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Abstract

Over the 1990s, the share of foreigners entering the US high-skill workforce grew rapidly.
This migration potentially had a significant effect on US workers, consumers and firms.
To study these effects, we construct a general equilibrium model of the US economy and
calibrate it using data from 1994 to 2001. Built into the model are positive effects high
skilled immigrants have on innovation. Counterfactual simulations based on our model
suggest that immigration increased the overall welfare of US natives, and had significant
distributional consequences. In the absence of immigration, wages for US computer sci-
entists would have been 2.6% to 5.1% higher and employment in computer science for US
workers would have been 6.1% to 10.8% higher in 2001. On the other hand, complements
in production benefited substantially from immigration, and immigration also lowered
prices and raised the output of IT goods by between 1.9% and 2.5%, thus benefiting
consumers. Finally, firms in the IT sector also earned substantially higher profits due to
immigration.
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An increasingly high proportion of the scientists and engineers in the US were born abroad.
At a very general level, the issues that come up in the discussion of high-skill immigration
mirror the discussion of low-skill immigration. The most basic economic arguments suggest
that both high-skill and low-skill immigrants: (1) impart benefits to employers, to owners of
other inputs used in production such as capital, and to consumers, and (2) potentially, impose
some costs on workers who are close substitutes (Borjas, 1999). Evidence suggests, however,
that the magnitude of these costs may be substantially mitigated if US high-skill workers have
good alternatives to working in sectors most impacted by immigrants (Peri et al., 2013; Peri
and Sparber, 2011). Additionally, unlike low-skill immigrants, high-skill immigrants contribute
to the generation of knowledge and productivity through patenting and innovation, both of
which serve to shift out the production possibility frontier in the US and may also slow the

erosion of the US comparative advantage in high tech (Freeman, 2006; Krugman, 1979).

In this paper we study the impact that the recruitment of foreign computer scientists on H-1B
visas had on the US economy during the Internet boom of the 1990s. An H-1B is a non-
immigrant visa allowing US companies to temporarily employ foreign workers in specialized
occupations. The number issued annually is capped by the federal government. During the
1990s, we observe a substantial increase in the number of H-1B visas awarded to high-skill
workers, with those in computer-related occupations becoming the largest share of all H-1B
visa holders (U.S. General Accounting Office, 2000). Given these circumstances, it is of consid-
erable interest to investigate how the influx of H-1B visa holders during this period might have
affected labor market outcomes for US computer scientists and other US workers, and overall

productivity in the economy.

We focus on the period 1994 to 2001 for a number of reasons. During the latter half of the
1990s, the US economy experienced a productivity growth attributable, at least in part, to the
IT boom, facilitated by the influx of foreign talent (Jorgenson et al., 2015). At the same time,
the recruitment of H-1B labor by US firms was at or close to the H-1B cap during this period,
enabling us to treat foreign supply as determined by the cap. Finally, more recent growth of the
IT sector in India and changes in the law authorizing the H-1B have complicated the picture
since 2001.1

In earlier work evaluating the impact of immigration on Computer Science (CS) domestic
workers, we constructed a dynamic model that characterizes the labor supply and demand for
CS workers during this period (Bound et al., 2015). We built into the model the possibility that
labor demand shocks, such as the one created by the Internet boom, could be accommodated
by three sources of CS workers: recent college graduates with CS degrees, US residents in
different occupations who switch to CS jobs, and high-skill foreigners. Furthermore, our model
assumed firms faced a trade-off when deciding to employ immigrants: foreigners were potentially

either more productive or less costly than US workers, but incurred extra recruitment/hiring

1See Khanna and Morales (2015) for a long-run extension of this work that also models the Indian IT sector.



costs.

The approach we took in that analysis was distinctly partial equilibrium in nature — that is,
we focused on the market for computer scientists and ignored any wider impacts that high-skill
immigration might have on the US economy (Nathan, 2013). While we believe that approach
could be used to understand the impact that the availability of high-skill foreign labor might
have had for this market, it precludes any analysis of the overall welfare impact of the H-1B

program in particular, or of high-skill immigration more generally.

The implications of the model regarding the impact of immigration on the employment and
wages of native workers depended on the elasticity of labor demand for computer scientists.
As long as the demand curve sloped downwards, the increased availability of foreign computer
scientists would put downward pressure on the wages for computer scientists in the US. However,
in the case of computer scientists, other factors may affect this relationship. First, even in a
closed economy, the contribution of computer scientists to innovation reduces the negative
effects foreign computer scientists might have on the labor market opportunities for native
high-skill workers. In addition, in an increasingly global world, US restrictions on the hiring
of foreign high-skill workers are likely to result in greater foreign outsourcing work by US
employers. Indeed, if computer scientists are a sufficient spur to innovation, or if domestic
employers can readily offshore CS work, any negative effects that an increase in the number of
foreign CS workers might have on the domestic high-skill workforce would be offset by increases

in the domestic demand for computer scientists.

In Bound et al. (2015), we used data on wages, domestic and foreign employment, and under-
graduate degree completions by major, during the late 1990s and early 2000s to calibrate the
parameters of our model to reproduce the stylized facts of the CS market during the analytic
period (1994 to 2001). Next, we used the calibrated model to simulate counterfactuals on how
the economy would have behaved if firms had been restricted in the number of foreign CS
workers they could hire to the 1994 level. Conditional on our assumptions about the elasticity
of the demand curve for computer scientists, our simulation suggests that had US firms faced
this restriction, CS wages and the number of Americans working in CS and the enrollment
levels in US computer science programs would have been higher, but the total number of CS

workers in the US would have been lower.

The predictions of our model did not depend on the specific choice we made for non-calibrated
parameters, with one important exception: crowd out in the market for computer scientists
depended crucially on the elasticity of demand for their services. Ideally, we would have been
able to use exogenous supply shifts to identify the slope of the demand curve for computer
scientists, as we use exogenous shifts in demand to identify supply curves. In other contexts,
researchers have treated the increase in foreign born workers in the US economy as exogenous.

However, in the current context, immigration law in the US implies that most of the foreign



born and trained individuals who migrate to the US to work as computer scientists do so
because they are sponsored by US based firms. Thus, it seems implausible to treat the number
of foreign born computer scientists in the US as an exogenous increase in supply. In the end,
without credible sources of identifying information, we resorted to parametrically varying the

elasticity of the demand for computer scientists.

In the current analysis, we take a different track. We interpret the arguments about the
potential productivity effects of high-skill immigrants in terms of models of endogenous technical
change. Within the context of a simple general equilibrium model of the US economy, we link
productivity increases in the U.S. economy during the 1990s to increases in the utilization of
computer scientists in the economy. This allows us to derive the demand curve for computer

scientists.

Within the context of our model, it is possible to understand the effect that the availabil-
ity of high-skill foreign workers has on the earnings of both high and low-skill workers, the
goods available in the economy, and profits in the high-tech sector of the economy. However,
our conclusions are dependent both on our modeling choices and on values of our calibrated
parameters. For this reason, we do extensive sensitivity analyses to determine which of our

conclusions are robust.

A key feature of high-skill immigrants is that they contribute to innovation. While this point
is well understood, we know of no earlier work that has tried to quantify the magnitude of this
effect within the context of an explicit model of the US economy. The magnitude of this effect
is important because it speaks to the magnitude of any first-order gains to US residents of
high-skill immigration, and because it has a direct influence on the slope of the labor demand

curve for close substitutes for high-skill immigrants.

Our model is limited in a number of important respects. While we allow for endogenous
technical change, we incorporate trade in a very stylized manner and do not allow explicitly
for outsourcing.? As such, we think our model captures relatively short-run effects of H-1B
immigration. Although in this sense our model is different from models incorporated in recent
work by, for example, Grossman and Rossi-Hansberg (2008) or di Giovanni et al. (2015), we

believe that it captures important elements of the current debate about the H-1B program.

We review this literature in detail, and describe the market for CS workers in section 1. Section
2 presents the model we build to characterize the market for CS workers when firms can recruit
foreigners. In section 3, we describe how we calibrate the parameters of the model and in section
4 we run counterfactual simulations where firms have restrictions on the number of foreigners
they can hire. Section 5 talks about welfare changes under this counterfactual scenario. We

conclude with section 6, which presents a discussion based on the results of the analysis.

2 Available evidence suggests that outsourcing options were somewhat limited during the 1990s (Liu and
Trefler, 2008), though it is not clear that this is still true.



1 The Market for Computer Scientists in the 1990s

1.1 The Information Technology Boom of the Late 1990s

The mid 1990s marks the beginning of the use of the Internet for commercial purposes in the
United States, and a concomitant jump in the number of Internet users. One indicator of a
contemporaneous increase in demand for IT workers is the rise of R&D expenditures among
firms providing computer programming services, and computer-related equipment. Specifically,
the share of total private R&D expenditures for firms in these sectors increased from 19.5% to
22.1% between 1991 and 1998.2 The entry and then extraordinary appreciation of tech firms
like Yahoo, Amazon, and eBay provide a further testament to the boom in the IT sector prior
to 2001.

These changes had a dramatic effect on the labor market for computer scientists. According
to the Census, the number of employed individuals working either as computer scientists or
computer software developers increased by 161% between the years 1990 and 2000. In compar-
ison, during the same period, the number of employed workers with at least a bachelor degree
increased by 27% and the number of workers in other science, technology, engineering, and
math (STEM) occupations increased by 14%.* Table 1 shows that computer scientists as a
share of the college-educated workforce and the college-educated STEM workforce was rising
before 1990, but increased dramatically during the 1990s. Indeed, by 2000 more than half of
all STEM workers were computer scientists. In Figure 1la, we use CPS data to show a similar
pattern, additionally showing that the growth of CS employment started in the second half of

the decade - a period corresponding to the dissemination of the Internet.

The Internet innovation affected educational choices as well as employment decisions. We show
in Figure 1b that the CS share of both all bachelor’s degrees and of STEM major degrees
increased dramatically during this period, in both cases rising from about 2% of all Bachelor
degrees granted in 1994 to almost than 3.5% in 2001.

The behavioral response would be different if the boom was only temporary and respond to the
Y2K bug. The employment and educational evidence, however, suggests that many expected
this boom, as a response to technological innovations, to be permanent. Indeed, in 1997, the
Bureau of Labor Statistics (BLS) projected a steady increase in CS employment after the turn
of the century. More specifically, the BLS predicted that between 1996 and 2006 “Database
administrators, computer support specialists, and all other computer scientists” would be the

fastest growing occupation and “Computer engineers” would be the second fastest in terms of

3Bound et al. (2015) calculation using Compustat data

4Here and elsewhere, our tabulations restrict the analysis to workers with at least a bachelor degree and use
the IPUMS suggested occupational cross walk. Other STEM occupations are defined as engineers, mathemati-
cians and computer scientists. For more details see Appendix A.1.



jobs. Furthermore, they predicted that “Computer and data processing services” would grow

by 108% — the fastest growing industry in the country.’

In addition to affecting employment and enrollment decisions, there is also empirical evidence
that CS wages responded to expanding Internet use. From the Census, we observe an 18%
increase in the median real weekly wages of CS workers between 1990 and 2000. The CPS
presents similar patterns: starting in the year 1994 we observe in Figure lc that wages of
computer scientists increased considerably when compared to both workers with other STEM
occupations and all workers with a bachelor degree. In fact, while during the beginning of the
1990s, the earnings of CS workers were systematically lower than other STEM occupations, the

wage differential tends to disappear after 1998.

1.2 Contribution of Immigration to the Growth of the High Tech
Workforce

Employment adjustments in the market for computer scientists occurred disproportionately
among foreigners during the Internet boom. Evidence for this claim is found in Table 1 and
Figure 1d, where we use Census and CPS data to compare the share of foreign computer
scientists to the share of foreign workers in other occupations.® In the second half of the 1990s,
the foreign fraction of CS workers increased considerably more than both the foreign fraction of
all workers with a bachelor degree and the foreign fraction of all workers in a STEM occupation.
In particular, in 1994 the share of foreigners working in CS was about the same as the share
working in other STEM occupations, but later in the decade, during the boom in Internet use,
the share of foreigners among all CS workers rose steeply, comprising about 30% of the increase

in all CS workers during this period.

The growth in the representation of the foreigners among the US CS workforce was fueled by two
supply-side developments in this period. First, the foreign pool of men and women with college
educations in science and engineering fields increased dramatically (Freeman, 2009). In India,
an important source of CS workers in the US, the number of first degrees conferred in science
and engineering rose from 176,000 in 1990 to 455,000 in 2000. Second, the Immigration Act of
1990 established the H-1B visa program for temporary workers with at least a bachelor’s degree
working in “specialty occupations” including engineering, mathematics, physical sciences, and

business among others.

Firms wanting to hire foreigners on H-1B visas must first file a Labor Condition Application
(LCA) in which they attest that the firm will pay the visa holder the greater of the actual

compensation paid to other employees in the same job or the prevailing compensation for

5Source: BLS Employment Projections http : //www.bls.gov/news.release/history/ecopro_082498.txt
SHere and elsewhere, we define foreigners as those who immigrated to the US after the age of 18. We believe
that this definition is reasonable proxy for workers who arrived to the US on non immigrant visas.



that occupation, and the firm will provide working conditions for the visa holder that do not
adversely affect the working conditions of the other employees. At that point, prospective H-
1B non-immigrants must demonstrate to the US Citizenship and Immigration Services Bureau
(USCIS) in the Department of Homeland Security (DHS) that they have the requisite education
and work experience for the posted positions. The USCIS may approve the petition for the H-
1B holder for a period of up to three years, with the possibility of a three-year extension. Thus
foreign workers can stay a maximum of six years on an H-1B visa, though firms can sponsor
these workers for a permanent resident visa. Because H-1B visas are approved for solely the

applying firm, H-1B foreign workers are effectively tied to their sponsoring company.

Since 1990, when the visa was initiated, the number of H-1B visas issued annually has been
capped. The initial cap was of 65,000 visas per year was not reached until the mid-1990s, when
demand began to exceed the cap. However, the allocation tended to fill each year on a first
come, first served basis, resulting in frequent denials or delays on H-1Bs because the annual cap
had been reached. After lobbying by the industry, Congress raised the cap first to 115,000 for
FY1999 and then to 195,000 for FY2000-2003, after which the cap reverted to 65,000. Figure
le shows the growth in the number of H-1 visas (the H-1 was the precursor to the H-1B) issued
1976-2008, estimates of the stock of H-1 visas in the economy each year, and the changes in
the H-1B visa cap.’

Through the decade of the 1990s, foreign workers with H-1B visas became an important source
of labor for the technology sector. The National Survey of College Graduates shows that 55%
of foreigners working in CS fields in 2003 arrived in the US on an H-1B or a student-type
visa (F-1, J-1). Furthermore, institutional information indicates a significant increase in the
number of visas awarded to workers in computer-related occupations during the 1990s. A
1992 U.S. General Accounting Office report shows that “computers, programming, and related
occupations” corresponded to 11% of the total number of H-1 visas in 1989, while a report from
the U.S. Immigration and Naturalization Service (2000) finds that computer-related occupations
accounted for close to two-thirds of the H-1B visas awarded in 1999. More specifically, the
U.S. Department of Commerce (2000) estimated that during the late 1990s, 28% of all US

programmer jobs went to H-1B visa holders.

While H-1B visa holders represent an important source of computer scientists, they do not
represent all foreigners in the country working as computer scientists. A significant number of
such foreigners are permanent immigrants, some of whom may have come either as children

or as students. Other foreigners enter the US to work as computer scientists in the US on

"The Immigration and Nationality Act of 1952 established the precursor to the H-1B visa, the H-1. The H-1
non-immigrant visa was targeted at aliens of “distinguished merit and ability” who were filling positions that
were temporary. Non-immigrants on H-1 visas had to maintain a foreign residence. The Immigration Act of
1990 established the main features of H-1B visa as it is known today, replacing “distinguished merit and ability”
with the “specialty occupation” definition. It also dropped the foreign residence requirement and added a dual
intent provision, allowing workers to potentially transfer from an H-1B visa to immigrant status.



L-1B visas, which permit companies with offices both in the US and overseas to move skilled
employees from overseas to the US. While we know of no data showing the fraction of computer
scientists working in the US on L-1B visas, substantially fewer L-1(A&B) visas are issued than
are H-1Bs.®

1.3 Impact of Immigrants on the High Tech Workforce in the US

Critics of the H-1B program (Matloff, 2003) argue that firms are using cheap foreign labor
to undercut and replace skilled US workers, although even the fiercest critics do not claim
that employers are technically evading the law (Kirkegaard, 2005). Rather, they argue that
firms skirt the requirement to pay H-1B visa holders prevailing wages by hiring over-qualified
foreigners into positions with low stated qualifications and concomitant low “prevailing wages.”
These critics claim that the excess supply of highly qualified foreigners willing to take the jobs
in the US plus the lack of portability of the H-1B visa limit the capacity of H-1B workers to

negotiate fair market wages.

One way to get a handle on the extent to which H-1B visa holders are being under-paid relative
to their US counterparts is to compare foreigners on H-1B visas to those with green cards — an
immigrant authorization allowing the holder to live and work in the US permanently, with no
restrictions on occupation. Using difference-in-difference propensity score matching and data
from the 2003 New Immigrant Survey, Mukhopadhyay and Oxborrow (2012) find that green
card holders earn 25.4 percent more than observably comparable temporary foreign workers.
Using log earnings regressions and data from an internet survey, Mithas and Lucas (2010)
find that IT professionals with green cards earn roughly 5 percent more than observationally
equivalent H-1B visa holders. Comparisons between green card and H-1B holders are far from
perfect. Since many green card holders begin as H-1B visa holders who are eventually sponsored
by their employers for permanent residence status, it is reasonable to assume that green card
holders are positively selected on job skills. Given this consideration, it is somewhat surprising

that the observed green card premium is not larger than this 5%.

Perhaps the most compelling work concerning productivity differences between H-1B visa hold-
ers and their US resident counterparts comes from a recent paper by Doran et al. (2015) who
analyze H-1B lotteries used in FY 2006 and 2007 to identify the productivity effects on firms
of hiring an additional H-1B worker. During these two years, firms that submitted an LCA
during the day the H-1B quota was hit would enter a lottery to determine whether they were
permitted to hire the additional H-1B worker. Doran et al. (2015) find that winning the lottery
had no effect on subsequent patenting or employment in the affected firm, consistent with the

notion that a firm unable to hire a H-1B worker would end up hiring an alternative, equally

8See Yeaple (2016) for a discussion on L-1 and H-1B visas.



productive worker.”

While there may be no incontrovertible estimate of the productivity (conditional on earnings)
advantage of foreign high-skill labor, simple economic reasons suggest this advantage must
exist. US employers face both pecuniary and non-pecuniary costs associated with hiring for-
eigners. A small GAO survey (U.S. General Accounting Office, 2011) estimated the legal and
administrative costs associated with each H-1B hire to range from $2,300 to $7,500 dollars.
Assuming that these workers earn $60,000 per year in total compensation, which would seem
to be conservative, this amounts to no more than 2% of compensation spread over 6 years. It
seems reasonable to assume that employers must expect some cost or productivity advantage
when hiring foreigners, however modest. If not, why would they incur the associated effort and

expense’

Whatever the perceived cost or productivity advantages, H-1B critics argue that US employers’
use of foreign labor in high-skill jobs either “crowds out” native workers from these jobs or puts
downward pressure on their wages. Although, as far as we know, critics of the H-1B program
have not yet estimated the magnitude of either of these effects, recent work by economists has
started to fill this void. Kerr and Lincoln (2010) and Hunt and Gauthier-Loiselle (2010) provide
original empirical evidence on the link between variation in immigrant flows and innovation
measured by patenting, finding evidence that the net impact of immigration is positive rather
than simply substituting for native employment. Kerr and Lincoln (2010) also show that
variation in immigrant flows at the local level related to changes in H-1B flows do not appear
to adversely impact native employment and have a small, statistically insignificant, effect on
their wages. More recently, Peri et al. (2014) found positive effects of high-skill immigrant

workers on the employment and wages of college-educated domestic workers.

A potential issue with the analyses of Kerr and Lincoln (2010) and Peri et al. (2014) is that
the observed, reduced-form outcomes may capture concurrent changes in area specific demand
for computer scientists. To circumvent the problem, each paper constructed a variable that
interacts an estimate for the total number of individuals working on H-1B visas in a city with
local area dependencies on H-1Bs.! However, given the nature of the H-1B visa, the location
of immigrants depends, in large part, on the location of employers hiring them. If because of
local agglomeration effects, the IT boom was concentrated in areas of the country that were

already IT intensive (such as Silicon Valley), then the measure of local dependency would be

9Doran et al. (2015) point estimates suggest that replacing a US resident with a H-1B holder might raise
patenting at small firms by 0.26% (95% CT -0.42 0.47%), implying that the H-1Bs visa holders are no more
than 4.7% more productive than are US resident workers.

0Kerr and Lincoln (2010) and Peri et al. (2014) hope that the variation in this variable is driven largely by
changes in the cap on new H-1B visas that occurred over the last 20 years. That said, it is unclear the extent
to which the variation they use is being driven by variation in the visa cap. Because of the dot com bubble
bust in 2000 and 2001, the variation in the H-1B cap is only loosely related to actual number of H-1Bs issued.
What is more, the cap will have different effects across areas, and one can worry about the exogeneity of this
variation. In addition, it is hard to imagine that the cap was exogenous to the demand for I'T workers.



endogenous, an issue that Kerr and Lincoln (2010) and Peri et al. (2014) understand.

Ghosh et al. (2014) take a different approach. They match all LCAs, with firm-level data on
publicly traded US companies, comparing changes in labor productivity, firm size, and profits
between 2001 and 2006, for firms that were highly dependent on H-1B labor with firms that were
not. They argue that the H-1B-dependent firms would feel more effects than their counterparts
from the dramatic drop in the H-1B cap from 195,000 to 65,000 in 2004. And, indeed, they
find that, over this period, labor productivity, firm size, and profits all declined more for the
H-1B-dependent firms, which they attribute to the loss of the H-1B labor. The concern here is
that the firms more dependent in H-1B labor in 2001 would have been systematically different
from those less so dependent in ways correlated with the change in performance between 2001
and 2006.

In another paper, Peri et al. (2015) use data on the number of LCAs filed by firms in local
(metro) areas during 2007 and 2008 as a measure of potential demand for H-1B workers, and
the number of H-1B applications filed by foreigners as their measure of H-1Bs hired. In 2007
and 2008, the number of H-1B applications exceeded the annual quotas, and lotteries were used
in awarding visas. The large gap between these two measures represent the unmet demand for
skilled foreign workers. Cross-metro-area variation in this variable is due to at least two sources:
(1) cross-metro-area demand for foreign high-skill labor, and (2) truly random fluctuations in
the fraction of LCAs picked in the lotteries. While this second source of variation should be
truly random, Peri et al. (2015) find too little of such variation to reliably identify the net

effects of high-skill labor immigration.

Previous researchers studying the impact of H-1B workers on the US economy have focused
on identifying exogenous variation in the number of H-1B workers, typically finding that H-
1B workers tend to raise productivity and act as complements to, rather than crowd-out,
college-educated native workers. However, as these researchers have acknowledged, it is easy
to question the validity of the instruments used in these analyses. Rather than using a natural
experiment to identify effects, we derive effects from a calibrated model. The model allows us
to connect endogenous productivity advances in the IT sector during the 1990s to changes in
the demand for CS labor. While the validity of the conclusions that Kerr and Lincoln (2010),
Peri et al. (2014), Peri et al. (2015), and Ghosh et al. (2014) depend on the validity of the
natural experiments they use to identify effects, our conclusions depend on our model accurately
reflecting key features of the US economy. As such, the credibility of our results hinges on the
plausibility of our assumptions and/or the robustness of our conclusions to variations in the

specific modeling choices we made.
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2 A Model of the Product and Labor Markets

Our model consists of two major sections. The first is the product market where goods are
produced by firms and sold to consumers. The second is the labor market for college graduates,
where US workers decide whether to work as computer scientists or in other occupations. Our
product market, has two sectors: the I'T sector and the ‘Other’ sector. The I'T sector is monop-
olistically competitive, wherein firms produce different varieties of the same IT good. Firms
in the I'T sector are heterogeneous in terms of their level of productivity, which is exogenously
drawn. Importantly, we include the possibility of endogenous technological change, whereby
CS workers’ innovation causes the production function to be increasing returns to scale at the
aggregate level. All other goods in the economy are produced in the residual ‘Other’ sector,

which is a perfectly competitive sector with homogeneous firms.

Every period a firm chooses its inputs to maximize profits. Since firms in the IT sector are
monopolistically competitive, they have some market power when making these choices. Firms
use intermediate inputs from the Other sector and labor to produce their output. The labor
inputs consist of three types of workers: computer scientists, college-educated non-computer
scientists, and non-college-educated workers. In our model, all foreign immigrants are hired as
computer scientists. IT sector firms are also able to export their products to foreign markets,
whereas the US economy imports only non-IT goods. Consumers, on the other hand, choose
how much of each good to consume in order to maximize their utility subject to their labor

income. Like firms, they make these choices every period, and have no savings.

Building on this setup, we include the labor supply decisions of college graduates. Since human
capital investments and career choices have long term payoffs, US workers in our model are
allowed to choose their fields of study and occupations based on the information they have
today and their expected payoffs in the future. They are then allowed to switch occupations,
by paying a switching cost, when a change occurs in the current or expected payoffs associated
with any occupation. Given the labor supply decisions of US workers, the labor supply of
immigrants, and the labor demand from firms in each sector, the market clears to determine
the equilibrium wages for each type of worker. Equilibrium prices are determined in the product
market, where the demand for the two types of goods from consumers meets the supply of these

goods from firms.

2.1 Product Market
2.1.1 Household problem

There are X number of consumers in the economy who supply one unit of labor each. Each

consumer has the same preferences over the two goods: Cy produced by the IT sector and Yy,

11



the good produced by the residual sector in the economy. Their preferences can be represented

by the Constant Elasticity of Substitution (CES) utility function in equation 1.

UCsYD) = [1C + =¥, |7 1)

Yy is assumed to be homogeneous, whereas the I'T good Cy is composed of a continuum of

varieties (indexed by v) in the framework introduced by Dixit and Stiglitz (1977) '

Ca = (/ c;fldv> o (2)
VEN

where (Q is the set of varieties and € is the elasticity of substitution between the varieties of

IT goods. Given this setup, it is possible to write the price index P in the form of equation

3:

a:(/ @wﬁ“ (3)
veQ

Consumers maximize utility in equation 1 subject to a budget constraint m = P.Cy + PyYy,

where m is total income. The utility maximizing first order condition for a given variety is

We can then write the demand for aggregate goods as a function of prices, total income m

therefore:

and the parameters v and o. In our analysis, we set the consumption bundle to be the nu-

meraire.'?

= G (6)
)

Consumers/workers have identical consumption preferences but do not receive the same labor
income as they work in different occupations. Furthermore, workers can either be native work-

ers (denoted by a subscript n) or foreign workers (denoted by a subscript F').

"UThis setting with one composite and one homogeneous good follows recent papers such as Melitz and
Ottaviano (2008), Demidova (2008) and Pfluger and Russek (2013)

(ron(Fees) )

Pot+Py (2 125

12This means that the ideal price index is normalized to 1:
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We outline the details of the labor-supply decisions in Section 2.3, where we discuss how work-
ers choose their field of college-majors and occupations over time. The decision of whether to
attend college or not is made outside this model. This means that the supply of non college
graduates H is exogenous, and so is the total supply of native college graduates (L, + G).
Those who do get a college degree can choose whether to work as a computer scientists L,,, or

in some other occupation that requires a college degree G.

High skilled immigrants who come in on H-1B visas can do so only if they meet the skill
requirements of the visa and only if firms recruit them. As we have mentioned before, over the
1990s immigrants coming in as H-1Bs were increasingly being recruited as computer scientists.

For simplicity, we will assume that all recruited H-1Bs are computer scientists Lp.

The size of the labor force in the economy is X = H + L, + G + Lp and total income m
can be written as the sum of the labor income for the different types of workers plus profits

earned by firms in the IT sector (II) as in equation 7:

m = w(L, + Lg) +sG +rH +11, (7)

where w is the wage paid to computer scientists, s the wage earned by college graduate non

computer scientists and r is the wage paid to non college graduates.

We assume that foreign computer scientists are willing to come and work in the US at any
available wage and are marginally more productive than native computer scientists. Each year
the number of immigrants in the economy is capped at a given level Lp and because of this
small productivity premium the cap always gets exhausted. Native computer scientists face a

residual demand curve after all available foreigners have been hired.

One way to think about this assumption in our model is that any extra productivity is almost
entirely offset by the recruitment costs of hiring foreigners. Also, due to H-1B restrictions,
immigrants get paid the same wage as native computer scientists. In what remains of subsection
2.1 we will refer to foreign and native computer scientists as a single group, since from a firm’s

point of view they are indifferent between hiring the two at the going wage.'?

2.1.2 Production in the IT sector

The IT sector produces an aggregate I'T good C. There are N monopolistically competitive

heterogeneous firms that produce a different variety of this good as shown in equation 2.

13In the data, we see that H-1Bs are almost entirely hired by larger firms. While this is an interesting and
suggestive feature of the data, we leave it for future researchers to explore.
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Following the framework introduced by Hopenhayn (1992) and Melitz (2003), each of these
firms will have a different level of productivity. Each firm j has a Cobb Douglas technology in

the labor aggregate and intermediate inputs from the other sector as in equation 8:

¢; = 0;Lyetag " (8)

where y.; is the amount of intermediate goods from sector ¥ and z.; is the labor aggregate.
Firm technology, A(¢;) = ¢,;L?, has an endogenous component L? and an exogenous component
¢; which is a productivity draw that varies across firms. The term L? captures a technological
spillover in the IT sector which depends on the total number of computer scientists employed.
Since computer scientists are innovators, their innovations create spillovers that increase the

productivity of all firms in the sector, and this is captured by the § term.

The firm employs all three types of labor available in the economy in a nested Constant Elas-
ticity of Substitution (CES) structure.

c = c =171
2= ;T +(1=a%g | (9)
where h; is the number of non college graduates and ¢; is the labor aggregate for college
graduates. Here 7 is the elasticity of substitution between college graduates and non-college

graduates. Due to the nested nature of the CES function, we know that g; is:

A

A—1

A=1 A=1
6= |6+2)67 +(1-5-0)g> |7 (10)

where ¢; is the number of CS workers and g; the non-CS college graduates employed by firm
j. Here X is the elasticity of substitution between the CS workers and non-CS college gradu-

ates.

In equation 8 it is clear that the I'T sector firms have two drivers of technological change. The
exogenous component of technology ¢;, has been modeled similar to the setup in the trade
and the industrial-organization literature (Chaney (2008); Hopenhayn (1992); Melitz (2003)).
The endogenous component of technology, captured by 3, depends on the total number of
computer scientists hired by the IT sector. These computer scientists innovate and create
new technologies, increasing overall firm productivity. Here, we modify the set-up used in
the literature on economic growth (Acemoglu (1998); Arrow (1962); Grossman and Helpman
(1991); Romer (1990)).1

Since we do not model economic growth, there are some clear departures from this literature. While many
papers assume that the rate of change of technology depends on the quantity of a type of labor, we assume
the level of technology depends on labor. Furthermore, a lot of this literature models a separate R&D sector
that sells patents for these technologies — whereas in our model technology is assumed to be non-excludable.
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In the IT sector, the number of potential entrepreneurs is assumed to be fixed and their produc-
tivities have a known distribution W(¢;) with a positive support over (0, 00) and an associated
density function 1 (¢). There is a productivity cutoff ¢ = ¢*, that captures the productivity
level of the firm that breaks even. Therefore, the marginal producing firm earns no profits
(m(¢*) = 0). Since profits are an increasing function of the productivity level, the equilibrium
¢* determines which firms produce (¢; > ¢*) and which ones do not (¢; < ¢*). The conditional

distribution of 1(¢) on [¢+, 00) can therefore be written as:

¥(9) : x

oy Ho=0¢

p(g) = ¢ 7V ,
0, otherwise

The productivity distribution W(¢;) of entrepreneurs is assumed to be a Pareto distribution,

k
with parameters k and ¢, such that U(¢;) =1 — (%) )

The intuition behind this modeling choice is that whenever economic conditions change, the
firms that get pushed into/out of production are the marginal firms (those with ¢; closer to ¢*)
while the larger more productive firms produce regardless. We expect such behavior in the I'T
sector when we allow more immigrants into the economy. As immigration allows firms to pay
lower wages, the marginal firms are the ones that enter into production and large firms capture
most of the increase in profits. For a given mass of potential producers, N,, the total number

of firms that produce can be written as in equation 11:

N =(1-U(¢))N, (11)

Such a model follows an approach to market entry closer to Chaney (2008) rather than the

original Melitz (2003) model where the potential pool of entrants is not fixed.'?

The firm’s problem therefore boils down to maximizing profits by choosing the amount of labor
inputs. If they choose to produce, they pay an upfront fixed cost of production f which is in
terms of the cost of the non IT good Py (equation 12). Each firm is a monopolist for their own

variety and faces a demand curve as in equation 4.

1 el
, max ;=@ PCec;t —wly —sgj—rhj — Pyye — Py f (12)
595155 Ycj

The first order conditions from this exercise, determine the labor demand from the IT sector for

15In the original Melitz setting there are a number of potential entrants who have to pay an additional fixed
cost fo to get a productivity draw, and once they know their productivity they produce if ¢; > ¢*. New
entrants in this model can be both high and low productivity and end up driving expected net profits to zero.
di Giovanni et al. (2015) think of the case with a fixed pool of potential producers as the short run, where the
number of varieties available only changes through the entry and exit of marginal firms, having small effects on
aggregate welfare.
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each type of labor. Total labor hired by this sector is denoted by the subscript ¢, and aggregate

employment of each type of worker can be expressed as L., G. and H..

2.1.3 Production in the Non IT sector

The non IT sector produces good Y and is assumed to be perfectly competitive. The rep-
resentative firm in this sector has a Cobb Douglas constant returns to scale technology over
intermediate inputs from the other sector and the labor aggregate.
1—
Y =CrX, ", (13)
where again C, represents intermediate inputs from the IT sector and X, the labor aggregate.

This sector also employs the three types of labor denoted by subscript Y. Therefore, X, can

be written as:

X, = [aH, " +(1-anQ,” |7 (14)

Again, using the nested CES format, (), can be represented by:

Q- [ +0-06" ] (15)

This sector is less intensive in computer scientists than the IT sector. To capture this, we
model the intensity of CS workers to be higher in the IT sector (captured by A), and allow the
computer scientists in the I'T sector to have an additional impact on the technology in the firm
(captured by /). Both sectors have the same elasticity of substitution between college and non

college graduates (7) and between computer scientists and college graduates non CS ().

The representative firm in the non-IT sector has to therefore solve the following maximization

problem:

1—

,, duax I, = P,C}* X, "* —wL, — sG, — rH, — P.C, (16)
The first order conditions determine the demand for the intermediate inputs and the different
types of labor in this sector. Together with the demand for labor from the IT sector, we can
then derive the aggregate labor demand for each worker. Section 2.3 describes the supply of
the different types of workers, and Section 2.4 describes the equilibrium, where we also detail

how the labor demand curve shifts over time given the technological boom in the 1990s.
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2.2 Trade with the Rest of the World

The US economy trades both IT goods and the other good with the rest of the world (W).
IT firms export final goods to consumers in other countries, whereas US consumers import the

other good from the rest of the world.*¢

Consumers in the rest of the world (W) have the same utility function as US consumers:

Uw (Cw Ywr) = [w G + (L= w)Ye” |7 (17)

Since the US is the only producer of IT goods, foreign consumption is equivalent to US exports
of IT goods. Imports into the US from the rest of the world are represented by Yj,. For
convenience we assume trade is balanced implying that the value of imports must equal the

value of exports:

P.Cyw = P,Y1y (18)

Here we assume that the US is the only producer of IT. Even though Freeman (2006) stresses
how high-skill immigration may help the US maintain its comparative advantage in I'T, we
may, expect that immigration policy affects IT production elsewhere in the world, especially
via the diffusion of knowledge. Khanna and Morales (2015) draw up a general equilibrium
model of both the US and India — the other major producer of IT — to study how the H1B
program affects production, human capital accumulation and labor market welfare for agents
in both countries. The possibility of migrating to the US induces students and workers in
other countries to accumulate CS-specific human capital, and return migrants help facilitate
the diffusion of technology. Over time, in the latter half of the 2000s, India becomes the major
exporter of IT, eroding the US’s comparative advantage. Khanna and Morales (2015) can be
thought of as a long-run extension of our current work, with consistent implications for the
period of study here — the 1990s.

2.3 Labor Supply of U.S. Computer Scientists

The firms’ decision problem determines not only the product market equilibrium but also the
demand curves for the different types of labor. To describe the workers’ decisions we develop a
dynamic model of labor supply that captures the choices made in deciding a field of study in
college, and occupational choices later in life. The model builds on previous work by Freeman
(1975, 1976); Ryoo and Rosen (2004) and closely follows the set-up of Bound et al. (2015).

16While we do not explicitly model outsourcing decisions, we do allow for the fact that imported goods in the
other sector can be used as intermediate goods in production for the IT sector.

17



While Bound et al. (2015) was a partial equilibrium model that studied the decisions made
between CS and STEM occupations for a given labor demand elasticity, we extend it to a
general equilibrium framework which includes all types of labor and rigorously model the firm’s

decision to derive the labor demand curve that the workers face as well.

While we model the decisions to choose a field of study for US workers who attend college,
we do not explicitly model the decision to attend college in the first place. This is because we
assume that changes in wages for computer-science related occupations do not greatly affect the
college-going decision for students. The supply of workers who have only a high school degree
H is therefore assumed to be the same whether or not there were changes in the number of
foreign computer scientists in the labor market. Therefore the total supply of US workers with
a college degree (L, + G) is also assumed to be fixed. However, we do model the decisions of
these college-educated workers as they make choices between majoring in CS degrees or other

degrees and then their occupation-choices in each year of their life till retirement.

In our model, there are three potential sources of CS workers. First, there are those who earn
computer science bachelor’s degrees from US institutions and join the workforce only after they
finish college. Second, there are college-educated US residents working in other occupations
who can switch into computer science, but must pay costs to switch occupations. Third, there

are foreigners who are being recruited on temporary work visas.

Given that most foreign workers that come on H-1Bs are computer scientists, we model CS
as the only profession that they get hired into. There are therefore two sources of non-CS
college-educated workers — those that graduate with any degree that is not computer-science

and those that switch from CS work to non-CS work by paying the switching cost.

We model US college graduates as maximizing their life-time utility by making two types of
decisions. When they are 20 years old, they choose their field of study in college which influences
their initial occupation at graduation. From ages 22 to 65, they choose between working as
a computer scientist or in another occupation. All individuals have rational, forward looking
behavior and make studying and working decisions based on the information available in each

period.

The labor demand curve derived from the firms’ decision problem discussed in the previous
sections, shifts out yearly due to productivity shocks. These shifts help identify the labor-

supply parameters and trace out the labor supply curve.

2.3.1 Field of Study Decision

In our model students choose their field of study when they are undergraduate juniors. Equation
19 captures this decision. At age 20, a student ¢ draws idiosyncratic taste shocks for studying

computer science or another field: 7{* and 7 respectively. This student has expectations about
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the prospects of starting a career in each occupation after graduation (age 22), which have
values V55 and Vi), respectively. Given this information, an individual chooses between pursuing

computer science or a different choice of major at the undergraduate level.!”

Worker utility is a linear function of their tastes and their career prospects in each sector
and they discount their future with an annual discount factor p. Additionally, there is an
attractiveness parameter 6, for studying in a field that is not computer science, that all students
experience. This parameter may be negative if, on average, students prefer studying computer

science.

maz{p’B Vs +n5°, p°EVay + 0, + 17} (19)

We assume that the individual taste parameters n{® and 7 are independently and identically
distributed and for d = {cs, 0}, can be defined as n¢ = opvd , where oy is a scale parameter and
v¢ is distributed as a standard Type I Extreme Value distribution. This assumption allows the
decisions of agents to be formulated in aggregate probabilities, and is therefore commonly used
in dynamic discrete choice models (Rust (1987), Kline (2008)).

Given these distributional assumptions, it follows that the probability (¢f*) that a student

graduates with a computer science degree can be written in logistic form:

6" = [1+ exp(—(pP*Er2[Vas — Vi3] — 0)/00)] ™ (20)

One crucial parameter for how studying choices are sensitive to different career prospects is
the standard deviation of taste shocks. Small values of oy imply that small changes in career
prospects can produce big variations in the number of students graduating with a computer

science degree.

This set-up allows us to map the graduating probability described above to employment. Let
(LY + G¢) be the number of college graduates with age a in time period ¢, then the number of

graduates with a computer science degree in year ¢ is represented by R, = ¢5(L# + G??).

2.3.2 Occupational Choice

The field of study decisions determine if an individual enters the labor market at age 22, as
either a computer scientist or in a different occupation. However, individuals can choose to

switch occupations between the ages of 22 and 65. At the start of each period, individuals use

1T"We are assuming that students decide their major after the end of their second year in school. Bound et al.
(2015) experiment with a four-year time horizon and doing so made little qualitative difference.
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the information at hand and choose their occupation in order to maximize the expected present

value of their lifetime utility.

Switching occupations, however, is costly for the worker, and these costs vary with age. This
is because workers have occupational-specific human capital that cannot easily be transferred
across occupations (Kambourov and Manovskii, 2009). The occupational switchings costs are
modeled as a quadratic function of a worker’s age, allowing for the fact that it becomes increas-

ingly harder to switch occupations as workers get older.*®

Like in the college major decision, we assume that workers have linear utility from wages, taste
shocks and career prospects.!” The value functions of worker i at age a between 22 and 64 at
time t if she starts the period as a computer scientist or other occupation are therefore going
to be:

Visa = max{w; + pE VS 0 +eif, 5o —Cla) + pEVE o0+ + 01} (21)

Vo, = maz{w; — ((a) + pE Vi) oy + i, 8o+ pEV S oy €5 + 01} (22)

where ((a) = (o + (1a + (a?, is the monetary cost of switching occupations at age a, and 6,
is the taste attractiveness parameter for not working as a computer scientist, experienced by
all workers. Finally, all workers retire at age 65 and their retirement benefits do not depend
on their career choices. Therefore, at age 65 workers face the same decision problem without

consideration for the future.

As in the college-major decision problem, we will assume that taste shocks are independently
and identically distributed and for d = {cs, 0} can be defined as ¢% = o1v% where o, is a scale

parameter and v is distributed as a standard Type I Extreme Value distribution.

Defining qff as the probability that a worker at age a between 22 and 64 moves from occupation
d to occupation D, it follows from the distributional assumptions that the probability of work-
ers switching from computer-science to other occupations, and vice versa can be represented

as:

6ra =1+ exp(—=(wy — 50 = ((a) = Oy + pEo[VT 1 = Vi aa]) /)] (23)

Gia” = [1+ exp(—(se — we = C(a) + 01 + PRV o1 = Vi1 aal) /o)) (24)

18While our model has no general human capital accumulation and wages do not vary with the age of a
worker, the implications of the model would still hold if individuals expect similar wage growth profiles in each
occupation.

19Wages must be totally consumed in that same year and workers cannot save or borrow.
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Here we can see that the switching probabilities depend upon both the current wage differential
and expected future career prospects in each occupation. The standard deviation of the taste
shocks, the sector attractiveness parameter and the cost of switching occupations will affect

the sensitivity of occupational switching to changes in relative career prospects.

Since individuals are forward looking, the working decisions depend upon the equilibrium dis-
tribution of their career prospects. Under the extreme value errors assumption, we can use the
properties of the idiosyncratic taste shocks distribution to derive the expected values of career
prospects (Rust (1987)). The expected value function for an individual at age a between 22

and 64 working as a computer scientists or in another occupation are respectively:

EVih a1 = o1Bfw+in{exp(wip1+pEe1Viss oi0)/01) Hexp((si11—C (@) +01+pE 1 Vi g 4 10) /01) }]
(25)

EVi1 e = aiBw+in{exp((sip1+01+pEi 11V 010) /01)Fexp(wir1—((a) +pE 1 Vo aia) /01) }]
(26)

where gamma w = 0.577 is the Euler’s constant and the expectations are taken with respect

to future taste shocks.

Given this set-up we can use the occupational-switching probabilities to derive the aggregate
employment in each sector. Since we allow workers at age 22 to also pay the switching costs
and get their first job in an occupation that is different from their field of study, the number of
computer scientists at age 22 is a function of the number of recent graduates with a computer

science degree and the occupational-switching probabilities:

Ly = (1= ¢;55) R + 4755 (Lo + G7%) — Ri] (27)
GY* = (1= q/5)[(Lo + Gi*) — Ri) + ¢;55 Ry (28)

where R; is the number of recent graduates with a computer science degree, and (L2 +G??)— R,
is the number of college graduates with any other degree. Similarly, the supply of computer
scientists at age a from 23-65 is a function of past employment in each occupation and the

switching probabilities:

Loy = (1= q;3") Lnty + 6007 (G0 (29)

t,a
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Gy = (1—qpy")Gi) + a3 [Le7h ] (30)

where L¢, is the exogenous number of workers in computer science at age a in time period ¢,

and G¢ is the number of workers at age a working in other occupations.

The aggregate domestic labor supply of computer scientists and other workers is the sum across

all ages:

a=65

Ly = Z LZt (31)

a=22

a=65
Gi=) G (32)
a=22
Here we can see that the labor supply in each occupation depends on past employment, new

college graduates and on wages through the occupational switching probabilities.

2.3.3 Labor Supply of Foreign Computer Scientists

We model high skilled foreign workers as only being hired as computer scientists, since during
the 1990s a majority of H-1Bs were hired into this occupation. By 2001, more than 21% of all
computer scientists were born abroad and immigrated after the age of 18 (March CPS). We
assume that high skilled foreigners have a perfectly elastic labor supply curve to the US, since
the wage that a computer scientist could obtain in countries like India or China, for instance,
is substantially lower than it is in the US (Clemens, 2013). This wage premium creates a large
queue of foreigners ready to take jobs in the US. There is, however, an institutionally imposed
cap on the total number of H-1Bs that restricts the number of foreign computer scientists each

year.

Institutional requirements also force firms to pay foreigners the prevailing US wage. We as-
sume that the additional costs of recruiting foreigners offsets the productivity advantage that
foreigners may have over their US counterparts. During the 1990s, a large fraction of the CS
workers coming from abroad were on H-1B visas. Given that this was a period when the H-1B
cap was usually binding, and given our assumption that foreign and domestic CS workers are

effectively identical, we treat the quantity of foreign CS coming to the US as exogenous.
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2.4 Equilibrium

Equilibrium in each period can be defined as a set of prices and wages (P.;, Py¢, wy, Si, T¢),

141 * * * * * * * * * * * *
quantities of output and labor (C}, Yy, Cj,, Cry, Gy, Y, Y, Yy, Ligs Ly, Gf, HYY), number

of firms (NV;) and the productivity cutoff (¢}) such that:*

e Consumers in the US and the rest of the world, maximize utility by choosing C; and Y;
taking prices as given, and choose their college major and occupations taking wages as

given
e Firms in both sectors maximize profits taking wages and aggregate prices as given

e In the IT sector, the firm with productivity ¢; gets zero profits. All firms with ¢;; > ¢;
produce while those with ¢;; < ¢} do not.

e Output and labor markets clear as in equations 33 - 38

Total consumer expenditure equals labor income plus firm profits (equation 33):

POl + PpY g, = m = wi(Ly, + L) + 8:GE + 1 H + (I + Py f ) (33)

Total quantity produced in the IT sector equals domestic consumer demand, intermediate

inputs in the other sector, and exports (equation 34):

€

NS (/ Cifu(aﬁ)ckb) =0 = Cg +Cy + Cyy (34)
6

*
t

Total quantity produced in the other sector, net of inputs, equals domestic consumer demand

and intermediate inputs in the other sector (equation 35):

C';/M/JQ)Q;PIZJ2 =Y =Yy + Yo + NS = Y (35)

Trade in goods is balanced:
Pc*t {/kVt = ngty?]\/[t (36)

Given that the supply of non college graduates is inelastic H,, and the demand comes from

both sectors, their labor market clears as in equation 37:

20Note that we’ve introduced a t subscript to each of the variables to denote that there is a different equilibrium
for each time period
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Total labor supply for college graduates (CS and non CS) is fixed, such that total demand for
college graduates has to be equal to total supply in each period (equation 38):

L+ G +Lp=L{+G; =LY+ L, + G, + G, (38)

Native college graduates face the decision of whether to work as computer scientists or in some
other occupation that requires a college degree. This decision is no longer static, but has an
inter-temporal dimension which requires the definition of the dynamic equilibrium in the labor
market for college graduates. As in Bound et al. (2015), this equilibrium is characterized by
the system of equations (19 - 32) and a stochastic process Z;. In particular, equations 25
and 26 characterize the expectations of workers with respect to future career prospects and
equations 31 and 32 describe the dynamic labor supply of US computer scientists and other

college graduates respectively.

A unique equilibrium is pinned down each period by an aggregate labor demand curve for US
computer scientists relative to other college graduates that comes from the product market

model.

Even though this labor demand curve from the two sectors has no closed form solution we will
express it as in equation 39, a setup that will prove to be useful for the calculations in the

following sections.

L Wy
—F— =4+71T(— 39
Gt t (St ( )
where T(Z’—;) is a baseline relative demand curve that depends on the relative wage. Z; is a
shifter that can be thought of as a combination of the productivity shocks from the IT boom,
that shifts out the relative demand for computer scientists every year and the cap of foreign
computer scientists Lp that shifts in the relative demand curve every period. Z; is assumed to

follow a random walk process with high persistence such that:

Z, =0.999Z,_, +0.001Z + & (40)

where Z is the steady state value of Z; and &, is an i.i.d. shock.?!

The equilibrium in the labor market can be expressed by a mapping from the state variables:
s ={Re, L2 1, ..., L8, _|,GP,,...,G |, Z,_1} and exogenous productivity shock & to the values

of L, wy, Gy, s; and Vi, the vector of career prospects at different occupations for different

2I'We assume workers consider both the technological progress from the IT boom as well as the increase in
immigrants to be a series of highly persistent shocks.
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ages, that satisfies the system of equations 19 to 32 as well as each period’s relative demand

curve.

3 Calibration

We calibrate the parameters of our model in order to determine how welfare changes due to
immigration. We have a total of 25 parameters: o, €, v, yw, 1. V2, B, ac, oy, T, A, §, A, k,
Omin, Ne and f from the product market and o, o1, 0y, 01, (o, (1, (2 and p from the US college
graduates labor market. We focus on the period 1994-2001 that corresponds to the IT boom
and when the H-1B cap was mostly binding.

In order to calibrate the different parts of the model we follow a sequential approach. First,
we calibrate the parameters in the product market assuming total labor supply of L;, G; and
H,; are fixed (i.e. ignoring the choice of native workers between L, and G;). What makes this
possible in our model is that fact that adjustment costs imply that the stock of the different
types of labor are fixed in the very short run. This approach is akin to the approaches taken
by Freeman (1975, 1976) and Ryoo and Rosen (2004) in their modeling of adjustments on the

labor market for scientists.

In the next step we use the calibrated parameters to derive the aggregate labor demand curve
for computer scientists relative to other college graduates for every year. As a third step,
we use the predicted shifts in labor demand to calibrate the parameters of the labor supply
curve of different types of college graduates. Finally, we use the calibrated labor supply curve,
labor demand curve and product demand parameters to calculate welfare under the economy
where immigration is encouraged via the H-1B program and the counterfactual scenario where

immigration is restricted.

3.1 Product Market Calibration

We calibrate the parameters of the product market to match different features of the data
as explained in sections 3.1.1 - 3.1.5. The details of the data we use, including sources and

definitions of the different sectors and occupations can be found in Appendix A.1.

The model is calibrated separately for each year between 1994 and 2001. While some parameters
are assumed to be constant over time, others change in order to capture structural changes in
the economy. Particularly, the production function parameters (o, aye, 0, A¢, Y1 and o)
will be re-calibrated every year to capture the technological change that affects the two sectors
during this period. This can be thought of as describing the skill-biased technological change

over this period, since the share of labor cost that these sectors spend in computer scientists is
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increasing over time. The utility parameters v, and vy, are also allowed to shift over time to
capture changes in local and foreign consumer preferences towards the I'T sector. A summary

of all calibrated parameters in the product market can be found in Table 2.

3.1.1 Domestic utility function parameters

The three parameters in the consumer utility function are o, € and ;. o is the elasticity of sub-

stitution between the composite I'T good C and the good Y. We calibrate this parameter using

the ratio of first order conditions of goods Y and C' from the consumer’s utility maximization
v (C Pe

1
problem:m (?) T =B

This relationship can be reformulated as:

o () - -ote (152) o () o

We estimate o using a regression of the relative quantity-index on the relative price-index. We
use data from the Bureau of Economic Analysis’ (BEA) industry-specific price and quantity
indices.?? The BEA data allows us to distinguish prices and quantities in the IT sector, and all
the other sectors in the economy. The coefficient of this regression is statistically indistinguish-
able from o = 1. Given the plausibly exogenous technological change during the period which
drives down prices, we use this estimate as our main specification and proceed using a Cobb
Douglas utility specification. We also run a series of robustness checks running the results for

different values of o that are summarized in Appendix A.2.

€, the elasticity across I'T varieties, is calibrated using the markup condition that comes from
the IT firms’ profit maximization condition (equation 42). We follow an approach similar to
Gaubert (2015) and match average value added to cost ratios for the I'T sector. The data for
this is again taken from the BEA’s annual industry accounts that report value added as well as
costs like compensation to employees and taxes. For a marginal cost M C(¢;), the price-markup

can be used to determine the value of e:

€
e—1

pi = MC(c;) (42)

We calibrate € = 3.26. Bernard et al. (2003) calculate a value of 3.8 for all US plants, whereas

Broda and Weinstein (2006) find a value of 2.2 for varieties of ‘automatic data processing

22The BEA price indices methodology can be found here http://www.bea.gov/national /pdf/chapter4.pdf and
at http://www.bls.gov/opub/hom/pdf/homch17.pdf. The specific methodology for personal computers and
peripheral equipment are detailed at http://www.bls.gov/cpi/cpifaccomp.htm, where they discuss adjusting for
quality as well. While they do adjust for quality differences, we may still underestimate quality changes in IT
(Gordon, 1990), which would affect our estimate of 5. We do a rigorous sensitivity analysis for different values

of 3.
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machines and units.” Since our estimates lie within this region, we believe them to be reasonable.
We show that our results are robust to other reasonable values of this parameter in Appendix
A2,

We calibrate the distribution parameter 7, to match the share of expenditures in the IT good
(using equation 43). Again we use data from the BEA on industry specific GDP of IT as a
share of total GDP.?

PC P,
m 1= 7
P+ (5R.)

(43)

We calibrate v; conditional on the equilibrium prices, the share of consumption of the IT good
and the calibrated value of o. For the Cobb Douglas specification we just use the share of
IT industry GDP to total domestic GDP. As already discussed, 7; is time-varying in order to
capture potential changes in consumer preferences over time for the I'T good relative to the rest
of the goods in the economy. Table 2 shows how ~; steadily rises from 0.042 at the start of the
period to 0.052 by the year 2001.

3.1.2 Foreign utility function

Consumers from the rest of the world are assumed to have the same utility function as consumers
in the US. While we assume the elasticity of substitution ¢ is the same for both countries
(o0 = 1), the distributional parameter 4y is selected to match the share of consumption of the
rest of the world for US IT products. We use the share of exports in IT to US GDP and the
relative size of the US economy to the rest of the world to pin down this parameter. Again,
we allow this parameter to change over time to capture potential changes in preferences for

consumers abroad.

3.1.3 Production Function Parameters

The elasticity of substitution between high school and college grads (7) and between computer
scientists and other college graduates (A) are assumed to be time invariant and equal across
sectors. To calibrate 7 we follow several influential papers that provide estimates for this
parameter such as Katz and Murphy (1992), Card and Lemieux (2001) and Goldin and Katz

(2007) and set 7 = 1.7 which is an average of their estimates.?* We present our results for a

ZFor all time varying parameters that are matched to shares observed in the data we run a regression of the
raw share on a linear and quadratic time trend to recover the time invariant parameters. We then predict the
share using those coefficients and calibrate the parameters to match the predicted shares.

24Katz and Murphy (1992) find 1.41, Card and Lemieux (2001) find estimates between 2-2.5 and Goldin and
Katz (2007) find 1.64. Strictly speaking, these numbers refer to the elasticity of substitution between college and
non college educated labor in the US economy, while our parameter is sector specific. The aggregate elasticity
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range of values of A (1, 2 and 4) which correspond to aggregate relative labor demand elasticities
of 1.02, 1.99 and 3.98. Ryoo and Rosen (2004) estimate aggregate relative demand elasticities

that lie between 1.2 and 2.2 for engineers which are included in the range of values we use.

To calibrate the value of 3, the technological spillover from total CS in the IT sector, we look
at the relationship between the price decline in IT and the increase in total CS working in
the sector. We use the aggregate CS in IT equilibrium condition that gives us a relationship

between prices of I'T and total labor in CS as in equation 44:

—1
‘ logP, +
€

A=pl-1) 1))loch (44)

1
logP, = U(wt7 Stﬂ”t) - glogC’t —

We run the regression of log(P,) on a linear and quadratic time trend, the log of quantity of IT
good, the log price of the other good and the log of total computer scientists in I'T. The time
trend aims to capture fluctuations in the wages of the different types of workers over time. The
calibrated value of 8 is 0.233. Effectively, this procedure attributes all of the TFP change to
the increase in computer scientists working for the IT sector while in reality there are several
other factors that also affect technical progress in IT. As a result, our estimates will tend to
over estimate the impact of computer scientists on technological change. Our estimate is quite
close to the Peri et al. (2014) estimates of changes in TFP attributable to the total number of

STEM workers. In Appendix A.2 we explore the sensitivity of our results to our estimate of
B.

The production function parameters ., o, 0, A¢, 11, and 1y, are calibrated separately every
year to reflect the skill-biased technological change the two sectors face during the period.
This allows us to capture that increasingly, firms in both sectors spend a higher share of their

expenditures on college graduates.

The share of expenditures on non college graduates in both sectors are matched to the observed
share of labor income for each year in the March Current Population Survey (CPS). Here we

define the shares observed in the data as ¥y ¢ g and ¥,y g, such that:

(45)

T—1

_71—1
aCtHctT

ﬁt,C,H - — -1 =1
actHctT + (1 - act)QctT

Where H. and H, are the quantities observed in the CPS for each sector. We analogously

calibrate ay,; using the shares observed in the data (J;y.g, Hy, and Q)

In both sectors we have the parameter §; that is the distributional parameter associated with

computer scientists. We calibrate this parameter to match the relative wage of CS to other

involves both within and between sector components. However, our simulations suggest that setting 7 = 1.7
produces an aggregate elasticity indistinguishable from 1.7 to the first digit.
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college grads (”:;’—;) The IT sector has a higher share of CS than the Other sector, so we
calibrate the parameter A to match the share of total labor expenditure spent in CS by the IT

sector in a manner similar to our approach for calibrating o, and o.

In Table 2 we can see how skill-biased technological change in the economy changes these
parameters over time. d; steadily increases over this period as both sectors want to hire more
computer scientists. The values of oy, and oy steadily decrease for both sectors showing that
they spend more of their income on college graduates than on high school graduates. Parameters
associated with the intermediate inputs from another sector (¢, 109;) are calibrated using the
share of intermediate inputs from other sectors relative to the GDP which we obtain from the
Bureau of Labor Statistics’ (BLS) input-output tables.

3.1.4 Entry into Production in the IT sector

There are four parameters related to the entry-decision and productivity distribution in the I'T
sector. The number of firms in the sector depend on f, the fixed cost of production, and N,,
the mass of potential producers. The Pareto distribution parameters k and ¢,,;,, determine the

productivity levels of these firms. All these parameters are assumed to be time-invariant.

We calibrate f to match the average firm size in the IT sector observed in the data for the
steady state year 1994. In order to do this we use information on the number of firms and
total employment in the IT sector from the Census’ Statistics of U.S. Businesses (SUSB).? In
1994 we calibrate f to match the ratio of total employees and number of firms in the data for
the IT sector. The calibrated values for f are 1.24, 1.14 and 1.07 (for A values of 1, 2 or 4
respectively). For the rest of the years we allow the number of firms V; to adjust endogenously

as the profits from production change over time.

N, is calibrated using information on establishment entry entry and exit.?® We look at the

Nt _ Noa
Ne No1*

total number of establishments over 500 employees in 2001 and calibrate the ratio of
Given that N, in 1994 is used to calibrate f we get the rescaled N, = 0.25.%7

The Pareto distribution parameter k is set to match the standard deviation of logarithm of
US domestic plant revenues. Following Demidova (2008), we use the simulation reported by
Bernard et al. (2003) of 0.84. In our model the standard deviation of Ln(p;c;) is <2 so given
our value of € = 3.2 we get a value of £ = 2.62. The scale parameter ¢,,;, is related to the

25This information comes from the 1992 Statistics of U.S. Businesses (SUSB). Since the information was only
available for 1992 and 1997-2012, so we use the figures for 1992 as a proxy for 1994

26We get information on entry and exit of establishments in the IT sector by year from the Business Dynamics
Statistics. Entry and exit was only available for establishments, not firms when looking at specific industries.

27Other papers such as Demidova (2008) and Melitz and Redding (2015) use the exit rate to calibrate param-
eters related to fixed cost of production and entry but unlike us calibrate the slightly different Melitz (2003)
model. The strategy we use is somewhat different as we have a fixed pool of potential entrants.
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choice of units in which to measure productivity so we follow the convention in the literature

and normalize it to 1.

3.1.5 Total Quantity of Labor

To calibrate the product market parameters, we use the total quantities observed in the data
for each occupation type L;, G; and H, as if they were exogenously given. We normalize the
US working population from the March CPS in 1994 to 100, and then allow for the population
in our model to grow at the same rate as the growth in the US population. The shares of each
type of worker are set equal to those observed in the data each year which allows us to know

the total number of college and non-college graduate workers, as can be seen in Table 3.

3.2 Deriving the Labor Demand Curve

Once we calibrate the product market parameters we are able to derive a labor demand curve
for computer scientists relative to other college graduates. Such a demand curve does not have
a closed form solution that comes directly from the model so we derive it by first changing the
relative values of (L:;—tt that we feed into the model and then calculating the predicted value of .
We run this exercise only for the steady-state year, 1994, and calculate o for different values of
% that ranges between 0.04 and 0.07.?® We then fit a second order polynomial to get a closed

form solution of the relative labor demand curve.?’

The elasticity of labor relative demand for computer scientists to other college graduates de-
pends crucially on the parameter A. We derive the labor demand for our three values of A
and get what we call the baseline labor demand curve as in equation 46, calculated using the
calibrated model for the steady state year 1994:

Et I Wy
— =T —A 46

For the remaining years we allow the demand curve to shift for two reasons. First, to capture
the innovation taking place in the economy. This exogenous technological change is captured
by the time-varying parameters of the production functions. Second, the demand curve shifts
to capture the relative changes in the stock of college grads to non college grads which is

determined outside of the model.

28Relative total CS to other college graduates in the data is 0.0406 in 1994 and goes up to 0.0466 in 2001.
We therefore capture more than the range of possible values in the data.

29The second order polynomial perfectly predicts the model with a R = 1. We experiment with higher order
polynomials to fit the labor demand curve and our results do not change.

30The elasticity of the derived labor demand curve is very close to the value of A, more specifically 1.015, 1.99
and 3.98 for X\ equal to 1, 2 and 4 respectively.
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We can calculate the labor demand shifter A; as in equation 47. This shifter applies to the
total demand of computer scientists relative to other college graduates, including both native

and foreign computer scientists.

2 L, o[ W
A =2ty (2 4
=2 () (47)

As a last step, in order to use the variation in the demand curve to trace out the relative supply
curve for native computer scientists only, we subtract the relative number of foreign computer
scientists each year to derive to the total demand shifter Z; as presented in equation 39. As
a reminder, we treat the quantity of foreign CS workers coming to the US as exogenous since
the H-1B cap was binding throughout this period. Given that we assume foreign CS workers
are willing to work at any wage and are slightly more productive than natives, they get hired
first until they exhaust the H-1B cap while native workers face a residual labor demand curve.
The total shifter Z, = A, — EGt—tF allows us to write the labor demand for native CS relative to

other college graduates as in equation 48:

Lnt s Wt
gy (W 4
G, t + ( > ( 8)

In the steady state, A =0 and Z = _Loar

Gog

3.3 Calibrating Labor Supply

On the labor supply side of the model, we have eight parameters that need to be calibrated
- {00, 00, 01,01, o, C1, G2, pt. Of these, we pick the annual discount rate to be p = 0.9, and
calibrate the other parameters to match the data. In our model we assume the total quantities

of non college graduates H;, native college graduates (L, + G), and foreign computer scientists

L;r are determined outside the model.

In the way we set-up the model, changes in lagged degree attainment, employment and wages
are driven by the exogenous technology shocks that shift out the demand curve for the different
types of labor over this decade. As the demand curve shifts, it traces out the labor supply
curve for workers. The technological developments that drive these shifts in the labor demand

are assumed to not affect the parameters of the workers’ labor supply decisions.

We use data on relative wages, employment, lagged degree attainment and age shares to cal-
ibrate the remaining seven parameters. The first three series compare computer scientists to
non-CS college graduate workers. For example, relative wages compare the wages for CS work-

ers with wages for non-CS college graduates. To do this, we use the March Current Population
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Survey (CPS). Details of the sample used in the data and specific variable definitions can be
found in Appendix A.1.3!

We simultaneously match wages, employment and the share of US computer science workers

that are young (between 22 and 40) in 1994 and 2001.%> We also match relative degrees in

computer science for 1994, 1997 and 2001. The series we use from the data are as follows:*?

L G = Nocs colent sdnented U5 workars 101 £ = {1994, 2001}

2 sty for £ = (1994,2001)

B = RS wotens e avasded gt penrs . for ¢ = {1994, 1997,2001}
4. ag€§2,40 _ US computer [sjcsiegtssi;“;i\év—ii_tg;ggsliitgeen 22 and 40 for t = {1994’ 2001}

To simultaneously find parameter values which solve the model under these data restrictions, we
use a Nelder-Mead simplex method. While the system uses all the data at the same time, there
is strong intuition behind the identification of each parameter. For example, the relative degree
attainment data should help identify the taste parameters for field of major decisions (o and
0p) as well as the fixed cost of switching occupations ((p), whereas the relative employment data
should help pin down the occupation specific tastes (o7 and ;). The age shares in computer

science employment help identify the occupation switching cost parameters that depend on age

(Cl and C2)-

3.3.1 Labor Supply Calibration results

Figure 2 shows the data used and the model fit from this exercise. The figures report both the
path of the variables of interest predicted by the model, and the CPS data we use for these
series. We match two extreme years (1994 and 2001) for employment and wages and three
years (1994, 1997 and 2001) for lagged degree attainment, and the remaining years plotted are
an out of sample test of our method. The years in between (1995 to 2000) include years where
there were observed changes to immigration laws, and other potentially structural changes that

may make it difficult for the data to fit perfectly.

31'We exclude imputed wages, and multiply top-coded values by 1.4. Bollinger and Hirsch (2007) show
that including imputations can lead to biased results. Whereas the top-coding adjustment is standard in the
literature (Lemiecux, 2006). We smooth the raw data over three-year moving averages as follows: X smooth =
%(Xt—l,raw + Xt,?“aw + Xt+1,7"aw)

32Given that in our labor supply model we impose all cohorts are the same size, we normalize the number of
computer scientists of a given age group dividing by the total number of college graduates in that age group
before calculating the age shares.

33We have an exactly identified system as we use nine data moments to recover ten parameters -
{00,00,01,01,C0,(1,¢2} and two implied values of technology in the years we match the wage/employment
data {A94, A()l}
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The employment series in Figure 2a and the wage series shown in Figure 2b fit well at the start
and end of the period, but it misses some years in between, particularly because it can’t match
the dip in wages that occur after 1994 and the simultaneous spike in employment in that same
period. Lastly, the lagged degree attainment series can be seen in Figure 2c, and matches the

data relatively well.

Table 4 presents the values of the calibrated parameters for the different values of A. On
average, we can see that there is a mean taste for not working in CS occupations, which is

consistent with the wage differential seen across CS and non-CS work.

These calibrated parameters allow us to trace out the labor supply curve for computer-scientists
relative to non-CS college educated workers. In order to do this, we use the model set-up and
the parameters, and vary the relative wage to measure the response in relative quantities of
labor. This derives the relative supply curve which we then use in the labor market to find the

equilibrium wage.**

3.4 Endogenous Variables During the I'T Boom

The calibration exercise so far helps us identify the parameters in the model that govern the
trends in the endogenous variables over time. We can study these trends to understand how
our model predicts what is happening at the time of the IT boom and the influx of foreign
computer scientists. Given the solution of the model in each period, we study how prices and

wages, employment by occupation and sector, and quantities produced change over time.

While US workers were more likely to work in CS occupations over time, the fraction of for-
eigners in CS work was increasing at a yet faster rate. Also consistent with the trends seen
in the data for this period, the wage for computer scientists increases faster than the wages in
other occupations. This IT boom overall leads to an increase in consumption of the IT good

and a fall in prices of the IT good which benefits consumers.

Figure 3a shows how the ratio of US computer-scientists to non-CS college graduates (L%S)
evolves over this period according to our model for the different values of A\. During the time
of the boom this ratio increases from about 0.040 to 0.047 for A = 2, as more and more US
workers shifted into CS work. At the same time, there was an increasing share of foreigners in
CS occupations — the ratio of foreign to US computer scientists (M) more than doubled

Lys
from about 0.13 in 1994 to about 0.29 in 2001.

Our model predicts that over this period IT sector employment grew faster than employment

in the other sector, and most of this was driven by hiring in computer science occupations

Lc+Ge+He

Ly+Gy+Hy) 1mcreases

(Figure 3b). The ratio of employment in I'T to non-IT sectors over time <

340ur estimated relative labor-supply elasticities lie between 1.96 and 2.48.
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over this period, highlighting the importance of the IT boom in employing more workers. At
the same time, with the influx of foreign computer scientists, the intensity of CS workers in
the IT sector eventually increases. This can be seen in the series that plots the ratio of CS to
non-CS workers in the I'T sector (GCLfHC> in Figure 3b. The overall growth in the IT sector
employment, therefore, was skewed towards CS employment.

While employment for CS workers, and the I'T sector workers as a whole was increasing over
this period, we can also study how the relative wages for these types of workers change. Figure
3¢ plots the CS wage relative to non-CS college graduate workers wages (%) and relative to non-

college graduate workers wages (7) Consistent with the data, the model predicts that wages

for computer scientists increase at a faster rate than wages for the other types of workers.

The boom in the IT sector increased overall production and consumption for IT goods. Figure

3d shows how relative consumption (%) increases and relative prices (%) fall over this period
as the supply of IT goods from firms increases. The reduction in the price of IT goods will
affect overall consumer utility as laid out by the model, and the following section will discuss

how we calculate utility for the different types of workers and the owners of firms.

4 Counterfactuals

In order to isolate the impacts of high-skilled immigration on the various endogenous variables
and on worker welfare, we conduct a counterfactual exercise. In the exercise we restrict the
stock of immigrants to be constant at the 1994 level, and subject the economy to the same
innovation shocks that were experienced during this period. Using the identified parameters,
we can then trace out what happens to all the endogenous variables over this period in a

situation where the stock of immigrants is fixed.

We use the notation ‘open’ to refer to the real scenario under the H-1B regime, and ‘closed’
to the counterfactual of restricted immigration. We can then define any endogenous variable
zs, under the two scenarios s = {open,closed}. For example, Lgpin is the number of US
computer scientists in the ‘real’ scenario under which high-skilled immigration is encouraged
via the H-1B program, and all CS workers earn a wage wepen. In contrast, LYS_, and weosed
are the employment of US computer scientists and wages for all computer scientists in the

counterfactual scenario where the stock of foreigners is restricted to its 1994 level.

4.1 Employment and College Degrees in CS

Figure 4a describes the restriction under the counterfactual exercise. It shows how, under the

real scenario where the economy is open to H-1B immigration, there is an increase in the stock
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of foreign computer scientists, whereas under the counterfactual scenario where the economy is

‘closed,” the stock of foreign computer scientists is restricted to the 1994 level.

How this restriction affects the stock of US computer scientists in our model can be seen in
Figures 4b-4c. Over this period there is an increase in the total number of computer scientists
when we allow for immigration, but the number of US computer scientists actually decreases
with respect to the closed economy every year as the number of immigrants increases. In 2001,
the number of US computer scientists was between 6.1%-10.8% lower under the open than in
the closed economy (Table 5). These numbers imply that for every 100 foreign CS workers that
enter the US, between 33 to 61 native CS workers are crowded out from computer science to

other college graduate occupations.

When the economy is open to immigration under the H-1B program, some US computer sci-
entists switch over to non-CS occupations, shifting out the supply of these workers. This can
be seen in Figure 4d. While over time there has been a rapid increase in the number of non-
CS college educated workers, this increase would have been lower if the number of foreign CS
workers were restricted. In fact, the growth rate between the open and closed economies plot-
ted in Figure 4d mirrors the decrease in Figure 4c as US workers switch from CS to non-CS

occupations.

Since students in our model choose their college major in their junior year, a change in the
wages for computer scientists will affect these choices. Under the open economy scenario the
fraction of CS degrees in 2001 would be between 1.3 - 2.6 percentage points lower than in the

closed economy as can be seen in Figure 4e.

4.2 Wages

Over the period of study, wages grew for computer science workers, but this growth would
have been higher if immigration was restricted (Figure 5b). An influx of foreign CS workers
depresses the CS wage, and shifts some US workers into non-CS occupations. At the end of
the decade, our model implies wages for CS workers would have been between 2.6%-5.1% lower

under the open economy (Table 5).

With an increase in the foreign CS workforce, college educated US CS workers shift into non-
CS occupations, and this tends to lower the non-CS wage. At the same time, however, as the
equilibrium amount of total CS workers increases, so does the marginal product of non-CS
college educated workers. This increases the demand for non-CS workers, and tends to increase
their wage making the net effect positive (Figure 5c). Overall, Table 5 shows an increase in
the non-CS wage due to immigration, of about 0.04%-0.28% in 2001. As expected both the
changes in CS wage and the non CS wage for college graduates are sensitive to what value of

A we choose, but qualitatively our results do not change across specifications.
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Since the labor supply of non-college graduates is assumed to be fixed and inelastic, only changes
in the demand for non-college graduates determine the difference in their wages under the real
and counterfactual scenarios. When the economy is open to immigration, the equilibrium
number of total college graduates employed increases due to immigration. This raises the
marginal product of non-college graduate labor, and shifts out the demand for non-college
graduate workers, raising the overall wage for non-college graduates (Figure 5d). Under the
open economy, wages for non-college graduates would have been between 0.43%-0.52% higher
by the end of this period (Table 5).%°

4.3 Prices, Output and the Entry of Firms

While high-skilled immigration affected both employment and wages, it also affects overall
output and prices of the different goods produced in the economy. These changes will affect

overall consumer welfare, and also the profits accruing to firm owners.

Over the period of study, relative prices of IT goods were falling steadily, and some of this
fall can be attributed to the increase in CS employment due to immigration. Figure 6a and
Table 5 shows how under the open economy, prices would have been between 1.9%-2.4% lower
in 2001.

At the same time, the relative consumption of I'T goods was increasing, and this increase would
have been lower without the growth in the foreign workforce (Figure 6b). Immigration also
raises the profits of firms who can now hire relatively cheaper labor, and this causes new firms
to enter the IT sector. Figure 6¢ shows how by allowing immigration, the number of IT firms
would be higher. At the end of this period, there would be between 0.50%-0.56% fewer IT firms

if immigration was restricted (Table 5).

5 Welfare

Using our estimated parameters and counterfactual exercises, we can measure the overall eco-
nomic impacts on the different agents in the economy due to the increase in the number of
foreign computer scientists. In order to compare losses and benefits and the distributional
consequences of immigration we look at the welfare of all types of workers and the owners of

firms.

35Gince the non-college graduate workforce is a lot larger than the CS workforce the relative shift in wages is
a lot lower compared to the CS wage.
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5.1 Calculating Welfare
5.1.1 Calculating Worker Welfare

Given the structure of our CES utility function, we can calculate consumer welfare as a function
of the income of each type of agent. For a given income level m;, the indirect utility of the agent
is just the product of his income and the ideal price index. However, since the ideal price index is
the numeraire, indirect utility is just the income of each type of worker: V;(m;) = m,;. We then
compare the welfare of individuals under the two scenarios: (a) the real scenario, where high-
skill immigration is encouraged under the H-1B program, and (b) the counterfactual scenario
where the stock of immigrants is restricted to the 1994 level. For all welfare calculations we
will only be focusing on welfare changes for those individuals who are US born, ignoring the

changes in welfare for migrant computer scientists.

Workers are divided into four groups: those who are computer scientists and stay in CS oc-
cupations in the presence of immigration, those who are CS workers but switch to non-CS
work because of immigration, those who were non-CS college graduates even before there was
immigration and those who are non-college graduates. We then proceed to calculate welfare

changes in two dif