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Abstract 
Human capital is typically cited as an important contributor to the survival, growth and innovative 

activity of new businesses. This paper contributes to the literature by both developing novel 

measures of human capital and examining the link between those measures and the outcomes of 

young firms.   It builds on several strands of the literature which emphasize the importance of 

employee workplace experience as a dimension of human capital. It shows that the effects of work 

experience differ substantially by where an employee worked and is valued differently by firms in 

different sectors. This is particularly true for research experience, which is consistent with the 

notion that on the job training in complex tasks should be valuable to firms with complex 

production technologies. 

  

                                                 
1 Disclaimer: Any opinions and conclusions expressed herein are those of the authors and do not 

necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that 

no confidential information is disclosed. This research was supported by the National Center for Science 

and Engineering Statistics. NSF SciSIP Awards 1064220 and 1262447; NSF Education and Human 

Resources DGE Awards 1348691, 1547507, 1348701, 1535399, 1535370; NSF NCSES award 1423706; 

NIHP01AG039347; and the Ewing Marion Kaufman and Alfred P. Sloan Foundations. Lane was 

supported through an Intergovernmental Personnel Act assignment to the US Census Bureau. We thank 

Scott Stern, participants at the Measuring and Accounting for Innovation in the 21st Century conference, 

and anonymous reviewers for helpful comments. The research agenda draws on work with many 

coauthors, but particularly Bruce Weinberg and Jason Owen Smith.   
2 U.S. Census Bureau 
3 New York University and the US Census Bureau 



2 

 

1. Introduction 
 

This paper contributes to the literature on the link between human capital and the survival, 

growth and innovative activity of new businesses.  We develop new measures of workplace 

experience, particularly within R&D intensive and High-Tech firms.   We also make use of an 

entirely new data source that directly measures research experience.  We examine the 

relationship between those measures and startup survival, growth and innovative activities such 

as patenting and trademarking.    

 

We describe the construction of four new human capital measures derived from two sources.   

The first is a direct measure of research experience derived from a new dataset drawn from the 

human resource files of a set of research-intensive universities. The data capture all payroll 

transactions for all individuals – including undergraduate students, graduate students, and 

postdoctoral fellows - employed on funded scientific projects at 22 major universities(1)  These 

data are the first to directly measure the human capital developed through project level 

investments in university science.  The second, third and fourth measures are indirect in nature.  

They are drawn from LEHD (Longitudinal Employee-Household Dynamics) and W2 data and 

create new worker-level measures of human capital based on whether each worker has worked in 

R&D labs, High-Tech businesses and universities.  

 

We also describe the construction of two new datasets on startups.  The first of these is a Startup 

Firm History File drawn from the Longitudinal Business Database (LBD), supplemented with 

additional information from the Census Bureau’s Business Register.  In addition, we create a 

Startup Worker History File derived from worker level data on jobs and earnings. These new 

files provide a national frame of startups, their survival and their growth between the years 2005 

and 2015, as well as a national frame of all workers affiliated with these startups.  

  

Our results suggest that a one-worker increase in the number of high human capital employees in 

a startup firm’s workforce is associated with a lower probability of survival to the next period by 

0.74 to 4.8 percentage points, depending on the experience type. However, for startups that do 

survive to the first period, the hiring of one of these workers in the founding year is associated 

with a 1.3 to 4 percentage point increase in employment growth and a 2.2 to 5 percentage point 

increase in revenue in the following year. This is suggestive evidence that high human capital 

employees elect to go to more high-risk startups that exhibit “up or out” dynamics—either 

exiting or growing quickly. On the innovation side, the addition of one high human capital 

individual is positively related to patent and trademark outcomes in the next period, with patent 

filings increasing by 0.5 to 9.2 percentage points and trademark filings increasing by 1.5 to 7.5 

points in the following year. Our measures of human capital also explain a significant amount of 

the known variation in innovation outcomes, where the inclusion of our basic measures of human 

capital helps explain an additional 40% of known variation in patenting outcomes and 11% of 

known variation in trademarking outcomes. These results are consistent with the view that there 

is a positive and significant relationship between workforce experience and business startup 

outcomes.   
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2. Background 
 

Our focus on startups is informed by literature that suggests young entrepreneurial businesses are 

important for introducing and diffusing innovations in the economy.  Several authors have shown 

indirect linkages between formal investments in research and innovation and entrepreneurship 

and economic growth (2–4).  In particular, the work of Akcigit and Kerr(5)  shows that the 

relative rate of major inventions is higher in small  firms and new entrant firms. Scott Stern and 

coauthors note that the early stage choices of startups – their “digital signature” - is particularly 

important in predicting their future success.(6) 

 

There is a growing literature linking human capital to the survival and growth of such new 

businesses (7, 8). In particular, the decision to start a business, and its subsequent productivity 

and success is associated with having an entrepreneurial workforce (9, 10). Related work also 

suggests that highly innovative individuals make “exceptional” contributions to economic 

growth (11).   Indeed, the personnel economics and management literatures draw on extensive 

studies of businesses and human resource practices, which suggest that many productive 

businesses either invest in job-based training or seek to hire well trained individuals (12–14). A 

related literature links external R&D investment and the success of the R&D efforts of individual 

firms (15).   In depth studies of the components of intangible assets in contributing to firm 

productivity and success invariably mention the importance of training (16). In addition to 

affecting innovative outcomes, human capital measures such as on-the-job training have also 

been linked to firm productivity (17, 18). 

 

For our purposes of measuring the relationship between human capital and startup outcomes we 

draw on two sets of literature. The first has studied human capital acquisition through learning by 

doing and experience. The second addresses the transmission of new knowledge through the 

flows of individuals from one business to another.  

 

The role of experience in terms of learning how to do complex new tasks through trial and error 

has been extensively discussed in the endogenous technical change literature (19).    There is also 

a great deal of evidence to support the notion that past experience imparts valuable business 

skills(20),  and that both firm growth can be significantly affected by workers with experience in 

R&D activities (21, 22).  

 

The role of university research training specifically on innovative activity and business startups 

is supported by compelling anecdotal evidence. This includes linking the growth of Silicon 

Valley to the presence of Stanford, the success of Boston to the excellent set of universities in the 

area, and the arising of the Research Triangle to the research activity of Duke University, the 

University of North Carolina and North Carolina State.   An extensive literature ties regional 

economic development clusters with the presence of active research universities, suggesting that 

research trained individuals flow into innovative new businesses (4, 9, 23, 24) .   To this end, 

Corrado and Lane note that the data needed to determine the economic and social value created 

by innovation in organizations  should include “detailed data on workers—their skills, their 

responsibilities, and their knowledge—including their flows across companies were desired for 

transformative research on the combined process of entrepreneurship and innovation”(25). 
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Taken together, these various literatures are consistent with the notion that hiring workers with 

experience is a way firms gain tacit knowledge, particularly when ideas are complex (26, 27).  

The work of Lee Fleming, for example, suggests that if there are impediments to research-

experienced workers moving from one firm to another, less innovation occurs. (28, 29).  Our 

own work suggests that that research trained workers are more likely to work at firms with 

characteristics closely linked to productivity (30). 

 

However, there has been little work done in terms of measuring the experience of workers at 

different types of firms.  The Annual Survey of Manufactures provides counts of production and 

non-production workers; most other business data sources simply provide counts of employees.  

In principle, a particularly useful source of evidence in this context is economy-wide linked 

employer-employee data, such as the LEHD data (31).  Abowd et al. have used linked data to 

compute person specific measures of human capital (32), but do not directly compute measures 

of research experience.  While some work has shown that there are returns to experience at R&D 

performing firms (33), there has been no study to our knowledge that directly measures 

experience in High-Tech firms, R&D labs, universities or in scientific projects and ties them to 

startup outcomes. In this paper we analyze the link between these types experience and among 

workers at startups and the outcomes of those startups, including survival, growth, and 

innovative activity.   

3. Framework, Data and Measurement  
 

We follow much of the literature (12–14) in adopting a simple reduced form framework to 

examine outcomes for startups in terms of their survival, employment and revenue growth, and 

innovative activities such as being granted patents and registering trademarks.   Conceptually, 

outcomes (Y) for startup firm f at time t are driven by the quantity and quality of human capital 

(HK) it employs as well as standard controls such as capital (K), technology (A), and external 

factors (X) such as macroeconomic conditions and industry factors.  

 

 

 𝒀𝒇𝒕 = 𝑭(𝑨𝒇𝒕, 𝑲𝒇𝒕, 𝑯𝑲𝐟𝐭, 𝑿𝒇𝒕) (1) 

 

There is some evidence that the effect of human capital will be important for businesses whose 

production processes involve performing complex tasks (34).  As a result, the analysis that 

follows provides separate analyses for High-Tech businesses – the scale of the data permits such 

detailed analyses.   The rest of this section describes how such businesses are identified, how the 

human capital measures are constructed, and how startup outcomes are measured.  

3.1  Identifying and classifying startups 
 

The Startup History file is constructed as an unbalanced panel dataset. The primary frame for the 

data is the Longitudinal Business Database (LBD), supplemented with additional information 

from the Census Bureau’s Business Register, upon which the LBD is based.  We utilize this file 

to identify startups at age zero firms. Once the startups have been identified, we supplement the 

data with geocodes (state and county-level FIPS, along with Census Tract information if 
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available) and EINs taken from the Business Register. These variables are used to subsequently 

characterize the workforce associated with each startup gathered from both LEHD and W2 

records. The full file contains data on employment, payroll, industry, geography, firm-type and 

birth/death of the firm.  

 

For the purpose of characterizing worker experience, firms are classified as R&D labs, High-

Tech or universities.  The R&D lab measure is created by identifying R&D laboratories within 

R&D performing firms. First, we identify R&D performing firms using the Business Innovation 

and Research and Development Survey (BRDIS) and Survey of Industrial Research and 

Development (SIRD)4. A firm is classified as an R&D performing firm if it has positive R&D 

expenditures during the year the employee was affiliated with the firm. R&D laboratories are 

identified by establishment-level industry codes, specifically NAICS 5417, which is defined as 

“Scientific research and development services”. The High-Tech definition is based on the 

relative concentration of STEM employment by industry as in Hecker(35, 36). We use the High-

Tech classification to both subset the universe of startups within a year and to characterize 

worker experience, identifying individuals with prior experience in High-Tech industries. The 

university measure is derived from IPEDS and Carnegie Institute data, which provide a frame of 

universities in the United States. We use the national university research outlays collected by 

National Center for Science and Engineering Statistics at the National Science Foundation to 

subset our sample of universities to the top 130 research universities, which account for 90% of 

total federally funded university-based R&D expenditures. 

 

While capital, financing, management and macroeconomic conditions are not directly measured 

in the data, because the data are longitudinal, we can include firm and time/industry/geography 

fixed effects. 

3.2 Human Capital Measures 
 

The first three human capital measures are derived from a new dataset called the Startup Worker 

History File, which characterizes the workforce associated with each startup in its first year.  It is 

created from the universe worker level data on jobs derived from administrative records in both 

the LEHD and W2 records and covers the period 2005-2015. 

 

The frame covers each paid job for each worker from 2005-2015 as reported at both the 

Employer Identification Number (EIN) level via IRS form W2 and state-level Unemployment 

Insurance wage records.  The latter underlie the core LEHD infrastructure (31) used to generate 

the Quarterly Workforce Indicators (QWI) and are necessary to identify the establishment for the 

bulk of multi-unit firms (37).   The combined data includes more than 3 billion person-EIN-year 

observations (approximately 70% match across the W2 and LEHD/UI universes, 20% are found 

only in the W2 records and 10% are only found in LEHD). These data are enhanced with the 

LEHD Individual Characteristics File (ICF), which includes demographic data on persons 

including sex, age, race and place of birth. We are able to link 43 million of the 3 billion person-
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EIN-year observations to startups in their birth year, giving us an average of nearly 4.5 million 

person-startup observations each year.5  

 

The first three measures of human capital are indirect in nature, since they do not directly 

measure research experience.  They are derived from an individual’s work history in the years 

prior to being employed at a given startup in its first year and capture employment experience in 

R&D labs, High Tech businesses and universities.   In the case of R&D labs, we include all 

workers employed in an R&D performing firm in an R&D lab (NAICS code “5417”).  We 

classify workers as having High-Tech experience if they have worked in a High-Tech industry 

and their earnings in those positions fall within the top-half of the earnings distribution within 

that industry for a given year. This earnings condition High-Tech minimizes the likelihood of 

classifying workers in support or administrative roles as having High-Tech experience. We use a 

similar approach to classify workers with experience at national research universities.   

 

The fourth, more direct measure is derived from UMETRICS data(1), which includes 22 

universities accounting for about 26% of all federally funded research.  The data are derived 

from universe personnel and financial records of participating universities. Although four files 

are provided by each university, the key file of interest in this project is the employee file. These 

individuals will comprise a subset of the university experienced workers described previously. 

For each funded research project, both federal and nonfederal, the file contains all payroll 

charges for all pay periods (identified by period start date and period end date). This includes 

links to both the federal award id (unique award number) and the internal university 

identification number (recipient account number). In addition to first name, last name and date of 

birth, the data include the employee’s internal de-identified employee number, and the job title 

(which we mapped into broad occupational categories). The Catalog of Federal Domestic 

Assistance (CFDA), which is included in each award identifier, allows us to classify projects by 

the funding agency. The years covered by each university’s data varies as each university 

provided data as far back as their record keeping allowed.   

 

3.3  The Startup Worker History File 
 

The startup worker history file, from which our human capital measures are derived, is 

constructed in three steps.  The first step involves identifying person and firm characteristics in 

the years prior to startup.   The LEHD and W2 data provide worker histories for 260 million 

individuals for each employer (at the EIN level) for each year in the period 2005-2015.    Their 

individual characteristics are captured by matching to the Individual Characteristics File (the 

ICF) – this file provides information on date of birth, foreign born status and sex.    

 

The EIN of their employers is then matched to the BRDIS/SIRD data to determine whether the 

employer is an R&D performing firm.   There are 74,000 of those EINS, and 420,000 resulting 

EIN-Year observations. A subset of these records will be associated with the R&D lab NAICS 

                                                 
5 This figure differs from the reported Business Dynamics Statistics (BDS), which calculate employment at startups 

at a specific point in time (March 12). Our figures are higher, reflecting employee-employer transitions (i.e. workers 

who work briefly for a startup and then move to a different job). The 48 million observations represent 37.8 million 

unique individuals. 
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industry.  The EIN is also matched to firms in 61 High-Tech industries (6-digit NAICS). Actual 

employment on a grant is determined by a match to UMETRICS data; there are 340,000 research 

experienced individuals between 2005 and 2015. 

 

Startups are identified as firms of age zero.  The total worker history file thus has 530.3 million 

PIK-EIN-Year startup observations.  Of those, 43.2 million observations are associated with 

startups in year 0. 

 

Figure 1 provides a graphical illustration of the process. 

 

 
Figure 1: The startup worker history file 

The second step involves measuring human capital at the startup-level.    There are 4.9 million 

EINs associated with age zero firms in the data, of which about 35,000 have hired individuals 

with work experience in R&D performing labs – the number of such employees totals 67,000.   

371,000 EINs have hired at least one individual with High Tech experience – the number of 

these employees total 806,000.   About 442,000 EINS have hired at least one university 

experienced employee; the number of these totals 882,000. There are about 11,000 startups that 

have hired a total of 13,000 individuals with research experience.at the UMETRICS universities. 

The process is described graphically in Figure 2. 

 

 
Figure 2: Creating the Startup file 

 

The third and final step involves merging the startup EIN file with the Startup Firm History File, 

classifying startup types and outcomes at time t=0 and calculating how many survive to the year 
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subsequent to their birth.   That information is graphically presented in Figure 3. Of the 4.9 

million startups we observe, 3.4 million survive to the next period, or about 69%. This compares 

to 71% for startups with at least one employee with R&D lab experience, 72% for High-Tech 

and University experience, and 64% for research experience.  

 

 
Figure 3: The Startup History file 

3.3 Startup Outcomes 
 

While a wide variety of outcome measures can be generated, here we focus on Survival to period 

t+1, Employment Growth between t and t+1, Revenue Growth between t and t+1, patenting in 

t+1, and trademarking in t+1.6 Survival is a binary indicator for startups that have positive 

employment in t+1. Employment growth and revenue growth are calculated as the log difference 

of employment between t and t+1, which can be interpreted as a percentage change. Patenting 

and trademarking in t+1 is measured as applying for a patent in t+1 that is eventually granted 

and filing for a trademark in t+1 that is eventually registered.  

 

Startups are linked to patent grants and trademark filings through existing crosswalks between 

USPTO and Census data. Patent linkages are based on a triangulation methodology first 

described in Graham et. al.(38) Their linkage methodology simultaneously leverages information 

on both patent inventors and assignees in combination with job-level information from the 

LEHD to distinguish between true and false matches. By using more information than traditional 

patent linkage efforts (e.g. fuzzy business name and geography), the triangulation match 

produces more and higher quality linkages. Trademarks are matched to startups using the match 

described in Dinlersoz et. al. (39). The business name and address information found in the 

USPTO’s Trademark Case File Database are used to create firm-trademark linkages. To measure 

innovative outcomes of startups we identify whether a startup applied for a patent in the year 

                                                 
6 We track outcomes only to t+1 due to limitations of how far back in time each UMETRICS institution’s data goes. 

Outcomes measured further in the future would limit the sample of startups and individuals under consideration.  
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after its birth (t+1) that was eventually granted. Similarly, we identify whether each startup filed 

for a trademark in t+1 that was eventually registered.  

4. Basic Facts 
 

This section establishes some basic facts on the human capital composition of startups and their 

outcomes.  

4.1 Startup Facts 
 

We begin by highlighting some facts regarding startups and their outcomes. Between 2005 and 

2015, one-year survival rates typically hover around 68%, but are higher for High-Tech startups 

in every year.  As is well known, the number of startups dropped in 2007 by 25% (relative to 

2005) and by 33% the following year –by 2013 the startup count was still at the same level. 

High-Tech startup employment follows a similar pattern: the total number of employees at t=0 

declined by more than 30% between 2005 and 2014.  

 

It is rare for startups to have high-human capital workers as employees in their first year7. 

Approximately 0.25% of employees at startups have experience working in an R&D laboratory, 

around 2.5% have experience working at a High-Tech firm and 2% have been linked through 

their earnings with a research university. The proportion of startups that have individuals 

formerly paid on research grants is even smaller, with fewer than 0.05% of employees being 

linked to a research grant from one of the 22 UMETRICS universities. 

  

Table 1 provides some information about the characteristics of startups in their initial year of 

existence.  The vast majority of startups, across all startup types, start off very small in their first 

year: 75% of all startups have fewer than 5 employees at time t=0; more than 50% of startups 

have 2 or fewer employees. Fewer than 5% of startups have more than 20 employees in the 

initial period. While the average revenue for startups exceeds half a million dollars per year, this 

measure is somewhat skewed as the median startup generates less than a quarter million dollars 

in their first year, with the median revenue being even smaller in High-Tech firms. While these 

size characteristics are mostly consistent across firm types, the payroll per employee and 

innovation measures are quite different. High-Tech firms offer the highest mean payroll per 

employee, paying nearly twice as much as a typical startup and have innovation rates (as 

measured by patents and trademarks) that are 3-5x higher than the typical startup.  

 

 

 

 

 

 

 

                                                 
7 It is important to keep in mind that the results are left-censored as the LEHD has somewhat limited coverage prior 

to 2002 



10 

 

Table 1: Startup Statistics at Year 0  

All Startups Mean Fuzzy Median Standard Deviation 
Employment 5.6 2.0 16.5 
Payroll per Employee (000s) 29.6 17.7 84.0 

Revenue (000s) 540.2 232.5 958.7 
Patents 0.02 - 3.1 

TMs 0.06 - 0.7 

High-Tech Startups Mean Fuzzy Median Standard Deviation 
Employment 4.0 1.5 14.4 
Payroll per Employee (000s) 54.4 39.8 64.8 

Revenue (000s) 428.9 181.2 824.4 
Patents 0.11 - 10.2 

Trademarks 0.20 - 1.2 
Note: Statistics calculated pooling 2005-2015 startups in the LBD and tabulating the first year statistics. Because employment figures are 
captured at a stationary point in time (March 12), if a firm is shown to have zero employment in their birth year, then the following year’s 

employment is taken as the employment at t=0. Fuzzy medians are calculated by taking the mean of the 45th and 55th percentile levels.  

 

The dataset also enables us to describe the human capital composition of the startup workforce. 

Table 2 documents the employment composition of all startups in the left-hand panel and High-

Tech startups in the right hand panel.   Individuals in startups that have at least one High-Tech 

experienced employee are younger, less likely to be female or Black, more likely to be foreign 

born and more likely to be Asian than other startups.   Individuals in startups that have at least 

one university or research experienced employee are even younger but are more likely to be 

female; research experienced startups are more likely to be Asian and less likely to be Black. 

 

The demographic differences are even starker among startups in High-Tech industries.   Overall 

employees in these startups are less likely to be female, more likely to be foreign born, much less 

likely to be black and much more likely to be Asian.   These patterns are even stronger for those 

with university and research experience.  

 
Table 2: Startup Employee Mean Demographic Characteristics at time 0 

 All Startups High-Tech 

 Startups with at least one worker with experience 

in: 

Startups with at least one worker with experience 

in: 
 Total R&D- High-

Tech 
University  Research  Total R&D- High-

Tech 
University  Research  

Count 43.2M 67,000 806,000 882,000 13,000 1M 21,000 416,000 48,000 1,000 

Birth Year 1974 1969 1970 1980 1982 1971 1965 1969 1980 1979 

Female 45% 44% 32% 54% 54% 30% 36% 27% 31% 26% 

Foreign 21% 24% 24% 14% 18% 25% 24% 28% 25% 29% 

White 73% 75% 75% 75% 70% 74% 80% 74% 72% 69% 

Black 12% 7% 7% 12% 8% 6% 3% 5% 5% 2% 

Hispanic 16% 10% 9% 8% 6% 9% 13% 8% 7% 4% 

Asian 6% 13% 13% 8% 13% 12% 13% 15% 17% 19% 

Other 7% 4% 4% 4% 8% 7% 2% 5% 5% 8% 

Duration  4.73 5.29 2.46 1.85  5.93 6.05 2.42 2.20 

Note that counts in this and subsequent tables are rounded for disclosure limitation reasons 
Source: LBD combined with Individual Characteristics File (ICF) 

Note: Statistics calculated pooling 2005-2015 startups in the LBD and tabulating the first year demographic statistics. Figures have been rounded 
for disclosure purposes. (D) indicates that the number has been suppressed for disclosure. 

 

The literature suggests that high levels of human capital should be disproportionately valued by 

firms with complex production processes (32).  That is borne out by our data.  Even though 
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High-Tech startups account for only 4.4% of all startups in the US, they account for 17% of 

startups hiring at least one R&D experienced worker, 36% of startups hiring High Tech workers, 

6% of startups hiring university experienced workers and 8% of startups hiring research 

experienced workers. 

 

Of course, the first three human capital measures, while extremely valuable in measuring 

potential research experience (in the same spirit, but in more detail, than older measures such as 

employment tenure and labor market experience), include a variety of workers.   As such, a 

startup that hired a secretary who had been at an R&D lab would be classified as having hired an 

R&D experienced worker. 

 

The direct measures offered by UMETRICS enable us to tease out the relationships in more 

detail.   Table 3 shows the subset of startups who hired workers employed on research grants in 

the 22 UMETRICS universities, by funding source.    In all cases, startups that hired funded 

researchers were more likely to be High-Tech – the ratio is particularly high for those hiring 

individuals who worked on grants funded by the National Science Foundation, the Department of 

Defense and the Department of Energy. 

 

Table 3: Distribution of Startups hiring research experienced workers by funding source 

 
  NIH NSF DOD DOE Other 

Federal 

Non-Federal 

Number of startups hiring 

UMETRICS workers 

3,500 1,900 700 400 5,400 3,000 

Proportion of startups in 

High-Tech 

7.2% 16.8% 21.0% 17.4% 6.4% 9.4% 

Ratio relative to 

proportion of all startups 

in High-Tech (4.4%) 

1.64 3.82 4.77 3.95 1.45 2.14 

Note: Statistics calculated pooling 2005-2015 startups in the LBD and tabulating the funding sources for each of the UMETRICS experienced 
workers. UMETRICS workers can be funded through multiple agencies and startups can hire multiple UMETRICS experienced workers, so that 

the counts are not mutually exclusive. Figures have been rounded for disclosure purposes. (D) indicates that the number has been suppressed for 

disclosure.  

 

The detail included in the UMETRICS data allows us to similarly characterize the propensity to 

be in High-Tech industries by the skill level of researchers, as reported in Table 4. Startups 

hiring graduate students and faculty are much more likely to be High-Tech than other startups; 

the pattern for undergraduate hiring is much more similar to the startup distribution as a whole. 
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Table 4: Distribution of Startups hiring research experienced workers by Occupation 

 
  

Faculty 
Graduate 

Student 

Post 

Graduate 
Undergraduate Other 

Number of startups 3,500 1,900 700 400 5,400 

Proportion of startups 

in High-Tech 12.0% 15.2% 9.8% 6.0% 8.3% 

Ratio relative to 

proportion of all 

startups in High-Tech 

(4.4%) 

2.73 3.45 2.23 1.36 1.89 

Source: LBD combined with UMETRICS worker file 
Note: Statistics calculated pooling 2005-2015 startups in the LBD and tabulating the funding sources for each of the UMETRICS experienced 

workers. Startups can hire multiple UMETRICS experienced workers, so that the counts are not mutually exclusive. Figures have been rounded 

for disclosure purposes. (D) indicates that the number has been suppressed for disclosure. 

 

Finally, the data enable us to drill down into the more detailed industry distribution of startups.   

Table 5 shows vast compositional differences in the worker types of High-Tech startups within 

narrowly defined industries. More than 85% of all High-Tech startups are in the fields of 

Computer Design (NAICS “5415”), Engineering (NAICS “5413”) or R&D laboratories (NAICS 

“5417”).  More than half of High-Tech startups are in computer design.   While there is some 

variation in the shares of each worker types across these industries, more than 80% of each of the 

worker types is affiliated with a startup in one of those 3 industries. Although only 5% of High-

Tech startups are R&D labs, almost two thirds of startups who hired workers with R&D 

experience and over one third of startups hiring workers with research experience are R&D labs.  

 

Table 5: Industry sector of High-Tech startups at Year 0 

 All Startups Startups hiring workers with 

Startup Sector Counts Distribution 

R&D 

Experience 

High-Tech 

Experience 

University 

Experience 

Research 

Experience 
AERO MANU 700 0.30% 0.18% 0.36% 0.34% (D) 

COMM MANU 700 0.30% 0.27% 0.36% 0.34% (D) 

COMP DESIGN 128,100 54.28% 14.64% 53.80% 46.21% 40.83% 

COMP MANU 800 0.34% 0.27% 0.29% 0.34% (D) 

DATA PROCESS 6,700 2.84% 1.00% 2.99% 4.14% 4.17% 

ENGINEER 61,500 26.06% 6.36% 28.47% 20.69% 14.17% 

INFO SERVICE 8,800 3.73% 0.91% 1.82% 5.86% 5.00% 

INSTRUM MANU 1,800 0.76% 0.91% 1.02% 1.03% 1.67% 

INTERNET 1,300 0.55% 0.18% 0.58% 0.69% (D) 

ISP 2,600 1.10% 0.18% 1.09% 0.69% (D) 

OIL GAS 4,500 1.91% 0.18% 2.04% 1.03% (D) 

PHARMA 1,100 0.47% 1.64% 0.58% 1.03% 1.67% 

RD LAB 12,900 5.47% 67.82% 3.80% 14.14% 28.33% 

SEMI MANU 1,600 0.68% 0.91% 0.88% 1.03% 1.67% 

SOFTWARE 3,500 1.48% 0.82% 1.75% 2.76% 4.17% 

Total 236,000 11,000 137,000 29,000 1,200 
Note: Statistics calculated pooling 2005-2015 startups in the LBD. Figures have been rounded for disclosure purposes. (D) indicates that the 

number has been suppressed for disclosure. 
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4.3 Startup Outcomes and Human Capital Composition 
 

This section provides some initial descriptive results about the link between workforce 

experience and startup outcomes (Survival to period t+1, Employment Growth to t+1, Revenue 

Growth to t+1, Patent in t+1, and Trademark in t+1). We start by first exploring the proportion 

of startups that experience each type of outcome considered.  

 

 
Figure 4: Outcomes of All Startups 

Notes: Figure shows the share of each startup sample that experience each outcome. 

 

Figure 4 provides some useful initial insights about startup outcomes.   Although, by and large, 

startups that hire workers with R&D, High-Tech, and University experience  are more likely to 

survive than those that do not, startups that hire UMETRICS experienced individuals show about 

the same survival rate as the typical startup. Moreover, in the analyses that follow we find that 

higher surival rates for firms that hire high human capital workers is primarily a compositional 

effect. Controling for other characteristics of the startup, such as industry and size, these firms 

are generally less likely to survive. Consistent with an “up or out” dynamic, startups hiring high 

human capital individuals are more likely to see employment growth than those in the economy 

at large, and this is particularly true for UMETRICS startups.    The picture is a little different for 

revenue growth –UMETRICS startups have lower revenue growth.  Patent and trademark 

activity are consistently substantially higher for all startups hiring experienced workers – and 

UMETRICS startups are second only to startups that hire R&D experienced workers in both of 
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these dimensions of innovation. As Figure 5 shows, an almost identical pattern holds true, albeit 

at different levels, for High-TechTech startups.  

 

 
Figure 5 Outcomes of High-Tech startups 

Notes: Figure shows the share of each startup sample within High-Tech industries that experience each outcome. 

 

For High-Tech startups, we see a greater proportion of firms patenting and trademarking, 

especially among startups with high human capital workers. The “up-or-out” dynamic is even 

more clear for startups with research trained workers in High-Tech industries, which are less 

likely to survive, more likely to hire additional employees, and more likely to trademark.  

5. Analysis 
In this section we expand on the framework provided in Equation (1) and formalize our model to 

control for a number of non-human capital characteristics. We assume that the functional form of 

Equation (1) is a linear combination of exponential functions, allowing us to use a log-linear 

estimation and calculate multiple outcome measures for each startup (survival, employment 

growth, revenue growth, patenting and trademarking) one year after the birth of the firm. We 

regress these outcomes against the startup’s workforce and other characteristics in the year of 

firm birth (t=0). 

 

Our main empirical specification is as follows: 
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𝒀𝒇 =  𝜶 +  𝜷𝟏 𝐥𝐧 𝑬𝑨𝑹𝑵𝒇𝟎 +  ∑ 𝜹𝒌𝑺𝑰𝒁𝑬𝒌𝒇𝟎

𝟗

𝒌=𝟏

+ 𝜷𝟐 𝐥𝐧 𝑨𝑮𝑬𝒇𝟎
̅̅ ̅̅ ̅̅ ̅̅ ̅ +  𝜷𝟑 𝐥𝐧 𝑭𝑬𝑴𝑨𝑳𝑬𝒇𝟎

+  𝜷𝟒 𝐥𝐧 𝑭𝑶𝑹𝑬𝑰𝑮𝑵𝒇𝟎 +  𝜷𝟓 𝐥𝐧 𝑹𝑫𝒇𝟎 + 𝜷𝟔 𝐥𝐧 𝑯𝑻𝒇𝟎 + 𝜷𝟕 𝐥𝐧 𝑼𝑵𝑰𝒇𝟎

+  𝜷𝟖 𝐥𝐧 𝑹𝒆𝒔𝒆𝒂𝒓𝒄𝒉 𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆𝒇𝟎 +  𝜺 

 

(2) 

 

The key measures of interest are the workforce human capital measures – the number of workers 

who have worked in R&D performing firms, High-Tech firms, universities – as well as the 

number who have direct research experience. As noted above, survival is a binary measure 

capturing whether a startup had positive employment in t+1, employment and revenue growth is 

calculated as the log differences in the values between t and t+1, and patenting and trademarking 

is a binary measure capturing whether the startup applied for a patent that was eventually granted 

or filed for a trademark that was eventually registered. The earnings variable is the inverse 

hyperbolic sine transformation of the startup worker's earnings (collected from the W2 or 

LEHD).8 The size categories consist of 6 separate groupings: 1 employee, 2-5 employees, 6-9 

employees, 10-19 employees, 19-49 employees and 50 or greater. For worker types, we take the 

inverse hyperbolic sine transformation of the number of each type of worker at the startup at time 

t=0. Other controls include zip code-year fixed effects and industry fixed effects.  

 

The richness of the data permit the introduction of many controls.  In particular, we can include 

mean earnings of the firm workforce as well as firm employment size categories.  

We interact demographics with each of the R&D worker types to identify potential non-

linearities of being a certain type of worker (e.g. female University worker).9  

 

Since the Census Bureau data does not have direct measures of technology, we control for 

industry, detailed geography and year using fixed effects. External macroeconomic conditions 

are proxied by zip code-year fixed effects and industry fixed effects. 

   

5.1 Baseline Results 
 

We begin by simply describing the contribution of each factor to startup outcomes.  Table 6 

describes the explanatory power of a group of covariates to the startup outcomes of survival, 

employment growth, revenue growth, patenting and trademarking in the next period. 

Table 6 shows that just controlling for location and industry fixed effects can explain a small 

share of the variance in outcomes. Including initial firm characteristics, such as employment size 

and mean earnings at t=0, contributes significantly to the share of variance explained in all of the 

outcomes. Including demographic controls, such as the mean age of the employees, number of 

female employees, foreign-born status and race, has large explanatory power in future 

employment growth, but relatively little explanatory power on revenue, survival and innovation. 

Including our basic human capital measures leads to an insignificant increase in the explanatory 

                                                 
8 We use the inverse hyperbolic sine transformation to address the fact that many startups have zero high human 

capital workers.  
9 Note that these interaction terms are the result of multiplying continuous counts of employees falling into each 

group and that any given employee may belong to any number of designated groups.  
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power of the model in survival and employment growth across all firms, but does have 

significant power in our model for revenue growth, patenting and trademarking. In particular, the 

human capital elements contribute an additional 40% in explanatory power for patenting 

outcomes in the following period and an additional 10% in explanatory power for trademarking. 

These patterns continue to hold for High-Tech startups with human capital contributing an 

additional 25% in explanatory power for patents and an additional 4.5% in revenue and 4.7% in 

trademarking. This table highlights the explanatory power of human capital in relation to startup 

growth and innovative outcomes.  

 

Table 6: Explanatory power (R2) of Startup Covariates 

All Startups 

Survival, 

t+1 

Employment 

Growth, t+1 

Revenue 

Growth, t+1 

Patent, 

t+1 

TM, 

t+1 
Geography-Year and Industry 

Dummies only 0.230 0.019 0.026 0.014 0.041 

Geography-Year and Industry 

Dummies+ Initial Firm 

Characteristics 0.342 0.184 0.027 0.016 0.049 

Geography-Year and Industry 

Dummies+ Initial Firm 

Characteristics + Demographics 0.344 0.303 0.031 0.017 0.050 

Geography-Year and Industry 

Dummies+ Initial Firm 

Characteristics + Demographics 

+ Human Capital 0.344 0.303 0.032 0.029 0.056 

Share of Explained Variance 

Explained by Human Capital 0.1% 0.3% 3.1% 41.4% 10.7% 

High-Tech Startups 

Survival, 

t+1 

Employment 

Growth, t+1 

Revenue 

Growth, t+1 

Patent, 

t+1 

TM, 

t+1 
Geography-Year and Industry 

Dummies only 0.248 0.071 0.067 0.058 0.084 

Geography-Year and Industry 

Dummies+ Initial Firm 

Characteristics 0.354 0.218 0.07 0.072 0.113 

Geography-Year and Industry 

Dummies+ Initial Firm 

Characteristics + Demographics 0.355 0.371 0.085 0.078 0.123 

Geography-Year and Industry 

Dummies+ Initial Firm 

Characteristics + Demographics 

+ Human Capital 0.358 0.377 0.089 0.104 0.129 

Share of Explained Variance 

Explained by Human Capital 0.8% 1.6% 4.5% 25.0% 4.7% 
Notes: Table reports changes in R2 using different sets of covariates. The first specification regresses outcomes on 

geography, year, and industry dummies. Each subsequent specification adds additional covariates such as firm 

characteristics, worker demographics, and finally our human capital measures.  

 

Table 7 provides the key results associated with the full regression. Briefly, the relationship 

between the different measures of human capital and startup survival and growth (both in terms 
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of employment and revenue) is measurable and quite large. Startups that employ workers with 

experience working in R&D Labs, High-Tech and universities are less likely to survive. Our 

human capital measures are clearly associated with positive employment and revenue growth. 

Using the fully controlled specification, our results suggest that employing 1 additional R&D 

worker is associated with a 1.4 percentage point increase in employment growth (conditional on 

survival).10 This figure increases to 4 percentage points for one additional High-Tech worker, 

and 3.6 percentage point for a former university employee. We see similar patterns in revenue 

growth. For all startups, the hiring of one additional high human capital worker is associated 

with a 1.4 to 4 percentage point increase in employment growth and a – 2.3 to 5 percentage point 

increase in revenue growth (conditional on survival). We see fairly large coefficients on the 

patenting and trademarking outcomes for R&D lab workers, with the addition of one R&D lab 

worker contributing a 9.2 percentage point increase in patent filing and a 7.5 percentage point 

increase in trademark filing.  

 

The second panel of Table 7 reports the results for the subset of startups that hired employees 

from the 22 institutions that provided UMETRICS data.   The interpretation of the coefficient is 

thus relative to the effects of hiring an individual trained on a research grant over and above 

those simply with experience of working in one of these 22 universities.  The results are 

consistent.   Startups that hired research trained individuals were more likely to fail than those 

who only hired university experienced individuals (which are in turn more likely to fail than 

other startups, as established in the first panel).   However, those that survive are more likely to 

create jobs, have higher revenue and file more patents and trademarks.   Again, these results are 

over and above the relationship between university experienced workers.  

 

The third and fourth panel of Table 7 delves more deeply into the types of projects and skill 

embodied within our direct measure of human capital. Startups that hire workers funded by DOD 

and DOE grants are much more likely to patent, again relative to startups that hire non-research 

trained workers at these universities. Startups that hire workers trained on NIH and NSF funded 

grants see greater employment growth. Interestingly, faculty, graduate students, and post-grads 

contribute more to patenting and trademark activity while undergraduates are associated with 

greater employment growth.  

                                                 
10 Note that the coefficient interpretation is based on adding a single worker of a given type to the mean number of 

workers of that type at time t=0 across all startups.  
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Table 7: OLS on All Startup Outcomes, 2005-2015 
 

Survival, t+1 

Employment 

Growth, t+1 

Revenue 

Growth, t+1 Patent, t+1 TM, t+1 

ln 𝑅𝐷𝑓0 -0.0481*** 0.0156* 0.0456*** 0.105*** 0.0849***  
(0.00407) (0.00717) (0.0127) (0.0136) (0.0134) 

ln 𝐻𝑇𝑓0 -0.0268*** 0.0474*** 0.0596*** 0.0121*** 0.0488***  
(0.00333) (0.00415) (0.00384) (0.000772) (0.00311) 

ln 𝑈𝑁𝐼𝑓0 -0.0177*** 0.0431*** 0.0282*** 0.00541*** 0.0299***  
(0.00215) (0.00416) (0.00536) (0.000915) (0.00319) 

Observations 4,930,000  3,370,000  1,910,000  4,930,000  4,930,000  

R-squared 0.344 0.303 0.032 0.029 0.056 

Startups that hired UMETRIC university employees: overall  

ln 𝑅𝐸𝑆𝐸𝐴𝑅𝐶𝐻𝑓0 
-0.00902* 0.0204* 0.0272+ 0.0139*** 0.0180*** 

(0.00357) (0.00858) (0.0161) (0.00175) (0.00396) 

Observations 68,000 45,000 17,000 68,000 68,000 

R-squared .567 .397 .148 .109 .146 

Startups that hire UMETRIC university employees: Decomposed by funding source 

NIH 
-0.00662 0.0440** -0.00850 0.0141*** 0.0210** 

(0.00612) (0.0144) (0.0262) (0.00299) (0.00679) 

NSF 
-0.00852 0.0432* 0.0506 0.0259*** 0.0313** 

(0.00864) (0.0204) (0.0381) (0.00420) (0.00954) 

DOD 
-0.00217 -0.0158 0.0615 0.0528*** 0.0235 

(0.0134) (0.0313) (0.0551) (0.00649) (0.0147) 

DOE 
-0.0127 -0.0222 0.174* 0.0452*** -0.0432* 

(0.0177) (0.0415) (0.0787) (0.00865) (0.0196) 

Other Federal 

Funding 

-0.00594 0.0192+ -0.0109 -0.00605* -0.00507 

(0.00486) (0.0115) (0.0212) (0.00237) (0.00538) 

Non-Federal 

Funding 

0.000349 0.0108 0.0558+ 0.00217 0.0225** 

(0.00670) (0.0161) (0.0309) (0.00326) (0.00740) 

R-squared .567 .397 .148 .109 .146 

Startups that hire UMETRIC university employees: Decomposed by Occupation 

Faculty 
-0.0143 -0.0926** -0.0151 0.0566*** 0.00230 

(0.0146) (0.0338) (0.0586) (0.00708) (0.0161) 

Graduate 

Student 

-0.0204* 0.0225 0.0578 0.0416*** 0.0289** 

(0.00921) (0.0223) (0.0429) (0.00449) (0.0102) 

Post-Grads 
-0.00804 -0.127*** -0.0297 0.0430*** -0.00418 

(0.0164) (0.0383) (0.0692) (0.00800) (0.0182) 

Undergraduate 
-0.00713 0.0784*** 0.0461+ 0.00192 0.00889 

(0.00525) (0.0126) (0.0241) (0.00257) (0.00583) 

Other (Admin, 

Technician) 

-0.00605 0.0251* 0.0237 0.00658** 0.0242*** 

(0.00499) (0.0118) (0.0213) (0.00244) (0.00554) 

R-squared .567 .397 .148 .109 .146 

Notes: Observations are startup-year combinations. Clustered Robust Standard Errors in Parentheses (by 4-digit 

Industry-Year). + p<0.10, *p<0.05, **p<0.01, ***p<0.001; controls included for size and average earnings, 

proportion of workforce that is female, foreign born, and interactions of female, foreign born with all of the different 

types of research experience (e.g. Foreign female R&D lab workers). In order to account for zeros in our logged 

counts of high human capital workers we implement an inverse hyperbolic sine transformation. Interpretation of 

coefficients is based on the addition of one worker of a given type to the mean of that type of worker across all 

startups at time t=0. The mean number of R&D workers, High-Tech workers, and university at time t=0 is 0.0114, 

0.1534, and 0.1686 respectively.  Observations have been rounded for disclosure purposes. 
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Table 8 reports estimates similar to the top panel of Table 7 (with the full set of controls) but for 

startups in High-Tech industries. The results are substantively unchanged. The magnitude of the 

coefficients are also significantly larger than the coefficients in the previous table, which 

confirms our hypothesis that High-Tech startups are relatively more sensitive to measures of 

human capital. In the case of employment growth, increasing the number of high human capital 

workers by 10% is associated with a 0.29 to 0.93 percentage point increase in employment 

growth and a 0.63 to 0.88 percentage point increase in revenue growth for High-Tech firms. The 

same increase in R&D lab experienced workers is associated with an 1.82 percentage point 

increase in patenting and an 1.14 percentage point increase in trademarking.11   

 

Table 8: OLS on High-Tech Startup Outcomes, 2005-2015 
 

Survival, t+1 

Employment 

Growth, t+1 

Revenue 

Growth, t+1 

Patent, 

t+1 TM, t+1 

ln 𝑅𝐷𝑓0 -0.0515*** 0.0287 0.0632* 0.182*** 0.114***  
(0.00706) (0.0146) (0.0305) (0.0211) (0.0239) 

ln 𝐻𝑇𝑓0 0.0423*** 0.0823*** 0.0865*** -0.00551* 0.00308  
(0.00549) (0.00366) (0.00638) (0.00234) (0.00417) 

ln 𝑈𝑁𝐼𝑓0 -0.00633 0.0933*** 0.0879*** 0.0142* 0.0711***  
(0.00429) (0.00748) (0.0127) (0.00648) (0.0137) 

Other Controls Yes Yes Yes Yes Yes 
Observations 210,000 140,000 95,000 210,000 210,000 
R-squared 0.358 0.377 0.089 0.104 0.129 
Notes: Observations are startup-year combinations. Robust Standard Errors in Parentheses. *p<0.05, 

**p<0.01, ***p<0.001; controls included for size and average earnings, proportion of workforce that is 

female, foreign born, and interactions of female, foreign born with research experience.   

 

In addition to these tables, we have estimated the same specification over different size groups of 

startups and find that the results are robust and do not differ greatly. To summarize our empirical 

findings, with the exception of survival, we find mostly positive and significant associations 

between R&D-experience, High-Tech experience, university experience and research-trained 

experience with startup performance. These human capital measures are associated with much 

riskier outcomes: survival of such startups is significantly less likely.  However, conditional on 

survival, these basic measures of human capital have positive and significant effects on 

employment growth and revenue growth for the following period. The explanatory power of 

these measures is surprisingly high, contributing more than 15% to the cumulative explanatory 

power of High-Tech startup employment growth.  

6. Conclusion 
This paper leverages new data about workforce human capital that can be used to provide more 

insights into the survival, growth and innovative activity of new businesses.  Our human capital 

measures have a negative impact on survival, but a significant and positive association with 

employment growth and revenue growth conditional on survival. These results are consistent 

with the view that there is a relationship between workforce experience and business startup 

outcomes.   While it is important to note that the cumulative magnitude of the effects of these 

                                                 
11 Disclosure limitation protocols preclude us from doing a deeper dive using UMETRICS only data. 



20 

 

human capital measures on startup outcomes is relatively small, it is important to consider that 

these are very basic measures of human capital (binary and extensive margin type measures). 

 

Overall, these findings point to the important role human capital plays in the outcomes of young 

businesses. One mechanism by which these human capital measures might affect startup 

outcomes is through knowledge diffusion. A worker’s experience in university-based research 

activities and the experience individuals gain by working in different types of environments 

(R&D laboratories, High-Tech industries, and/or Universities) might transmit tacit knowledge 

that is valuable to firms. Moreover, the importance of tacit knowledge may vary by the types of 

tasks workers perform, which is consistent with the evidence that our human capital measures 

are relatively more important in High-Tech industries. A firm’s investment in technology may 

also affect the value of human capital, making some types or knowledge more valuable through 

complementarities and others less valuable through substitutability. These types of interactions 

provide scope for future research using these data.  
  

As always, there is much more to be done with these data, particularly as the time series grows.   

It should be possible to include more information about the project level factors identified by 

Corrado and Lane as important, such as “the roles of: organizational practices (employment and 

management); organizational characteristics (employee knowledge and skills, business model, IT 

use); environmental and cultural factors (location and networks); entrepreneurial factors (firm 

age and origin)”(25). In future work we will do just that.  We will expand the analysis of 

research experience to capture network effects as well as the effects of intensive exposure to 

research intensive environments.   We will also examine a broader set of outcome measures, 

including for startups that went public or became exceptionally large. It is always difficult to 

identify causal relationships, but we have begun to investigate the effects of sharp changes in 

funding, such as the 2009 American Recovery and Reinvestment Act (ARRA), as well as 

changes in funding to different research areas. 
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