini, 2012 Holt, 2015 Otellini, 2012 Holt, 2015 Otellini, 2012 Holt, 2015
Wafer Size Wafer Size Wafer Size
Intro Date Tech Node 200mm  300mm  300mm 200mm  300mm 300mm? 200mm 300mm  300mm?
199592 350 1575.35
199793 250 1033.14 -34.4 -17.1
1999q2 180 616.10 -40.4 -22.8
2001q1 130 311.09 146.93 -49.5 -32.3
2004q1 90 100.00 100.00 -67.9 -31.9 -31.5 -12.0
2006491 65 48.87 71.26 -51.1 -28.7 -30.1 -15.6
2007qg4 45 27.54 50.30 -43.6 -29.4 -27.9 -18.1
2010q1 32 17.69 35.64 -35.8 -29.1 -17.9 -14.2
2012qg2 22 11.23 26.03 -36.5 -26.9 -18.3 -13.0
201493 14 16.13 -38.0 -19.2
2017947 10 9.46 -41.4 -21.1

Intro dates: 130nm and up from http://www.intel.com/pressroom/kits/quickreffam.htm
< 130nm from ark.intel.com

Table 9. Comparison of Intel Cost per Transistor at Various Technology Nodes, 2015 vs. 2012

The 2015 graphic substantially revises what in the semiconductor industry would be considered
the distant historical past (i.e., five technology nodes back from the 22nm node that was in production
at the time the earlier 2012 presentation was given). Intel’s most recent version of its history now shows
transistors costs declining at 12-18% annual rates after the millennium, rather than the 30% annual
declines it showed to its investors in 2012. Its transistor cost decline rate accelerates, rather than
slowing further, at the most recent couple of technology nodes.

It now seems likely that one important reason for the restatement by Intel of its historical cost
declines in 2015 was a definitional change in technical information made public by Intel. Instead of
reporting transistor density (transistors per die area) based on actual die area and the number of
transistors processed on an actual microprocessor die (which allows one to calculate an actual average
transistors fabricated per die area), Intel apparently began using an entirely theoretical measure of area
per designed transistor that appears not take into account the increasingly relaxed (from design rules)
layout of transistors in actual die designs, imposed in part by the need to allow for additional area
between transistors needed to fabricate increasingly complex interconnections.”” (For die designs

77 See Flamm (2017), p. 34, for a brief explanation of this issue. Intel’s latest redefinition of its publicly disclosed
“transistor density metric” is entirely theoretical: .6 x (transistors in a NAND logic cell/area of a NAND logic gate) +
.4 x (transistors in a complex scan logic flip-flop cell/area of complex scan logic flip-flop cell) = # transistors/mm?2.
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released prior to 2010, Intel had previously disclosed both actual die size, and the number of transistors
processed on the die, for many of its chip models.)

An Intel Exception?

Interpreting the recent economic history of Moore’s Law, how can Intel’s description of
accelerating declines in manufacturing cost per transistor (as recently as September 20177%) be
consistent with reports from other chip manufacturers, and their customers, of stagnating cost declines,
or even cost increases? Increasingly important scale economies provide one plausible and coherent
explanation.

Scale economies at the company level are obvious. The cost of a production scale
semiconductor fab has increased dramatically at recent technology nodes, and only the very largest chip
“IDMs” (Integrated Device Manufacturers) can depend on their internal demand to justify a fab
investment. Intel made this case quite accurately at its 2012 Investor Meeting, predicting that only
Samsung, TSMC, and itself would have the production volumes required to economically justify
investment in leading edge fab technology for logic chips, by 2016.7° (Intel overlooked GlobalFoundries,
which by acquiring IBM’s semiconductor business in 2015, substantially increased its scale.)® Both TSMC
and GlobalFoundries are “pure” foundries, and achieve their volumes entirely by aggregating the
demands of external chip design customers.

Many U.S.-based semiconductor companies have exited chip manufacturing (e.g. AMD, IBM) or
stopped investing in leading edge fabrication while continuing to operate older fabs (Texas
Instruments pioneered this so-called “fab-lite” strategy). Other “pure play” U.S. foundries (e.g.,
TowerlJazz, On Semiconductor) operate mature foundry capacity that remains cost effective for lower
volume chips. Long-established American chip companies, such as Motorola, National Semiconductor,
and Freescale, disappeared in the course of mergers or acquisitions that continue to reshape the
industry.

This consolidation in leading edge IC fabrication is global. In Europe, there are no manufacturers
currently investing in leading edge technology.®! In Asia, there are arguably only Toshiba in Japan,
Samsung and Hynix in Korea, and foundry TSMC in Taiwan. Firm level scale economies explain why fewer
firms can afford leading edge fabs, but can’t explain why Intel’s cost per transistor would have declined

Such a definition does not allow for the practical effects of relaxation (from theoretical design rules) in actual cell
layout needed, for example, to accommodate metal interconnections between logic cells. On Intel’s new transistor
density definition, see Mark Bohr, “Moore’s Law Leadership,” March 2017, available at
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf.
78 See Smith (2017), slide 6, “Is Moore’s Law Dead? No!”. Interestingly, since September of 2017, Intel has not—to
the best of my knowledge—published a claim that its manufacturing cost per transistor continues to decline at
rates exceeding previous historical decline rates, or is even falling at new technology nodes.

79 Krzanich (2012), slide 19.

80 \What constitutes leading edge technology in memory chips is somewhat more nebulous, and several large
memory specialist IDMs (Hynix, Toshiba, Micron) might also arguably be categorized as being near the leading
edge. Global Foundries has since announced that it is dropping out of future development of new manufacturing

technology nodes.
81 The last remaining leading edge chipmaker headquartered in Europe, ST Microelectronics, announced in 2015

that it will be relying on foundries for future advance manufacturing needs.
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much faster than at other producers still investing in leading edge fabs, particularly the foundries. It’s
possible that Intel has unique, proprietary technological advantages. A more mundane explanation is
that product level scale economies drive these differences.

In particular, there has been an exponential increase in the costs of the ever more complex
photomasks needed to pattern wafers using lithography tools—a set of masks cost $450,000 to
$700,000 back in 2001, at 130nm, compared with a wafer production cost of $2,500 to $4,000 per
wafer.8? At 14nm, (updating wafer production costs using Intel costs in Table 9 implies 150% increases)
wafer production cost would be $6,225 to $9,960. By contrast, costs for a mask set at 14nm are
estimated to run from $10 million to $18 million, a 22- to 40-fold multiple of 130nm mask costs!?’
Lithography cost models suggest that with 5000 wafers exposed per photomask set (a relatively high
volume product at recent technology nodes), mask costs per unit of output will exceed both average
equipment capital cost, and average depreciation cost. With smaller production runs for a product,
photomask costs become the overwhelmingly dominant element of silicon wafer-processing cost at
leading edge technology nodes.®

Intel, with the largest production runs in the industry (perhaps 300 to 400 million processors in
2014%), has huge volumes of wafers to amortize the cost of its masks, and is certainly benefitting from
significant economies of scale. A single Intel processor design (and mask set) is the basis for scores of
different processor models sold to computer makers. Processor features, on-board memory sizes,
processor speeds, and numbers of functioning cores can be enabled or disabled in the final stages of
chip manufacture, and manufacturing process parameters can even be altered to shift the mix of
functioning parts in desired ways.®®

For Intel, this creates average manufacturing costs per chip that are vastly smaller than costs for
fabless competitors running much smaller product volumes using the same technology node at
foundries. Foundries recoup those much higher per unit mask costs through one-time charges, or
through high finished wafer prices charged to its fabless designer-customers. The customer directly
bears the much higher design costs per unit if the latest technology node is chosen for the product.

Exponentially growing design and mask costs at leading edge nodes now make older technology
nodes economically attractive for lower volume products. Higher variable wafer-processing costs per
transistor at older nodes are more than offset by much lower fixed design and photomask costs.

Such scale-driven cost disadvantages are increasingly pushing low volume chip production to
older chipmaking technology running in depreciated fabs. This is reshaping the economics of chip

82 Both 130 nm mask and wafer cost estimates were presented by an engineer in Intel’s in-house Mask Operation
unit; Yang (2001). Mask set cost estimates at 14nm are taken from Black (2013), slide 6.

83 Lattard (2014), slide 6.

84 Based on the fact that Intel publicly revealed that it had shipped 100 million processors a quarter, a record-
setting event, in the third quarter of 2014. Intel (2014), p. 1.

85 When chips are tested after manufacture, the speed, power consumption, and functioning memory and feature
characteristics are used to “bin” the processor into one of many different part numbers. As process yields improve
over time with experience, new part numbers with faster speeds or lower power consumption, etc., are
introduced. VanWagoner (2014) is a concise discussion by a former Intel manufacturing engineer of how a large
variety of processor models are manufactured from a single unique processor design.
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production, extending the economic lives of aging fabs. Older 200mm wafer fab capacity is now growing
rapidly, forecast to expand almost 20% by 202018

Historically, this is unprecedented. The additional 200mm capacity coming into service cannot
use more advanced process technologies designed for 300mm wafer processing equipment. Much lower
fixed design and photomask costs with older technology are the primary factor making it economically
attractive for fabricating low volume products. As inexpensive computing penetrates into everyday
appliances, “Internet of Things” chip designers are generating low volume foundry orders for chip
designs tailored to market niches, filling these old fabs with chip orders that don’t require the greatest
possible density.

Is Intel an exceptional case in the semiconductor industry? Is its portrait of recently accelerating
manufacturing cost declines reflected in the actual behavior of its product prices? The problem is, Intel
does not disclose data on its product pricing to either the public, or government statistical agencies, so
analysis of what an economist would call a quality-adjusted price is quite difficult.

Alternative Hedonic Price Indexes for Microprocessors. Apart from Intel’s pre-2018
declarations of optimism, a second piece of evidence arguing against a slowdown in Moore’s Law is a
study by Byrne, Oliner, and Sichel (BOS, 2018), which also utilizes the same list price data from Intel
(that I used) in making its argument. Using only the first four quarters of prices for recently introduced
models, they run an annual time dummy hedonic price model over adjoining pairs of years, and find
quality-adjusted prices declining at the same rate in 2000-04 as in 2009-13, at about a 42 percent annual
rate of decline, and an even more impressive 46% decline over 2004-2009.%” This is higher than any of
the rates shown for 2004-2009, and very much higher than the decline rates post-2009 in Table 7.

The key differences between my hedonic price indexes and the BOS hedonic price indexes are:
(1) BOS use only a subset of the desktop processors for which their chosen software benchmark scores
are available (vs. all desktop processors listed on Intel’s current price sheets); (2) BOS include quarterly
average list prices for individual processors only during the first four quarters after their introduction
onto the market (vs. using all available monthly average list prices); and (3) BOS use only a single
processor characteristic (geometric mean of benchmark software performance scores®) in their hedonic
model (vs. using a much larger set of processor characteristics that | argue is likely to be relevant to both
demand and unit cost).

Sample Selection: SPEC benchmark vs no SPEC available. BOS acknowledge that there are some
differences between chips which have benchmark (SPEC) scores available, and chips without (SPEC
scores are primarily used to compare processor performance in servers and technical computing
workstations, which generally use higher end processors than the consumer market).® They report that

86 Dieseldorff (2016).

87 |bid. BOS (2018) use only the first four quarterly average prices for individual processors, and a single
explanatory characteristic—performance on a software benchmark—in their hedonic regression.

88 They take the geometric mean of processor performance on industry consortium SPEC’s benchmark scores on
single program integer and floating point software test suites. Their procedure for splicing the two or three distinct
sets of benchmarks used over their sample period (SPEC2000 and SPEC2006, and possibly SPEC95) over their 2000-
2013 sample period is not explicitly described. See Figure 4 above for evidence that both levels and slopes of these
benchmarks change over time when they are compared.

89 BOS (2018), Table 2.
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a matched model price index using only the SPEC chips generally falls faster than an index using the non-
SPEC chips in all time periods. They also report that their matched model indexes produce a qualitative
pattern in price declines over time that is very similar to what is shown in Table 7, above, for all Intel
desktop processors. Thus, these results suggest that the restriction of the price sample to higher
performance processors with SPEC scores may bias estimates of quality-adjusted price declines toward
higher rates of price decline, but is not responsible for the very different qualitative behavior over time
(relatively constant, versus dramatic reductions in rates of decline after 2004).

First 4 quarters only, vs. all prices. BOS observe that individual Intel processor list prices very
rarely change over time, on price sheets, after 2011, in contrast to the prior decade. They identify two
scenarios they believe may explain this. In one scenario, “Intel offers progressively larger [but
unobserved] discounts to selected purchasers as models age,”*° producing a measurement error for
older processors, but not recently introduced models. This would complicate estimation of hedonic price
indexes using list price data. “The introduction period index would be unbiased even if there are
unobserved discounts at the time of introduction provided that these discounts do not vary
systematically over time or across models,”®! while an index using all periods would presumably be
biased.

Alternatively, they argue that even if the posted list prices are actual transactional prices, the
older chips must be getting progressively more expensive in quality-adjusted terms if their nominal
prices do not change, so relative demand for these models must be falling. “By focusing on prices [only]
at the beginning of each model’s life cycle, a regression that applies equal weights to all observations
avoids over-weighting models whose quantities have dropped off.”2 These arguments are used to
justify using only prices observed during the first four quarters after a model’s introduction, discarding
the majority of their sample of Intel list prices.

However, in a recent study, Sawyer and So (2017) replicate the substance of the BOS results
over the period after 2009, in a sample utilizing only “early” (first 4 quarters after introduction) Intel list
prices.’® However, when processor characteristics are added to SPEC scores as explanatory covariates ,
Sawyer and So show that standard statistical tests decisively reject the exclusion of processor
characteristics from a hedonic price equation which also includes SPEC scores.?* When these other
processor characteristics are not excluded, estimates of recent decline rates for quality-adjusted
processor prices over time are dramatically smaller than those estimated by BOS.%> We can reasonably
conclude that it is the restriction of hedonic characteristics to benchmark scores only, and not the
restriction to early prices, that is producing the pattern of unremittingly high price declines found in
BOS(2018) over the post-2004 time period.

Sawyer and So also note that Intel processors are typically sold in their largest volumes only
after the first four quarters in which they are available for sale.®® Intel’s own economic expert made this

% Byrne et. al. (2018), p. 690.
% Ibid.

% |bid.

9 Sawyer and So (2017), p. 8.
% |bid., p. 11.

% Ibid., p. 10.

% |bid., pp. 14-15.
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point in its antitrust case before the European Commission, noting that processor production begins
with a “ramp-up” phase that “begins with low volumes and typically lasts three to five quarters”.%’
Therefore, using price data for a processor only during the first four quarters following its introduction
likely would place relatively high weights on products actually being sold in relatively low volumes,
compared to other products.

It seems reasonable to suggest that this may be a real world example of omitted variable bias,
akin to that created in the last column of the perfect collinearity simulation in Table 6. However, BOS
articulate some real concerns about use of Intel list price data to measure processor pricing trends. They
note “a sharp change over the course of the 2000s in the life-cycle properties of Intel’s posted prices...In
the early period prices fell steeply over a model’s life cycle. However, by 2011-2012, price paths are flat
or nearly so, with only a few instances of sizable price declines.”®® These observations are spot on.

Figure 11 shows the fraction of incumbent (i.e., omitting newly introduced products) desktop
processor prices that changed from one list price sheet to the next one issued, from 1998 through mid-
2014. Through mid-2014, it is evident that Intel’s propensity to alter list prices on existing processors
diminished over time, though it never entirely stopped adjusting list prices on its existing product line
through mid-2014. In 2008 and 2009, for example, there were price sheets on which anywhere from 35
to 40 percent of already introduced desktop processor prices changed from the previous sheet.*® Since
2014, however, existing processor prices rarely if ever change from one price sheet to the next.

Indeed, if one had to choose a date based on this chart for a climacteric in Intel pricing practices,
2010—the year after its antitrust cases were settled—would seem a promising choice. That year also
apparently coincides with the beginning of a determined campaign by Intel to raise its profit margins, an
effort that seems to have had some success (aided at that point by a greatly diminished competitive
threat from its historical rival, AMD). (See Figure 12.) Raising its average sales prices (ASP) was a key
element of this strategy. (See Figure 13.)

In earlier versions of their research, BOS focused on the evident change in Intel pricing strategies
during the first decade of the 2000’s as the motivation for restricting their Intel prices to “early” initial
processor prices.'® Their hypothesis, that Intel may have changed its pricing strategy during the first
decade of the new millennium, actually seems quite plausible, given that the European Commission
launched a major antitrust case against Intel over it processor price discounting practices during the
2002-2006 period, culminating in a preliminary decision against Intel in 2007, and a final decision in
2009.1°1 A related private U.S. antitrust case by Intel’s rival, AMD, was filed, then settled in 2009.

97 European Commission (2009), p. 326.

%8 BOS (2018), p. 687.

99 BOS (2018), Figure 4, show a similar set of patterns over time in the share of Intel desktop processors with a list
price decline within 4 quarters of introduction.

100 |n the earlier 2017 Federal Reserve working paper version of their study, BOS speculated that “[i]t is possible
that Intel actually changed its life-cycle pricing strategy to extract more revenue from older models, with the
posted prices reflecting this change.” Byrne, Oliner, and Sichel (2017), p. 8.

101 See European Commission (2009). The same antitrust concerns also resulted in government antitrust actions in
Japan and Korea, and by the U.S. Federal Trade Commission. Acting on an appeal by Intel, the European Court of
Justice sent the EU case back to a lower court for further consideration in 2017, so this seems destined to be
litigated for years to come.
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Figure 11. Fraction of Intel desktop processor prices changing from one price list to the next.

Source: Author’s tabulation from Intel list price dataset.
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Figure 12. Intel’s post-2010 gross margin elevation objective
Source: Smith (2015).
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Figure 13. Intel’s 2015 explanation to its shareholders for success in maintaining high profit margins
Smith (2015).

The BOS (2018) scenario of “progressively larger discounts to selected purchasers as models
age” is difficult to test, since no data on Intel transaction prices for its wholesale sales to large buyers
are publicly available. We do know that evidence produced in the EU antitrust investigation seems to
show that even the newest chips sold to large OEM customers were heavily discounted from list prices
prior to 2006, at times with conditional exclusivity rebates that were not publicly reported by Intel or its

customers.'%?

However, there is one public source of Intel transactional price data that is real, observed, and
does not require any assumptions about unobserved behavior. Retail prices in the electronics industry
are linked to wholesale prices, directly and indirectly. Most directly, the very largest retailers can
purchase boxed processors directly from Intel, or like smaller retailers, from distributors. (Approximately
20% of Intel processors in recent years, by volume, were sold directly as boxed processors, primarily to
small computer makers and electronic retailers.’%) Computer original equipment manufacturers

102 See European Commission (2009). See also SEC v. Dell Inc. et al. Complaint (2010), which asserts that
unreported exclusivity rebates given by Intel to Dell had climbed to about % of Dell’s operating income by 2006.
103 “Although it sells microprocessors directly to the largest computer manufacturers, such as Dell,

Hewlett Packard, and Lenovo, its Channel Supply Demand Operations (CSDO) organization is responsible for
satisfying the branded boxed CPU demands of Intel’s vast customer network of distributors, resellers, dealers, and
local integrators. Intel’s boxed processor shipment volume represents approximately 20 percent of its total CPU
shipments...Processors ship from CW1 to one of four CW2 “boxing” sites, which kit the processors with cooling
solutions (e.g., fan, heat sink) and place them in retail boxes and distribution containers. Such boxing sites are
typically subcontracted companies that ship the boxed products to nearby Intel CW3 finished-goods warehouses
where they are used to fulfill customer orders. Channel customers range in size and need; they are mostly low-
volume computer manufacturers and electronics retailers.” B.Wieland, P. Mastrantonio, S. P. Willems, and K. G.
Kempf, “Optimizing Inventory Levels Within Intel’s Channel Supply Demand Operations,” Interfaces, Vol. 42, No. 6,
Nov—Dec 2012, pp. 517-18.
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(OEMs), electronics system manufacturers, and electronic parts distributors who purchase processors
directly from Intel can resell excess inventories to other distributors, resellers, and retailers, and these
actually show up on the retail market labeled as “OEM package” (vs. “Retail Box” packaging).

Both boxed and OEM-packaged processors are sold by retailers, distributors, and brokers, with a
price that is advertised publicly and directly observable in the marketplace. (The retail data used in
constructing my matched model price index include both OEM and retail packaged chips sold by internet
retailers.) The retail data used in Table 7 also seem to clearly point to a deceleration in microprocessor
price declines after 2004.

It seems reasonable to presume that retail transaction prices (which are observable in the
market), at least in the long run should have some stable stochastic relationship to wholesale producer
transactional prices. Indeed, a least one previous study found such linkages between OEM contract
transactional prices and retail prices for high volume chips sold in the semiconductor industry.1%*

There are market-driven economic reasons behind this linkage. Both semiconductor
manufacturers and their OEM customers sell their excess inventories of chips to brokers and distributors
during industry downturns, pushing small buyer spot prices down in distributor and retail sales channels
as excess OEM inventories of chips are absorbed in those sales channels. In tight markets, conversely,
when semiconductor manufacturers are capacity constrained, wholesale contract prices to large OEMs
rise. To meet surging demand, OEMs may even try to purchase additional volumes of chips, beyond the
volumes negotiated in contracts with chip manufacturers, in retail and distribution markets. As both
large OEMs and smaller buyers compete fiercely over the remaining, unallocated output, upward
pressure on retail and distributor prices is felt. In short, both direct and indirect linkages between small
buyer (retail and distributor) markets, and large buyer (contracts with OEMs) markets, as well as
arbitrage across distribution channels would lead an economist to expect to observe a structural
relationship between observed retail processor prices, and unobserved large OEM wholesale prices.

In a still earlier version of their research, BOS (2015) had speculated that the change in Intel
pricing behavior (resulting in a systematic change in the relationship between Intel list prices and
unobserved OEM contract prices) may have occurred after 2006.1% This is actually an interesting and
plausible choice of dates for a change in Intel pricing behavior, since it coincides approximately with the
end of the exclusivity rebates that had been the subject of the government and private antitrust actions
mentioned earlier. There is also a significant drop in the maximum fraction of Intel list prices changing
between adjacent price sheets evident after 2006 visible in Figure 11 (the last occasions on which 60%
of prices for existing processors were changed were at the end of 2006 and early 2007). If there was a
structural shift in Intel pricing practices that caused list price to diverge more sharply from actual
transactional prices after 2006, we might then also expect to see a change in the relationship between
movements in observed transactional prices in the retail market, and Intel list prices after 2006. This is
testable using observational data.

104 See Flamm (1993), for a study documenting linkages between retail prices and OEM contract prices for DRAM
memory chips.

105 “By 2006, this pattern had completely changed; the posted price of a specific model tended to remain constant,
even after a new, higher performance model became available at a similar price.” BOS (2016), p. 9.
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| explored the possibility that there was some detectable change in the relationship between
Intel list (posted wholesale) prices and observed retail prices after 2006 by constructing a panel of
monthly observations on average retail price and posted list price covering 163 distinct Intel desktop
processor models sold by Internet retailers over the years 2000 through 2010.2% | allow for model fixed
effects (which permits a particular low-end Celeron model, for example, to be related to Intel list price
with a different retail margin than a high end Core i7 model). The model that | estimated specified the
log of retail price as

In(Rit) = ai + b In(li) + c Ageir + d OEM + After2006 + e After2006 x In(lir) + f After2006 x Ageix + Ui,

with Ritan observation on average retail price for model i in month t; I the average posted Intel list price
in a month in which list price had been posted at least once; Agei: the number of elapsed months since
the month the model’s price had been first posted on a published Intel price sheet; After2006 a binary
indicator variable with value 1 in 2006 and thereafter, zero before; OEM a binary indicator for whether
the product sold was the retail boxed version, or the bare chip in OEM packaging; and ui: a random
disturbance term. If post-2006 transaction prices reflect age discounts from Intel list price that pre-2006
prices did not, we would expect to find a statistically significant shift coefficient on the interaction of
After2006 with Age.

Table 10 shows the results of estimating this model.1%” The After2006 shift variable, and all of its
interactions, including interactions with processor model Age, are close to zero and statistically
insignificant individually, and jointly.2% The relatively flatter trajectories over time for Intel list prices
after 2006 are mirrored in the behavior of flatter retail price trajectories for the same chips.

Therefore, based on the only evidence on actual transaction prices that is publicly available, i.e.,
advertised retail prices from Internet-based vendors, there is no evidence of some structural change
occurring after 2006 in the relationship between observed Intel list price and observed retail market
prices. Of course, this does not directly prove that there was no change in the relationship between Intel
list prices and (unobserved) discounted OEM contract prices for processors, but it certainly weighs
against it.

Figure 11 and our earlier discussion suggests that 2010-11 is another candidate time period in
which to search for shift in Intel pricing practices. Unfortunately, the retail data analyzed in Table 10
does not extend past this date.

106 This is the same sharkyextreme.com data | previously used to construct Jevons and hedonic retail price indexes.
107 Robust standard errors clustered on processor model are shown in Figure 8.

108 The Wald F(3,162) test statistic for the joint hypothesis that all After2006 terms were zero was .82, the p-value
.49,
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Table 10

Fixed Effects Model of Log Retail Price For Intel Desktop Processors

(Full Model) (Constrained Model)
lp ret lp ret
lp tray 0.763*** 0.768***
[log Intel (15.37) (17.93)
Tray Price]
oem -0.0497*** -0.0496***
(-6.70) (-6.77)
age -0.00676%** -0.00582***
(=3.70) (-4.91)
1.aft2006 0.0204
(0.13)
l.aft2006#age 0.00162
(0.83)

1.aft2006#1lp tray -0.0108

(-0.39)
_cons 1.347**%* 1.303***
(4.87) (5.55)
N 1580 1580
R-sqg 0.987 0.987
adj. R-sqg 0.986 0.986

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

SPEC scores vs. chip characteristics. As previously remarked, Sawyer and So (2017) have shown
that the BOS results showing no slowdown in quality-adjusted Intel processor price declines since 2000
are not the result of using only “early” Intel list prices, but instead are driven primarily by use of SPEC
benchmark scores as the sole characteristic in a hedonic model, in lieu of a more extensive set of chip
characteristics.

The use of SPEC scores instead of actual chip characteristics is based on the argument that direct
performance measures are easier to get right than relevant chip characteristics. But this argument
overlooks three fundamental reasons why chip characteristics should still be included in a hedonic price
equation.

First, there is a computer architecture literature that tells us that benchmark scores of a CPU on
any given task should be well explained by a small set of chip characteristics, including numbers of cores
and threads, computer architectural design, chip clock rate, and on-chip memory cache sizes. This
literature actually identifies the chip characteristics that are relevant, and even uses them to model
computer CPU performance out of sample.’® As | next show, scores on various SPEC processor

109 Hennessey and Patterson(2003), in the Third Edition of their classic computer architecture textbook, pp. 59-60,
do exactly this to compare the Pentium Il with a Pentium 4 operating at the same clock rate.
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benchmarks are almost perfectly predicted by a linear function of the small set of chip characteristics
that the computer design literature predicts are its determinants.

Second, economics tells us that the characteristics that belong in a hedonic price equation are
there because they are relevant to user demand, but that they have an additional effect on price if they
alter supplier marginal cost.!? At best, software benchmark scores might correctly serve as a perfect
summary measure of quality perceived by users, on the demand side. But there is no reason,
technological or economic, why a measure of chip performance relevant to demand should also
perfectly capture the separate effects of underlying characteristics that determine performance, on chip
cost. Omitting variation in processor characteristics that affects chip cost will induce omitted variable
bias in the hedonic coefficient estimates, if the omitted characteristics’ effects on cost are correlated
(but not perfectly collinear) with the included benchmark scores.

That is, assume for the sake of argument that the mix of user demands for various types of
computer applications was fixed over time, and that processor performance on this fixed weight mix of
computer applications was correctly captured in some SPEC benchmark. Even with the heroic
assumption that this aggregated benchmark correctly captured everything relevant to chip quality on
the demand side (and it is clear it does not!!!), there is no plausible technological or economic reason
why variations across chip models in marginal production costs related to chip characteristics that
determine benchmark scores, should be perfectly mirrored by variation in SPEC benchmark scores.

Indeed, the computer architecture literature teaches us that a variety of chip characteristics can
affect performance, and that, therefore, the same SPEC score can potentially be produced with diverse,
non-unique combinations of numbers of cores, threads, cache memory, clock frequency, etc. In fact, if
we look at actual SPEC scores, multiple distinct chip models can produce approximately the same score.
But variation in each of these chips’ characteristics—cores, threads, on-chip memory, and clock
frequencies—may have very different impacts on production cost for the processor compared with
impact on SPEC scores.

Third, if benchmark scores are determined by chip characteristics, using chip characteristics
directly in the hedonic equation—instead of, or in addition to a single benchmark score —effectively
allows coefficients in the hedonic equation to change to mirror changes in the average mix of tasks run
by computer users over time. Use of a single benchmark or fixed-weight index of benchmarks effectively
assumes the mix of tasks relevant to performance for users is fixed over time.?

110 pakes (2003), p. 1581, equation 3, notes that the hedonic price function can be interpreted as the sum of the
expected marginal cost, conditional on characteristics, and expected markup (derived from the demand function),
conditional on characteristics. The key point is that the product characteristics are arguments in the separate cost
and demand function terms in the hedonic price equation.

111 Since power draw minimization, graphics, and hardware virtualization capabilities clearly are desirable to large
subsets of computer users, yet will have no direct impact on SPEC scores if missing or disabled in a processor.

112 That is, assume we have two benchmarks, b1 and b2, and two processor characteristics, c1 and c2. Assume b1 =
alcl+a2c2, whileb2=elcl+e2c2. Assume users in the aggregate run b1 applications 50% of the time, b2
applications the other 50%. Then we can represent performance on the “average market workload” with a
performance index that looks like .5 b1 +.5 b2, or equivalently, .5 (alcl +a2c2) +.5 (el cl +e2c2)=[.5(al+el)]
cl+[.5(a2 + e2)] c2. That is, the benchmark index is equal to a simple linear function of the two characteristics.
Now, if the weights of b1 and b2 change to 25% and 75% on the new “market workload,” workload performance
will be incorrectly captured by the original performance index (50% weights) even if scaled by some arbitrary
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For all these reasons, use of the SPEC score as the sole characteristic in a hedonic price equation
is not a highly plausible economic assumption. In addition, because SPEC scores are only available for
the subset of Intel desktop processors used by OEMs in servers, the use of SPEC scores in a desktop
processor hedonic price regression will considerably reduce sample size compared with statistical
models using chip characteristics but not SPEC scores. In the Intel list price data, the number of Intel
desktop processors with SPEC scores available for analysis is a fraction of all Intel desktop processors
with list prices available in any time period. When using other publicly available retail or distributor
desktop processor price data, an even larger fraction of the available data may not have SPEC scores
available. '

To support this point, | next demonstrate that SPEC processor benchmark scores are almost
perfectly predicted by a small number of underlying chip characteristics, and provide little or no
additional information. In making this claim, | note that | make use of a set of processor
microarchitecture dummy variables in the set of chip characteristics used. Neither Sawyer and So, nor
BOS, use processor architecture dummy variables (which | have shown make an important contribution
to the explanatory power of a hedonic price model) in the set of characteristics they employ when
estimating a chip characteristic-based hedonic model. It is quite possible that adding a software
benchmark score to a set of chip characteristics that excludes the architectural dummies has the effect
of capturing much of the effect of these dummy variables in the hedonic price model.

The role of different chip characteristics on different SPEC benchmarks, however, varies greatly
across different types of SPEC benchmarks, which argues for direct use of the underlying characteristics
in a hedonic equation. It is an argument for letting the data decide what the correct weights on
processor characteristics in a hedonic price equation are, rather than adopting the implicit weights
embedded within a time invariant weighted average benchmark score.

5. Chip Characteristics and Computer Performance: Building Blocks for A Hedonic Analysis

By forcing us to focus on the relationship between performance of microprocessors on
representative software benchmarks—which all agree should be an important determinant of chip
demand-- and chip characteristics, BOS have a done us a great service in providing focus for a discussion
of what chip characteristics should be used when estimating a hedonic price equation for
microprocessors.

The theoretical computer architecture literature makes use of a processor performance equation to
predict processor performance. Effectively, this relationship models the execution time a computer
processing unit takes to perform some given software benchmark program (i.e., a given sequence of
programming instructions) as the product of two parameters: average clock ticks per instruction and the
seconds per clock tick in the processor’s clock.'* Since a processor performance benchmark score is

constant. However, performance on “market workload” is still correctly captured by a linear function of the two
underlying chip characteristics (though the coefficients of the characteristics in this function change). The
specification that is linear in the underlying characteristics is simply more flexible in representing shifts in demand.
113 Because the selection of processors commonly sold to consumers for use in desktop PCs may include relatively
fewer desktop processors used in servers (the ones which would have SPEC scores available).

114 See Hennessey and Patterson (2012), section 1.9, pp. 48-52.
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proportional to the inverse of time required to run a benchmark program on a particular computer
processor, we can invert the processor performance equation and then have

Performance ~ IPC x clock rate ,

where IPC is processed instructions per clock tick, clock rate is measured in ticks per second, and the
performance index basically compares benchmark instructions executed per unit time across processors.
Indeed, given a particular computer architecture, computer engineers simply scale measured
performance linearly by clock rate in order to model the approximate impact of raising clock rate on
processor performance.!®®

IPC will depend on both the design (architecture) of the computer processor and the particular
mix of instructions being executed in the benchmark software. The specified clock rate of a processor
model is typically fixed after testing, at the end of the chip fabrication process.'!® “Binning” during
testing of finished chips creates different speed grade bins, which are subsequently sold as different
processor models to computer manufacturers and other consumers. The effective, yielded mix of non-
defective, more valuable fast processors, and less valuable slow processors, on a fabricated wafer
containing hundreds or thousands of these processors, is a determinant of processor manufacturing
costs.

Speed is not the only chip processor characteristic that is affected by random fabrication
process variation. There may also be random manufacturing variation affecting the voltage needed to
run the chip properly, varying from die to die on the same wafer. Chips which require less power to

perform correctly may be identified through testing, and sold as low power models of the processor.'’

Microprocessor chips generally have on-chip caches of fast local memory which can also affect
the execution time for given software. The portion of on-chip cache memory which is defect-free, and
therefore usable by the chip, can also vary with the incidence of manufacturing defects during the
fabrication process, and testing then leads to additional binning of finished chips by usable, functional
cache memory.

Similarly, particular sections of chip circuitry associated with some advanced features of the chip
may not be fully functional due to random processing defects. In order to maximize revenue from all
usable products yielded from a finished silicon wafer, a complex system of testing “bins” based on
speed, memory, power requirements, and working feature functionality is used to define distinct
processor models sold as different chips to final consumers. Indeed, chips are generally designed with
some redundant circuitry and electrical “fusing” options intended to maximize saleable product, and

115 Hennessey and Patterson(2003), in the Third Edition of their classic computer architecture textbook, pp. 59-60,
do exactly this to compare Pentium Ill performance with a Pentium 4 operating at the same clock rate.

116 Random variation in a highly complex semiconductor manufacturing process leads to a distribution of functional
chips by the maximum clock rate at which they can successfully execute some test suite. A “fast” processor can
operate at a higher than average clock frequency, while a “slow” processor can only operate correctly at a slower
than average clock rate.

117 And processing of the wafer can be optimized to produce relatively more chips requiring less power.
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revenues, from a processed wafer with dies that may not be perfect. A dozen processor models may be
derived from a single, artfully designed die manufactured in the thousands on a single wafer.®

At Intel, microprocessor designs are identified with a “microarchitecture,” which historically is
associated with a publicly available codename. (For example, the processor microarchitecture launched
by Intel in October 2017 was given the codename “Coffee Lake”.1*°) Prior to 2010, Intel also made public
information on its processors’ die sizes and the number of transistors on the die processed in its
manufacture. Based on this information (which is no longer publicly released), it appears the many
dozens of microprocessor models for each of its microarchitectures were based on somewhere between
one and three basic die designs.’?® That is, the dozens of different processor models corresponding to a
single microarchitecture product family were manufactured from just one to three basic chip designs
fabricated on silicon wafers.

It is straightforward to analyze the relationship between SPEC scores and microprocessor
characteristics. Table 10 shows the results from estimating a linear regression model explaining log SPEC
scores with a set of explanatory variables suggested by the computer engineering literature: a full set of
microarchitecture dummy variables (since IPC is going to depend on computer microarchitecture), log of
the base processor clock rate, a dummy variable indicating a “turbo” feature is enabled on the chip (the
highest clock rate achievable by a single core on the chip will differ from the base processor clock rate if
this feature is available), log of on-chip memory cache size,*?! log of number of physical processor cores
on the chip, and a dummy variable indicating that multithreaded “virtual” logical cores are available on a
chip.1?2 In addition, a binary indicator variable for use of “autoparallelization” in compiling the SPEC
benchmark software code is included, since that can enable a speedup on multicore processors, or on
processors with multithreading.*?3

A simple log linear regression model that explains SPEC benchmark performance as a function of
six processor characteristics (and a full set of 29 to 31 dummy variables for different Intel x86 processor

118 The design of a chip will segment the circuitry into functional blocks which can be disabled electronically (e.g.,
with programmable “fuses”) during the manufacture and testing process. Some redundant circuitry is typically
made part of the design, to maximize yield of usable parts after test. A more capable chip can generally be made
less capable by disabling portions of its circuitry at the final stages of manufacture. This may done deliberately by
manufacturers to create additional supplies of lower end chips when customer demand for lower end parts
exceeds the portion of output physically binned into low end chip models on the basis of test results.

119 https://gizmodo.com/intels-latest-coffee-lake-processors-are-fast-as-hell-1819129322 .

120 prior to 2010, Intel publicly released the exact die area and number of “processing transistors” used in
manufacturing most of its microprocessor models. All processors with exactly the same microarchitecture, die
area, and numbers of processing transistors can be assumed to be derived from a single die design. Analysis of this
data shows anywhere from 1 to 3 unique microarchitecture/die size/processing transistor combinations were
being used to produce many dozens of processor models.

121 Actually, | am using the size of the “last level cache,” since microprocessors can have a hierarchy of successively
larger (and slower) caches onboard.

122 Hyperthreading is Intel’s name for multithreading capability, additional circuitry added to the processor which
creates two logical (or “virtual”) processors that can access every physical core. One logical processor can begin
processing the next instruction while the other logical processor is actually executing an instruction in a core, thus
allowing a form of chip-level parallelism which can speed up performance when a computer program spawns
multiple threads.

123 Indeed, after a short number of months at the beginning of the SPEC 2006 suite in 2006, almost all the single
process SPEC benchmark scores have autoparallelization turned on.
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microarchitectures) accounts for a remarkable 97 to 98 percent of the variation in SPEC2006 benchmark
scores for thousands of computer models using Intel x86 processors over the 2005-2017 period. (Table
11.) Note that this regression utilizes all Intel x86 desktop, server, and mobile processors in the
SPEC2006 database, and further, that it is estimated using every different individual computer making
use of an included processor as the underlying set of observations used in estimating the model.

Table 11 Log of SPEC 2006 benchmark as function of processor characteristics

Six Characteristics Model
Dependent variable is log of

SPECf06 SPECi06 SPECfr06 SPECir06
lproc 0.196%** 0.115%** 0.383**%* 0.429**%*
(0.0401) (0.0396) (0.0590) (0.0746)
lcache 0.0965** 0.0861*** 0.140%** 0.109***
(0.0283) (0.0232) (0.0442) (0.0208)
lcores 0.157*** 0.0385 0.642%** 0.826***
(0.0284) (0.0285) (0.0357) (0.0249)
ht 0.0644** 0.0318** 0.132*** 0.201***
(0.0179) (0.0111) (0.0169) (0.0130)
Imaxmhz 0.514**x* 0.722%** 0.101 0.328%*%*
(0.0651) (0.0560) (0.103) (0.0747)
autop 0.0649* 0.00310 0.0107 -0.0134
(0.0262) (0.0534) (0.0211) (0.0362)
Microarchitecture dummies Y Y Y Y
Observations 1160 1190 2207 2417
R-squared 0.966 0.960 0.982 0.974
N clust 31 31 29 30
r2 within 0.687 0.697 0.896 0.893

Cluster robust standard errors in parentheses, clustered on Intel microarchitecture.
* p<0.05, ** p<0.01, *** p<0.001

lproc: log base processor clock rate

Imaxmhz: log of maximum clock rate if turbo mode available

lcores: log of number of physical cores in processor

ht: binary dummy variable for hyperthreading

lcache: log of amount of last level cache memory on processor chip

autop: autoparallelization enabled in compiler when SPEC software was compiled, dummy variable

That is, variation in chipsets, motherboards, configured memory, and other components in the
computer systems from different manufacturers making use of any particular chip model, which is
reflected in the residual, accounted for no more than 2 to 4 percent of observed variation in SPEC
scores. This analysis utilizes individual tested computer system data; i.e., on average there are 4to 5
different computer systems using a specific processor model.

We can alternatively calculate a median or mean score across all computer systems utilizing
each processor chip model, to more closely resemble the BOS procedure for deriving a single SPEC score
for each chip model. Using that as the basis for our SPEC2006 performance regression model, we get an
even higher R?, of about .99.1% (Table 12.) It is clear that computer architecture dummies and five
processor characteristics, together, essentially perfectly predict SPEC benchmark scores.

124 | drop all chips shown as underclocked or overclocked by computer system maker (having reported clock rate
more than 10Mz slower or faster than the Intel-specified base clock rate), and ignore autoparallelization in
calculating medians or means in Table 12. Table 12 reports results using logs of medians; using logs of means
would give almost identical results.
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Table 12 Log of median SPEC 2006 benchmark as function of processor characteristics
Five Characteristics Model
Dependent variable is log of median computer system score for particular processor model

SPECf06 SPECi06 SPECfr06 SPECir06
lproc 0.279*** 0.156%** 0.507*** 0.460***
(0.0347) (0.0338) (0.0767) (0.0565)
lcache 0.0783** 0.0575%** 0.155** 0.122%*%*
(0.0259) (0.0194) (0.0531) (0.0184)
lcores 0.190*** 0.0697* 0.644*** 0.810%***
(0.0254) (0.0274) (0.0513) (0.0167)
ht 0.0721**x* 0.0371*** 0.134**x* 0.211***
(0.0133) (0.00727) (0.0132) (0.00788)
Imaxmhz 0.421*** 0.677*** -0.0109 0.286***
(0.0716) (0.0526) (0.105) (0.0575)
Microarchitecture dummies Y Y Y Y
Observations 331 340 449 454
R-squared 0.988 0.985 0.990 0.994
N clust 30 30 28 28
r2_within 0.843 0.853 0.941 0.975

Cluster robust standard errors in parentheses, clustered on Intel microarchitecture.
* p<0.05, ** p<0.01, *** p<0.001

Two points are significant. First, the coefficients of (weights assigned to) different processor
characteristics in determining SPEC scores are very different for different SPEC benchmarks. The clear
implication is that different processor characteristics can have very different effects on performance for
different types of workloads. A flexible hedonic price model, reflecting a changing distribution of chip
consumers across distinct types of workloads, would best let the empirical data decide the weights users
place on particular characteristics, rather than aggregating the characteristics into a single benchmark
score with the time-invariant weights implicitly used to perform the aggregation into a performance
metric.

Second, these characteristics also will affect cost. Every distinct Intel microarchitecture is
manufactured using a single fabrication technology node, so in addition to representing the processor’s
design architecture, the microarchitecture dummies also capture variation in microprocessor
manufacturing cost that is induced by variation in chip microarchitectures and manufacturing
technology. As previously described, different quality grades (measured by processor clock rates,
amounts of on-chip cache memory, and chip features) produced by testing and binning are also
associated with cost differences. Coefficients on these characteristics in a hedonic reduced form price
equation should be regarded as reflecting both demand and cost effects.

Finally, in addition to the chip characteristics determining SPEC performance, there are a small
set of additional chip characteristics that we would certainly want to include in a hedonic price equation
for microprocessors. Power dissipated by a chip determines whether expensive cooling solutions are
required, shifting demand for that processor; power requirements are also important (for battery life) in
mobile applications. Electricity use, the principle variable cost of computing, will vary with power
consumed. Further, power dissipation varies with random manufacturing process variations, so the
power rating of a chip is also going to be related to chip cost. Whether or not a graphics processor is
integrated into the microprocessor will also affect both demand and cost for that chip. Support for
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hardware virtualization will have no practical effect on processor performance on SPEC benchmarks, but
is a valuable feature for business customers wishing to increase server efficiency by running numerous
“virtual machines” on their servers simultaneously.

In conclusion, we should remember that SPEC scores are maintained by organizations that sell
servers, processors used in servers, and the largest server customers, so a SPEC-selected sample will be
skewed toward the models of chips that perform best as server processors. The SPEC performance
regressions in Tables 11 and 12 would then seem to tell us that desktop and server performance should
be modelled separately, with different weights placed on different chip characteristics.

This suggests a natural segmentation of microprocessors for purposes of price measurement. a
desktop segment oriented toward single software program application performance, a mobile (laptop
and tablet) segment tilted toward both performance and low power, and a server segment with a
greater emphasis on performance on embarrassingly parallel workloads (servers running a mix of
uncoordinated applications with performance more like the SPEC “rate” benchmarks). In terms of
finding public data useful in estimating a hedonic price equation, retail/distribution prices will be most
readily observable and useful in estimating desktop microprocessor prices. Retail data will be much
more limited and less useful for mobile processors, and even more limited and therefore least useful, for
hedonic measurement of server processor prices.

The absence of a reliable source of producer transactional data for microprocessors, for use in
government price indexes, is a serious and increasingly formidable barrier to measuring prices and
innovation correctly in the semiconductor industry.

6. Conclusion

There is considerable evidence that semiconductor manufacturing innovation has historically
been responsible for perhaps a 20-30% annual decline in the cost of manufacturing transistors on a chip.
One would expect that this predictable cost decline would be transformed into a similar price decline in
a competitive industry, at least in the long run, and therefore, that a decline of this magnitude would
serve as a floor on the long-run trajectory of semiconductor prices for high volume semiconductor
products. Innovations in the architecture and designs being manufactured on the chip, new kinds of chip
designs, and superior performance characteristics of existing designs fabricated using more advanced
fabrication technology, would be additional factors explaining even higher long run rates of decline in
quality-adjusted semiconductor prices.

Historically, most high-volume semiconductor applications ultimately migrated to more
advanced manufacturing technology nodes, pulled there by the simple economics of continuing declines
in cost using more advanced fabrication technology. This pressure now seems to have lessened, in part
the result of rapidly increasing fixed costs sunk into the design of new chips using the most advanced
manufacturing technology, and, in part due to an apparent slackening in the rate of cost decline at the
technological frontier of semiconductor manufacturing.

The available empirical evidence, on balance, suggests that Moore’s Law-related historical
declines in chip manufacturing cost have clearly been attenuated over the last decade. For chips where
market price data are collected, decline rates in chip prices over time seem to have greatly diminished.
The evidence for exceptionality in Intel microprocessor price declines is shaky, indicative primarily of
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poor quality public data, speculations about Intel pricing behavior, and likely, of omitted variables in
hedonic price models.

A substantial economic literature has connected faster innovation in semiconductor
manufacturing to rapidly improving price-performance for semiconductors, to larger price declines for
information technology, to increased uptake of IT across the economy, and higher rates of labor
productivity growth. If correct, this implies that a slowdown in semiconductor manufacturing innovation,
and attenuation of price declines in both chips and IT, may play an important role in current stagnation
in labor productivity growth.

Finally, it is now almost an article of faith in high tech industry that an expanding cloud of
computing and machine intelligence is in the process of transforming our economy and society. Much of
this faith is built on projection into the future based on past experience with increasingly powerful and
pervasive computing capability that both cost less and used less energy, year after year. The winding
down of Moore’s Law means that the technological scaling that drove these historical declines, and
implicitly underlie the most optimistic assumptions about the spread of ubiquitous computing in the
future, may no longer hold. Both cost and energy use now seem more likely to increase in lockstep with
the scale of cloud computing in the future. Unless there are continuing, significant improvements in
software technology, computing costs—and energy use—are unlikely to decline, or even stay constant
as computing capacity increases, as was true in the past. Investments in entirely new technologies will
be needed, as will a renaissance of creativity and innovation in software, the neglected sibling living in
the shadow cast by Moore’s Law—dramatically cheapening hardware—for the last 50 years.
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Appendix Table Al.

SPEC CPU | Coef. Robust z P>|z| [95% Conf. Interval] N R2 #

Benchmark | CAGR Std. Err. CPUs
_____________ o
1995m5-2000m3
int95 | .5826577 .0175146 33.27 0.000 .5483296 .6169857 152 .92 41
fp95 | .6397016 .0231907 27.58 0.000 .5942486 .6851546 142 .90 41
int95 rate | .6241582 .0273672 22.81 0.000 .5705194 .677797 54 .87 20
fp95 rate | .7227752 .0331 21.84 0.000 .6579003 .7876501 47 .83 18
2000m11-2004ml1l
int2000 | .3304092 .0173773 19.01 0.000 .2963503 .3644681 215 .80 76
fp2000 | .3429411 .023522 14.58 0.000 .2968389 .3890433 203 .81 73
int2000_rate | .4697731 .0512966 9.16 0.000 .3692337 .5703125 160 .77 59
fp2000_rate | .3989549 .0351676 11.34 0.000 .3300276 .4678822 162 84 59
_____________ +___________________________________________________________________________________
2005m2-2007ml
int2000 | .3222474 .016442 19.60 0.000 .2900217 .3544732
fp2000 | .3365855 .022279 15.11 0.000 .2929195 .3802515
int2000_ rate | .4650892 .0475414 9.78 0.000 .3719098 .5582686
fp2000_rate | .3986346 .032545 12.25 0.000 .3348476 .4624217
2005m6-2012ml11
int2006 | .1709304 .0069587 24.56 0.000 .1572916 .1845691 689 .84 254
fp2006 | .2467286 .0077563 31.81 0.000 .2315266 .2619306 690 .87 254
int2006_rate | .2472256 .013015 19.00 0.000 .2217167 .272734 728 .62 278
fp2006_rate | .2537211 .0101781 24.93 0.000 .2337725 .2736698 711 76 261
_____________ o
2013ml1-2016m5
int2006 | .1687175 .0064265 26.25 0.000 .1561218 .1813133
fp2006 | .2414989 .0070952 34.04 0.000 .2275926 .2554053
int2006_rate | .2417978 .0119286 20.27 0.000 .2184181 .2651774
fp2006_rate | .2480768 .0093352 26.57 0.000 .2297801 .2663735

Notes:

intxx and fpxx are SPEC CPU integer and floating point base scores (no special compiler optimizations used) when single instance of benchmark

run on CPU.

intxx_rate and fpxx_rate are SPEC CPU scores with multiple instances of benchmark programs run simultaneously; number of instances is

entirely at discretion of entity running benchmark—may be as high as maximum number of threads, but may also be maximum number of
cores, or any number less than that (on processors with symmetric multithreading capability—Intel version is branded as “hyperthreading” —
additional program execution hardware in a CPU core allows as many as two threads to simultaneously share a single core’s remaining

hardware).

Model estimated was

In(SPEC CPU benchmark) = a + b * monthly date of initial CPU availability in any manufacturer’s computer hardware + ¢ * autoparallelization
indicator + d * time shift indicator x monthly date of initial CPU availability in tested hardware.

where

autoparallelization = 1 if autoparallelization turned on at compile time for 2006 benchmark, 0 otherwise
time shift indicator = 1 if year > 2004 for SPEC 2000 benchmarks, 0 otherwise

=1 if year > 2012 for SPEC 2006 benchmarks, 0 otherwise
Annualized growth rate estimated as exp(b + d* timeshift indicator)*12 -1

Time shift indicators were statistically significant, as were autoparallelization indicators.



Appendix Table A2
Stata Simulation Code for Simulated Hedonic Model With Perfect Collinearity

clear all

set
set
gen
gen
gen
gen
tab
tab
tab

gen
gen

gen
* =

*

obs 10000000
seed 3492673
arch dum = round(runiform())
time =round (runiform())
clock rate = 1000+500*round (runiform()) +500*time
turbo = round(runiform())
arch dum time
clock rate time
turbo time

speed = clock rate + 500*arch dum + 200*turbo

mfg _cost = 50 + 2* clock rate + 2000* turbo + 500*arch_dum -10 * time
p= 100 + 2 *speed + mfg cost + 1000*runiform()

600 + 2 *speed + mfg cost + mean zero uniform disturbance

= 650 + 4* clock rate + 1500 archdum + 22* turbo -10 * time //drop speed

corr time turbo arch dum clock rate speed
regress p speed time clock rate arch dum
estimates store drop turbo

regress p speed time arch dum turbo
estimates store drop_clock

regress p speed time clock rate turbo
estimates store drop arch

regress p time clock rate arch dum turbo
estimates store drop speed

* with misspecification

regress p speed time

estimates store speed only

regress p speed time turbo

estimates store speed turbo

regress p speed time arch dum

estimates store speed arch

regress p speed time clock rate

estimates store speed clock

esttab drop_ speed drop_turbo drop clock drop arch speed only , se r2 star



Appendix Table A.3

Date
January-96
February-96
May-96
June-96
August-96
November-96
February-97
May-97
August-97
November-97
February-98
May-98
June-98
July-98
August-98
September-98
October-98
November-98
December-98
January-99
February-99
March-99
April-99
May-99
June-99
July-99
August-99
September-99
October-99
December-99
January-00
February-00
March-00
April-00
May-00
June-00
July-00
August-00
October-00
November-00
December-00
January-01
March-01
April-01
May-01
June-01
July-01
August-01
September-01
October-01
November-01
December-01
January-02
February-02
March-02
April-02
May-02
June-02
July-02
August-02
September-02
October-02
November-02
December-02
January-03
February-03
March-03
April-03
May-03
June-03
July-03
August-03
September-03
October-03
November-03
December-03
January-04
February-04
March-04
April-04
May-04
June-04
July-04
August-04
September-04
October-04
November-04
December-04
January-05
February-05
March-05
April-05
May-05
June-05
July-05
August-05
September-05
October-05

Jevons
Matched
Model

Intel List
196383.56
159569.90
129798.20
132226.40
112359.33
112359.33
84382.60
64371.61
39060.86
32751.36
28491.35
23179.48
18954.30
15152.91
15152.91
13352.15
11403.35
11331.73
10514.36
9878.41
8111.81
8088.11
6943.28
5964.09
5694.12
5411.72
4582.74
4076.54
3749.09
3693.52
3552.64
2518.33
2518.33
2120.15
1775.42
1759.27
1627.95
1382.75
1235.76
1079.50
1051.38
918.65
866.15
766.52
687.62
687.62
678.95
595.44
549.37
524.04

482.80
478.88
478.88
401.62
401.62
381.46
339.33

339.33

204.88

204.88
182.28

172.62

148.35
144.53

133.83

112.91

112.91
112.91
112.91

100.00

100.00

100.00
100.00
96.84
96.84

96.84
96.84
95.66
90.92
90.92

Hedonic
Intel List
w/TDP

28349.97
24872.67
24872.67
16480.79
13411.71
10616.32
10555.94
8955.80
8006.00
7696.46
7295.62
5928.07
4954.04
4418.23
4260.07
3998.98
2798.82
2807.36
2355.55
1982.94
1847.23
1710.10
1460.25
1301.81
1137.71
1108.52
969.08
906.17
793.57
710.82
709.58
721.34
616.80
553.45
519.80

479.26
470.72
470.95
384.38
379.62
349.44
314.99

317.17

208.53

208.63
185.78

167.50

141.66
138.15

126.95

108.68

108.89
109.02
112.39

100.44

100.37

99.95
100.00
98.27
98.30

98.54
95.26
92.93
88.38
88.42

Hedonic

Intel List

w/o TDP
232447.02
191462.78
150059.80
143241.33
131195.84
131486.64
99329.64
76736.96
46984.07
39463.75
34435.32
28976.31
23740.89
18823.58
18830.84
16362.79
13991.48
13761.40
12793.36
11784.04
9459.32
9433.53
8040.34
6988.77
6682.05
6361.84
5268.22
4694.43
4322.18
4219.85
4016.25
2840.01
2849.88
2400.74
2031.68
1882.56
1742.91
1486.94
1327.46
1160.14
1130.41
987.77
923.62
808.82
724.23
722.75
734.86
625.27
559.49
522.31

481.76
472.45
472.81
384.60
379.83
346.87
311.33

310.47

206.03

206.16
183.61

164.64

136.97
133.61

123.19

108.94

110.06
110.26
113.36

99.93

100.52

99.94
100.00
98.42
98.46

98.68
95.46
93.62
89.05
89.11

Chained Price Indexes

Jevons
Composite Matched

Hedonic  Model
Intel List  Retail

231447.62
190639.58
149414.61
142625.47
130631.77
130921.31
98902.57
76407.03
46782.06
39294.07
34287.27
28851.73
23638.82
18742.65
18749.88
16292.44
13931.32
13702.23
12738.35
11733.37
9418.65
9392.97
8005.77
6958.72
6653.32
6334.49
5245.57
4674.25
4303.59
4201.70
3998.98
2798.82
2807.36
2355.55
1982.94
1847.23
1710.10
1460.25
1301.81
1137.71
1108.52
969.08
906.17
793.57
710.82
709.58
721.34
616.80
553.45

519.80 297.08

304.24

479.26 291.62

470.72 286.75

470.95 270.88

384.38 268.82

379.62 254.87

349.44 247.15

314.99 222.93

213.61

201.82

317.17 178.12

174.96

208.53 167.25

161.35

208.63 158.85

185.78 156.96

149.93

167.50 145.13

140.15

136.78

141.66 137.66

138.15 137.03

136.13

126.95 128.82

117.26

117.41

117.39

108.68 112.79

113.34

108.89 113.26

109.02 109.86

112.39 108.52

109.25

100.44 107.86

101.70

100.37 99.24

99.70

99.95 99.59

100.00 100.00

98.27 100.40

98.30 99.31

99.15

98.54 99.00

95.26 97.40

92.93 96.01

88.38 91.72

88.42 90.16

89.56

Hedonic
Retail Date
November-05
December-05
January-06
February-06
March-06
April-06
May-06
June-06
July-06
August-06
September-06
October-06
November-06
December-06
January-07
February-07
March-07
April-07
May-07
June-07
July-07
August-07
September-07
October-07
November-07
December-07
January-08
February-08
March-08
April-08
May-08
June-08
July-08
August-08
September-08
October-08
November-08
December-08
January-09
February-09
March-09
April-09
May-09
June-09
July-09
August-09
September-09
October-09
November-09
December-09
310.65 January-10
303.23 February-10
297.98 March-10
278.13 April-10
269.14 May-10
252.82 June-10
239.21 July-10
211.45 August-10
197.87 September-10
185.72 October-10
165.45 November-10
163.73 December-10
158.28 January-11
154.59 February-11
153.42 March-11
150.71 April-11
143.22 May-11
138.08 June-11
131.24 July-11
123.30 September-11
122.50 October-11
123.68 November-11
121.44 December-11
113.45 January-12
102.81 February-12
104.27 March-12
104.00 April-12
99.37 May-12
100.94 June-12
100.56 July-12
97.81 September-12
99.62 October-12
102.80 November-12
102.06 December-12
94.38 January-13
93.23 April-13
96.37 May-13
97.14 June-13
100.00 September-13
103.38 November-13
100.94 January-14
100.96 February-14
100.26 March-14
101.43 April-14
99.96 May-14
95.69 June-14
93.78 July-14
92.30

Jevons

Matched Hedonic

Model Intel List

Intel List w/TDP
90.92 89.80
90.92 89.52
75.21 71.79
74.09 72.58
62.14 60.99
60.06 58.53
59.74 57.36
59.74 57.46
45.37 42.79
42.07 39.24
39.31 36.72
39.13 36.12
37.57 34.29
37.09 33.60
36.58 31.48
36.58 31.50
36.39 31.41
36.13 30.95
34.16 28.70
33.15 27.18
32.24 26.95
32.19 26.92
31.56 25.68
31.56 25.60
31.56 25.41
29.23 24.19
29.23 23.82
29.23 23.86
28.59 23.11
28.59 23.10
28.59 22.84
27.33 21.18
27.33 21.11
27.33 21.25
27.27 20.90
27.27 20.91
27.10 20.61
26.97 20.39
26.97 20.09
26.97 20.11
26.97 19.96
26.97 19.97
26.35 19.27
26.35 19.03
26.35 18.92
25.98 18.66
25.98 18.62
25.98 18.63
25.51 18.43
25.51 18.45
25.51 18.46
25.51 18.51
25.51 18.19
25.51 18.20
25.37 17.99
25.18 17.87
25.18 17.70
25.18 17.79
25.18 17.83
25.18 17.60
24.98 17.47
24.98 17.47
24.98 17.48
24.79 17.32
24.79 17.32
24.61 17.28
24.56 17.06
24.56 17.14
24.56 17.15
24.53 16.94
24.48 16.92
24.50 16.94
24.26 16.73
24.13 16.57
24.13 16.53
24.01 16.42
24.01 16.42
24.01 16.43
23.96 16.18
23.91 16.17
23.93 16.18
23.85 16.36

Hedonic
Intel List
w/o TDP

89.21
88.78

70.46

71.32
59.36

57.14
56.22
56.36
39.79

36.59
34.25
33.70
31.81

31.17
28.66
28.72

27.45

27.94
25.22

23.56
22.40
22.42
20.81
20.66
21.14
18.92
18.58
18.61
17.95
17.95
17.73
16.39
16.35
16.50
16.22
16.23

16.00
15.82
15.59
15.61
15.51
15.52
14.99
14.82
14.74
14.54
14.51

14.52
14.37
14.39
14.39
14.39
14.19
14.20
14.07
13.98
13.87
13.83
13.83
13.66
13.55
13.56
13.56
13.52
13.52
13.50
13.37
13.44
13.44
13.25
13.24
13.26
13.19
13.14
13.12
13.03
13.03
13.04
12.92
12.86
12.87
13.05

Jevons
Composite Matched

Hedonic Model
Intel List Retail

89.20

89.80 89.72

89.52 89.98
86.42
83.70

71.79 81.47
72.00

72.58 69.19

60.99 66.88
64.06
63.26

58.53 62.21

57.36 62.36

57.46 61.08

42.79 60.04
59.27
57.38

39.24 54.96

36.72 52.40

36.12 51.30

34.29 50.52
49.20

33.60

31.48 48.63

31.50 48.39
48.80

31.41 48.74
48.55

30.95 48.11

28.70 45.97
43.16
42.79

27.18 42.01

26.95 40.91

26.92 40.51

25.68 40.80

25.60 40.41

25.41 40.06

24.19 39.24

23.82 37.49

23.86 37.36

23.11 37.17

23.10 37.01

22.84 36.21

21.18 35.68

21.11 34.70

21.25 34.80

20.90 34.59

20.91 34.15
34.06

20.61 33.10

20.39 34.83

20.09 34.85

20.11 34.18

19.96 34.13

19.97 33.96

19.27 33.77

19.03 33.08

18.92 32.10

18.66 31.75

18.62 31.51
31.24

18.63

18.43

18.45

18.46

18.51

18.19

18.20

17.99

17.87

17.70

17.79

17.83

17.60

17.47

17.47

17.48

17.32

17.32

17.28

17.06

17.14

17.15

16.94

16.92

16.94

16.73

16.57

16.53

16.42

16.42

16.43

16.18

16.17

16.18

16.36

Hedonic
Retail
91.89
89.96
90.81
86.93
84.67
81.55
72.80
70.00
68.78
68.22
68.48
68.03
66.54
65.09
64.27
65.26
63.25
61.28
58.14
55.86
55.51
55.51

55.04
54.96
55.63
54.64
53.17
52.71
50.78
48.37
48.10
47.09
47.14
46.80
47.24
47.95
47.62
46.60
45.23
46.09
45.58
44.99
42.45
41.25
39.74
39.82
39.61
39.64
39.18
36.67
38.81
38.46
38.11
37.70
37.84
37.65
36.75
35.69
34.91
33.93
33.65



Appendix Table A.4 Regression Summary Statistics, Estimated Time Dummy Coefficients, and Price Relatives
Intel List Price Hedonic Model without TDP

month time
ending

1996m2 -0.195
1996m5 -0.249
1996m6 -0.061
1996m8 -0.099
1996m11 0.000
1997m2  -0.286
1997m5 -0.271
1997m8 -0.500
1997m11 -0.176
1998m2 -0.139
1998m5 -0.176
1998m6  -0.200
1998m7 -0.233
1998m8 0.000
1998m9 -0.141
1998m10 -0.158
1998m11 -0.018
1998m12 -0.075
1999m1 -0.084
1999m2 -0.221
1999m3  -0.003
1999m4  -0.160
1999m5 -0.141
1999m6 -0.046
1999m7 -0.051
1999m8 -0.191
1999m9 -0.117
1999m10 -0.084
1999m12 -0.024
2000m1 -0.050
2000m2  -0.348
2000m3 0.003
2000m4  -0.172
2000m5 -0.168
2000m6 -0.078
2000m7 -0.078
2000m8 -0.160
2000m10 -0.114
2000m11 -0.135
2000m12 -0.026
2001m1 -0.135
2001m3 -0.067
2001m4 -0.133
2001m5 -0.111
2001m6 -0.002
2001m7 0.016
2001m8 -0.162
2001m9 -0.112
2001m10 -0.070
2001m12 -0.082
2002m1 -0.020
2002m2 0.000
2002m3  -0.208
2002m4 -0.013
2002m5  -0.092
2002m6  -0.109
2002m9  -0.004
2002m11 -0.416
2003m1 0.000
2003m2 -0.117
2003m4 -0.111
2003m7 -0.186
2003m8 -0.026
2003m10 -0.082
2004m2 -0.125
2004m4 0.009
2004m5 0.000
2004m6 0.026
2004m8 -0.127
2004m10 0.005
2004m12 -0.006
2005m1 0.000
2005m2 -0.016
2005m3 0.000
2005m5 0.002
2005m6 -0.034
2005m7 -0.020
2005m8 -0.051
2005m9 0.000

2005m12 0.000

std

0.04
0.09
0.17
0.14
0.07
0.09
0.14
0.10
0.05
0.07
0.08
0.03
0.03
0.03
0.04
0.05
0.04
0.06
0.05
0.04
0.02
0.03
0.05
0.05
0.06
0.07
0.06
0.05
0.03
0.03
0.04
0.03
0.03
0.05
0.05
0.03
0.04
0.03
0.03
0.03
0.03
0.02
0.03
0.03
0.02
0.03
0.04
0.04
0.05
0.05
0.04
0.04
0.05
0.03
0.04
0.05
0.05
0.09
0.03
0.04
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.06
0.05
0.04
0.04
0.03
0.03
0.03
0.03
0.04
0.04
0.04
0.04
0.04

degs
of
free

dummy error dom

© O UNNDN

t-
statistic

-4.43
-2.68
-0.37
-0.70
0.00
-3.04
-1.94
-4.78
-3.25
-1.91
-2.21
-7.48
-6.79
0.00
-3.61
-3.47
-0.40
-1.25
-1.65
-6.28
-0.15
-5.70
-3.03
-0.88
-0.88
-2.84
-2.11
-1.85
-0.82
-1.58
-8.95
0.12
-5.39
-3.63
-1.59
-2.57
-4.31
-3.76
-4.76
-0.91
-4.52
-2.89
-4.34
-3.88
-0.10
0.49
-4.06
-2.85
-1.50
-1.78
-0.49
0.00
-3.80
-0.39
-2.28
-2.37
-0.08
-4.67
0.00
-2.75
-2.09
-3.40
-0.53
-1.76
-2.10
0.15
0.00
0.47
-2.77
0.14
-0.18
0.00
-0.53
0.00
0.07
-0.83
-0.48
-1.32
0.00
0.01

p value
0.05
0.06
0.75
0.56
1.00
0.02
0.09
0.00
0.01
0.08
0.05
0.00
0.00
1.00
0.00
0.00
0.69
0.23
0.12
0.00
0.88
0.00
0.01
0.39
0.39
0.01
0.05
0.08
0.42
0.12
0.00
0.91
0.00
0.00
0.12
0.01
0.00
0.00
0.00
0.37
0.00
0.01
0.00
0.00
0.92
0.63
0.00
0.01
0.14
0.08
0.63
1.00
0.00
0.70
0.03
0.02
0.94
0.00
1.00
0.01
0.05
0.00
0.60
0.09
0.04
0.89
1.00
0.64
0.01
0.89
0.86
1.00
0.60
1.00
0.95
0.41
0.63
0.19
1.00
0.99

num
obs

(o R R V)]

13
16
16
20
20
19
22
26
27
26
25
22
24
25
24
25
27
28
28
26
25
33
42
45
38
45
60
62
61
58
59
59
58
60
63
60
54
50
47
50
60
71
77
78
82
86
67
48
53
56
55
43
30
30
28
29
32
34
41
44
42
52
67
77
83
84
82
85
84
90
99
98
98
89

number
arch
fixed
effects

NNNWWNNNNNNNNNNNRRRPEPRRPREAEDDEDDDEDDEWWWWNNNNNOGWWGWWWWWWWWDEDDEDEDWWWWWWWDEDEWDDDEDDREWWEDWWWNRRERERPRE

r2
total
0.99
0.91
0.94
0.97
0.95
0.93
0.95
0.96
0.99
0.98
0.98
0.99
0.99
0.99
0.98
0.97
0.98
0.97
0.98
0.99
1.00
0.99
0.97
0.96
0.95
0.95
0.96
0.98
0.99
0.98
0.98
0.99
0.97
0.94
0.94
0.97
0.96
0.97
0.97
0.97
0.96
0.97
0.95
0.96
0.97
0.95
0.95
0.93
0.88
0.86
0.89
0.90
0.87
0.95
0.95
0.92
0.92
0.92
0.98
0.97
0.96
0.96
0.96
0.96
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.96
0.97
0.98
0.98
0.96
0.94
0.94
0.95
0.95

r2
within
0.99
0.91
0.94
0.97
0.95
0.93
0.83
0.78
0.75
0.57
0.64
0.96
0.92
0.92
0.89
0.91
0.92
0.89
0.94
0.97
0.99
0.97
0.90
0.84
0.78
0.78
0.87
0.89
0.92
0.92
0.93
0.97
0.95
0.90
0.90
0.96
0.94
0.96
0.95
0.94
0.93
0.95
0.92
0.93
0.96
0.92
0.91
0.88
0.82
0.78
0.77
0.76
0.72
0.83
0.85
0.83
0.82
0.90
0.98
0.97
0.96
0.96
0.96
0.96
0.95
0.94
0.95
0.95
0.95
0.95
0.95
0.96
0.97
0.98
0.98
0.95
0.94
0.93
0.94
0.94

bias- percent
corrected change
price from prev
relative  observation
0.82 -17.63
0.78 -21.62
0.95 -4.54
0.92 -8.41
1.00 0.22
0.76 -24.46
0.77 -22.75
0.61 -38.77
0.84 -16.01
0.87 -12.74
0.84 -15.85
0.82 -18.07
0.79 -20.71
1.00 0.04
0.87 -13.11
0.86 -14.49
0.98 -1.64
0.93 -7.03
0.92 -7.89
0.80 -19.73
1.00 -0.27
0.85 -14.77
0.87 -13.08
0.96 -4.39
0.95 -4.79
0.83 -17.19
0.89 -10.89
0.92 -7.93
0.98 -2.37
0.95 -4.82
0.71 -29.29
1.00 0.35
0.84 -15.76
0.85 -15.37
0.93 -7.34
0.93 -7.42
0.85 -14.69
0.89 -10.73
0.87 -12.60
0.97 -2.56
0.87 -12.62
0.94 -6.49
0.88 -12.43
0.90 -10.46
1.00 -0.20
1.02 1.68
0.85 -14.91
0.89 -10.52
0.93 -6.64
0.92 -7.76
0.98 -1.93
1.00 0.08
0.81 -18.66
0.99 -1.24
0.91 -8.68
0.90 -10.25
1.00 -0.28
0.66 -33.64
1.00 0.06
0.89 -10.94
0.90 -10.33
0.83 -16.80
0.98 -2.45
0.92 -7.80
0.88 -11.57
1.01 1.03
1.00 0.18
1.03 2.81
0.88 -11.85
1.01 0.59
0.99 -0.57
1.00 0.06
0.98 -1.58
1.00 0.04
1.00 0.23
0.97 -3.26
0.98 -1.93
0.95 -4.88
1.00 0.07
1.00 0.12

month time
ending dummy
2006m1 -0.006
2006m4  -0.232
2006m6 0.011
2006m7 -0.185
2006m10 -0.040
2006m11 -0.019
2006m12 0.000
2007m1 -0.353
2007m4  -0.085
2007m5 -0.068
2007m6 -0.018
2007m7 -0.060
2007m9  -0.022
2007m10 -0.087
2007m11 0.000
2008m1 -0.048
2008m3 0.016
2008m4  -0.105
2008m7 -0.071
2008m8 -0.053
2008m9  -0.001
2008m10 -0.077
2008m11 -0.009
2008m12 0.021
2009m1 -0.114
2009m2 -0.020
2009m3 0.000
2009m4  -0.038
2009m5 -0.001
2009m6 -0.014
2009m7 -0.079
2009m8 -0.003
2009m9 0.009
2009m10 -0.017
2009m11 0.000
2010m1 -0.015
2010m2 -0.012
2010m3  -0.015
2010m4 0.001
2010m5  -0.007
2010m6 0.000
2010m7 -0.035
2010m8 -0.012
2010m9  -0.006
2010m10 -0.014
2010m11 -0.002
2011m1 0.000
2011m2 -0.011
2011m3 0.000
2011m4 0.000
2011m5 -0.001
2011m6 -0.015
2011m7 0.000
2011m9  -0.009
2011m10 -0.007
2011m11 -0.009
2011m12 -0.003
2012m1 0.000
2012m2 -0.013
2012m3  -0.008
2012m4 0.000
2012m5 0.000
2012m6  -0.004
2012m7 0.000
2012m9  -0.001
2012m10 -0.010
2012m11 0.005
2012m12 0.000
2013m1 -0.015
2013m4  -0.001
2013m5 0.001
2013m6  -0.006
2013m9  -0.004
2013m11 -0.002
2014m1 -0.007
2014m2 0.000
2014m3 0.000
2014m4  -0.009
2014m5 -0.005
2014m6 0.001
2014m7 0.013

degs
of
free
dom
78
77
68
78
88
69
52
48
45
45
46
55
63
50
39
48
61
61
56
61
68
62
60
58
53
53
49
50
52
57
58
56
60
64
63
74
87
80
73
78
83
83
87
88
85

std
error
0.04
0.04
0.04
0.05
0.06
0.07
0.07
0.08
0.05
0.05
0.06
0.06
0.06
0.07
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.06
0.06
0.06
0.05
0.05
0.04
0.03
0.03
0.03
0.03
0.04
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.04
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02 142

t-
statisti
c
-0.14
-5.31
0.30
-3.39
-0.70
-0.26
0.00
-4.19
-1.76
-1.28
-0.30
-0.96
-0.36
-1.19
0.00
-0.69
0.23
-1.45
-1.02
-0.77
-0.02
-1.10
-0.14
0.32
-1.71
-0.33
0.00
-0.66
-0.02
-0.27
-1.89
-0.12
0.32
-0.59
0.00
-0.40
-0.35
-0.42
0.02
-0.20
0.00
-0.97
-0.34
-0.18
-0.41
-0.07
0.00
-0.34
0.01
0.00
-0.02
-0.42
0.00
-0.28
-0.23
-0.23
-0.11
0.00
-0.44
-0.26
0.00
0.00
-0.16
0.00
-0.06
-0.49
0.21
0.00
-0.61
-0.03
0.02
-0.19
-0.15
-0.07
-0.31
0.00
0.00
-0.44
-0.26
0.04
0.67

num

number
arch
fixed

pvalue obs effects

0.89
0.00
0.76
0.00
0.48
0.79
1.00
0.00
0.09
0.21
0.76
0.34
0.72
0.24
1.00
0.50
0.82
0.15
0.31
0.45
0.98
0.28
0.89
0.75
0.09
0.74
1.00
0.51
0.98
0.79
0.06
0.90
0.75
0.56
1.00
0.69
0.73
0.68
0.98
0.84
1.00
0.34
0.74
0.86
0.68
0.94
1.00
0.73
0.99
1.00
0.98
0.67
1.00
0.78
0.82
0.82
0.91
1.00
0.66
0.80
1.00
1.00
0.87
1.00
0.95
0.62
0.83
1.00
0.54
0.98
0.98
0.85
0.88
0.95
0.76
1.00
1.00
0.66
0.79
0.97
0.51

90
89
80
91
101
82
64
61
57
56
57
67
75
61
48
59
72
71
66
71
78
72
72
70
65
65
60
61
63
68
69
67
73
77
76
88
101
94
87
91
96
96
100
101
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r2
total
0.95
0.95
0.97
0.93
0.92
0.91
0.92
0.91
0.97
0.97
0.96
0.95
0.93
0.93
0.95
0.93
0.92
0.92
0.93
0.93
0.92
0.92
0.93
0.94
0.94
0.94
0.95
0.95
0.95
0.96
0.97
0.99
0.98
0.98
0.98
0.96
0.96
0.96
0.96
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.94
0.94
0.94
0.94
0.94
0.94
0.95
0.95
0.96
0.98
0.98
0.98
0.97
0.97
0.97
0.97
0.98
0.98
0.98
0.98
0.98
0.97
0.97
0.96
0.96
0.96
0.96
0.96
0.97
0.97
0.97
0.97
0.97
0.97

r2
within
0.94
0.93
0.96
0.91
0.88
0.89
0.89
0.83
0.87
0.83
0.88
0.86
0.84
0.85
0.89
0.84
0.78
0.77
0.79
0.78
0.77
0.77
0.79
0.79
0.75
0.76
0.80
0.81
0.82
0.82
0.84
0.92
0.92
0.91
0.90
0.84
0.83
0.84
0.86
0.85
0.84
0.83
0.82
0.82
0.83
0.83
0.83
0.81
0.81
0.80
0.83
0.84
0.83
0.87
0.89
0.92
0.96
0.97
0.97
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.94
0.93
0.94
0.94
0.93
0.92
0.93
0.93
0.93
0.94
0.94
0.95
0.95
0.95
0.94

bias-
corrected
price
relative
1.00
0.79
1.01
0.83
0.96
0.98
1.00
0.71
0.92
0.94
0.98
0.94
0.98
0.92
1.00
0.96
1.02
0.90
0.93
0.95
1.00
0.93
0.99
1.02
0.89
0.98
1.00
0.96
1.00
0.99
0.92
1.00
1.01
0.98
1.00
0.99
0.99
0.99
1.00
0.99
1.00
0.97
0.99
0.99
0.99
1.00
1.00
0.99
1.00
1.00
1.00
0.99
1.00
0.99
0.99
0.99
1.00
1.00
0.99
0.99
1.00
1.00
1.00
1.00
1.00
0.99
1.01
1.00
0.99
1.00
1.00
0.99
1.00
1.00
0.99
1.00
1.00
0.99
1.00
1.00
1.01

percent
change
from prev
observation
-0.48
-20.64
1.21
-16.77
-3.73
-1.62
0.25
-29.40
-8.03
-6.41
-1.60
-5.61
-2.00
-8.05
0.19
-4.42
1.81
-9.74
-6.59
-4.92
0.07
-7.17
-0.72
2.35
-10.53
-1.80
0.17
-3.56
0.02
-1.24
-7.51
-0.27
0.90
-1.68
0.05
-1.41
-1.11
-1.46
0.15
-0.67
0.06
-3.40
-1.13
-0.57
-1.35
-0.19
0.06
-1.01
0.09
0.05
-0.02
-1.39
0.06
-0.88
-0.64
-0.84
-0.29
0.03
-1.26
-0.76
0.04
0.03
-0.35
0.02
-0.11
-1.00
0.53
0.03
-1.45
-0.04
0.15
-0.58
-0.36
-0.13
-0.68
0.02
0.02
-0.88
-0.50
0.09
1.38



Appendix Table A.5 Other Estimated Regression Coefficients, Intel List Price Hedonic Model without TDP

period
ending
1996m2
1996m5
1996m6
1996m8
1996m11
1997m2
1997m5
1997m8
1997m11
1998m2
1998m5
1998m6
1998m7
1998m8
1998m9
1998m10
1998m11
1998m12
1999m1
1999m2
1999m3
1999m4
1999m5
1999m6
1999m7
1999m8
1999m9
1999m10
1999m12
2000m1
2000m2
2000m3
2000m4
2000m5
2000m6
2000m7
2000m8
2000m10
2000m11
2000m12
2001m1
2001m3
2001m4
2001m5
2001m6
2001m7
2001m8
2001m9
2001m10
2001m12
2002m1
2002m2
2002m3
2002m4
2002m5
2002m6
2002m9
2002m11
2003m1
2003m2
2003m4
2003m7
2003m8
2003m10
2004m2
2004m4
2004m5
2004m6
2004m38
2004m10
2004m12
2005m1
2005m2
2005m3
2005m5
2005m6
2005m7
2005m8
2005m9
2005m12

Iproc

3.06
2.25
2.03
2.28
2.28
2.84
2.83
1.72
1.04
1.10
1.60
2.45
1.97
1.63
2.15
3.03
3.32
3.47
3.34
3.54
3.75
3.46
3.04
2.73
2.47
2.74
3.53
3.22
2.88
3.02
3.09
2.92
2.91
2.71
2.97
3.72
3.21
2.88
2.49
2.26
1.83
1.47
1.35
1.17
1.09
1.39
2.03
2.55
2.35
1.88
1.58
1.46
1.68
2.68
2.02
1.68
1.52
2.01
2.75
2.75
2.97
3.24
3.19
2.83
2.54
2.64
2.65
3.07
2.83
2.49
2.89
3.34
3.25
3.24
3.40
3.88
3.93
3.71
3.64
3.72

Imaxmhz lbw

-0.33
0.03
0.24
0.45
0.64
0.55
0.32
0.18
0.11
0.13
0.06

-0.02
-0.07
-0.22
-0.21
-0.03
0.01
0.00
0.07
0.01
-0.31
-0.27
-0.26
-0.11
0.02
0.15
0.20
0.22
0.18
0.05
-0.02
-0.29
-0.54
-0.30
-0.10
0.03
0.13
0.57
1.95
1.75
1.78
1.87
1.07
-0.01
0.04
0.06
0.26
0.10
0.11
-0.19
-0.37
-0.31
-0.31
-0.31
-0.30
-0.18
-0.07
-0.09
-0.13
-0.21
-0.63
-0.45
1.07
1.80
1.78

Icores ht

0.39
0.38
0.43
0.24
0.09
0.17
0.17
0.17
0.03
-0.07
-0.15
-0.31
-0.44
-0.52
-0.59
-0.65
-0.73
-0.70
-0.29
-0.06
0.40
0.45
0.45

Icache

0.45
0.62
0.76
0.56
0.48
0.66
0.79
0.70
0.65
0.58
0.56
0.61
0.82
1.04
1.06
1.19
1.32
1.30
1.15
1.00
0.97
0.84

0.60
0.53
0.45
0.37
0.35
0.28
0.22
0.30
0.40
0.44
0.53
0.62
0.65
0.64
0.73
0.81
0.79
0.78
0.84
0.92
0.91
0.79
0.60
-0.14
-0.37
-0.36

: microarchitecture enters or exits sample
: non-zero values for indicator vars, Icores; Imaxmhz different from Iproc

0.33
0.32
0.13
0.04
0.06
0.06
0.06

eme64t eist vt

-0.68
-0.69
-0.46
-0.23
0.11
0.12
0.11 0.20

period
ending
2006m1
2006m4
2006m6
2006m7
2006m10
2006m11
2006m12
2007m1
2007m4
2007m5
2007m6
2007m7
2007m9
2007m10
2007m11
2008m1
2008m3
2008m4
2008m7
2008m8
2008m9
2008m10
2008m11
2008m12
2009m1
2009m?2
2009m3
2009m4
2009m5
2009m6
2009m7
2009m8
2009m9
2009m10
2009m11
2010m1
2010m2
2010m3
2010m4
2010m5
2010m6
2010m7
2010m8
2010m9
2010m10
2010m11
2011m1
2011m2
2011m3
2011m4
2011m5
2011mé6
2011m7
2011m9
2011m10
2011m11
2011m12
2012m1
2012m2
2012m3
2012m4
2012m5
2012mé6
2012m7
2012m9
2012m10
2012m11
2012m12
2013m1
2013m4
2013m5
2013m6
2013m9
2013m11
2014m1
2014m2
2014m3
2014m4
2014m5
2014m6
2014m7

Iproc
3.83
3.58
3.34
3.31
3.44
3.76
4.36
4.40
3.32
3.45
3.37
3.26
3.18
2.74
2.19
1.95
1.79
1.86
2.09
2.09
2.13
2.29

45.56
45.42
47.44
46.86
36.71
35.59
33.83
32.67
38.24
46.47
50.41
43.63
36.44
0.48
0.38
0.54
0.77
0.63
0.44
-0.10
-0.81
-1.23
-1.58
-1.72
-0.94
-0.76
-0.79
-0.79
-0.84
-0.86
-0.75
-0.72
-0.69
-0.65
-0.51
-0.48
-0.52
-0.57
-0.47
-0.40
-0.47
-0.52
-0.44
-0.47
-0.56
-0.56
-0.60
-0.51
-0.28
-0.34
-0.39
-0.42
-0.47
-0.52
-0.47
-0.43
-0.42
-0.42
-0.35

Imaxmhz

-43.10
-42.95
-45.20
-44.55
-33.26
-32.01
-30.06
-29.19
-35.59
-44.70
-48.76
-41.83
-34.38
2.40
2.51
2.54
2.72
2.85
2.93
3.43
3.91
3.90
3.94
4.00
3.16
2.56
2.36
2.36
2.28
2.23
2.48
2.21
1.96
1.63
1.06
1.11
1.06
1.13
1.17
1.13
1.24
1.31
1.04
1.01
1.15
1.14
1.27
1.32
1.35
1.42
1.47
1.48
1.57
1.65
1.57
1.40
1.29
1.24
1.05

lbw
1.40
1.49
4.17
1.45
1.27
1.34
1.88
1.64
0.16
0.53
0.63
-2.34
-2.22
-1.71
-1.00
-0.61
0.14
0.44
1.13
1.36
1.17
1.04
0.78
0.74
1.18
1.45
1.42
1.37
1.32
1.30
1.23
1.12
1.00
0.91
0.91
0.74
0.72
0.62
0.26
0.20
0.16
0.21
0.31
0.36
0.48
0.60
0.66
0.74
0.78
0.77
0.73
0.57
0.07
0.20
0.29
0.44
0.91
0.97
1.10
1.08
1.11
1.15
1.12
1.09
1.23
1.18
1.06
1.05
0.81
0.61

0.93
0.88
0.82
0.89
0.92
0.92
0.93
0.94
0.94
1.15

Icores ht

1.08
1.06
0.92
0.84
0.87
0.53
0.40
0.32
0.33
0.34
0.32
0.28
0.15
0.10
0.11
0.06
-0.15
-0.18
-0.22
-0.25
-0.22
-0.13
-0.10
-0.15
-0.27
-0.44
-0.44
-0.49

-0.11
-0.05
-0.06
0.00
0.04
0.34
0.30
0.31
0.32
0.23
0.25
0.46
0.56
0.56
0.58
0.51
0.46
0.50
0.45
0.37
0.37
0.36
0.45
0.74
0.68
0.55
0.49
0.42
0.37
0.39
0.43
0.42
0.40
0.57

0.36
0.47
0.01
0.96
1.06
0.93
0.60
0.53
0.42
0.43
0.30
1.60
1.53
1.30

1.76
1.58
1.38
0.21
0.13
0.12
0.10
0.10
0.12
0.10
0.08
0.12
0.13
0.13
0.14
0.18
0.20
0.20
0.23
0.24
0.26
0.29
0.32
0.34
0.33
0.32
0.36
0.38
0.35
0.33
0.34
0.34
0.35
0.36
0.36
0.36
0.38
0.40
0.42
0.38
0.35
0.34
0.32
0.31
0.32
0.33
0.33
0.33
0.35

Color-Coding for Entry and Exit of Characteristics/Microarchitectures from Sample

int

Icache graph

-0.19
-0.15
-0.42
-0.36
-0.39
-0.35
-0.37
-0.38
-0.01
-0.09
-0.03
-0.08
-0.05
-0.05
-0.08
0.18
0.24
0.27
0.21
0.20
0.22
0.20
0.24
0.32
0.35
0.21
0.06
0.10
0.11
0.16
0.25
0.33
0.33
0.30
0.27
0.20
0.22
0.23
0.28
0.29
0.32
0.32
0.35
0.38
0.40
0.40
0.39
0.41
0.42
0.43
0.44
0.46
0.15
0.27
0.35
0.44
0.63
0.60
0.46
0.39
0.36
0.34
0.37
0.40
0.43
0.49
0.53
0.54
0.57
0.52
0.29
0.31
0.40
0.45
0.50
0.52
0.52
0.53
0.56
0.59
0.48

blank: indicates variable dropped as perfectly collinear

-0.09
-0.08
-0.08
-0.08
-0.08
-0.06

0.06

0.01
-0.02
-0.05

-0.06
-0.05
-0.06
-0.04
-0.03
-0.04
-0.06
-0.05
-0.04
-0.02
-0.02
-0.05
-0.05
-0.03
-0.03
-0.05
-0.05

em64t
0.04
0.04
0.01
-0.08
-0.17
-0.21

eist
0.03
0.10
0.30
0.39
0.53
0.56
0.53
0.34

-0.21

-0.56
-0.57
-0.56
-0.53
-0.56
-0.56
-0.59
-0.62
-0.63
-0.64
-0.65
-0.63
-0.63

vt
0.17
0.05
-0.12
0.14
0.29
0.29

-0.87

0.96

0.99

0.97

0.85

0.49

0.23

0.05
-0.34
-0.41
-0.34
-0.26
-0.19
-0.23
-0.26
-0.22
-0.29
-0.33
-0.35
-0.34
-0.27
-0.19
-0.15
-0.13
-0.15
-0.21
-0.22
-0.19
-0.08
-0.09
-0.09
-0.09
-0.11
-0.10
-0.10
-0.13
-0.14
-0.11
-0.10
-0.12
-0.11
-0.14



Appendix Table A.6 Regression Summary Statistics, Estimated Time Dummy Coefficients, and Price Relatives
Intel List Price Hedonic Model including TDP

period
ending
1998m10
1998m11
1998m12
1999m1
1999m2
1999m3
1999m4
1999m5
1999m6
1999m7
1999m8
1999m9
1999m10
1999m12
2000m1
2000m2
2000m3
2000m4
2000m5
2000m6
2000m7
2000m8
2000m10
2000m11
2000m12
2001m1
2001m3
2001m4
2001m5
2001m6
2001m7
2001m8
2001m9
2001m10
2001m12
2002m1
2002m2
2002m3
2002m4
2002m5
2002m6
2002m9
2002m11
2003m1
2003m2
2003m4
2003m7
2003m8
2003m10
2004m2
2004m4
2004m5
2004m6
2004m8
2004m10
2004m12
2005m1
2005m2
2005m3
2005m5
2005m6
2005m7
2005m8
2005m9
2005m12
2006m1
2006m4
2006m6
2006m7
2006m10
2006m11
2006m12
2007m1

time

degof t- p num fi
dummy std err freedom statistic value obs
-0.13  0.06 1 -237 025 4
0.00 0.00 1 00209 4
-0.41 0.02 1 -26.25 0.02 4
-0.21 0.02 2 -853 001 6
-0.23  0.03 5 -7.56 0.00 10
-0.01 0.02 7 -034 074 12
-0.17 0.04 7 -412 0.00 12
-0.12 0.08 8 -1.41 020 13
-0.04 0.08 9 -051 0.62 14
-0.06 0.09 9 -063 055 14
-0.21 0.09 9 -242 0.04 14
-0.18 0.04 9 -440 0.00 15
-0.12 0.04 16 -2.64 0.02 23
-0.04 0.03 25 -1.37 0.18 32
-0.06 0.03 28 -2.14 0.04 35
-0.36  0.04 25 -9.82 0.00 32
0.00 0.03 35 010 0.92 43
-0.18 0.03 50 -5.44 0.00 58
-0.17 0.05 52 -3.66 0.00 60
-0.07 0.05 52 -1.46 0.15 60
-0.08 0.03 50 -2.72 0.01 58
-0.16 0.04 51 -4.37 0.00 59
-0.12 0.03 51 -3.81 0.00 59
-0.14 0.03 50 -4.80 0.00 58
-0.03 0.03 52 -0.94 035 60
-0.13  0.03 55 -4.50 0.00 63
-0.07 0.02 53 -2.87 0.01 60
-0.13  0.03 47 -4.29 0.00 54
-0.11 0.03 43 -3.84 0.00 50
0.00 0.02 40 -0.09 0.93 47
0.02 0.03 43 048 0.63 50
-0.16 0.04 52 -4.05 0.00 60
-0.11 0.03 63 -3.15 0.00 71
-0.06 0.04 69 -1.64 0.10 77
-0.08 0.04 70 -2.19 0.03 78
-0.02 0.03 73 -0.55 0.58 82
0.00 0.03 77 0.00 1.00 86
-0.20 0.04 58 -4.66 0.00 67
-0.01 0.03 40 -0.38 0.70 48
-0.08 0.03 44 -2.40 0.02 53
-0.10 0.04 47 -2.77 0.01 56
0.01 0.04 46 0.17 0.87 55
-0.43 0.09 33 -478 0.00 43
0.00 0.03 23 0.00 1.00 30
-0.12 0.04 23 -297 0.01 30
-0.10 0.05 21 -2.24 0.04 28
-0.17 0.05 22 -3.12 0.01 29
-0.03 0.04 25 -0.58 0.56 32
-0.09 0.04 27 -198 0.06 34
-0.16 0.05 33 -3.00 0.01 41
0.00 0.05 36 0.02 099 44
0.00 0.05 34 0.00 1.00 42
0.03 0.05 44 060 0.55 52
-0.11 0.04 59 -2.73 0.01 67
0.00 0.04 69 -0.04 0.97 77
0.00 0.03 75 -0.14 0.89 83
0.00 0.03 76 0.00 1.00 84
-0.02 0.03 74 -0.61 0.54 82
0.00 0.03 75 0.00 1.00 85
0.00 0.03 74 0.08 0.93 84
-0.03 0.04 79 -0.96 0.34 90
-0.03 0.04 88 -0.70 0.49 99
-0.05 0.03 88 -1.49 0.14 98
0.00 0.03 88 0.00 1.00 98
0.01 0.04 78 0.42 0.68 89
0.00 0.04 77 -0.11 0.92 90
-0.22 0.04 76 -5.48 0.00 89
0.01 0.03 67 032 0.75 80
-0.18 0.05 77 -3.60 0.00 91
-0.04 0.05 87 -0.82 0.41 101
-0.02 0.06 68 -0.35 0.73 82
0.00 0.06 51 0.00 1.00 64
-0.30 0.08 47 -3.86 0.00 61

number
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r2
total within

0.95
1.00
1.00
1.00
1.00
1.00
1.00
0.98
0.98
0.97
0.98
0.99
0.99
0.99
0.99
0.98
0.99
0.97
0.94
0.94
0.98
0.96
0.97
0.97
0.97
0.96
0.97
0.95
0.96
0.97
0.95
0.96
0.95
0.92
0.91
0.93
0.94
0.92
0.95
0.96
0.95
0.95
0.93
0.99
0.98
0.97
0.97
0.97
0.97
0.96
0.97
0.97
0.96
0.96
0.96
0.96
0.97
0.97
0.98
0.98
0.97
0.96
0.95
0.96
0.96
0.96
0.95
0.98
0.95
0.93
0.93
0.95
0.93

0.95
1.00
1.00
1.00
0.99
0.99
0.97
0.88
0.86
0.82
0.91
0.98
0.96
0.96
0.96
0.95
0.98
0.95
0.90
0.90
0.97
0.94
0.96
0.96
0.95
0.93
0.95
0.92
0.93
0.96
0.92
0.92
0.91
0.88
0.86
0.85
0.85
0.83
0.83
0.89
0.89
0.89
0.90
0.99
0.98
0.97
0.97
0.97
0.97
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.97
0.97
0.98
0.98
0.96
0.96
0.95
0.95
0.95
0.95
0.94
0.97
0.93
0.90
0.91
0.92
0.86

bias-

corrected pct change

price from prev

relative  observation
0.88 -12.27
1.00 0.00
0.66 -33.74
0.81 -18.62
0.79 -20.84
0.99 -0.57
0.85 -15.16
0.89 -10.61
0.96 -3.87
0.95 -5.21
0.81 -18.74
0.84 -16.43
0.89 -10.82
0.96 -3.58
0.94 -6.13
0.70 -30.01
1.00 0.31
0.84 -16.09
0.84 -15.82
0.93 -6.84
0.93 -7.42
0.85 -14.61
0.89 -10.85
0.87 -12.61
0.97 -2.57
0.87 -12.58
0.94 -6.49
0.88 -12.43
0.90 -10.43
1.00 -0.17
1.02 1.66
0.86 -14.49
0.90 -10.27
0.94 -6.08
0.92 -7.80
0.98 -1.78
1.00 0.05
0.82 -18.38
0.99 -1.24
0.92 -7.95
0.90 -9.86
1.01 0.69
0.66 -34.25
1.00 0.05
0.89 -10.95
0.90 -9.84
0.85 -15.43
0.98 -2.47
0.92 -8.11
0.86 -14.39
1.00 0.19
1.00 0.12
1.03 3.09
0.89 -10.63
1.00 -0.07
1.00 -0.42
1.00 0.05
0.98 -1.73
1.00 0.03
1.00 0.24
0.97 -3.32
0.98 -2.45
0.95 -4.90
1.00 0.05
1.02 1.56
1.00 -0.32
0.80 -19.81
1.01 1.10
0.84 -15.96
0.96 -4.04
0.98 -2.00
1.00 0.17
0.74 -25.54

period
ending
2007m4
2007m5
2007m6
2007m7
2007m9
2007m10
2007m11
2008m1
2008m3
2008m4
2008m7
2008m8
2008m9
2008m10
2008m11
2008m12
2009m1
2009m2
2009m3
2009m4
2009m5
2009m6
2009m7
2009m8
2009m9
2009m10
2009m11
2010m1
2010m2
2010m3
2010m4
2010m5
2010mé6
2010m7
2010m8
2010m9
2010m10
2010m11
2011m1
2011m2
2011m3
2011m4
2011m5
2011mé6
2011m7
2011m9
2011m10
2011m11
2011m12
2012m1
2012m2
2012m3
2012m4
2012m5
2012mé6
2012m7
2012m9
2012m10
2012m11
2012m12
2013m1
2013m4
2013m5
2013m6
2013m9
2013m11
2014m1
2014m2
2014m3
2014m4
2014m5
2014m6
2014m7

time degof t- num
dummy std err freedom statistic p value obs
-0.09 0.05 44 -1.85 007 57
-0.07 0.05 44 -132 020 56
-0.02 0.06 45 -032 075 57
-0.05 0.06 54 -092 036 67
-0.02 0.06 62 -039 070 75
-0.07 0.06 49 -1.07 029 61
0.00 0.03 38 000 1.00 48
0.00 0.04 47 -0.08 094 59
-0.02 0.04 60 -040 069 72
-0.08 0.04 60 -1.86 007 71
-0.06 0.04 55 -1.44 016 66
-0.01 0.03 60 -0.28 078 71
0.00 0.03 67 -0.05 096 78
-0.05 0.03 61 -155 013 72
0.00 0.03 59 -0.13 090 72
-0.01 0.03 57 -030 077 70
-0.05 0.06 52 -092 036 65
-0.02 0.06 52 -030 077 65
0.00 0.06 48 000 1.00 60
-0.03 0.05 49 -061 055 61
0.00 0.05 51 -0.04 097 63
-0.01 0.05 56 -0.26 0.80 68
-0.08 0.04 57 -1.82 007 69
0.00 0.02 55 -0.16 087 67
0.01 0.02 59 029 077 73
-0.02  0.02 63 -0.69 049 77
0.00 0.03 62 000 100 76
-0.01 0.03 73 -043 067 88
-0.01 0.03 86 -0.38 071 101
-0.02 0.03 79 -045 066 94
0.00 0.03 72 001 099 87
-0.01 0.03 77 -024 081 91
0.00 0.03 82 000 100 96
-0.04 0.03 82 -1.04 030 96
-0.01 0.03 86 -0.38 0.70 100
-0.01 0.03 87 -0.19 085 101
-0.01 0.03 84 -043 067 98
0.00 0.03 85 -0.08 094 99
0.00 0.03 95 000 1.00 111
-0.01 0.03 108 -0.37 0.71 125
0.00 0.03 110 0.01 0.99 127
0.00 0.03 109 0.00 1.00 126
0.00 0.03 116 0.09 0.93 133
-0.02 0.03 104 -0.54 0.59 121
0.00 0.03 87 000 1.00 102
-0.01 0.03 97 -0.40 0.69 113
-0.01 0.03 109 -0.26 0.80 125
-0.01 0.03 81 -0.29 078 98
0.00 0.03 59 018 08 71
0.00 0.02 57 007 094 70
-0.01 0.03 57 -049 062 69
-0.01 0.03 58 -0.27 079 70
0.00 0.03 67 000 1.00 80
0.00 0.02 77 000 1.00 90
-0.01 0.02 89 -042 067 102
0.00 0.02 101  0.00 1.00 114
0.00 0.02 117 -0.13 0.90 130
-0.01 0.02 117 -0.65 0.52 130
0.00 0.02 101 021 0.83 113
0.00 0.02 100 0.00 1.00 112
-0.01 0.02 107 -0.54 0.59 119
0.00 0.03 86 -0.06 096 98
0.00 0.03 60 002 098 70
-0.01 0.03 82 -043 067 95
-0.01 0.02 129 -0.42 0.68 145
0.00 0.02 149 -0.14 0.89 165
-0.01 0.02 153 -0.32 0.75 168
0.00 0.02 159 0.00 1.00 174
0.00 0.02 156 0.00 1.00 171
-0.02  0.02 175 -0.79 0.43 190
0.00 0.02 175 -0.06 0.96 189
0.00 0.02 156  0.04 0.97 170
0.01 0.02 141 056 0.57 155

number
arch
fixed
effects
6
6
5
5
5
4
3
5
5
4
4
4
4
4
5
5
5
5
4
4
4
4
4
4
5
5
5
6
6
6
7
6
6
6
6
6
6
6
7
7
7
7
7
7
6
6
6
7
3
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2
4
7
7
7
7
7
7
6
6
6

r2

0.98
0.97
0.97
0.95
0.95
0.95
0.98
0.97
0.97
0.97
0.98
0.98
0.98
0.98
0.99
0.99
0.96
0.95
0.95
0.96
0.96
0.96
0.97
0.99
0.99
0.99
0.98
0.97
0.97
0.96
0.97
0.96
0.96
0.96
0.95
0.96
0.96
0.96
0.95
0.95
0.94
0.94
0.94
0.94
0.95
0.96
0.96
0.97
0.99
0.99
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97

bias-
corrected
r2 price
total within relative

0.88 0.92
0.84 0.94
0.89 0.98
0.88 0.95
0.87 0.98
0.89 0.94
0.97 1.00
0.94 1.00
0.93 0.99
0.93 0.93
0.94 0.95
0.95 0.99
0.95 1.00
0.96 0.95
0.97 1.00
0.97 0.99
0.84 0.95
0.79 0.98
0.81 1.00
0.83 0.97
0.84 1.00
0.84 0.99
0.85 0.93
0.95 1.00
0.95 1.01
0.94 0.98
0.93 1.00
0.87 0.99
0.86 0.99
0.86 0.99
0.88 1.00
0.87 0.99
0.86 1.00
0.85 0.97
0.84 0.99
0.83 0.99
0.84 0.99
0.84 1.00
0.83 1.00
0.82 0.99
0.82 1.00
0.82 1.00
0.84 1.00
0.85 0.98
0.85 1.00
0.89 0.99
0.91 0.99
0.94 0.99
0.97 1.00
0.98 1.00
0.97 0.99
0.97 0.99
0.97 1.00
0.96 1.00
0.97 0.99
0.97 1.00
0.97 1.00
0.97 0.99
0.95 1.00
0.94 1.00
0.95 0.99
0.95 1.00
0.94 1.00
0.94 0.99
0.94 0.99
0.94 1.00
0.94 0.99
0.95 1.00
0.95 1.00
0.95 0.99
0.96 1.00
0.95 1.00
0.95 1.01

0.97

pct change
from prev
observation
-8.28
-6.42
-1.64
-5.06
-2.01
-6.33
0.06
-0.26
-1.49
-7.24
-5.32
-0.84
-0.10
-4.60
-0.30
-0.75
-4.82
-1.51
0.16
-3.14
-0.06
-1.12
-7.28
-0.30
0.65
-1.64
0.03
-1.39
-1.10
-1.45
0.08
-0.76
0.06
-3.48
-1.24
-0.59
-1.35
-0.22
0.05
-1.08
0.08
0.05
0.30
-1.73
0.05
-1.17
-0.66
-0.92
0.49
0.20
-1.27
-0.76
0.04
0.03
-0.94
0.02
-0.24
-1.26
0.49
0.03
-1.20
-0.13
0.14
-1.25
-0.93
-0.28
-0.66
0.02
0.02
-1.49
-0.09
0.09
1.09



Appendix Table A.7 Other Estimated Regression Coefficients, Intel List Price Hedonic Model including TDP
Color-Coding for Entry and Exit of Characteristics/Microarchitectures from Sample

period
ending
1998m10
1998m11
1998m12
1999m1
1999m2
1999m3
1999m4
1999m5
1999m6
1999m7
1999m8
1999m9
1999m10
1999m12
2000m1
2000m2
2000m3
2000m4
2000m5
2000m6
2000m7
2000m8
2000m10
2000m11
2000m12
2001m1
2001m3
2001m4
2001m5
2001m6
2001m7
2001m8
2001m9
2001m10
2001m12
2002m1
2002m2
2002m3
2002m4
2002m5
2002m6
2002m9
2002m11
2003m1
2003m2
2003m4
2003m7
2003m8
2003m10
2004m2
2004m4
2004m5
2004m6
2004m8
2004m10
2004m12
2005m1
2005m2
2005m3
2005m5
2005m6
2005m7
2005m8
2005m9
2005m12
2006m1
2006m4
2006m6
2006m7
2006m10
2006m11
2006m12
2007m1

lproc

1.89
1.36
1.51
-28.12
3.83
3.38
4.12
4.15
2.06
0.71
1.62
2.96
3.80
3.14
3.09
3.30
3.19
3.34
3.10
3.00
3.22
2.81
2.69
2.26
1.89
1.66
1.48
1.34
1.30
1.31
1.66
2.68
4.60
5.33
4.96
4.45
4.35
4.90
2.69
7.06
8.41
8.46
2.30
2.75
2.75
2.84
1.88
1.22
1.05
0.32
-0.08
0.03
1.40
1.65
1.68
2.22
2.70
2.73
2.81
2.87
2.86
2.97
2.97
291
2.96
3.02
2.88
2.66
2.55
2.74
2.92
3.38
3.87

Imaxmhz Ibw

0.10
-0.10
-0.24
-0.23
-0.04

0.04

0.06

0.11

0.01
-0.45
-0.38
-0.31
-0.17
-0.07

0.12

0.20

0.21

0.21

0.10

0.04
-0.15
-0.11

0.24

0.40

0.47

0.56

0.74

1.95

0.93

0.79

0.94

1.09
-0.11
-0.06
-0.05

0.26

0.34

0.31

0.26

0.19

0.18
-0.03
-0.16
-0.25
-0.21
-0.12
-0.13
-0.16
-0.27
-0.96
-1.00

0.03

0.77

0.68

0.47

0.86

1.81

1.28

1.08

1.13

1.55

1.30

Icores ht

0.52
0.20
0.24
-0.01
-0.09
-0.15
-0.11
-0.19
-0.32
-0.36
-0.29
-0.36
-0.43
-0.49
-0.55
-0.60
-0.67
-0.62
-0.23
-0.04
0.24
0.29
0.27
0.23
0.41
0.44
0.67
0.78
0.59
0.28
0.42

int

Icache graph Itdp

0.39
0.52
0.67
0.56
0.58
0.74
0.83
0.75
0.73
0.60
0.56
0.61
0.80
1.02
1.02
1.12
1.20
1.15
1.02
0.88
0.85
0.85

-0.85
-1.41
-1.53
0.32
0.34
0.27
0.21
0.31
0.35
0.40
0.38
0.37
0.39
0.48
0.62
0.73
0.73
0.71
0.78
0.86
0.85
0.78
0.70
0.24
0.01
0.04
0.12
0.02
-0.08
-0.12
-0.17
-0.07
-0.07
-0.27

: microarchitecture enters or exits sample
: non-zero values for indicator vars, Icores; Imaxmhz different from Iproc

30.98
-0.86
-0.14
-1.14
-0.91

1.60
2.85
2.21
1.25
-0.25
-0.06
0.10
-0.15
-0.28
-0.40
-0.34
-0.02
0.54
0.45
0.21
0.25
0.39
0.17
0.00
0.00
-0.14
-0.22
-0.27
-0.70
-2.22
-3.21
-3.29
-3.06
-3.07
-3.52
-0.01
-7.24
-9.75
-9.89
-0.66
0.68
0.70
1.09
1.70
2.61
2.32
2.73
3.32
3.24
1.97
1.35
0.93
0.80
0.76
0.63
0.50
0.60
1.07
1.07
0.95
0.93
0.99
1.04
0.86
0.90
1.32
1.32
1.52
1.65
1.50

em64t eist

0.34 -0.63
0.35 -0.63
0.19 -0.46
0.06 -0.28
0.05 -0.11
0.04 -0.10
0.03 -0.12
0.00 -0.16
0.02 -0.03
-0.05 0.09
-0.23 0.18
-0.32 0.33
-0.40 0.33

0.35

0.30

vt

0.07
0.05
-0.02
-0.20
-0.05
0.08
0.05

-0.69

period
ending
2007m4
2007m5
2007m6
2007m7
2007m9
2007m10
2007m11
2008m1
2008m3
2008m4
2008m7
2008m8
2008m9
2008m10
2008m11
2008m12
2009m1
2009m2
2009m3
2009m4
2009m5
2009m6
2009m7
2009m8
2009m9
2009m10
2009m11
2010m1
2010m2
2010m3
2010m4
2010m5
2010m6
2010m7
2010m8
2010m9
2010m10
2010m11
2011m1
2011m2
2011m3
2011m4
2011m5
2011mé6
2011m7
2011m9
2011m10
2011m11
2011m12
2012m1
2012m2
2012m3
2012m4
2012m5
2012m6
2012m7
2012m9
2012m10
2012m11
2012m12
2013m1
2013m4
2013m5
2013m6
2013m9
2013m11
2014m1
2014m2
2014m3
2014m4
2014m5
2014m6
2014m7

Iproc
3.32
3.39
3.30
3.17
3.06
2.57
1.79
1.50
1.26
1.15
1.17
1.24
1.32
1.37

55.10

55.09

52.49

49.51

40.11

38.80

36.88

35.74

38.81

47.09

51.11

44.47

37.42
0.92
0.83
1.00
1.26
1.10
0.88
0.41

-0.31
-0.78
-1.16
-1.31
-0.35
0.03
0.11
0.10
0.17
0.23
0.80
0.95
1.10
1.20
0.54
0.36
0.28
0.09
0.06
0.15
0.04
0.00
-0.02
-0.10
-0.16
-0.16
-0.14
0.09
1.16
1.01
0.66
0.54
0.36
0.20
0.35
0.44
0.34
0.28
0.41

Imaxmhz Ibw

-53.71
-53.70
-50.81
-47.50
-37.05
-35.58
-33.46
-32.58
-36.21
-45.37
-49.53
-42.75
-35.46
1.99
2.15
2.18
2.35
2.50
2.60
3.05
3.54
3.57
3.64
3.71
2.70
2.02
1.82
1.82
1.71
1.68
1.83
1.66
1.49
1.21
0.83
0.84
0.77
0.89
0.98
0.93
1.09
1.19
0.95
0.96
1.14
1.14
1.26
1.27
1.08
1.05
1.27
1.38
1.52
1.62
1.52
1.30
1.23
1.25
0.98

0.16
0.54
0.64

-2.32

-2.23

-1.83

-1.44

-0.78

-0.51

-0.55

-0.11
0.51
0.55
0.46
0.33
0.36
1.01
1.38
1.37
1.33
1.29
1.27
1.22
1.07
0.96
0.88
0.87
0.70
0.67
0.59
0.25
0.18
0.14
0.20
0.29
0.35
0.46
0.59
0.65
0.72
0.76
0.75
0.71
0.55

-0.05

-0.02
0.00
0.06
0.59
0.70
0.81
0.85
0.92
0.95
0.92
0.87
1.06
1.00
0.82
0.81
0.57
0.34

0.45
0.74
0.71
0.78
0.83
0.80
0.78
0.79
0.78
0.90

Icores ht
0.41
0.36
0.34 0.21
-0.07 1.45
-0.54 1.33
-1.07 1.05
-2.86
-2.29
-2.32
-2.36
-2.28
-2.21
-2.25
-2.23
-2.20
-2.20
-0.95
-0.43
-0.52
-0.56
-0.59
-0.64
-0.36
0.39
0.44 1.78
0.40 1.61
0.28 1.42
0.11 0.23
0.12 0.15
0.07 0.14
0.11
0.12
0.13
0.11
0.09
0.12
0.13
0.13
0.15
0.28 0.18
0.37 0.19
0.37 0.19
0.42 0.20
0.45 0.20
0.99 0.20
1.01 0.20
1.07 0.21
1.06 0.22
0.56 0.27
0.48 0.28
0.66 0.32
0.72 0.35
0.70 0.32
0.73 0.31
0.69 0.32
0.66 0.33
0.65 0.35
0.59 0.35
0.51 0.35
0.50 0.35
0.51 0.36
0.65 0.37
1.24 0.32
1.28 0.32
1.08 0.30
0.98 0.29
0.84 0.27
0.73 0.26
0.81 0.26
0.87 0.27
0.81 0.28
0.77 0.28
0.93 0.29

int

Icache graph Itdp em64t eist

-0.03
-0.11
-0.04
-0.08
-0.04
-0.01
0.07
0.25
0.34
0.42
0.43
0.35
0.33
0.32
0.34
0.33
0.34
0.24
0.10
0.11
0.12
0.16
0.25
0.34
0.34
0.32
0.29
0.21
0.22
0.22
0.26
0.28
0.31
0.32
0.34
0.37
0.39
0.39
0.38
0.39
0.40
0.40
0.41
0.41
-0.01
0.05
0.08
0.17
0.55
0.59
0.47
0.40
0.37
0.35
0.35
0.36
0.41
0.47
0.51
0.52
0.54
0.47
0.20
0.16
0.24
0.31
0.37
0.41
0.39
0.41
0.45
0.48
0.42

0.54
0.71
0.85
1.27
1.63
2.09
3.99
3.12
3.03
2.98
2.90
2.90
2.94
2.86
2.73
2.71
1.23
0.55
0.45
0.47
0.47
0.49
0.17
-0.58
-0.60
-0.60
-0.60
-0.62
-0.65
-0.66
-0.66
-0.65
-0.63
-0.64
-0.62
-0.56
-0.52
-0.50
-0.07 -0.34
-0.06 -0.39
-0.06 -0.44
-0.06 -0.44
-0.05 -0.47
-0.03 -0.49
0.13 -0.67
0.12 -0.72
0.11 -0.76
0.10 -0.76
-0.48
-0.05 -0.41
-0.05 -0.39
-0.05 -0.32
-0.04 -0.27
-0.03 -0.29
-0.05 -0.27
-0.06 -0.27
-0.05 -0.23
-0.05 -0.22
-0.02 -0.25
-0.02 -0.25
-0.05 -0.28
-0.04 -0.36
0.04 -0.78
0.04 -0.72
0.02 -0.58
0.01 -0.55
-0.49
-0.43
-0.49
-0.49
-0.43
-0.41
-0.43

blank: indicates variable dropped as perfectly collinear

-0.16

-1.05
-1.12
-1.13
-0.82
-0.75
-0.73
-0.73
-0.74
-0.75
-0.78
-0.80
-0.76
-0.76

vt

0.96

0.99

1.00

0.94

0.55

0.42

0.35

0.07
-0.14
-0.14
-0.08
-0.01
-0.01
-0.19
-0.22
-0.28
-0.30
-0.33
-0.31
-0.26
-0.17
-0.13
-0.12
-0.13
-0.20
-0.21
-0.19
-0.08
-0.09
-0.10
-0.10
-0.12
-0.10
-0.10
-0.14
-0.14
-0.13
-0.12
-0.13
-0.13
-0.17
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