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I. Introduction

How small shocks are amplified and propagated through the economy 
to cause sizable fluctuations is at the heart of much macroeconomic 
research. Potential mechanisms that have been proposed range from 
investment and capital accumulation responses in real  business- cycle 
models (e.g., Kydland and Prescott 1982) to Keynesian multipliers (e.g., 
Diamond 1982; Kiyotaki 1988; Blanchard and Kiyotaki 1987; Hall 2009; 
Christiano, Eichenbaum, and Rebelo 2011); to credit market frictions 
facing firms, households, or banks (e.g., Bernanke and Gertler 1989; Ki-
yotaki and Moore 1997; Guerrieri and Lorenzoni 2012; Mian, Rao, and 
Sufi 2013); to the role of real and nominal rigidities and their interplay 
(Ball and Romer 1990); and to the consequences of (potentially inappro-
priate or constrained) monetary policy (e.g., Friedman and Schwartz 
1971; Eggertsson and Woodford 2003; Farhi and Werning 2013).

A class of potentially promising approaches based on the spread of 
small shocks from firms or disaggregated sectors through their eco-
nomic and other links to other units in the economy has generally been 
overlooked, however. The idea is simple. A shock to a single firm (or 
sector) could have a much larger impact on the macroeconomy if it re-
duces the output of not only this firm (or sector), but also of others that 
are connected to it through a network of  input- output linkages. The 
macroeconomic importance of this idea was downplayed by Lucas’s 
(1977) famous essay on business cycles on the basis of the argument that 
if shocks that hit firms or disaggregated sectors are idiosyncratic, they 
would then wash out when we aggregate across these units and look 
at macroeconomic fluctuations—due to a law of large  numbers- type 
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argument. Despite this powerful dismissal, this class of approaches has 
attracted recent theoretical attention. An important paper by Gabaix 
(2011) showed that when the firm- size distribution has very fat tails, so 
that shocks hitting the larger firms cannot be balanced out by those af-
fecting smaller firms, the law of large numbers need not apply, opening 
the way to sizable macroeconomic fluctuations from idiosyncratic firm- 
level shocks.1 Carvalho (2008), Acemoglu, Ozdaglar, and  Tahbaz- Salehi 
(2015a, 2015b), Acemoglu et al. (2012), and Baqaee (2015) built on the 
multisector framework first developed by Long and Plosser (1983) to 
show how  input- output linkages can also neutralize the force of the law 
of large numbers because shocks hitting sectors that are particularly im-
portant as suppliers to other sectors will not wash out and can translate 
into aggregate fluctuations.

One attractive aspect of these  network- based approaches to the am-
plification and propagation of shocks is that they naturally lend them-
selves to an empirical analysis that can inform the importance of the 
proposed mechanisms, and the current paper undertakes such an em-
pirical investigation. We are not the first to empirically study these in-
teractions. One branch of existing research has provided  model- based 
quantitative evaluation of the importance of these interactions (e.g., 
Horvath 1998, 2000; Carvalho 2008; Foerster, Sarte, and Watson 2011). 
A number of recent papers have instead focused on observable large 
shocks to a set of firms or industries and have traced their impact 
through the  input- output network. Acemoglu et al. (2016) do this fo-
cusing on the spread of the impact of increased Chinese competition 
into the US economy through  input- output linkages and local labor 
markets, though focusing on 10- year or 20- year effects. Boehm, Flaaen, 
and Nayar (2014), Barrot and Sauvagnat (2014), and Carvalho, Nirei, 
and Saito (2014) focus on the transmission of natural disasters, such as 
the 2011 Japanese earthquake, over the global  input- output network.2 
Our paper contributes to this literature by studying the spread of four 
different types of shocks through the US  input- output network at 
 business- cycle frequencies. We also add to this by evaluating the contri-
bution of the “geographic network” of industries—which measures the 
collocation patterns of industries across different commuting zones—to 
the interindustry propagation of macroeconomic shocks.3

We begin by developing some theoretical implications of the propaga-
tion of shocks through the  input- output linkages. Most notably, theory 
predicts that  supply- side (productivity) shocks propagate downstream 
much more powerfully than upstream—meaning that downstream cus-
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tomers of directly hit industries are affected more strongly than their  
upstream suppliers. In contrast, demand shocks (e.g., from imports or  
government spending) propagate upstream—meaning that upstream 
suppliers of directly hit industries are affected more strongly than 
their downstream customers. This pattern results from the fact that 
 supply- side shocks change the prices faced by customer industries, cre-
ating powerful downstream propagation, while  demand- side shocks 
have much more minor (or no) effects on prices and propagate up-
stream as affected industries adjust their production levels and thus 
input demands. In the simplified benchmark model studied in much 
of the literature, where both production functions and consumer prefer-
ences are Cobb- Douglas (so that income and substitution effects cancel 
out), these effects emerge particularly clearly: there is no upstream effect 
from  supply- side shocks and no downstream effect from  demand- side 
shocks. In addition, we show that there is a restriction on the quantita-
tive magnitudes of the own effect (measuring how a shock to an indus-
try affects that industry) and the network effects.

Our empirical work focuses on four different types of  industry- level 
shocks, all propagating through the  input- output linkages at the 
level of 392 industries as measured by the Bureau of Economic Anal-
ysis  input- output tables. Our four shocks are: (a) variation from the 
exogenous component of imports from China, (b) changes in federal 
government spending (affecting industries differentially on the basis 
of their dependence on demand from the federal government), (c) to-
tal factor productivity (TFP) shocks, and (d) knowledge/productivity 
stimuli coming from variation in  foreign- industry patents. For each one 
of these shocks, we construct downstream and upstream network ef-
fects by using information from the  input- output tables—namely by 
taking the inner product of the corresponding row or column of the 
 input- output matrix with a vector of shocks at the industry level. We 
then estimate parsimonious models of  industry- level value added, em-
ployment and productivity growth on their own lags, an industry’s 
own shocks, and downstream and upstream effects from shocks hitting 
other industries.4

A brief summary of our results is as follows. For each one of these 
four shocks we find propagation through the  input- output network to 
be statistically and economically important and broadly consistent with 
theory. In particular, for the two  demand- side shocks—Chinese imports 
and federal government spending—we find that upstream propagation 
is substantially stronger than downstream effects, which are often zero 
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or of opposite sign. In contrast, for the two  supply- side shocks—TFP 
and foreign patenting—there is strong downstream propagation, and 
limited or no upstream effects. In addition, the quantitative restrictions 
between own effects and network effects implied by theory are often 
verified. We also find the general patterns to be quite robust to different 
weighting schemes, additional controls, longer time scales, different lag 
structures, and so on.

The quantitative network effects are sizable and typically larger than 
the quantitative impact of own shocks. Figure 1 gives an indication of 
the magnitude of network effects by graphing the impulse response 
functions that result from a one- time, one standard deviation shock to 
every manufacturing industry.5 The different panels show that network 
effects are more pronounced than own effects. For example, one stan-
dard deviation increase in imports from China will have a direct (own) 
effect of reducing value added growth by 3.46% in 10 years. Factoring 

Fig. 1. Responses to a one standard deviation shock taken in isolation, value added
Notes: Figure plots estimated response to a one standard deviation shock taken in isolation. 
Trade shocks are presented in positive terms to be visually comparable to the other shocks 
considered. Network effects focus on upstream contributions for the  demand- side shocks 
of trade and federal spending and downstream contributions for the productivity shocks of 
TFP and foreign patenting. Responses are measured through log growth rates per the esti-
mating equation and translated into levels off of a base initial level of one. The lag structure 
for the dependent variables includes three lags.
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in the (upstream) network effects, the total impact of the same shock is 
a 22.1% decline in  value- added growth. This implies a sizable “network 
multiplier” (defined as the size of the total impact relative to the direct 
impact of the shock) of 22.1 / 3.46 ! 6.4. The implied employment 
multiplier is similar, approximately 5.9.

We finally consider the effect of geographic collocation (“overlay” ) 
of industries. The geographic overlay of industries reflects the impor-
tance of localized networks, as industries with substantial exchanges 
frequently locate near each other to reduce transportation costs and fa-
cilitate information transfer (e.g., Fujita, Krugman, and Venables 1999).6 
After deriving a theoretically motivated measure of how  industry- level 
shocks should propagate through the geographic overlay of indus-
tries, we show that geographic effects add another dimension of 
 network- based propagation. While our main results are robust to these 
additional controls for geographic patterns, which demonstrates that 
 input- output networks are operating above and beyond localized fac-
tors like regional business cycles, the geographic network also turns 
out to be a powerful transmitter of shocks from one industry to others. 
In fact, even though our estimates of the spread of shocks across col-
locating industries are slightly less robust than our baseline results, the 
effects appear quantitatively as large or even larger.

Overall, we interpret our results as suggesting that  network- based 
propagation, particularly but not exclusively through the  input- output 
linkages, might be playing a sizable role in macroeconomic fluctuations, 
and certainly a more important one than typically presumed in modern 
macroeconomics.

The rest of the paper proceeds as follows. Section II presents the 
theoretical model on  input- output networks and shock propagation. 
Section III describes our data and provides descriptive statistics. Sec-
tion IV presents our empirical results, focusing exclusively on national 
 input- output connections, and section V further adds to the geographic 
overlay. The last section concludes, while appendix A and online ap-
pendices B and C contain further results and omitted proofs.7

II. Theory

In this section, we develop some simple theoretical implications of 
 input- output linkages, and then turn to a discussion of the macro-
economic consequences of the geographic concentration of industries 
in certain areas.
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A. Input- Output Linkages

We start with a model closely related to Long and Plosser (1983) and Ac-
emoglu et al. (2012), which will clarify the role of  input- output linkages.

Consider a static perfectly competitive economy with n industries, 
and suppose that each industry i = 1, ..., n has a Cobb- Douglas produc-
tion function of the form:

 yi = ezili
ai
l

j=1

n

∏xij
aij . (1)

Here xij is the quantity of goods produced by industry j used as inputs by 
industry i, li is labor, and zi is a Hicks- neutral productivity shock (repre-
senting both technological and other factors affecting productivity). We 
assume that, for each i, ai

l > 0, and aij ≥ 0 for all j (where aij = 0 implies 
that the output of industry j is not used as an input for industry i), and 

ai
l +

j=1

n

∑aij = 1,

so that the production function of each industry exhibits constant re-
turns to scale.8

As equation (1) makes clear, the output of each industry is used as 
input for other industries or consumed in the final good sector. Incorpo-
rating the demand from other industries, the  market- clearing condition 
for industry i can be written as

 yi = ci +
j=1

n

∑xji + Gi, (2)

where ci is final consumption of the output of industry i, and Gi denotes 
government purchases of good i, which are assumed to be wasted or 
spent on goods households do not directly care about. We introduce 
government purchases to be able to model  demand- side shocks in a 
simple fashion.

The preference side of this economy is summarized by a representa-
tive household with a utility function

 u(c1, c2, ..., cn, l) = g(l)
i=1

n

∏ci
bi, (3)

where bi ∈ 0, 1( ) designates the weight of good i in the representative 
household’s preferences (with the normalization Si=1

n bi = 1), and g(l) is a 
decreasing (differentiable) function capturing the disutility of labor supply.
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The government imposes a lump- sum tax, T, to finance its purchases. 
Denoting the price of the output of industry i by pi, this implies 
T = Si=1

n piGi. Since its income comes only from labor, wl, the representa-
tive household’s budget constraint can be written as

i=1

n

∑pici = wl − T.

We focus on the competitive equilibrium of this static economy, which is 
defined in the usual fashion, so that all firms maximize profits and the 
representative household maximizes its utility, in both cases taking all 
prices as given, and the  market- clearing conditions for each good and 
labor are satisfied. The amount of government spending and taxes are 
taken as given in this competitive equilibrium. We also choose the wage 
as the numeraire (i.e., set w = 1).

The Cobb- Douglas production functions in (1), combined with profit 
maximization, imply

 
pjxij
piyi

= aij. (4)

In preparation for our main results we will present, let A denote the 
matrix of aij’s,

A =

a11 a12 ...
a21 a22

!

ann

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.

We also define

 H ≡ (I − A)−1 (5)

as the Leontief inverse of the  input- output matrix A, and denote its typi-
cal entry by hij.

Proposition 1. The impact of sectoral productivity (supply- side) shocks 
on the output of sector i is

 d ln yi = dzi!
own effect

+
j=1

n

∑(hij − 1 j= i) × dzj
! "###### $######

network effect

, (6)
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where hij is the ij- th element of H (the Leontief inverse of A), and 1j=i is the indica-
tor function for j = i. This equation implies that in response to productivity shocks, 
there are no upstream effects (i.e., no effects on suppliers of affected industries) and 
only downstream effects (i.e., only effects on customers of affected industries).

Suppose g(l) = (1 − l)l. Then the impact of  government- spending (demand- 
side) shocks on the output of sector i is

 

d ln yi = d !Gi

piyi"#$

own effect

+
j=1

n

∑(ĥji − 1 j= i) ×
1
pjy j

× d !Gj

" #$$$$$$$$$ %$$$$$$$$$

network effect

−
j=1

n

∑ĥji ×
1
pjy j

×
b j

1 + l
×

k=1

n

∑d !Gk

" #$$$$$$$$$$ %$$$$$$$$$$

resource constraint effect

, (7)

where !Gj = pjGj  is nominal government spending on sector j’s output, ĥij is 
the ij- th element of the Leontief inverse matrix Ĥ = (I − Â)−1, and Â is the 
matrix with entries given by âij = pjxij / pjy j (i.e., sales from industry j to 
industry i normalized by sales of industry j). This implies that  demand- side 
shocks do not propagate downstream (i.e., to customers of affected industries), 
only upstream (i.e., only to suppliers of affected industries). 

This proposition is proved in appendix A. Equations (6) and (7) 
form the basis of our empirical strategy, and link the output of sector i 
to its own “shock,” dzi, and to “shocks” hitting all other industries 
working through the  input- output linkages of the economy. In par-
ticular, in equation (6), dzi is the own shock, while S j=1

n (hij − 1 j= i)dzj is 
the network effect. Notice that this expression includes the propagation 
of the own shock through the  input- output linkages, hii – 1, together 
with the network effect, and then subtracts the own effect (via the in-
dicator function 1j=i, which takes the value 1 when j = i and the value 
0 otherwise), so as not to double count this direct effect.9 Similarly, in 
equation (7), d !Gi / piyi is the own shock and S j=1

n (ĥji − 1 j= i)(1 / pjy j)d !Gj 
is the network effect.10 These equations have several important impli-
cations.

First, what matters for the network effects is not directly the entries of 
the  input- output matrix, A or Â, but its Leontief inverse. The intuition 
is instructive about the workings of the model. For example, a negative 
productivity shock to industry j will reduce its production and increase 
its price. This will adversely impact all of the industries that purchase 
inputs from industry j. But this direct impact will be further augmented 
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in the competitive equilibrium because these  first- round- affected in-
dustries will change their production and prices, creating indirect nega-
tive effects on other customer industries (“downstream effects”). The 
Leontief inverse captures these indirect effects.

Second, the network effects in response to the  demand- side and 
 supply- side shocks are rather different. For  supply- side shocks, the net-
work effect, S j=1

n (hij − 1 j= i)dzj, implies that the impact goes downstream 
(and not at all upstream). For  demand- side shocks, the network effect is 
given by the term S j=1

n (ĥji − 1 j= i)(1 / pjy j)d !Gj, indicating upstream propa-
gation—the ĥji term signifies the spread of a shock to industries that are 
suppliers of the affected industries. Equation (7), in addition, includes the 
 resource- constraint effect, the term S j=1

n ĥji(1 / pjy j) [b j / (1 + l)]Sk=1
n d !Gk , 

which reflects the impact of government spending on the representative 
household’s budget constraint—the government spending, financed by 
taxes, leaves fewer resources for private consumption. The parameter b j 
here captures the fact that the impact of the lower net income of the rep-
resentative household on the consumption of sector j depends on the 
share of this sector in consumption, given by b j. When ′g = 0 so that 
there is no  labor- supply response and thus l = 0, this impact is maxi-
mized. On the other hand, when there is a positive  labor- supply re-
sponse, this effect is partially offset by increased production across the 
economy. It is also worth noting that these effects are still propagated 
through the  input- output matrix as shown by the ĥji terms, because a 
decline in the consumption of good j causes sector j to cut production and 
its input purchases from other sectors, leading to the upstream transmis-
sion of the direct implications of the resource constraint.

The next two examples illustrate in greater detail why  supply- side 
or productivity shocks propagate downstream, while demand shocks 
propagate upstream.

Example 1 (Downstream propagation of  supply- side shocks). Con-
sider an economy with three sectors, with the  input- output network as 
shown in panel (A) of figure 2. Sector 1 is the sole customer of sector 2, 
sector 2 is the sole customer of sector 3, and sector 3 is the sole customer 
of sector 1. The sectoral production functions are therefore given as

y1 = ez1l1
a1
l
x12
a12, y2 = ez2l2

a2
l
x23
a23, and y3 = ez3l3

a3
l
x31
a31,

and are all assumed to satisfy constant returns to scale. It follows from 
Proposition 1 that sector 1’s output is:11

d ln y1 = dz1 + a12dz2 + a12a23dz3

1 − a12a23a31

.
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This expression shows that sector 1’s output depends on the shocks to 
all three sectors. However, this is purely because of the propagation 
of productivity (supply- side) shocks downstream. For example, sector 
3’s productivity shock, z3, affects y1 not because of upstream propaga-
tion, but because of the chain of downstream propagation: sector 1 is a 
customer of sector 2, and sector 2 is a customer of sector 3. Indeed, the 
coefficient of z3 in this expression, a12a23, illustrates this indirect effect. 
To see further that there is no upstream propagation, consider a modi-
fication of this  input- output network as shown in panel (B) of figure 2, 
where the link between sector 2 and sector 3 is severed (i.e., a23 = 0). The 
output of sector 1 then becomes

d ln y1 = dz1 + a12dz2,

with no impact from z3. This verifies that it was the indirect downstream 
transmission of sector 3’s productivity shock that impacted sector 1. 
With the link between sectors 2 and 3 severed, this indirect transmission 
ceases, and there is no longer any impact of z3 on sector 1. Had it been 
the upstream propagation of productivity shocks, we would have seen 
a similar dependence of sector 1’s output on z3 since the input linkage 
between these two sectors has not changed.

The intuition for why there are no economic effects working up-
stream through the  input- output network—as shown in Proposition 1 
and Example 1—is related to the Cobb- Douglas nature of the produc-
tion functions and preferences. Any impact on upstream industries will 
depend on the balance of a quantity effect (less is produced in industry 

Fig. 2. Theoretical examples
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j after an adverse productivity shock) and price effect (each unit pro-
duced in industry j is now more expensive). With Cobb- Douglas tech-
nologies and preferences from households, these two effects exactly 
cancel out.12 Downstream propagation, on the other hand, is a conse-
quence of the fact that an adverse productivity shock to a sector leads 
to an increase in the price of that sector’s output, encouraging its cus-
tomer industries to use this input less intensively and thus reduce their 
own production. This downstream propagation is also the reason why 
the impact of a shock depends only on  input- output linkages, and not 
on the consumption shares, the b j’s. The consumption shares influence 
the level of production in different sectors, but not the proportional re-
sponses to productivity shocks; productivity shocks translate into pro-
portional declines in prices and thus proportional downstream trans-
mission, regardless of consumption shares.

The next example illustrates the propagation of  demand- side shocks.
Example 2 (Upstream propagation of  demand- side shocks). Con-

sider again the economy depicted in panel (A) of figure 2, but now with 
 government- spending shocks, expressed in nominal terms as d !G1, d !G2, 
and d !G3, rather than productivity shocks (and thus setting dz1 = dz2 = dz3 
= 0). We also set b1 = b2 = b3 = 1 / 3. In this case, the change in the 
nominal output of sector 1 (with tildes again denoting nominal vari-
ables) can be derived as

d !y1 = 1
1 − a12a23a31

d !G1 + a23a31d !G2 + a31d !G3

− (1 + a31 + a23a31)
3(1 + l)

[d !G1 + d !G2 + d !G3]

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
.

Once again, shocks to all three sectors influence the nominal output of 
sector 1, but this time it is because of the cumulative indirect effects 
working upstream. In particular, the effect of the shock to sector 2, d !G2, 
on sector 1 is working upstream through its impact on sector 3 and then 
sector 3’s impact on sector 1, as can be seen from the fact that this term is 
multiplied by a23a31 in the first line. The resource constraint effect is 
shown in the second line. Similar to our analysis in the previous example, 
we can verify that the network effects shown in the first line are not 
working through downstream propagation by considering panel (B) of 
figure 2. When the link between sectors 2 and 3 is severed (or equiva-
lently when a23 = 0), the change in the nominal output of sector 1 becomes

d !y1 = d !G1 + a31d !G3 − (1 + a31)
3(1 + l)

[d !G1 + d !G2 + d !G3],
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where the second term is again the indirect effect working through 
the household budget constraint. The absence of an impact from the 
 government- spending shock to sector 2 now confirms that all propaga-
tion of  demand- side shocks is upstream.

The intuition for why  demand- side shocks propagate only up-
stream, as demonstrated in Proposition 1 and Example 2, is also in-
structive. With  government- spending shocks, affected industries have 
to increase their production to meet the increased demand from the 
government. But given that they are using inputs from other supplier 
industries, this is only possible if industries supplying inputs to them 
also expand their inputs (proportionately to the role of these inputs in 
the production function of the affected industries). This is the logic for 
upstream propagation of  demand- side shocks. Why is there no down-
stream propagation? Since all sectors have constant returns to scale, 
prices in this economy are entirely independent of the demand side. 
 Government- spending shocks change quantities, but not prices (see ap-
pendix A). But this implies that the channel through which downstream 
propagation took place in response to productivity shocks—changing 
relative prices—is entirely absent, accounting for the lack of down-
stream propagation in response to  demand- side shocks.

A third implication of equations (6) and (7) concerns the magnitudes 
of the coefficients of the own and network effects. The simplest way of 
seeing this is to reorganize these equations so that equation (6) becomes

d ln yi = hii × dzi +
j≠ i
∑hij × dzj,

which implies that if the indirect impacts of the own shock are included 
with the direct effect (and excluded from the network effect), then the 
coefficients of the own and the network effects, when properly scaled 
by the entries of the Leontief inverse, should be equal.13 The same is true 
for the  demand- side shocks in equation (7), which can be re arranged as

d ln yi = ĥii
d !Gi

piyi
+

j≠ i
∑ĥji

d !Gj

pjy j

−
j=1

n

∑ĥji
b j

1 + l k=1

n

∑d !Gk
,

again showing the equality of the coefficients of the properly scaled own 
and network effects (the first two terms). These results readily extend to 
the employment equation by observing that the employment effects are 
derived from the output effects, and are thus proportional to them.

Fourth, equations (6) and (7) also imply that what matters in our theo-
retical framework are the contemporaneous shocks (e.g., dzi), not some 
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future anticipated shocks.14 This motivates our use of current (or one- 
period lagged) shocks on the  right- hand side of our estimating equations.

Finally, we further note that the implications of import shocks are 
also very similar to  government- spending shocks, since a decline in 
imports (without imposing trade balance) is analogous to an increase in 
government spending on the same sectors, and for this reason we have 
not separately introduced these shocks in our theoretical model.

B. The Effects of the Geographic Network

Another important set of interlinkages, which could be represented as 
network effects, relates to geographic overlay over industries (corre-
sponding to how industries collocate in various local labor markets, for 
example, as measured by commuting zones). Thinking through these 
geographic interactions is important to ensure that our empirical work 
can distinguish  input- output network effects from these geographic in-
terlinkages; moreover, these local linkages are also of direct interest as 
another transmitter of  industry- level shocks.

Let us start with a simple  reduced- form model capturing local de-
mand effects

 d ln yr, i = h
yr, j
yr

d ln yr, j + dzi
j≠ i
∑ , (8)

where yr,i is the output of industry i in region r, and dzi is an industry 
shock normalized to have a unit impact on the industry’s output (in a 
region). In what follows, take h to be small (and in particular less than 1).

This equation captures the idea that if industries in a given region (lo-
cal labor market) are hit by negative shocks, this will reduce economic 
activity and adversely affect output and employment in other industries, 
which is consistent with empirical evidence reported in Autor, Dorn, and 
Hanson (2013) and Mian and Sufi (2014). For example, if a large employer 
in a given local labor market shuts down, this will reduce the demand 
and thus employment and output of other local employers. The most 
obvious channel for this is through some local demand effects, though 
other local linkages would also lead to a relationship similar to (8).

The functional form in this equation is intuitive and implies that the 
impact of a proportional decline in industry j on industry i in the same 
region will be scaled by the importance of industry j in the region’s 
output (yr,j / yr). Note also that, for simplicity’s sake, we ignore the 
network effects coming from  input- output linkages in this subsection.
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The next step is to solve the  within- region equilibrium implied by (8). 
Doing this with matrix algebra, we can write

 d ln yr, i = I − B( )−1 dzi, (9)

where

B =

0 h(yr,2 / yr) h(yr,3 / yr) ...
0

0
0

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

.

Given our analysis of  input- output models, it is not surprising that a 
Leontief  inverse- type matrix is playing a central role here. But in this 
instance, it is useful for us to go beyond this matrix representation. In 
particular, when h is small as we have assumed,  second-  and  higher-  
order terms in h can be ignored, and the  within- region equilibrium can 
be expressed in the following form:15

d ln yr, i ≈ dzi + h
yr, j
yr

dzj
j≠ i
∑ .

Intuitively, this equation describes the  within- region equilibrium as a 
function of shocks to all industries (solving out all “endogenous” terms 
from the  right- hand side). Now using the fact that d ln yr, i = dyr, i / yr, i,  
and summing across regions, we obtain

dyi =
r
∑dyr, i ≈ yidzi + h

r
∑

j≠ i
∑ yr, iyr, j

yr
dzj,

which then enables us to obtain a simple representation of the geo-
graphic effects:

 d ln yi ≈ dzi + h
j≠ i
∑ geographic_overlay i, jdzj, (10)

where

geographic_overlay i, j ≡
r
∑ yr, iyr, j

yiyr

is the noncentered  cross- region correlation coefficient of industries i 
and j, normalized by their national levels of production, and represents 
their tendency to collocate.

Intuitively, this equation captures the fact that industries will be im-
pacted not only by their direct shocks but also by the shocks of other 
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industries that tend to collocate with them. For example, if coal and steel 
industries are always in the same few regions, the steel industry will be 
negatively affected nationally not only when there is a negative shock to 
itself but also when there is a negative shock to the coal industry, because 
when the coal industry is producing less in the region, other industries 
in that region are also adversely affected, and steel is overrepresented 
among these industries that happen to be in the same region as coal.

Though the term we have for geographic overlay is simple and in-
tuitive, it is based on an approximation that involves ignoring all terms 
that are second or higher order in h, thus posing the natural question of 
whether including some of these additional terms would lead to ad-
ditional insights. To provide a partial answer to this question, we now 
include  second- order terms (thus ignoring only  third-  or  higher- order 
terms in h), which leads to a natural generalization of (10). In particular, 
the  within- region equilibrium can now be expressed as

d ln yr, i ≈ dzi + h
j≠ i
∑ yr, j

yr
dzj + h2

j≠ i
∑ yr, j

yr k≠ j
∑ yr,k

yr
dzk .

Now summing across regions and repeating the same steps as above, 
we obtain

d ln yi = dzi + hS j≠ i geographic_overlay i, jdzj

+ h2S j≠ iSk≠ j, i geographic_overlay i, j,kdzj

where the additional geographic overlay term, which includes triple 
collocation patterns, is

 geographic_overlay i, j,k ≡
r
∑ yr, iyr, jyr,k

yiyr2
. (11)

III. Data and Descriptive Statistics

This section describes our various data sources and the construction 
of the key measures of downstream and upstream effects and the geo-
graphic network.

A. Data Sources

Our core  industry- level data for manufacturing come from the NBER- 
CES Manufacturing Industry Database (Becker, Gray, and Marvakov 

This content downloaded from 198.071.006.043 on August 28, 2018 09:09:59 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



288 Acemoglu, Akcigit, and Kerr

2013). We utilize data for the years 1991–2009. Using the first change 
as a baseline, our estimations cover 17 changes from 1992–1993 to 
2008–2009. In the first four changes, we have 392 four- digit industries; 
thereafter, we have 384 industries for 6,560 total observations. Though 
the theoretical predictions derived in the previous section are in terms 
of total industry output (shipments), our baseline analysis focuses on 
(real) value added due to its adjustment for energy costs, nonmanu-
facturing inputs, and inventory changes, which are all outside of our 
model. We show similar results using real and nominal shipments in 
appendix B.16

To construct our linkages between industries, we use the Bureau of 
Economic Analysis’ 1992 Input- Output Matrix and the 1991 County 
Business Patterns database as described further below. In the next sec-
tion, we describe the data used for each shock when introducing it.

B. Upstream and Downstream Networks

The construction of downstream and upstream effects follows Acemo-
glu et al. (2016). We construct the matrix A introduced in section II from 
the 1992 “Make” and “Use” Tables of the Bureau of Economic Analysis. 
This matrix has input share entries corresponding to

aij ≡
Salesj→ i

Salesi
.

As emphasized in section II, this quantity measures the total sales of 
inputs from industry j to industry i, normalized by the total sales (or 
equivalently the total costs) of industry i. Intuitively, it corresponds to 
how many dollars worth of the output of sector j (say tires) sector i (say 
the car industry) needs to purchase to produce one dollar’s worth of its 
own output. When production functions are Cobb- Douglas, as we have 
assumed in our theoretical analysis, these input shares are constant re-
gardless of prices. Equation (6) shows that network effects from 
 supply- side shocks directly depend on these input shares. The Leontief 
inverse of the  input- output matrix is then computed from the matrix of 
these  input- output shares as (I – A)–1 to give our downstream network 
measure. In what follows, we use the notation Input% j→ i to represent 
the elements of the Leontief inverse of the  input- output matrix.17

For constructing the network effects from  demand- side shocks, we 
again follow equation (7), which decomposes the response of a sector 
into an own effect, a network effect, and the  resource- constraint effect. 
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We first ignore the last one and focus on the network effect. The pres-
ence of the ĥji (or â ji) terms in this equation underscores the different 
aspects of  input- output linkages involved in upstream propagation. 
The empirical counterparts of the âij terms are

Salesi→ j

Salesi
≡ aji

Salesj
Salesi

,

which we use to compute the upstream network measures. We use 
Output%i→ j to represent these Leontief inverse terms. We return to the 
 resource- constraint effect later.

C. Geographic Overlay

We also measure the geographic overlay of two industries using the 
metric developed in the theory section,

geographic_overlay i, j ≡
r
∑ yr, iyr, j

yiyr
.

We define regions through BEA commuting zones and utilize 1991 
County Business Patterns data to measure the overlay. We also calculate 
the  higher- order geographic overlay term (11). In practice, however, we 
observe very little additional explanatory power with the second metric 
and thus focus simply on the direct collocation case.

D. Correlation Matrices

Table 1A shows the correlation matrix of these interconnections, exclud-
ing own- industry interconnections (i.e., network diagonals). Upstream 
and downstream material flows are moderately correlated at 0.4 and 
somewhat less strongly correlated with geographic overlay, indicating 
that  input- output linkages operate, for the most part, beyond common 
geographies.

Table 1B depicts the correlation of our four measures of shocks 
with each other and shows that our different shocks are only weakly 
correlated, assuaging concerns that we may be tracing the effects of 
omitted shocks when modeling the effect of each shock one at a time. 
Column (5) of table 1B reports the average  between- industry correla-
tion for each shock (e.g., how correlated is, say, the federal spending  
shock of an industry with the federal spending shocks of other indus-
tries). This is relevant in part because a high  between- industry correla-
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Table 1A
Correlation Matrix of Network Interconnections

  

Downstream 
Leontief  

(1)  

Upstream 
Leontief  

(2)  

Geographic 
Overlay  

(3)

Downstream Leontief 1
Upstream Leontief 0.400 1
Geographic overlay  0.108  0.275  1

Notes: Downstream networks represent inputs from supplier industries into the focal in-
dustry’s production, expressed as a share of the focal industry’s sales (e.g., rubber inputs 
into the tire industry as a share of the tire industry’s sales). Upstream networks represent 
sales from the focal industry to industrial customers, expressed as a share of the focal 
industry’s sales (e.g., sales of tires to car manufacturers as a share of the tire industry’s 
sales). Both networks are measured from the 1991 BEA Input- Output Matrix. Shares allow 
for flows to nonmanufacturing industries and customers and thus do not sum to 100% 
within manufacturing. Leontief connections provide the full chain of interconnections in 
the network matrix. Geographic overlay is measured as the sum across regions of the in-
teraction of a focal industry’s employment share in the region times the share of regional 
activity for other industries. Regions are defined through commuting zones and use 1991 
industrial activity from the County Business Patterns database. Correlations are statisti-
cally significant at the 1% level.

Table 1B
Correlation Matrix of Shocks

  

China  
Trade  
Shock  

(1)  

Federal 
Spending 

Shock  
(2)  

TFP  
Shock  

(3)  

Foreign  
Patenting  

Shock  
(4)  

Correlation 
Coefficient 

(5)

China trade shock 1 0.200
Federal spending shock 0.031 1 0.452
TFP shock –0.021 0.017 1 –0.002
Foreign patenting shock –0.023 0.030  0.003  1  0.003

Notes: Baseline trade shocks for manufacturing industries are the lagged change in im-
ports from China relative to 1991 US market volume, following Autor et al. (2013). A 
negative value is taken such that positive coefficients correspond to likely beneficial out-
comes, similar to other shocks. All trade analyses instrument US imports with the rise in 
Chinese imports in eight other advanced countries, and this table reports the correlation 
of the IV component. Baseline federal spending shocks for manufacturing industries are 
the lagged log change in national federal spending interacted with the 1992 share of sales 
from industries that went to the federal government. Baseline TFP shocks for manufactur-
ing industries are the lagged log change in four- factor TFP taken from the NBER Produc-
tivity Database. Baseline patent shocks for manufacturing industries are the lagged log 
change in USPTO patents filed by overseas inventors associated with the industry. These 
correlations are presented after year fixed effects are removed from each shock. The Cor-
relation Coefficient column presents the average pairwise correlation of the given shock 
series between any two industries.

This content downloaded from 198.071.006.043 on August 28, 2018 09:09:59 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Networks and the Macroeconomy: An Empirical Exploration 291

tion of shocks might create spurious network effects in the presence 
of an omitted  higher- order impact of own shocks. The relatively low 
 between- industry correlations, except for the federal spending shock, 
are comforting in this regard. The higher  between- industry correlation 
for the federal spending shock is unsurprising since it is constructed 
from the interaction of aggregate time- series variation in federal spend-
ing with a time- invariant measure of federal spending dependency of 
each industry (as detailed further below).

IV. Results: The Input- Output Network

This section provides our primary empirical results that quantify shock 
propagation through the  input- output networks, leaving the analysis 
of the geographic network to the next section. We focus on four shocks: 
(a) import penetration, (b) federal spending changes, (c) TFP growth, 
and (d)  foreign- patenting growth. The first two correspond to  demand-  
side shocks, while the latter two are supply side, approximating pro-
ductivity shocks. We first consider each shock by itself, describing how 
we measure it, and studying its empirical properties in isolation. After 
cycling through all four shocks independently, we jointly model them 
and provide an extended discussion of economic magnitudes.

A. Empirical Approach

Throughout, our main estimating equations are direct analogs of equa-
tions (6) and (7) in the theory section, and take the following form:

D ln Yi,t = dt + cD ln Yi,t−1 + bownShocki,t−1

+ bupstreamUpstreami,t−1 + bdownstreamDownstreami,t−1 + ´i,t

, (12)

where i indexes industries, dt denotes a full set of time effects, ´i,t is an 
error term, and Yi,t stands for one of three  industry- level variables from 
the NBER manufacturing database: real value added (using the indus-
try’s shipments deflator), employment, and real labor productivity (real 
value added divided by employment).

In our baseline results, time periods correspond to years. We start 
with a model that only considers the core regressors outlined in equa-
tion (12), and then we show robustness checks that add extra controls. 
We allow only a single lag of the dependent variable on the  right- hand 
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side for parsimony. The role of additional lags is taken up in robustness 
checks.

The key regressors are Shocki,t–1, the industry’s own direct shock (taken 
from one of the four shocks introduced above), and Upstreami,t–1 and 
Downstreami,t–1, which stand for the shocks working through the net-
work. These network shocks are always computed from the interaction 
of the vector of shocks hitting other industries and a vector representing 
the interlinkages between the focal industry and the rest (e.g., the row or 
the column of the  input- output matrix); we provide exact details below.

The upstream and downstream terminology in network analyses has 
some ambiguity. In the remainder, we follow our usage in section II and 
label “upstream effects” as those arising from shocks to customers of an 
industry that flow up the  input- output chain; in parallel, we describe 
“downstream effects” as those arising from shocks to suppliers of an 
industry that flow down the  input- output chain. Henceforth, for clarity, 
we use “upstream” and “downstream” terms to describe exclusively 
the effects. When there is a need to describe where the shock originates, 
we will use the terms “customer” and “supplier” to avoid confusion.

Thus, we measure downstream effects (due to supplier shocks) 
and upstream effects (due to customer shocks) closely mimicking the 
theoretical equations, (6) and (7). In particular, these are given by the 
weighted averages of shocks hitting all industries using entries of the 
Leontief inverse matrices as weights:

 Downstreami,t = S j(Input% j→ i
1991 − 1 j= i) ⋅ Shockj,t, (13)

and

 Upstreami,t = S j(Output%i→ j
1991 − 1 j= i) ⋅ Shockj,t , (14)

where 1j=i is an indicator function for j = i, and the summation is over all 
industries, including industry i itself. Thus as in the equations (6) and 
(7), when computing the downstream effect for sector i, we take into ac-
count the indirect linkages from this industry to itself (e.g., the fact that 
industry i supplies to industry j, which is also a supplier to i), but we 
subtract the direct effect of the shock, since in our regressions we will 
directly control for the shock to sector i.

Several other points are worth noting. First, as already observed, 
 input- output linkages (and thus the Leontief inverse entries) are pre-
determined and measured in 1991. Thus, downstream and upstream 
effects are simply a function of shocks in connected industries working 
through a predetermined  input- output network.
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Second, we lag both own and network shocks by one period, simply 
to avoid any concern about contemporaneous measurement issues from 
our dependent variables to shocks (e.g., in the case of TFP) and about 
contemporaneous joint determination. It should be stressed, however, 
that we do not claim that this timing will enable us to estimate causal 
effects. Rather, we rely on the plausible exogeneity of shocks, especially 
for imports from China and federal government spending, and caution 
that this exogeneity is likely to be absent in the case of the TFP and 
 foreign- patenting shocks.

Third, equation (12) is formulated in changes, and shocks are always 
specified in changes as detailed below. The specification could have al-
ternatively been written in levels together with an industry fixed effect. 
The advantage of the current formulation is that it both follows more 
directly from and connects to our theoretical model, and imposes that 
the error term is stationary in differences, which is generally a better 
description of macro time series.

Finally, in what follows, unless otherwise stated, we standardize the 
Shocki,t−1 variable so that a unit increase corresponds to a one standard 
deviation change in the positive direction (e.g., decrease in imports or 
increase in TFP), and the Upstreami,t–1 and Downstreami,t–1 variables are 
constructed in the same units. This implies that the coefficient on the 
Shocki,t–1 variable will measure the impact of a one standard deviation 
increase in the industry’s own shock, whereas the coefficients on 
Upstreami,t–1 and Downstreami,t–1 will measure the impact of a one stan-
dard deviation increase in the shock of all customers and suppliers of 
an industry. Moreover, all of these coefficients are directly comparable 
and are expected to be positive where theory predicts a  network- based 
effect.

B. China Import Shocks

Our first shock relates to the growth of imports from China and fol-
lows Autor et al. (2013) and Acemoglu et al. (2016). Acemoglu et al. 
(2016) show this pattern for  decade- long adjustments, and we extend 
this analysis to shorter frequencies considered in macroeconomics. As 
highlighted in section II, this  demand- side shock should have greater 
upstream effects than downstream effects, and in the case of Cobb- 
Douglas, downstream effects should not be present at all.

We first define ChinaTrade to capture this industry exposure to rising 
Chinese trade,
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ChinaTradej,t = −
US Imports from China j,t

US market size j,1991

.

This variable, however, is clearly endogenous, as it will tend to be higher 
when the industry in question has lower productivity growth for other 
reasons, creating greater room for a rise in imports, and is thus not a good 
measure of shocks for our analysis. To deal with this endogeneity con-
cern, we follow Autor et al. (2013) and Acemoglu et al. (2016) and instru-
ment this variable with its exogenous component, defined as the change 
in import penetration from China to eight major non- US countries rela-
tive to 1991 US market volume, with the nations being Austria, Denmark, 
Finland, Germany, Japan, New Zealand, Spain, and Switzerland:

ChinaTradej,tIV = −
Non-US Imports from China j,t

US market size j,1991

.

This instrument has the advantage of not being directly affected by 
changes in productivity or demand in the US economy.18

The downstream and upstream effects are calculated from (13) and 
(14) adapted to this case. For example, for the downstream effects com-
ing from supplier industries, we model the shock:

 Downstreami,t
Trade = ∑ j(Input% j→ i

1991 − 1 j= i) ⋅ DChinaTradej,t. (15)

We also construct the network instruments using the same reasoning 
as in (13) and (14). For example, for the downstream effects this simply 
takes the form of

Downstreami,t
TradeIV = ∑ j(Input% j→ i

1991 − 1 j= i) ⋅ DChinaTradej,tIV.

In summary, we have three endogenous variables, ChinaTradej,t, 
Downstreami,t

Trade and Upstreami,t
Trade, and three instruments, ChinaTradej,tIV, 

Downstreami,t
TradeIV and Upstreami,t

TradeIV. The first stages for these three vari-
ables are shown in appendix table 1 (all appendix tables are included in 
appendix B).19

Table 2A presents our estimates of own and network effects from 
this exercise, using a table format that we replicate for each subsequent 
shock. Table 2A presents our baseline results for the three outcome 
variables, considering one and three lags for the dependent variable, 
and shows strong upstream effects on supplier industries (similar to  
Acemoglu et al. 2016).

More specifically, recall that we have standardized (in terms of stan-
dard deviation units) and normalized all of our shocks to be positive, so 
that an increase in imports from China corresponds to a negative value 
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of the shocks, and thus positive coefficients imply that rising imports 
from China reduce value added and employment in the affected indus-
tries. In this light, the results in column (1) indicate that a one standard 
deviation own- industry shock reduces the focal industry’s  value- added 
growth by 3.4%.20 More interestingly given our focus, they also indicate 
that a similar one standard deviation change in customers of an indus-
try leads to a 7.6% decline in  value- added growth through upstream 
effects. Downstream effects are of opposite sign and statistically insig-
nificant, though they are sometimes quantitatively sizable. Lack of (same-  
signed) significant downstream effects in response to  demand- side 
shocks is consistent with our main theoretical implications outlined in 
section II. Finally, the bottom row of the table tests the other implication 
from the theory highlighted in Proposition 1, that the relevant diagonal 
entry from the Leontief inverse matrix (i.e., the coefficient on 
hii ⋅ DChinaTradei,t−1) should be equal to the upstream effect from other 
industries. For value added, this restriction is marginally rejected at 
10%, though it is not rejected in any of the other columns.21

Column (2) shows that the overall pattern is similar when two more 
lags of the dependent variable are included on the  right- hand side, even 
though these lags show some evidence of additional persistence. In par-
ticular, the quantitative implications are very similar, and it is again the 
upstream effects that are significant while the downstream ones are not.

Our regression specifications follow directly from Proposition 1 (for 
example, in the case of the China import shocks, equation [7]). The coef-
ficient estimates in these regression equations do not directly translate 
into quantitative effects for “multipliers,” however. This is because the 
upstream effect (the relevant dimension of the network effects in this 
case) corresponds to the impact of the shock of all other industries, 
weighted by their upstream linkages, on the focal industry. Instead, to 
obtain an economically meaningful multiplier, measuring how large the 
total impact of a shock is relative to its direct effect, we need to measure 
its impact on all other industries. To achieve this, we convert upstream 
and downstream effects into a weighted average of shocks in other indus-
tries using the Leontief inverse elements of weights.22 We use these ad-
justed estimates to construct the impulse response functions depicted in 
figure 1 and for computing the relevant multipliers. Panel (A) of figure 
1 depicts the impulse response of value added to a one standard devia-
tion Chinese import shock obtained from this exercise (with a specifica-
tion corresponding to column [2] of Table 2A). These impulse responses 
show that the quantitative magnitude of the network effects (in this 
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case, upstream effects, since we are focusing on  demand- side shocks) 
are considerably larger than the direct effect: the direct effect (from the 
own shock) after 10 periods is a 3.46% increase in  value- added growth, 
while the total impact is a 22.09% (3.46 + 18.64) increase in value added. 
This yields a multiplier of 6.4 (! 22.09 / 3.46), and implies that  input-  
output linkages more than double the direct effects of  demand- side 
shocks. It can be seen from the figure that the implied multipliers are 
very similar at different horizons.

Columns (3) and (4) turn to employment. The overall pattern and 
even the quantitative magnitudes are very similar, with clear upstream 
effects and no downstream effects, and the  theory- implied restrictions 
receive support from our estimates. Panel (A) of figure 3 depicts the 
impulse response of employment to the same shock as in figure 1. The 
implied multiplier in this case (for employment changes) is 5.86.

Columns (5) and (6) turn to labor productivity. Here we find no ro-
bust patterns, which is not surprising since columns (1)–(4) document 
that the numerator and denominator move in the same direction and 
by similar amounts.

Table 2B reports multiple robustness checks. Our results are very 
similar without the own- shock term. Our baseline estimates are un-

Fig. 3. Responses to a one standard deviation shock taken in isolation, employment
Notes: See figure 1.
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weighted, and we obtain similar results when we weight observations 
by log 1991 value added or by 1991 employment levels. We also con-
sider a series of more demanding specifications where we include a full 
set of two- ,  three- , and four- digit Standard Industrial Code (SIC) dum-
mies. Since our specification in equation (12) is in changes, this amounts 
to including linear time trends for these industry groupings. The results 
are generally robust, although the downstream effects do move around 
and sometimes become larger, even if still far from significance.

The final column of table 2B returns to the  resource- constraint effect 
identified in Proposition 1. As noted above, our baseline specifications 
focusing on  demand- side shocks have ignored this  resource- constraint 
effect, corresponding to the third term in equation (7). To the extent that 
this term is correlated with our network effect, it may lead to biased es-
timates. We compute the empirical equivalent of this third term follow-
ing equation (7) closely. We sum nominal manufacturing imports from 
China to obtain the term Sk=1

n d !Gk , multiply it with an estimate of b j,  
computed as the  value- added share of industry j, divide it by pjyj, and 
then multiply it with the corresponding entries of the Leontief inverse 
of the upstream linkages to obtain S j=1

n ĥji(1 / pjy j)b jSk=1
n d !Gk (ignoring the 

term 1 + l in the denominator). We then add this term as an additional 
regressor instrumented by an additional instrument computed in the 
same way from Chinese imports by the same eight non- US- advanced 
economies. The final column of table 2B shows that this specification 
leads to somewhat larger network effects, but the overall picture re-
mains unchanged.

Appendix table 2A repeats this analysis with log real- shipments 
growth as the outcome variable, and also shows similar results.23

An additional issue is that the presence of the lagged dependent vari-
able on the  right- hand side of our estimating equation, (12), introduces 
the possibility of biased estimates when the time dimension is short due 
to the challenges of obtaining consistent estimates of the persistence 
parameter, c, with short panels as noted by Nickell (1981). We further 
investigate this issue in appendix table 2B. In particular, our main con-
cern here is with the network effects, which may inherit the bias of the 
parameter c in short panels. One way of ensuring that this bias is not 
responsible for our results is to impose different values for the param-
eter c and verify that this has little or no impact on our results (see Ac-
emoglu et al. 2014). Appendix table 2B performs this exercise for the 
China trade shock and documents that both own and upstream effects 
are highly significant and similar to our baseline estimates for any value 
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of c between our estimate of this parameter in table 2A (c = 0) and the 
full unit root limit (c = 1), becoming only a little weaker at the full unit 
root case of c = 1 (while downstream effects remain insignificant ex-
cept marginally at c = 1).

Appendix table 2C considers longer time periods, thus linking our re-
sults more closely to Acemoglu et al. (2016), who focused on a decadal 
panel. For two- year periods, we prepare nine time periods from 1991–
1993 to 2007–2009. For  three- year periods, we consider six time periods 
from 1991–1994 to 2006–2009. For four- year periods, we consider four 
time periods from 1991–1995 to 2003–2007. For five- year periods, we 
consider 1991–1996, 1996–2001, and 2001–2006. In each case, the first 
period is used to create the network lags. The downstream customer 
effects and own- industry effects tend to grow with longer time periods.

In addition to these robustness checks, appendix table 6 shows very 
similar outcomes when we consider nominal value added and ship-
ments growth instead of our baseline real  value- added growth and 
the real shipments shown in appendix table 2A. Appendix table 7 also 
reports results where we vary the number of lags included for own- 
industry shocks and network shocks. We report in the table the sums of 
the coefficients across the deeper lags and their statistical significance. 
These variants yield quite similar conclusions to our reported estima-
tions.

C. Federal Spending Shocks

The next analysis considers changes in US federal government spend-
ing levels, which are anticipated to operate similar to trade shocks by 
affecting industries through heightened demand from industrial cus-
tomers. We first calculate from the 1992 BEA Input- Output Matrix the 
share of sales for each industry that went to the federal government,

FedSales%i = Salesi→Fed

Salesi
.

This share ranges from zero dependency for about 10% of industries to 
over 50% for the top percentile of industries in terms of dependency. 
Some prominent examples and their share of sales include 3731 Ship 
Building and Repairing (76%), 3761 Guided Missiles and Space Vehicles 
(74%), 3482 Small Arms Ammunition (65%), and 3812 Search, Detection, 
Navigation, Guidance, Aeronautical and Nautical Systems and Instru-
ments (51%).
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We interact this measure with the log change in federal government 
expenditures,

FederalShocki,t = FedSales%i
1991 ⋅ D ln FederalSpendingt−1,

holding fixed the industry dependency at its 1991 level. Intuitively, the 
specification anticipates greater shocks from aggregate federal budget 
changes for industries that have larger initial shares of sales to the fed-
eral government. The change in federal spending is lagged one year to 
reflect the fact that procurement frequently extends into the following 
year. Once again following (13) and (14), the downstream effects in this 
case are defined as

Downstreami,t
Federal = ∑ j(Input% j→ i

1991 − 1 j= i) ⋅ FederalShockj,t.

A similar approach is taken for the other network metrics.
Because this variable focuses on federal spending changes in the ag-

gregate (driven by, among other things, swings in political moods, ide-
ology, identity of the government, and wars and budget exigencies), 
and is then constructed with the interaction of these aggregate changes 
with the time- invariant and predetermined dependency of each indus-
try on federal spending, we believe that it can be taken as plausibly 
exogenous to the contemporaneous productivity or  supply- side shocks 
hitting the focal industry.

The structure of table 3A is identical to those examining trade shocks. 
The results are also similar. For example, in table 3A upstream effects 
are again significant and quantitatively sizable (about three to five times 
as large as own effects). Downstream effects are now of the same sign 
as the upstream effect, but continue to be statistically insignificant. The 
 theory- implied restriction reported in the bottom row is again broadly 
supported (it is never rejected at 5%). In addition, the own effect is insig-
nificant when we only control for one lag of the dependent variable, but 
significant both in columns (2) and (4) when we control for three lags.

Table 3B and appendix tables 3A–3C, 6, and 7 perform the same 
robustness checks as those discussed for trade shocks and show that 
the  above- mentioned patterns are generally quite robust. All in all, the 
propagation of this very different  demand- side shock appears remark-
ably similar to the propagation of the import shocks, and in both cases 
in line with the theory we have used to motivate our approach.

The economic magnitudes are once more far from trivial. Panel (B) of 
figures 1 and 3 depict the impulse response functions for own and up-
stream effects computed in the same way as for panel (A), and indicate 
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that there are once again sizable network effects. The implied network 
multipliers for value added and employment at the 10- year horizon are 
6.42 and 5.00, respectively.

D. TFP Shocks

We next turn to  supply- side shocks, starting with TFP. Baseline TFP 
shocks for manufacturing industries are the lagged change in four- 
factor TFP taken from the NBER Productivity Database. Importantly, 
these TFP measures control for materials, and thus should not be me-
chanically a function of downstream effects (changes in prices and 
quantities in industries supplying inputs to the focal industry).

Similar to our other  network- based measures, these are constructed 
by aggregating these  industry- level log components of TFP in con-
nected industries. Continuing our illustration using downstream effects 
from shocks to supplier industries and again following on (13) and (14), 
we model

Downstreami,t
TFP = ∑ j(Input% j→ i

1991 − 1 j= i) ⋅ D ln TFPj,t.

We should caution that the case for the exogeneity of the TFP shocks 
is weaker, because past TFP may be endogenous to other shocks (e.g., to 
capacity utilization or labor hoarding), which have a persistent impact 
on value added and factor demands. With this caveat, we still believe 
that predetermined TFP shocks are informative about how  supply- side 
shocks spread through the  input- output network.

The structure of table 4A is identical to those examining trade and 
federal spending shocks. Consistent with theory, it is now downstream 
effects that are more sizable and important, though in this case there are 
some statistically significant estimates of upstream effects as well. For 
example, in column (1) of table 4A, downstream effects are estimated to 
have a coefficient of 0.060 (standard error = 0.020), while upstream ef-
fects come in at 0.024 (standard error = 0.011). Interestingly, own effects 
are small and imprecise for value added, but more precisely estimated 
(though still about half of the upstream effects) for employment. The 
theoretical restriction tested in the bottom row is now rejected for value 
added, where the own effects are small, but is in closer alignment for 
employment. The robustness checks reported in table 4B and in appen-
dix B confirm this overall pattern.24

Economic magnitudes can again be gleaned from panel (C) of figures 1 
and 3; the implied multipliers are 15.56 and 4.43 for  value- added growth 
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and employment growth over 10 years, respectively. The larger multi-
plier for value added in this case reflects the smaller direct (own) impact.

E. Foreign Patenting Shocks

Our final shock represents changes in patented technology frontiers. 
Since this shock also captures  supply- side changes in productivity, re-
sponses to it should be similar to those to TFP shocks.

Baseline patent shocks for manufacturing industries in table 5A are 
the lagged log change in USPTO- granted patents filed by overseas in-
ventors associated with the industry. We measure foreign patent shocks 
using United States Patent and Trademark Office (USPTO)- granted pat-
ents through 2009. We develop a new concordance of patent classes 
to four- digit manufacturing industries that extends the earlier work 
of Silverman (1999), Johnson (1999), and Kerr (2008). Continuing our 
downstream effects example, we have

Downstreami,t
ForeignPatent = ∑ j(Input% j→ i

1991 − 1 j= i) ⋅ D ln Patentsj,t
Foreign.

These foreign patents quantify technology changes in the world tech-
nology frontier external to the US economy (e.g., patents filed by car 
manufacturers in Germany and Japan signal advances in automobile 
technologies that have not originated in the United States). There are 
two additional difficulties in this case, however. First, foreign patenting 
may be correlated with past technological improvements in the US sec-
tors, which might have persistent effects. Second, improved technology 
abroad may directly impact US firms through fiercer product market 
competition, not just through technology and productivity spillovers 
(e.g., Bloom, Schankerman, and Van Reenen 2013).25 These concerns 
make us more cautious in interpreting the foreign patenting shocks, 
especially for own effects, though we believe that this analysis is still 
informative about  network- based propagation.

Table 5A shows strong downstream effects with again no evidence 
of sizable upstream effects. The  theory- implied restrictions in the bot-
tom row of the table are typically rejected, reflecting the very small and 
sometimes incorrectly signed estimates of own effects. One possible 
explanation for this pattern of own effects is that, as already noted, an 
increase in foreign patents in one’s own industry likely signals fiercer 
competition from international competitors. The network effects, which 
should be less impacted by these considerations, are again quite similar 
to our theory’s predictions. (Robustness checks on foreign patent shock 
analysis are shown in table 5B.)
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Panel (D) of figures 1 and 3 again depict the impulse responses of 
value added and employment. We do not compute multipliers in this 
case, since the own effects are imprecisely estimated and potentially bi-
ased for the reasons explained above, thus making multiplier estimates 
harder to interpret.

F. VAR Analysis

Our empirical specification, (12), directly builds on our theoretical 
model (in particular, equations [6] and [7]), and expresses the endog-
enous response of value added and employment to shocks hitting all 
industries. An alternative is to follow vector auto regression (VAR) 
models and express endogenous variables as a function of own shocks 
and the values of the endogenous variables of linked industries. The 
analog of equation (12) in this case would be

 
D ln Yi,t = dt + cD ln Yi,t−1 + bownShocki,t−1

+ bupstreamD ln Yi,t−1
Upstream + bdownstreamD ln Yi,t−1

Downstream + ´i,t

, (16)

which only features the shock hitting sector i, and models upstream and 
downstream effects from the changes in value added of linked indus-
tries—the terms D ln Yi,t−1

Upstream and D ln Yi,t−1
Downstream. This equation could 

also be derived from our theoretical framework. Relative to our base-
line empirical model, (12), this specification faces two related problems. 
First, the terms D ln Yi,t−1

Upstream and D ln Yi,t−1
Downstream generate a version of 

Manski’s well- known reflection problem (Manski 1993), as outcome 
variables of one industry are being regressed on the contemporaneous 
(or one- period lagged) outcomes of other industries, creating the pos-
sibility of spurious correlation. Second, these terms are also more likely 
to be correlated with each other, potentially leading to multicollinearity, 
which will make distinguishing these various effects more difficult.

These problems notwithstanding, we now estimate equation (16) to 
show that the results from this complementary approach are broadly 
similar. To avoid the most severe form of the reflection problem, 
throughout we instrument for the upstream and downstream effects, 
D ln Yi,t−1

Upstream and D ln Yi,t−1
Downstream, using the first and second lags of each 

shock as experienced in the network (i.e., our instruments are the core 
regressors in equation [12], Upstreami,t–1 and Downstreami,t–1). We report 
two specifications per shock. In the first, we model and instrument the 
focal part of the network relevant for each shock (e.g., upstream effects 
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for  supply- side shocks and downstream effects for  demand- side shocks). 
In the second specification, we include and instrument for both up-
stream and downstream effects. Also, in the case of China trade shocks, 
we continue to instrument for the own shock, Shocki,t–1, as well.

The results of this exercise are reported in table 6 and are quite con-
sistent with our baseline findings. Even though this empirical specifica-
tion is more demanding for the reasons explained above, the specifica-
tions focusing on China trade and TFP shocks give similar results, and 
specifications using federal spending shocks also lead to similar results 
for value added, though not for employment. Foreign patenting results 
do not hold with this approach, however.26

G. Combined Shock Analysis

Table 7 estimates own, upstream, and downstream effects simultaneously 
from several of the shocks so far analyzed in isolation. This is relevant for 
two related reasons. First, we would like to verify that our downstream 
and upstream effects indeed capture  network- based propagation of dif-
ferent types of shocks rather than some other omitted characteristics, and 
attempting to simultaneously estimate these effects provides some infor-
mation on this concern. Second, it is important to quantify whether the 
simultaneous operation of all of these networked effects creates attenua-
tion, which is relevant for our quantitative evaluation.

Table 7 shows the estimates of upstream and downstream effects in 
this joint analysis are remarkably similar to our previous results. Ap-
pendix table 8 also shows this similarity when we exclude the foreign 
patenting shocks due to the concerns about own effects discussed 
above. These results bolster our confidence in the patterns documented 
so far and also suggest that the quantitative magnitudes of the propaga-
tion through these  input- output networks is larger when we consider 
all four shocks simultaneously.

To quantify impacts from this joint exercise, we now consider one 
standard deviation changes of the three shocks, imports from China, 
federal spending and TFP, simultaneously. The impulse response func-
tions from this exercise are shown in figure 2 in appendix B, and the 
combined multipliers for value added and employment growth in pan-
els (A) and (B) are 11.47 and 8.23, respectively. Thus, the network ele-
ments jointly continue to account for more fluctuation than direct com-
ponents. The lower panels show similar results when including foreign 
patenting shocks.
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H. Monte Carlo Verification

Though our empirical strategy so far has closely followed our theoreti-
cal model, there are several aspects in which the true data- generating 
process might be more complicated than the one implied by our model. 
First, our model abstracted from dynamic interactions between sec-

Table 7 
Joint Analysis of Shocks

Δ Log Real Value 
Added Δ Log Employment

      (1)  (2)  (3)  (4)

Δ Dependent variable t – 1 –0.043 –0.050 0.125*** 0.105***
(0.041) (0.041) (0.020) (0.020)

Δ Dependent variable t – 2 0.040* 0.108***
(0.022) (0.020)

Δ Dependent variable t – 3 0.032 0.089***
(0.021) (0.016)

Trade: Downstream effects t – 1 –0.059 –0.042 –0.016 0.008
(0.082) (0.080) (0.044) (0.040)

Upstream effects t – 1 0.106*** 0.107*** 0.066*** 0.054***
(0.030) (0.031) (0.020) (0.019)

Own effects t – 1 0.032*** 0.030*** 0.022*** 0.017***
(0.009) (0.009) (0.005) (0.004)

Federal: Downstream effects t – 1 –0.006 –0.003 –0.008 0.001
(0.023) (0.025) (0.017) (0.014)

Upstream effects t – 1 0.035** 0.040*** 0.020** 0.023***
(0.014) (0.014) (0.009) (0.008)

Own effects t – 1 0.001 0.004 0.001 0.005*
(0.003) (0.004) (0.003) (0.003)

TFP: Downstream effects t – 1 0.062*** 0.051** 0.019* 0.014
(0.021) (0.021) (0.010) (0.010)

Upstream effects t – 1 0.030** 0.028** 0.013* 0.011
(0.013) (0.014) (0.008) (0.008)

Own effects t – 1 0.007 0.009 0.007*** 0.008***
(0.007) (0.007) (0.002) (0.002)

Patent: Downstream effects t – 1 0.043*** 0.043*** 0.017*** 0.016**
(0.011) (0.011) (0.006) (0.007)

Upstream effects t – 1 0.002 0.002 0.000 0.000
(0.005) (0.005) (0.003) (0.003)

Own effects t – 1 –0.007* –0.007* –0.007*** –0.006**
(0.004) (0.004) (0.003) (0.003)

Observations  6,543  5,761  6,543  5,761

Notes: See table 2A.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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tors, whereas the original Long and Plosser (1983) paper assumed that 
an industry could only use as inputs at time t the output produced 
by other industries at time t – 1. This dynamic structure implies that 
rather than shocks being transmitted through the Leontief inverse of 
the  input- output matrix as in our equations (6) and (7), they would 
be transmitted from one period to the next directly through the  input-  
output matrix. Over time, this transmission would still lead to a cu-
mulative impact as summarized by the Leontief inverse (as we show 
in appendix C).27 Nevertheless, we might be concerned that this type 
of slow adjustment would lead to significant misspecification in our 
empirical work, where we impose equations (6) and (7). In appendix C, 
we conduct a Monte Carlo exercise where data are generated at quar-
terly frequency using the Long and Plosser (1983) timing (and shocks 
are serially correlated), and regressions are run at the annual frequency 
using the specifications we have utilized so far (thus filtering the ob-
served shocks through the Leontief inverse of the  input- output matrix). 
We find that the time averaging of the higher frequency data to annual 
observations ensures that specifications based on the Leontief inverse 
do not lead to any major misspecification. In particular, our results, de-
scribed in detail in appendix figures 4–7, indicate that regressions run  
on time- averaged data can recover whether upstream or downstream 
linkages are important.

A second concern is whether measurement error in the  input- output 
matrix might be significantly amplified when we compute the Leon-
tief inverses. Another Monte Carlo exercise we perform in appendix C 
verifies that even if the  input- output matrix is measured with error, re-
gressions of the sort we have used are capable of recovering the correct 
parameters. We take these two Monte Carlo exercises as useful confir-
mation of the robustness and informativeness of our empirical strategy.

V. Additional Results: The Geographic Network

We next turn to an analysis of the geographic network’s impact on the 
propagation of shocks. The theory in section II describes how shocks 
to an industry can also propagate regionally (e.g., within commuting 
zones) because they expand or depress economic activity, impacting 
the decisions of other industries in the area. Though a full analysis of 
these local interactions is beyond the scope of the present effort (see, for 
example, the treatment of Acemoglu et al. [2015] for  medium- frequency 
import shocks on local economies), we can nonetheless get a sense of 
the importance of these channels of propagation by looking at the im-
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pact of a shock to a particular industry on other industries that tend to 
collocate with it. This is essentially the idea of the geographic network 
introduced above.

Table 8 considers all four geographic effects simultaneously, which 
is particularly relevant since they are all working through the same lo-
cal geographic networks. In columns (1) and (3) we only model own- 
industry effects and geographic spillovers, while columns (2) and (4) 
add the downstream and upstream network effects as well. Our most 
important observation from this analysis is the stability of the network 
effects compared to table 7. The latter continues to adhere to theory 
and shows that our network effects are not proxying for regional spill-
overs or similar local conditions. The second observation is that the 
geographic effects are almost always precisely estimated and are quite 
substantial in size for  demand- side shocks.

Appendix table 9A shows that these joint patterns are robust to the 
specification checks considered earlier for  input- output linkages. Ap-
pendix table 9B considers each of the four shocks in isolation rather 
than jointly modeling them. Similar to the results presented in table 8, 
the inclusion of geographic effects has little impact on our estimates of 
downstream and upstream network effects, which continue to adhere 
to theory. On the other hand, the geographic effects themselves are less 
stable and often substantially smaller when measured in isolation com-
pared to the joint format. We thus remain cautious about strong inter-
pretations of the size of the geographic effects compared to the overall 
stability that these specifications show for our network components.

With these caveats, the economic magnitudes of table 8’s effects are 
substantial. Figure 3 in appendix B shows the impulse response func-
tions including own and network effects in response to a one standard 
deviation shock in specifications that also include geographic effects, 
further reported in appendix table 9C. The implied magnitudes of some 
of these geographic effects are quite large and suggest a fruitful and 
important area for deeper investigation.28

VI. Conclusion

Idiosyncratic firm-  or  industry- level shocks could spread through a 
network of interconnections in the economy, propagating and ampli-
fying their initial impact. Though their potential import was initially 
downplayed because of the belief that their aggregation across many 
units (disaggregated industries or firms) would limit their macro-

This content downloaded from 198.071.006.043 on August 28, 2018 09:09:59 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Table 8 
Geographic and Networks Analysis

Δ Log Real Value 
Added Δ Log Employment

      (1)  (2)  (3)  (4)

Δ Dependent variable t – 1 –0.028 –0.047 0.130*** 0.124***
(0.040) (0.041) (0.021) (0.020)

Trade: Geographic effects t – 1 0.125*** 0.113*** 0.055*** 0.049***
(0.035) (0.034) (0.018) (0.017)

Downstream effects t – 1 –0.048 –0.014
(0.078) (0.045)

Upstream effects t – 1 0.095*** 0.061***
(0.029) (0.019)

Own effects t – 1 0.032*** 0.033*** 0.023*** 0.023***
(0.009) (0.009) (0.005) (0.005)

Federal: Geographic effects t – 1 0.112*** 0.101*** 0.046*** 0.040***
(0.032) (0.031) (0.015) (0.014)

Downstream effects t – 1 –0.036 –0.018
(0.023) (0.017)

Upstream effects t – 1 0.026** 0.017**
(0.012) (0.009)

Own effects t – 1 0.001 –0.001 0.002 0.001
(0.004) (0.004) (0.003) (0.003)

TFP: Geographic effects t – 1 0.032*** 0.027*** 0.014*** 0.012**
(0.010) (0.010) (0.005) (0.005)

Downstream effects t – 1 0.055*** 0.016*
(0.019) (0.010)

Upstream effects t – 1 0.024* 0.011
(0.013) (0.008)

Own effects t – 1 0.008 0.007 0.008*** 0.007***
(0.006) (0.006) (0.002) (0.002)

Patent: Geographic effects t – 1 0.005*** 0.004*** 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Downstream effects t – 1 0.039*** 0.016**
(0.011) (0.006)

Upstream effects t – 1 0.002 0.000
(0.005) (0.003)

Own effects t – 1 –0.002 –0.006* –0.005** –0.007***
(0.004) (0.004) (0.003) (0.003)

Observations  6,543  6,543  6,543  6,543

Notes: See table 2A. Estimations include additional effects from indicated shocks and 
the geographic overlay of industries. Geographic overlay is measured as the sum across 
regions of the interaction of a focal industry’s employment share in the region times the 
share of regional activity for other industries. Regions are defined through commuting 
zones and use 1991 industrial activity from the County Business Patterns database.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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economic impact, there has been a recent revival of interest in such 
 network- based propagation of microeconomic shocks. This paper con-
tributes to an empirical investigation of the role of such propagation, 
focusing primarily on  input- output linkages but also on connections 
through the geographic collocation patterns of industries.

One feature that makes propagation through the  input- output network 
particularly attractive for empirical study is that theory places fairly tight 
restrictions on the form of the transmission of these effects. In particular, 
in response to  demand- side shocks, upstream propagation (to the sup-
pliers of the directly affected industries) should be more pronounced 
than downstream propagation (to the customers of the directly affected 
industries), whereas in response to  supply- side shocks, the reverse order-
ing should hold. In fact, when production technologies and consumer 
preferences are Cobb- Douglas, there should only be upstream propaga-
tion with  demand- side shocks and only downstream propagation with 
 supply- side shocks. Moreover, the quantitative magnitudes of the direct 
effects and the downstream/upstream effects are pinned down by theory.

After reviewing these theoretical basics, we turn to an empirical in-
vestigation of the propagation of four different types of shocks—China 
import shocks and federal government spending shocks on the demand 
side, and TFP and foreign patenting shocks on the supply side. In each 
case, we study these shocks first in isolation and then in combination 
with the other shocks, and separately estimate own (direct) effects as 
well as downstream and upstream effects. Throughout, our focus is 
on annual variation, which appears more relevant for the question of 
macroeconomic fluctuations, though we verify the robustness of our 
results to  lower- frequency analysis.

Our empirical results paint a fairly uniform pattern across the dif-
ferent types of shocks. In each case, the patterns are consistent with 
theory—in the case of  demand- side shocks, upstream effects strongly 
overshadow downstream effects, which are often zero or in the oppo-
site direction, and the converse is true with  supply- side shocks. More-
over, the  theory- implied quantitative restrictions are often verified, ex-
cepting the foreign patenting shocks. Equally important, we also find 
the  network- based propagation of shocks to be quantitatively sizable, 
and in each case, more important than the direct effect of the shock—
sometimes more than five times as important. These patterns appear 
to be fairly robust across specifications and different control strategies.

In addition to the propagation of shocks through the  input- output 
network, the geographic spread of economic shocks could potentially 
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be important. For example, many economic transactions, particularly 
for nontradables, take place within the local economy (e.g., a county 
or commuting zone). If so, a negative shock to an industry concen-
trated in an area will impact firms and workers in that area. Though a 
full analysis of this geographic dimension requires detailed data with 
geography/industry breakdown, we also undertake a preliminary in-
vestigation of these linkages by focusing on the collocation patterns 
of industries. The idea is simple: if two industries tend to collocate 
strongly, meaning that wherever one industry plays a major role in the 
local economy, the other industry is also likely to be overrepresented, 
then shocks to the first industry will tend to be felt more strongly by this 
collocating industry than other, geographically less connected indus-
tries. We derive a theoretical relationship showing how  industry- level 
shocks spread to other industries depending on collocation patterns 
and then empirically investigate this linkage.

Our results in this domain are somewhat less robust, but still indicate 
a fairly sizable impact of the propagation of shocks through the geo-
graphic collocation network. In fact, quantitatively this channel appears 
to be, if anything, somewhat more important than the transmission of 
shocks to the  input- output network. Interestingly, however, controlling 
for this geographic channel does not attenuate or weaken the evidence 
we find for the propagation of shocks with the  input- output network.

Though ours is not the first paper showing that certain shocks 
spread through the network of  input- output linkages (and also of geo-
graphic connections), we still consider our paper as part of the early 
phase of this emerging literature documenting the empirical power of 
 network- based propagation of shocks. Several areas of future work 
look promising from our vantage point. First, as already noted, the 
geographic spread of shocks can be better studied by using data and 
empirical methods that cover multiple geographic scales and levels of 
interaction, and even better would be to incorporate measures of the 
geographic span of the operations and plants of multiunit firms using 
the Census Bureau’s Longitudinal Business Database.

Second, the  input- output network we utilize is still fairly aggregated. 
The theoretical logic applies at any level of disaggregation, and even at 
the level of firms. Though firm  input- output linkages require some care 
(since many such relations may be noncompetitive due to the presence 
of  relationship- specific investments or holdup problems), the same 
ideas can also be extended to the firm- level network of  input- output 
linkages. Atalay, Hortacsu and Syverson (2014) and Atalay et al. (2011) 
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take first steps in constructing such firm- level networks, which can 
then be used for studying this type of propagation.

Third, the simple but powerful nature of the theory we have already 
exploited in this paper also suggests that more structural approaches 
could be quite fruitfully applied in this domain, which will enable more 
rigorous testing of some of the theoretical predictions of this class of 
models. For example, the Leontief inverse matrix also puts a consider-
able amount of discipline about the comovement of value added and 
employment across industries resulting from shocks spreading through 
the  input- output network, which can be formally investigated.

Fourth, the role of the  input- output and the geographic networks in 
the propagation of  industry- level (micro)shocks suggests that these net-
works may also be playing a role in the amplification of macroshocks—
such as aggregate demand, monetary and financial shocks—which ap-
pears to be a generally understudied area.

Fifth, the two types of networks we have focused on are by no means 
the only ones that may matter for macroeconomic outcomes. Two oth-
ers that have recently been investigated are the financial network, 
which can lead to the propagation and contagion of shocks hitting 
some financial institutions to the rest of the financial system (e.g., Al-
len and Gale 2000; Acemoglu et al. 2015c; Elliott, Golub, and Jackson 
2014; Cabrales, Gottardi, and Vega- Redondo 2014), and the idea/in-
novation network, which can lead to the spread of new knowledge, 
innovations, and practices (studied, for example, in Acemoglu, Akcigit, 
and Kerr [2015], as well as indirectly in Bloom et al. [2013]). Our deci-
sion to abstract from these was partly because of our empirical frame, 
which centers on  industry- level shocks, and also because of our focus 
on  shorter- run fluctuations (whereas the propagation of new ideas and 
innovations through the innovation network is likely to be more im-
portant at five-  or ten- year frequencies or even longer). Nevertheless, 
combining these various types of network linkages may be a fruitful 
area for future research.

Finally, in addition to the propagation of shocks to other industries 
or firms, the network linkages emphasized here can also fundamentally 
change the nature of macroeconomic outcomes and their volatility. For 
example, Acemoglu et al. (2015a) show how tail macroeconomic risk 
can be created from the propagation of microeconomic shocks through 
the  input- output network, while Schennach (2013) suggests that these 
types of network effects may change the persistence properties of macro-
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economic time series. These new areas also constitute fruitful directions  
for future research.

Appendix A

Proof of Proposition 1

Part 1. Let us set government purchases equal to zero for this part of the 
proof. Recall that profit maximization implies

 aij =
pjxij
piyi

, and  ai
l = wli

piyi
. (A1)

Utility maximization in turn yields

 pici
bi

=
pjcj
b j

. (A2)

Since total household income is equal to labor income, and in this part 
we have no government purchases, we also have

pici
i=1

n

∑ = wl,

which yields

 pici = biwl, ∀i. (A3)

Moreover, the  first- order condition for labor supply implies

− ′g (l)l
g(l)

= 1,

and thus labor supply is determined independent of the equilibrium 
wage rate because given the preferences in (3), income and substitu-
tions cancel out.

Let us now take logs in (1) and totally differentiate to obtain

 d ln yi = dzi + ai
ld ln li + aijd

j=1

n

∑ ln xij. (A4)

Let us next totally differentiate (A1) to obtain

d ln yi + d ln pi = d ln xij + d ln pj,

and
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d ln yi + d ln pi = d ln li,

where we have made use of the fact that the wages are chosen as the 
numeraire and thus d lnw = 0. Substituting these two equations into 
(A4), we have

d ln yi = dzi + ai
l(d ln yi + d ln pi) + aij

j=1

n

∑ (d ln yi + d ln pi − d ln pj).

Next recalling that l remains constant, differentiating (A2) and (A3), 
and combining with the previous two equations to eliminate prices, we 
obtain

d ln yi = dzi + ai
l(d ln yi − d ln ci) + aij

j=1

n

∑ (d ln yi − d ln ci + d ln cj).

Noting that ai
l + S j=1

n aij = 1, this simplifies to

d ln ci = dzi + aij
j=1

n

∑ d ln cj,

which can be rewritten in matrix form as

d ln c = dz + Ad ln c

where d ln c and dz are the vectors of d ln ci and dzi respectively, which 
is a unique solution given by

 d ln c = I − A( )−1 dz, (A5)

in view of the fact that the largest eigenvalue of A is less than 1. Next 
combining (2) and (A1), we have

yj

cj
= 1 + aij

i=1

n

∑ biyi
b jci

,

which implies that

 d ln y = d ln c. (A6)

Then combining (A5) with (A6) we obtain

 d ln y = I − A( )−1 dz. (A7)

This yields the desired result, (6).
Part 2. Normalize z = 0 for this part of the proof. Consider the unit 

cost function of sector i, which is
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Ci p, w( ) = Biw
ai
l

pj
aij

j=1

n

∏ ,

where

Bi = 1
ai
l

⎡
⎣⎢

⎤
⎦⎥

ai
l

1
aij
⎡
⎣⎢

⎤
⎦⎥j=1

n

∏
aij

.

Zero profit condition for producer i implies

ln pi = ln Bi + ai
l ln w +

j=1

n

∑aij ln pj for all i ∈ {1, .., n}.

Since the wage is the numeraire (i.e., w = 1), we have ai
l ln w = 0 and 

these equations define an n equation system in n prices (for a given vec-
tor of productivities z, in this instance normalized to 1), with solution

ln p = I − A( )−1 b,

where b is the vector with entries given by ln Bi.
This shows that, for a given vector of productivities, the equilibrium 

price vector is uniquely determined regardless of the value of the vector 
of government purchases G. Thus  demand- side shocks have no impact 
on equilibrium prices, which are entirely determined by the supply 
side. But then from (A3), the consumption vector remains unchanged, 
and from (2), total net supply of all sectors has to remain constant re-
gardless of the change in G. We can then obtain the change in the to-
tal production in the economy using (2) combined with (A1) and (A2), 
which with unchanged prices simply implies

d ln yi = d ln xij and d ln yi = d ln li.

Household maximization implies that, even though prices are fixed, 
labor supply will change because of changes in consumption (result-
ing from government purchases). In particular, the following  first- order 
condition determines the representative household’s labor supply

wl
wl − T

= − l ′g l( )
g l( )

,

with T = Si=1
n piGi .

When g l( ) = 1 − l( )l, using the fact that the wage, w, is chosen as the 
numeraire, we obtain

l = 1 + lSi=1
n piGi

1 + l
.
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Therefore, we have that
pici = bi[lw − T]

= bi

1 + l
1 − pjGj

j=1

n

∑⎡
⎣⎢

⎤
⎦⎥

which implies

d(pici) = − bi

1 + l( )
d(pjGj)

j=1

n

∑ .

The resource constraint then implies:

dyi = dci + dxji
j=1

n

∑ + dGi .

Combining the previous two equations with (A1),

 

d(piyi)
piyi

= aji
j=1

n

∑ d(pjy j)
piyi

+ dGi

yi
− bi

(1 + l)
(dpjGj)
piyij=1

n

∑

= â ji
j=1

n

∑ d(pjy j)
pjy j

+ d !Gi

piyi
− bi

(1 + l)
d !Gj

piyij=1

n

∑ ,

 (A8)

where !Gj = pjGj. Writing this in matrix form and noting that, because 
prices are constant, d(piyi) / piyi = d ln yi , we have

d ln y = ÂTd ln y + Ld !G

= (I − ÂT)−1Ld !G

= ĤTLd !G
where Ĥ = (I − Â)−1, !G is the vector of nominal government spending 
levels, the !G’s,

Â =

â11 â12 ...

â21 â22

!

ânn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

,

with entries âij = xij / yi, and
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L =

1 − b1

1 + l( )
⎛
⎝⎜

⎞
⎠⎟

1
p1y1

− b1

1 + l( )
1
p1y1

...

− b2

1 + l( )
1

p2y2

1 − b2

1 + l( )
⎛
⎝⎜

⎞
⎠⎟

1
p2y2

!

1 − bn

1 + l( )
⎛
⎝⎜

⎞
⎠⎟

1
pnyn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

. (9)

Carrying out the second matrix multiplication, this can also be written as

d ln y = ĤT

d !G1

p1y1

− b1

(1 + l)
1
p1y1 j=1

n

∑d !Gj

d !G2

p2y2

− b2

(1 + l)
1

p2y2 j=1

n

∑d !Gj

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

or with one more round of matrix multiplication, as

d ln yi =
j=1

n

∑ĥji
1
pjy j

d !Gj −
b j

1 + l k=1

n

∑d !Gk
⎛
⎝⎜

⎞
⎠⎟

.

Rearranging this equation yields (7).
We also note that the effects of  demand- side shocks can be alterna-

tively expressed (without the division by piyi in equation [A8]) in level, 
rather than log, changes as

 d !y = HT

d !G1 − b1

(1 + l) j=1

n

∑d !Gj

d !G2 − b2

(1 + l) j=1

n

∑d !Gj

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

, (10)

which is the general form of the expressions used in Example 2.
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Endnotes

Authors’ addresses (respectively): Massachusetts Institute of Technology, University of 
Pennsylvania, and Harvard University. This is a revised paper that was presented at the 
30th Annual Conference on Macroeconomics. We are grateful to the organizers/editors, 
Martin Eichenbaum and Jonathan Parker, and our discussants, Lawrence Christiano and 
Xavier Gabaix, for their very helpful directions and comments. We also thank seminar 
participants for their comments and ideas, Brendan Price and Pascual Restrepo for data 
assistance, and Alexis Brownell for excellent research assistance. The online appendices 
for this paper are available with our NBER working paper and also at www.people.hbs.
edu/wkerr. For acknowledgments, sources of research support, and disclosure of the au-
thors’ material financial relationships, if any, please see http://www.nber.org/chapters/
c13598.ack.

1. Earlier contributions on this theme include Jovanovic (1987) and Durlauf (1993) who 
showed how idiosyncratic shocks can accumulate into aggregate risk in the presence of 
strong strategic complementarities, and Bak et al. (1993) who proposed a model of macro-
economic “self- organized criticality” capable of generating macroeconomic fluctuations 
from small shocks due to nonlinear interactions between firms and industries.

2. Acemoglu, Akcigit, and Kerr (2015) look at the  medium- run spread of new ideas 
through the innovation (knowledge- flow) network of the US economy.

3. Though our evidence shows that microeconomic (industry- level) shocks are im-
portant and propagate strongly, it does not directly speak to the issues discussed in the 
previous paragraph, that is, to whether a law of large  numbers- type argument will ensure 
that they wash out at the macrolevel.

4. We should add at this point that despite our use of the term “shocks,” we would like 
to be cautious in claiming that our estimates correspond to causal effects of purely exog-
enous shocks on endogenous economic outcomes. Even though we specify our regression 
equations to guard against the most obvious forms of endogeneity (contemporaneous 
shocks affecting both left-  and  right- hand- side variables and Manski’s [1993] reflection 
problem that would result from having grouped endogenous variables on the  right- hand 
side), our shocks themselves may be endogenous to economic decisions in the recent 
past. For imports from China, because we are focusing on the exogenous component 
of the variation, we are fairly confident that our estimates are informative about causal 
effects. The same applies, perhaps with some additional caveats, to  federal- spending 
shocks, since we exploit variation across industries in their differential responsiveness 
to such aggregate changes. For the TFP and  foreign- patenting measures, the endogeneity 
concerns are more severe. Nevertheless, even in these cases we believe that our regres-
sions are informative about the propagation of these “predetermined” shocks through the 
 input- output and geographic networks.

5. Here, consistent with theory, “network effects” refer to downstream effects for 
 supply- side shocks and upstream effects for  demand- side shocks. The details of how 
figure 1 is constructed are provided below.

6. Recent work looking at the local coagglomeration of industries includes Ellison, 
Glaeser, and Kerr (2010), Greenstone, Hornbeck, and Moretti (2010), and Helsley and 
Strange (2014).

7. Appendices B and C are available online (http://www.nber.org/data- appendix/
c13598/online- appendix.pdf; http://www.nber.org/data- appendix/c13598/online 
- appendix.pdf).

8. The main results we emphasize do not depend on the absence of physical capital, 
for example, with a production function that takes the form

 yi = ezili
ai
l
ki

ai
k

j=1

n

∏xij
aij . 

We suppress capital to simplify the notation and discussion. 
More consequential is our assumption that this is a static economy where each industry 

simultaneously buys inputs from others. Long and Plosser (1983) instead assumed that 
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an industry at time t uses as inputs products produced by other industries at date t – 1. 
We discuss the implications of our timing assumption and the robustness of our results 
to this structure in appendix C (http://www.nber.org/data- appendix/c13598/online- 
appendix.pdf, available online).

9. The diagonals of the Leontief inverse matrix, H , are no less than 1, so that hii – 1 is 
nonnegative.

10. In this case, the functional form assumption g(l) = (1 − l)l  is imposed to simplify 
the expressions.

11. Detailed derivations for this and the next example are provided in appendix C, 
available online.

12. Clearly Cobb- Douglas is an approximation, though arguably not a bad one since 
the US  input- output matrix appears to be fairly stable over time, as shown, for example, 
in Acemoglu et al. (2012) (and with non- Cobb- Douglas technologies this would not be 
the case). Our empirical results also give additional credence to the notion that Cobb- 
Douglas is a useful approximation for our purposes. In any case, it should be emphasized 
that the qualitative nature of the results emphasized in the proposition—that supply 
shocks will have larger downstream effects than upstream effects—holds true with non- 
Cobb- Douglas technologies and preferences, since even in this case quantity and price 
effects would at least partially offset each other (and in fact, Acemoglu, Ozdaglar, and 
 Tahbaz- Salehi [2015b] show that similar results to those in Proposition 1 can be obtained 
as  first- order approximations under general production technologies).

13. In fact, this equation implies that the coefficients of the own and network effects 
should both be equal to one, though this prediction depends on the choice of units of the 
shocks, the dz’s. In practice, the coefficients will be different than one but still equal to 
each other depending on the specific choices of units for measuring our shocks.

14. This can be seen straightforwardly by considering a dynamic version of the model 
(without additional intertemporal linkages), in which case equations (6) and (7) would 
apply with time subscripts, with only dzit being relevant for time t outcomes. In the pres-
ence of irreversible investments and/or other intertemporal linkages at the sectoral level, 
expectations of future shocks would also matter.

15. More formally, when h is small, the inverse (I – B)–1 necessarily exists, and thus has 
an infinite series expansion of the form:

 I − B( )−1 = I + B + B2 + B3 + ... . 

Moreover, when h is small, we can also approximate this inverse with the first two 
terms, which leads to the next equation. We describe below calculations and empirical 
tests with  higher- order terms.

16. Available online (http://www.nber.org/data- appendix/c13598/online- appendix 
.pdf).

17. We use this notation rather than hij as in section II to emphasize that these are the 
empirical counterparts of the theoretical notions developed above.

18. First- stage equations also naturally control for all other covariates from the second 
stage, including the lagged dependent variable, to ensure consistent estimation. But, of 
course, the only excluded instrument is the exogenous component of the change in im-
port penetration.

19. Http://www.nber.org/data- appendix/c13598/online- appendix.pdf.
20. The unweighted standard deviation in industry growth rates for our sample is 0.15 

for log  value- added growth and 0.10 for log employment growth.
21. This restriction is not tested directly from the reported regression, but from the re-

lated regression described in section II, following Proposition 1, where own effects reflect 
the diagonal elements of the Leontief inverse matrix. We report specifications in which 
the own effects are not scaled in this manner to maintain transparency about the direct 
 first- order effects of own- industry shocks. In any case, the coefficient estimates when we 
undertake this scaling are similar to those reported in the tables in the paper.

22. More specifically, focusing on upstream effects, recall that Upstreami,t = S j(Output%i→ j
1991 

Upstreami,t = S j(Output%i→ j
1991 − 1 j= i) ⋅ Shockj,t, whereas for this term to capture the quantitative impact 

of shocks on supplier industries, we would need it to take the form
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(Output%i→ j

1991 − 1 j= i)
Sk(Output%i→k

1991 − 1k= i)j
∑ ⋅ Shockj,t, 

so that it corresponds to a weighted average of shocks hitting industries. 
The simplest and most transparent approach to make this adjustment is to divide  

our coefficient estimates by the average of the Sk(Output%i→k
1991 − 1k= i)’s, i.e., by 

(1 / n)SiSk(Output%i→k
1991 − 1k= i) (where n is the number of industries). The adjustment for 

the downstream effect is very similar. From the US  input- output matrix, this adjustment 
factor is 2.156. 

An alternative method would be to rerun all of our specifications using the adjusted 
upstream and downstream measures (computed as weighted averages as indicated 
above). This method yields estimates of network multipliers for value added and em-
ployment of 5.9 and 8.0, respectively, which are comparable to the 6.4 and 5.9 multipliers 
estimated by the  direct- adjustment method outlined here and reported below.

23. All appendix tables are included in appendix B (http://www.nber.org/data- 
appendix/c13598/online- appendix.pdf).

24. However, in this case, appendix table 4B shows that the results are sensitive to the 
exact value of the persistence parameter, c.

25. Bloom et al. (2013) develop a strategy for controlling for this competition effect, but 
the implementation of their strategy is not feasible given our  industry- level data.

26. Appendix figure 1 reports impulse response functions akin to figures 1a and 1b 
using the results from table 6, where we trace out a one standard deviation upstream 
or downstream network component in terms of value added or employment, as instru-
mented by each shock, alongside the direct effect of the shock. For brevity, we only plot 
the stable and  theory- consistent estimates, which are the ones that are meaningful to 
compare to our baseline results. The resulting magnitudes are comparable to, though 
somewhat larger than, our main estimates.

27. Available at http://www.nber.org/data- appendix/c13598/online- appendix.pdf.
28. Following Autor et al. (2013), Acemoglu et al. (2015) estimate an aggregate reduc-

tion of over 1.5 million manufacturing jobs through direct and network effects from the 
China trade shocks. In terms of our framework, their estimates correspond to a combina-
tion of own effects and geographic spillovers; they also control for changes in the under-
lying population in regions in their econometric specification.
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