
This PDF is a selection from a published volume from the National 

Bureau of Economic 

Research

Volume Title: Risk and Capital Adequacy in Commercial Banks

Volume Author/Editor: Sherman J. Maisel, editor

Volume Publisher: University of Chicago Press

Volume ISBN: 0-226-50281-3 (cloth); 0-226-50282-1 (paper)

Volume URL: http://www.nber.org/books/mais81-1

Conference Date: 

Publication Date: 1981

Chapter Title: Interest Rate Risk and the Regulation of Financial 

Institutions

Chapter Author(s): Jay B. Morrison, David H. Pyle

Chapter URL: http://www.nber.org/chapters/c13531

Chapter pages in book: (p. 285 - 314)



13 Interest Rate Risk 
and the Regulation of 
Financial Institutions 
Jay B. Morrison 
and David H. Pyle 

13.1 Introduction 

In this study we are concerned with the market value of net worth in a 
financial institution. The financial institution is presumed to hold assets 
and to issue deposits, with the difference in market values of assets and 
deposits being its net worth. This study considers the effects on net worth 
of changes in the level and structure of default-free interest rates. As net 
worth approaches zero, depositors have no buffer between the value of 
their deposits and fluctuations in asset values. Also, regulators must 
know the potential for a given institution's net worth falling to zero or 
below before the subsequent examination. This suggests that a forecast of 
the proportional change in net worth over a given time period is an 
important aspect of the examination process. 

There are many sources of potential change in the net worth of a 
financial institution over any time period, including such important fac­
tors as default risk and the chance that the institution's employees may 
prove to be dishonest or incompetent. An implication of this study is that 
regulators' concern regarding factors such as credit risk and managerial 
competence may be more finely focused if the effects of interest rate risk 
on net worth have been quantified. 

To this end, we shall begin by describing the basic model of interest 
rate elasticity for fixed-income securities. A discussion of the problems of 
adapting this model to the portfolio of a financial institution will follow. 
The next sections describe the results of a simulation of the interest rate 
elasticity model for a wholesale bank. 1 An important aspect of this 

Jay B. Morrison is vice-president of the Wells Fargo Bank, and David H. Pyle is 
professor of business administration at the University of California, Berkeley. 

1. The simulation of the wholesale bank is based on a subsector of a particular bank. The 
assets of this subsector are cash and commercial loans, and the liabilities are demand 
deposits, purchased funds (which can also be thought of as the net position in securities), 
and equity capital. 
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simulation is the attempt to account for the full cash flow effects of 
changes in the level and structure of default-free interest rates. For 
example, the effects of interest rates on cash flows owing to loan commit­
ments are explicitly modeled. The final section contains our concluding 
remarks. 

13.2 Interest Rate Elasticity for Bonds 

It was Macaulay (1938) who first defined the concept of duration to 
measure the time dimension of a bond. If we let 

s1 ' ... ' sf be payments received at times 1, ... ' t; 
P1 , ... , P1 be the present value at time 0 of those 
payments; 

then the duration (D) of the payment stream is defined as: 
I 

I P.i 
i = 1 l 

(1) D=-
1
--

I p. 
i = 1 l 

In this view, the duration is a weighted average of the payment dates, 
with the weight for period i equal to the proportional contribution to the 
present value made by S;. 

Macaulay interpreted duration as the period of time that elapses before 
the average dollar of present value is received. Under this interpretation, 
he argued for the use of duration as a measure of how long a dollar 
invested in a bond remained invested, and he noted several advantages of 
using duration rather than maturity. Hicks (1939) defined an "average 
period" of a payment stream that is equivalent to Macaulay's duration. 
Hicks, however, interpreted and used the measure as "an elasticity [of 
capital value] with respect to a discount ratio." It may therefore be useful 
to think of duration as a measure of an investment's interest-rate elastic­
ity which has a time dimension and interpretation. 

13.2.1 A Model of Interest Rate Changes 

To see that duration does have an elasticity interpretation, it is useful 
to specify a model for interest rate changes. First, denote the one-period 
interest rate expected to obtain during the period beginning at time t - 1 
by r 1• Under the expectations hypothesis with no liquidity premium, the 
t-period spot rate would then be the geometric mean of the product of 
1 + the current one-period spot rate and 1 + each of the t - 1 one-period­
forward rates. If (1 + R1) 

1 denotes the t-period discount factor, then 

(2) 



287 Interest Rate Risk and the Regulation of Financial Institutions 

To simplify the notation let rFt = 1 + r1 and RF1 = (1 + R1Y. Using this 
notation, the present value of the certain payment stream, S1 , ••• , S 1 , 

can be written as: 

(3) 
I S; 

PV = k 
s i = 1 RFi 

Now, assume that shifts in interest rates can be described by some 
multiplicative function f(h, t), such that 

RFt = RFd(h, t) 

aRFt , af(h, t) 
--;;;;=RFI~' 

where h = rFl = 1 plus the first-period spot rate. This assumption allows 
(3) to be rewritten as 

(3') 
I s. 

PVS = k l ' 

i = 1 f(h, i)RF; 

13.2.2 Interest Rate Elasticity with Equal Proportional 
Effects on All One-Period Rates 

This formulation provides a tractable means of expressing rate 
changes, which allows for the possibility that some of the one-period rates 
change more than others. For this example, however, we will assume that 
all one-period rates (spot and forward) change by the same proportional 
amount, which can be modeled with a shift function of the form 

(4) f(h,t) = h1
• 

This means that when shifts in the discount function occur, they do so in 
such a way that the entire function is shifted up or down without distor­
tion. Under this specification, we can study the effect of rate shifts on the 
present value of the stream S1 , ... , S1 • Using ( 4), we can express the 
present value as: 

I 

PVS =. k S;'f>;' 
l = 1 

where 

1 
0;=-.-,-. 

h'RF; 
Taking the differential, we get: 

1 s-o-i 
dPV = - k -'-'- dh 

s i = 1 h ' 

and dividing by PV gives: 
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dPV5 = _ [ ; ~~ (S/oJi ]· dhh. 

PVs l So 
i= I I I 

By noting that S;o; is equal toP;, the present value of the bond payment 
S; , it is clear that the term in brackets in equation (5) is, in fact, 
Macaulay's duration. Since dPV5/PV5 is the percentage change in present 
value, and dh!h is the percentage change in the discount factor, the 

I I 

ratio . L (S;o;)i( L S;o; is the interest rate elasticity of net worth. It is 
I= I I= I 

important to note that duration and interest rate elasticity (IRE) will be 
equivalent only for this particular specification of f(h,t), that is, one in 
which unanticipated rate movements shift the entire yield curve up or 
down by proportionately identical amounts. 

13.2.3 Interest Rate Elasticity with Decreasing Effects 
on Forward Rates 

The relationship for interest rate elasticity established by Macaulay is 
simple and appealing. However, the interest rate change process that 
underlies it is not very realistic. Observers of the behavior of default-free 
interest rates suggest that a preferable model is one in which the change in 
rates is largest for the near term one-period rates and smaller for later 
one-period rates (see Hodges 1975 and Yawitz, Hempel, and Marshall 
1975). 

An alternative specification for the interest rate shift function is 

(4') f(h,t) = hfX. O<a:sl 

With this shift function, we can derive the following relationship: 

(5') 

where the term in brackets is the interest rate elasticity (IRE). Compar­
ing equations (5) and (5'), it is clear that Macaulay's duration is the upper 
limit (a= 1) on the interest rate elasticity of bond value for the more 
general shift function. 

Using equation (5'), we can then generate the values of IRE as a 
function of a for two hypothetical three-period loans, one with equal cash 
flows in each period and the other a 10 percent coupon bond paying three 
coupons and repaying the face value. The example in table 13.1 is for a 
particular structure of default-free interest rates, but the qualitative 
effect of decreasing a would be the same for any structure of rates. The 
effect of a decreasing impact on forward rates becomes apparent in table 
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Table 13.1 Interest Rate Elasticity (IRE) from Equation (5') for Three-Period 
Debts When 51 = 0.9, 82 = 0.8, and 83 = 0.75 

IRE Equal IRE 10% 
0: Payment Loan Coupon Bond 

-2.11 -2.74 
.75 -1.76 -2.12 
.5 -1.48 -1.64 
.25 -1.26 -1.28 

13.1. For example, if there is no attenuation (i.e., a= 1), a 1 percent 
increase in one plus the first- , second- , and third-period default-free 
rates (which is a 110 basis point increase for a 10 percent spot or forward 
rate) would produce a 2. 74 percent decrease in the value of the hypothet­
ical 10 percent bond. For a= 0.75, a 1 percent increase in one plus the 
one-period rate would result in an increase of about 0.7 percent in one 
plus the second-period rate, and an increase of about 0.6 percent in one 
plus the third-period rate. This level of attenuation in the interest rate 
change results in the decrease in value of the 10 percent bond being 2.12 
percent. In other words, the loss of value for a = 0. 75 is about 77 percent 
of the loss of value for a= 1. Similarly for the equal payment loan, the 
loss of value of the loan resulting from a 1 percent increase in one plus the 
first-period rate is about 17 percent less if a= 0.75 rather than 1. 

13.3 An Empirical Model of Interest Rate Changes 

The example in the preceding section serves to illustrate the effect on 
IRE of interest rate changes that diminish as one considers forward rates 
for times ever more distant from the present. This model is purely 
hypothetical. For the analysis of the IRE for bonds, we need an empir­
ically estimated model of the process by which default-free rates change. 

Details of the model of interest rate changes that is used in the simula­
tions reported later in this study may be found in Morrison (1977). 
Morrison developed a testable model of changes in the term structure of 
default-free interest rates from a stochastic model of the term structure 
by Vasicek (1976). Fundamental assumptions in the Vasicek model are 
(a) the spot rate follows a continuous Markov process; (b) the price of a 
discount bond maturing at time s is determined by the anticipated spot 
rate process from the present until times; and (c) the bond market is 
efficient. For our purposes, the importance (and perhaps the limitation) 
of these assumptions is revealed by their implication that the value of the 
spot rate is the only state variable determining the term structure of 
interest rates. 

For empirical estimation, Morrison used Vasicek's term structure 
equation to derive the effect of changes in the spot rate on yields to 
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maturity. Furthermore, Morrison decomposed changes in the spot rate 
into a change in the ex ante real component of that rate and a change in 
the anticipated inflation component. While this decomposition is ad hoc 
in terms of the Vasicek model, a considerable literature exists that 
suggests that anticipated inflation is an important determinant of interest 
rates. The variability of ex ante real rates is a matter of some controversy 
(see Fama 1975 and Nelson and Schwert 1977). Morrison's estimating 
equation allows for changes in the ex ante real component of spot rates. If 
deviations in the real component of spot rates are considered temporary, 
but deviations in current inflation anticipations are correlated with 
changes in inflation anticipations for future periods, we would expect 
these two components to have different effects on forward rates. Conse­
quently, the estimating equation permits the impact of the real and the 
inflationary effects of the one-period spot rate on vields to maturity to be 
different. 

The form estimated was: 

(6) 

where 

drk drr1 -'Yo- -y 1k di1 - ~o- ~1k 
--=--e + -e 

.RFk RRF1 /1 

rk = the risk k-period risk-free rate 
RFk = 1 + rk 
rr1 = real one-period rate 

RRFl = 1 + rr1 

ii = one-period inflationary expectation 
Ji = 1 + il 

rr1 + i 1 = r1 . 

The unit time period chosen to estimate equation (7) was one month. 
Term structures for default-free securities were estimated for thirty 
months from January 1973 through July 1975 using the tax adjusted, 
cubic spline method developed by McCulloch (1975a). The data used 
were Salomon Brothers quotations for the last trading day of each month. 
This provided fifteen independent sets of adjacent term structures to be 
used in computing proportional rate changes for different maturities. 
Thirty maturities, ranging from two months to ten years, were used for 
each term structure, for a total of 450 pooled observations. 2 

The nominal spot rate obtained for each of the term structures was 
decomposed into an ex ante real component and an inflationary anticipa­
tions component. Inflationary expectations were estimated by using the 
method in the Nelson and Schwert (1977) article. 

2. Because of the estimation technique employed, a few periods that displayed no spot 
rate changes could not be used. 
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Equation (6) was estimated by a two-step process. First, the coef­
ficients of the real component ('Yo and -y 1) were estimated by ignoring the 
inflation term, performing a log transform, and using linear regression. 
The estimated coefficients were then used to form a set of residuals 
(drJRFk unexplained by drr1/RRF1). These residuals were then used to 
estimate the inflationary coefficients (~0 , ~ 1 ), again using linear regres­
sion on a log transform, this time ignoring the real term. The results are 
shown in table 13.2. As the table shows, coefficients on each term have 
the correct sign and are statistically significant. As a check, the procedure 
was repeated with the coefficients estimated in the reverse order. 
Although the results were not identical, the sign and general magnitude 
of each coefficient remained unchanged. More important, the general 
pattern of transmission discussed below remains the same with the 
alternative specification. This, combined with some preliminary results 
by other researchers indicating that the IRE estimates are fairly insensi­
tive to the transmission process, indicated that the results as shown in 
table 13.2 should be sufficient for use in the analysis that follows. 
The resulting empirical model of interest rate changes is 

(7) 

13.3.1 

drk drr1 -.148k di1 -(.41+09k) 
--=--e +-e 
RFk RRF1 11 

Interest Rate Elasticity Based on an 
Empirical Model of Interest Rates 

With the interest rate process described by equation (7), the expression 
for the proportional change in the present value of a bond may be written 
as 

Table 13.2 Regression of Nominal Rate Changes on Real Rate Changes and 
Changes in Inflationary Expectations 

/:irk /:;.rr1 --yo-y1k /:ii1 -B0-B1k 
-=--e +-e 

RFk RF1 I! 

'Yo 'YI Bo B1 Ue Rz 

.41 .14 1.04 .13 
(.58) (7.5) 

.148 1.04 .12 
(10.7) 

.41 .09 1.3 .04 
(4.6) (3.9) 
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(8) 
I 

I S-o 
i = 1 1 l 

A given proportional change in one plus the spot rate will be distributed 
between the proportional change in the real component and the pro­
portional change in the inflationary component. By examining equation 
(8), we can see that the estimated IRE of a bond for a given spot rate 
change will be a weighted average of one, the IRE due to the real 
component, and two, the IRE due to the inflationary component, with 
the weights being the respective contributions of those components to the 
proportional change in the spot rate. These two IRE relationships are: 

I . - 2 (So)'i·e- .1481 
i= 1 l l 

IRE (real) =---
1
-----(9) 

; :;
1 

(S;o;) 

I 
- 2 (S·o}i·e- .41 - ·09; . _ 

1 
l I 

(9') IRE (inflation) = -'----
1
-------

; ::
1 

(S;o;) 

In table 13.3 we have reported some interest rate elasticities (propor­
tional change in value per 1 percent change in the spot rate) based on 
equations (9) and (9'). Two of the loans considered in table 13.3 are 
directly comparable to the loans reported in table 13 .1. The more rapid 
fall-off in the effects of changes in the real component of spot rates is 
apparent from the lower IRE values for this case. The IRE was also 
calculated for a conventional10 percent coupon, ten-year bond using a 
flat (10 percent) term structure and also using the estimated term struc­
ture for May 1975. In the least extreme case for this longer-term bond 

Table 13.3 Interest Rate Elasticities (IRE) from Equations (9) and (9') 

Flat Term Structure 

IRE IRE 
Equal Pay- 10% Coupon, 

Change ment Loan 3-Year Bond 

Change in real 
rate only 1.61 -2.08 
Change in infla-
tionary antici-
pations only -1.73 -2.31 

IRE 
10% Coupon, 
10-Year Bond 

-2.43 

-3.55 

May 1975 
Term Structure 

IRE 
10% Coupon, 
10-Year Bond 

-2.40 

-3.53 
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(change in inflationary expectations only), the IRE based on the empiri­
cal model of interest rate changes is 3.53, which is just over 50 percent of 
the IRE of 6. 76, obtained using Macaulay's duration. 

The method used to obtain the interest rate elasticities in table 13.3 is 
directly applicable to the estimation of interest rate elasticities for the 
securities in a financial institution's investment portfolio. As we noted 
earlier, this measure of the proportional change in net worth incorporates 
only the effects of change in the level and structure of default-free interest 
rates. For a security that is not issued by the federal government, for 
example, state and local government securities, there will be other 
sources of change in the security's value. To the extent that these other 
sources of change can be incorporated into a model of interest rate 
changes that can be estimated, the approach discussed here may be 
broadened to provide a measure of the proportional change in security 
value as a function of a vector of determinants of that change. 

Whether one uses the somewhat restrictive default-free interest rate 
elasticity or a more comprehensive measure of the potential change in 
investment portfolio value, the estimate of the price sensitivity of the 
investment portfolio should be useful information for the regulators of 
financial institutions. In the case of the IRE estimates given by equations 
(9) and (9'), this information is relatively easy to obtain. A program exists 
for estimating the default-free term structure from United States govern­
ment bond data (see McCulloch 1975a). A periodic, perhaps weekly, 
estimation of the term structure could be used to provide examiners with 
timely estimates of the discount function (i.e., the 8i values). Equations 
(9) and (9') may be programmed on a hand-held programmable calcula­
tor. By taking an appropriately designed sample of the securities in an 
investment portfolio, estimating their interest rate elasticities, and then 
taking a weighted average of the sample elasticities using known portfolio 
weights, the examiner could obtain an estimate of the sensitivity of that 
investment portfolio to changes in the short-term, default-free interest 
rate. 

There remain a number of open questions regarding the application of 
interest rate elasticities (i.e., generalized duration concepts) in the pre­
diction of expected security price changes. In terms of the model used by 
Morrison, one such question concerns the assumption that interest rate 
changes are independent of the level of interest rates. Intuition and 
observation suggest that tax effects are likely to be related to the extent to 
which securities are selling above or below par, and hence that the 
current level of rates (relative to past levels) should be important. Fur­
thermore, there is evidence (see Nadauld 1977) that the model used by 
Morrison tends to underpredict changes in longer-term rates. Perhaps 
more important, recent research by Lanstein and Sharpe (1978) has 
shown that very strong assumptions about the correlation of nonsystem-
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atic changes in interest rates are necessary to theoretically justify the use 
of (generalized) duration as a determinant of the ex ante interest rate risk 
of a security. However, they also give evidence that even a crude measure 
of duration (i.e., Macaulay's definition) is significantly related to compo­
nents of security risk. 

13.3.2 Interest Rate Elasticity of Financial Institutions 

Samuelson (1945) used duration to study the effects of interest rate 
changes on financial institutions. To derive his result, let: 

PV A = present value of the stream of payments deriving from asset 
holdings; 

PV L = present value (cost) of the payments required for liability hold­
ings, presumably negative; 

QA = duration of the asset holdings; 
QL = duration of the liability holdings. 

Assuming that: 

1. spot and forward rates on all liabilities and all assets change by the 
same amount; and 

2. the amount of each asset and liability held by the bank remains 
unchanged when rates change, 

the above result can be applied directly to the asset and liability portfolios 
of a bank, giving 

dPVA dh 
--= -QA-
PVA h 

for the asset portfolio and 

dPVL dh 
--= -QL-
PVL h 

for the liabilities. Note that these assumptions imply that the asset port­
folio is essentially a fixed-payment, fixed-maturity bond that the bank has 
purchased, with the liability portfolio equivalent to a bond with fixed 
payments and fixed maturity that the bank has issued. 

Defining the capital or net worth of the bank by PV T = PV A + PV L , 
the Samuelson result is: 

dPVT (QAPVA + QLPVL) dh dh 
--=- ·-=-QT-; 
PV T PV A + PV L h h 

(10) 

PVT > 0. 

Equation (10) says that the percentage change in capital is proportional 
to the percentage change in interest rates, with the constant of propor-



295 Interest Rate Risk and the Regulation of Financial Institutions 

tionality, - Qr , being the negative of the duration of the bank as a 
whole. The bank's duration is, in turn, a weighted average of the dura­
tions of the asset and liability holdings, with the weights being the 
fractional contributions to total present value. 

A major implication of (10) is that a necessary (but not sufficient) 
condition for a bank to be made better off by a rate increase is that its 
liabilities be of longer duration than its assets-that is, that QL > QA . 
Since the prevailing opinion appears to be that banks' borrowings are of 
shorter term than their lendings, it seems more likely that QA > QL, from 
which it follows that a bank would be made worse off by a rate increase. 
The result, of course, is both intuitive and a result of the simplifying 
assumptions on which the analysis is based. The "bank" is in fact equiva­
lent to an investor who simultaneously purchases a bond with a duration 
of, say, ten years and issues a bond of equal value with a duration of two 
years. If rates subsequently rise, he must either finance the remaining 
eight years of his investment at a higher cost or sell his investment at a 
discount from his purchase price, both of which entail losses relative to 
the earlier situation. 

As we have seen from our discussion of the interest rate elasticity of 
bonds, an assumption implicit in the conventional duration formulation is 
that forward rates change in the same proportion as spot rates. Empiri­
cally this assumption does not appear to be warranted. Clearly, we can 
proceed as we did in the case of bonds, using an empirically estimated 
model of interest rate changes to formulate a generalized duration for a 
financial institution. For financial institutions with assets that are longer­
lived than liabilities, the interest rate elasticities of net worth will tend to 
be smaller when based on the interest rate process summarized in equa­
tions (9) and (9') than if these net worth elasticities were based on the 
conventional duration calculation. 

Adopting a generalized duration formulation does not solve all the 
problems encountered in calculating an interest rate elasticity for the net 
worth of financial institutions. The major difficulties that remain are: 

1. Not all of a bank's assets and liabilities have fixed payment streams 
and a well-defined maturity. Therefore a method of estimating the cash 
flows associated with these assets and liabilities must be developed. 

2. Many of a bank's assets and liabilities are not market instruments 
and do not have an observable market value. To study the sensitivity of 
the bank's net present value, these market values must be imputed from 
the anticipated cash flows. 

3. The cash flows are neither single-period nor risk-free, which compli­
cates the discounting technique. 

In the analysis that follows, we have attempted to deal with most of 
these problems. The approach taken is a simulation based on an analysis 
of the effect of macroeconomic variables on bank cash flows using data 
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normally available to bank regulatory agencies. The selected subsector of 
the bank is intended to reflect the most important characteristics of a 
wholesale bank (i.e., a bank dealing mainly in corporate and commercial 
lending supported by corporate and commercial demand and time de­
posits). The asset categories modeled are commercial loans and cash. The 
liabilities are demand deposits, purchased funds (negotiable certificates 
of deposit, NCDs), and equity capital. 3 

13.4 Modeling Bank Cash Flows 

The bank to be considered has only one type of earning asset ( commer­
cial loans) and one interest -bearing liability, negotiable certificates of 
deposit (NCDs). In addition, the bank obtains some of its funding from 
demand deposit balances held by business firms. Demand deposit bal­
ances and NCDs outstanding imply cash balances in the form of required 
and excess reserves. In the simulations described here, it is assumed that 
the ratio of total book assets to book equity (capital ratio) is held constant 
through time, and this assumption completes the specification of the 
bank's balance sheet. 

To estimate the interest rate elasticity of the bank's net worth, we must 
estimate the payout stream to the bank's owners and the response of that 
stream to changes in the level and structure of interest rates. The payout 
stream consists of net income for each future time period, less the change 
in equity capital implied by the constant capital ratio assumption. Models 
of these cash flows are described in detail in Morrison (1977). In sum­
mary, the structure of system estimated by Morrison is: 

1. A model of future commercial loan commitments was developed. 
2. A model of future commercial loan volume (in part dependent on 

commitments) was developed. 
3. Future demand deposit balances (in part dependent on loan volume 

and loan commitments) were modeled and used to project the cash assets 
for the bank. 

4. The period by period estimates of future total assets (loan volume 
plus cash assets) times the assumed capital ratio provided an estimate of 
equity capital and total assets less demand deposits and equity capital 
provided an estimate of the future volume of purchased funds. 

5. Models of the future yields on loans and the future NCD rates were 
estimated. 

3. These asset/liability categories are few even for a money center, wholesale bank, with 
the main omissions being real estate loans and the investment portfolio. The contribution of 
the latter to net worth elasticity is a straightforward application of the method discussed in 
the previous section of this paper. An application of generalized duration estimation for a 
real estate portfolio is contained in Nadauld (1977). 
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6. The periodic future net income was obtained by multiplying the 
estimated loan volumes by estimated loan yields and subtracting the 
estimated volume of purchased funds times the estimated NCD rates. 

7. The periodic payout to bank owners was obtained by subtracting 
the estimated change in equity capital for each period from the estimated 
net income for that period. 

13.4.1 Commercial Loan Commitments 

Morrison's model of commercial loan commitments is based on a 
disequilibrium credit market. Firms are assumed to face uncertainty 
regarding the timing of future transactions. Each firm chooses between 
fixed-maturity borrowing and loan commitments by comparing the mini­
mum expected cost of a loan with the expected cost of a commitment. 
Given this description of the loan choice problem, it can be shown that 
the relative demand for commitments (a) decreases as the rate charged 
for funds borrowed on commitments increases; (b) increases as the 
uncertainty associated with future transaction dates increases; (c) de­
creases as the loan size increases (absolute commitment demand may 
increase); and (d) increases as the rate on fixed-maturity borrowing 
increases. 

The bank is assumed to set the commitment fee, the loan rate, and the 
maximum commitment it is willing to make to any customer. The actual 
commitment size is then the minimum of the firm's demand and the 
maximum supply. For the bank to set rationally both the rate and a 
quantity maximum, thereby introducing the possibility of nonprice 
rationing, it must be that the bank can increase the expected value of the 
loan by decreasing the loan size below the amount demanded at the rate 
that is optimal for the bank. Briefly, this could be true for two reasons: 

1. Banks potentially have some degree of monopoly power over at 
least some customers, but the degree of collusion necessary to maximize 
joint profits would be socially and legally unacceptable. An alternative is 
to classify customers into groups based on riskiness, tie the rate for each 
class to the least risky rate, and engage in price-leadership behavior by 
making that rate (and changes in that rate) widely publicized. To the 
extent that riskier customers also have lower price elasticities of demand, 
this process can be successful in achieving some degree of price discrim­
ination. 

2. Since it is probably not operationally feasible to have a great num­
ber of risk classes (traditionally, spreads over prime are quoted in half­
percent intervals), and the number of customers will exceed the number 
of classes, it will be necessary to charge similar but not identical custom­
ers the same rate. In such a situation it may be optimal to ration the 
amount of credit extended to the riskiest customers in each class. The 
existence of usury ceilings strengthens this effect. 
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In summary, the existence and rationality of nonprice credit rationing 
derives from both competitive and institutional factors. 

We assume that the loan officer of the bank is trying to maximize 
expected profit on the commitment relative to an uncertain opportunity 
cost over a single-period horizon. This optimization process leads to a 
supply of commitments that is a function of a pair of loan rate parameters 
(among other things). If the bank were able to set these parameters 
differently for each borrower having a different riskiness, there would be 
no rationing. However, if-as is assumed here-the bank charges the 
same rate for a group of borrowers who are heterogeneous in terms of 
risk, the commitment demand for the riskiest borrowers in the group may 
be greater than the optimum commitment supply. Therefore, actual 
commitments will be the smaller of two numbers: the borrower's opti­
mum commitment demand or the bank's maximum supply. 

Given this description of the bank's optimization problem, it can be 
shown that the supply schedule displays certain properties: (a) the max­
imum commitment supplied approaches zero as the loan rate or the 
commitment fee gets arbitrarily large; (b) the maximum commitment 
supplied decreases as the bank's opportunity cost increases; (c) under 
reasonable conditions, the maximum supply decreases with increases in 
the uncertainty of the opportunity rate; and (d) an increase in the loan 
rate increases the maximum commitment supply. 

13.4.2 Estimation of Commercial Loan Commitments 

The major problem in estimating disequilibrium models is that the 
observed quantity may not satisfy both the supply and the demand 
schedules. The practical importance of the problem is demonstrated in 
recent studies of the market for housing starts by Fair and Jaffee (1972) 
and of the watermelon market by Goldfeld and Quandt (1975). In esti­
mating the loan commitment model, Morrison followed the so-called 
quantitative method described by Fair and Jaffee. Using this approach, 
the model derived earlier for commitment supply and demand may be 
written as: 

(11) 

where 

11 = opportunity rate during month t (secondary three­
month CD rate) 

Std(T1) =measure of economic uncertainty (twelve-
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month moving standard deviation of 
gross business sales) 

P1 = prime rate 
CP1 =commercial paper volume during month t (a 

measure of external liquidity) 
Std(/1) =measure of rate uncertainty (twelve-month 

moving standard deviation of 11) 

LEV1 =leverage at t, defined as total assets/capital; 
capital includes capital notes 

Q; = desired volume of commitments. 

In estimating the disequilibrium equations, the following equation for 
excess demand was used: 

I 
(12) D1 - S1 =- X 1 , 

'Y 

where X 1 is a measure of the bank's willingness to make loans. 4 

The final specification is a lag adjustment in the actual volume of 
commitments. This specification is justified on the basis of prenegotiated 
contracts and other institutional factors that prevent immediate adjust­
ment to desired levels of commitments. Assuming that a stock­
adjustment process is appropriate, we have: 

where 

Q1 = actual commitments outstanding during 
month t 

X. = coefficient measuring the speed of adjustment. 

Using monthly microeconomic data from a major bank and monthly 
macroeconomic data from an aggregate macroeconomic model, the loan 
commitment model was estimated over the period January 1974-May 
1976. 5 The resulting equations for forecasting loan commitments are 
given in table 13.4. 6 

4. The bank involved participates in the Federal Reserve's Quarterly Survey of Bank 
Lending Practices, a survey intended to measure the non price lending practices of commer­
cial banks. X, is set equal to the first principal component of the survey responses in month t. 

5. A major problem in doing empirical research at the bank level is the lack of consistent 
data for the microeconomic variables. The data used by Morrison were created by a 
management information system that began operating in January 1974. 

6. The terms in parentheses below the coefficient estimates are !-statistics for the 
coefficient. The mean value of the dependent variable was 129. A two-stage regression with 
the prime rate and rationing proxy as endogenous variables was used. 
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Table 13.4 

Q, 

1584 
(1.9) 

Forecasting Equations in Loan Commitments 

Commitment Demand 
' 1 ' A(o:o + o: 1/, + o:zStd(S,) + o:3P, + o:4CP,- -:y XI,] 

Ao: 1 Ao:2 Ao:3 Ao:4 - Ai'Y 

-24 
( -1) 

2.2 
(2.1) 

21 
(.6) 

.016 
(1.1) 

39 
(.7) 

Durbin-Watson = 1.7; standard error = 64; N = 27. 

Commitment Supply 

.51 
(2.2) 

!:>.Q, = A(B0 + B1l, + B2Std(/,) + B3F, + B4LEV,_ 1 
1 ' -:y X2,] - AQ,_ 1 

ABo AB 1 AB2 AB3 AB4 -AI-y A 

3216 -69 -70 74 -41 -73 .59 
(3.2) ( -2.5) ( -.25) (2.6) (-2.1) ( -1.5) (2) 

Durbin-Watson = 2.4; standard error 59; N = 26. 

Note: !, CP,, Std(S,), Std(/,), and LEV, are as defined earlier. X'I, is the first-stage 
regression estimate of the credit rationing proxy for periods of excess demand, XZ, is the 
estimated credit rationing proxy for periods of excess supply, and P, is the first -stage 
regression estimate of the prime rate. A discussion of the estimation of the credit rationing 
proxies and of the prime rate follows. 

13.4.3 Loan Volume 

The loan volume for the bank is determined by the credit needs of its 
customers, the rate differentials between loans and other sources of 
credit, and the severity of commitment rationing. Essentially, once a 
commitment is made, the bank's only influence over whether the line is 
used is through variations in the prime rate. A model of loan demand 
becomes a model of loans outstanding, except for periods of rationing. 

Building on previous studies (Goldfeld 1966 and Jaffee 1971), Morri­
son modeled loan demand as a function of borrowers' asset stocks, with 
the choice ofloan financing instead of direct financing being influenced by 
the spread between the rate paid on loans and the rates paid on direct 
forms of financing. In the absence of non price rationing, the specific form 
of the loan volume ~quation would be: 

(13) 

+ (1 - A.)Lr- 1 , 

where 
K 1 = the fixed investment of borrowers 
T1 = gross business sales (a proxy for transactions assets) 
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zl = inventory stocks held by borrowers 
r CP = the commercial paper rate 

P = the prime rate 
r AAA = the AAA corporate bond rate 

L 1 = loan demand. 

In the presence of rationing, the observed quantity of loans may differ 
from the quantity demanded. A bank cannot ration loans directly except 
in the case of a line of credit that is completely used. However, the 
rationing of new commitments may cause customers with unused com­
mitments to seek financing elsewhere or to defer expenditures rather than 
use up existing commitments. For either case, the loan demand function 
will overstate actual demand when commitments are being rationed. 
Letting R1 be the reduction in loan demand due to commitment rationing, 
the observed quantity of loans outstanding becomes: 

if there is no rationing 

if there is rationing 

It is assumed that R1 is proportional to X11 (the positive values of the first 
principal component of the Federal Reserve Board loan survey re­
sponses) and aCP1 (the change in the volume of commercial paper 
outstanding). The constant of proportionality is assumed to depend on 
U1 1 (the lagged ratio of commitment usage). Making these substitu­
tions, the equation to be estimated for loan volume prediction becomes: 

(14) 
Lr={LI if X 1 ~ 0 

I Ll- (ao +a] ul- I)(boXI + bJdCPI) if XI > 0 

13.4.4 Estimation of Loan Volume 

The desired specification of the loan volume equation calls for data on 
the assets (fixed investment, inventory, and transactions assets) of the 
bank's actual and potential customers. Since these data are not available, 
it was assumed that the values for the bank's customers were proportional 
to the aggregate figures. Furthermore, since consistent aggregate series 
are not available for all variables in the loan volume equation, the 
equation was estimated in first difference form. An examination of the 
results for the full model suggested that the lagged dependent variables 
and the lagged customer asset variables were not contributing to the 
explanation of loan volume in a significant manner. Consequently, for the 
estimate that was used in subsequent simulations these terms and the 
insignificant term for current fixed investment were dropped and the 
equation was estimated using the Hildreth-Lu (1960) transformation. 
The resulting equation for forecasting loan volume for the bank is given 
in table 13.5. 
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Table 13.5 Forecasting Equation for Loan Volume 

L; = b0 + b2 T, + b3Z, + b4[(rcp- P),K,] + bs[(rAAA - P),K,] 
- caX1, - c1XA1,U,_ 1 -c2!1CP,U,_ 1 

-17.8 1.24 
( -1.2) (2.6) 

2.74 -.41 -.30 548 -1807 -.12 
(3.1) (-2.8) (-1.1) (5.2) (-5.2) (-3.9) 

Durbin-Watson = 2.2; standard error = 30; N .67. 

13.4.5 The Rationing Variable 

Since the first principal component of the response to the Federal 
Reserve Board loan activity survey is a determinant of loan commitments 
and loan volumes at the bank, we must forecast this factor to carry out the 
simulation of the bank's net worth elasticity. The specification used for 
estimating a predicting equation is 

(15) 

where 

S1 = the supply of commitments during month t 
Q1 = the quality of commitments outstanding 

during month t. 

After substituting for S1 , the resulting forecasting equation for the 
change in the rationing proxy is as shown in table 13.6. 

13.4.6 Loan Interest Rates 

The forecasting equations for loan commitments, loan volume, and the 
rationing variable require a forecast of the prime rate. Furthermore, to 
calculate the income from the loan portfolio, we need a period-by-period 
forecast of the yield on the loan portfolio. 

In the model we used, the change in the prime rate is determined by a 
rate of adjustment factor times the difference between the desired prime 
rate in the current period and the prime rate for the period just prior. The 
desired prime rate is taken to be a function of the federal funds rate (r11), 

Table 13.6 Forecasting Equation for the Change in the Rationing Proxy 

l:l.X, = A.[d0 + d11, + d2Std(/,) + d3(P, - I,) + d4LEV, - dsQr-1 - X,_J] 

>-.do >-.dl >-.d2 >-.d3 >-.d4 ->-.ds -}.. Rz D-W 

-4.85 .15 .63 -1.81 .80 -.004 -.67 .44 1.72 
(- .76) (.40) ( .41) ( -1.9) (.85) (- .9) ( -1.5) 
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the bank's loan/deposit ratio (LNDP1), and the bank's leverage ratio 
(LEV1). The speed of adjustment is assumed to be determined by lagged 
values of changes in the opportunity rate of interest for the bank (ll/1). 

The resulting forecasting equation for the prime rate is given in table 
13.7.7 

The loan yield will differ from the prime rate because (a) much of the 
loan portfolio consists of nonprime borrowers; (b) only about half of the 
loan portfolio floats with the prime rate, and (c) the composition of the 
portfolio (maturity, percentage of floating loans, etc.) may vary system­
atically with the level of interest rates. In Morrison (1977) it is shown that 
under a particular set of assumptions the steady-state relationship for the 
loan yield may be written as a linear function of lagged values of the prime 
rate. The estimation was based on this model with control variables 
added to allow for a different relationship during periods of rising rates. 
Additionally, the coefficients of the estimated equation were constrained 
to reflect a priori knowledge regarding the proportion of term loans in the 
portfolio. The estimation procedure used the Hildreth-Lu transforma­
tion for serial correlation. 

The equation used for the loan yield forecasts is given in table 13.8.8 

Table 13.7 

A. eo 

.037 
(.19) 

Table 13.8 

Forecasting Equation for the Prime Rate 

!:J.P, = A. (e0 + e1rr, + e2LNDP, + e3LEV, + e4(rr,!:!.I,) 

+ es(rr,M,_I) + e6(rr,!1!,_2) - P,_J] 

A.e1 A.e2 A.e3 A.e4 A.es A.e6 -A. R2 

.26 -.60 .025 .006 .021 .0005 -.27 .84 
(5.64) (-.57) (1.13) (.88) (3.62) ( .1) ( -5.7) 

Forecasting Equation for Loan Yield 

Y, =go + g1P, + g2Pt-I + g3P,-2 + g4Pt-3 + gs(F,P,) 

+ g6 (F,Pt-~) + g7 (F,P,_2) + gs(F,P,-3) 

D-W 

1.77 

1.48 
(12.3) 

.43 .29 .08 .1 -.011 
( -1.4) 

.002 .013 
( .3) (1.6) 

-.004 
(9.3) (5.3) (1.4) 

R2 .89; Durbin-Watson = 2.3; p = .85. 

7. The estimation was by two-stage least squares because of the presumed simultaneity 
between the prime rate and other micro variables for the bank. For the subsequent 
simulations it was necessary to forecast the federal funds rate. A linear regression of the 
federal funds rate on the three-month risk-free rate was used for these forecasts. 

8. Because of the a priori constraints, independent /-statistics are not obtained for g4 and 
g8 . F, is a control variable that is 1 during periods of increasing rates and 0 otherwise. 
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13.4.7 Demand Deposit Volume 

There are three major determinants of demand deposit volume: 
1. Compensating balances, usually some percentage of commitments 

plus some percentage of outstandings (loans). 
2. Active balances, for use in meeting a firm's required disbursements 

(payroll, taxes, etc.). 
3. Service balances, used to cover the activity charges associated with 

determinant 2. 
If the different types of deposits were recorded separately, different 

models could be developed for each type. Compensating balances could 
be estimated as a function of loans and commitments, with active and 
service balances depending on transactions volume and the level of 
interest rates. Unfortunately, no distinction is made on the balance sheet 
among the different deposit types, so one model will have to suffice for all 
three. The model we estimated assumes that demand deposit volume is a 
linear function of commitment volume (Q1) and loan volume (L 1) with the 
coefficients of these two factors being dependent on the current prime 
rate. 

The demand deposit forecasting equation is given in table 13.9. 

13.4.8 NCD Rate 

The final factor that must be forecast for the net worth simulations is 
the rate paid on purchased funds which in this study was taken as the 
three-month rate on negotiable certificates of deposit (NCDs). Since the 
basic rates driving the simulation are the risk-free rates, an attempt was 
made to find a stable relationship between the three-month risk-free rate 
and the three-month NCD rate. Owing to serial correlation in the re­
sidual of least-squares estimates, the Hildreth-Lu transformation was 
used. The resulting equation for forecasting the spread between the 
three-month NCD rate and the three-month risk-free rate (SPRD,) is 
given in table 13.10. 9 

13.5 A Model of Net Worth and Net Worth Elasticity 

In addition to the problem of predicting future cash flows to the bank's 
owners, one must also specify a method for calculating the current value 

Table 13.9 Forecasting Equation for Demand Deposit Volume 

-.8 .11 .4 -.05 .53 2.2 
( -1.9) (2.0) (3.2) ( -2.2) 

9. r, is the three-month risk-free rate. 
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Table 13.10 Forecasting Equation for the NCD Rate 

SPRDI jo + hrt + hrt 

j() j, h R2 D-W p 

-2.57 .03 .55 .37 1.6 .75 
( -2.6) (.8) (4.5) 

of those cash flows and for predicting the effects of changes in interest 
rates on that value. The approach we have taken is based on the following 
valuation model developed by Rubinstein (1975): 10 

(16) 

where 

x E(X1)- [COV(X1 - R;, f)!E(R;;, ~)] 
PV= l , 

t= 1 RFr 

PV = the present value of the cash flow stream X 1 

Rp1 =one plus the future value at time t of $1 
invested today in risk-free bonds 

R,1 =one plus the future value of$1 invested today 
for t periods in the market portfolio 

E = the expected value operator 
COV = the covariance operator 

b =the level of proportional risk aversion. 

By making some simplifying assumptions, (16) can be used to derive an 
interest rate elasticity framework. First, suppose the (t-period spot rate 
+ 1) on risk-free bonds, R}~1 , is a function of both time and the short 

rate, that is, R}/ = Rp(t,r0 ). One interpretation of this is that the major 
determinants of shifts in interest rates is the release of new data contain­
ing information that affects relative returns. This assumption is consistent 
with much of existing term-structure theory, which attempts to explain 
the shape of the yield curve but takes the level (the value of the short rate, 
for example) as exogenous (see Kane 1975). Next, we will assume that 
the probability distribution of the random cash flows is a function of time 
and the t-period 1 + spot rate, that is: 

X 1 = X 1(t,Rp (t,r0 )) = X(t,ro) . 

10. The assumptions underlying Rubinstein's valuation equation are: (a) if two secur­
ities have the same payoff in all future states, they will have the same current price; (b) 
investors maximize the expected utility of compensation over their lifetimes, and their 
utility functions are concave, additive in consumption at each date, and never evidence 
satiation; (c) financial markets are perfect, competitive, and Pareto-efficient; and (d) there 
is weak aggregation, and investors evidence constant proportional risk aversion. While 
these assumptions are restrictive, they lead to a simple, closed-form equation for valuing 
arbitrary cash flow streams in a multiperiod setting. 
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Similarly, assume that the compound return on the market ( + 1) is a 
function of time and the compound return ( + 1) on risky bonds, or 

E(Rnu) = R1(t,RFt) = Rz(t,RF (t,roY) = E(Rm(t,ro)). 

Finally, assume that the covariance between the cash flows generated 
by the project or security in question and the compound return ( + 1) on 
the market portfolio raised to the - b power, COV(X1 , - RM 1b), is not a 
function of interest rates for any t. 11 With these assumptions, we can then 
rewrite (16) as: 

(17) 

oo E(X(t,ro)) 
PV= :£ 

i = 1 

oo N 1 = k 
i = 1 R (t r )r 

F ' 0 

COV(X1 , - R,;;1b) 

E(R,n(t, r 0) b) 

RF(t,r0Y 

Differentiating with respect to r0 and dividing by PV to obtain the 
proportional change gives: 

(18) 

dPV 

dr0 

PV 

where 

(19) 

oo N 1 
k 

r = 1 R (t r ) 1 
F ' 0 

-=- E(X(t r0)) -------,--
dN1 d [ COV(X1 , - R;;; rb) l 
dr0 dro ' E(Rm(t,ro) -b) 

COV(X - R -b) aE(Rm(t,ro)- b) 
dN

1 
aE(X(t,r0) 1 

' mt ar
0 

• 
--= + 
dro iJr0 E(R;;; 1b)2 

Equation (18) is an analog to the generalized duration measured obtained 
for bonds. Note, however, that it has not been converted into elasticity 
terms, but rather gives the proportional change in net worth for a given 

11. This assumption restricts our analysis to the pure interest rate elasticity of net worth, 
since it precludes any changes in the riskiness of cash flows that are correlated with changes 
in the spot rate. 
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absolute change in the spot rate. The values calculated using equation 
(18) may be interpreted as the percentage change in net worth for the 
bank per 100 basis point change in the spot rate. Another difference from 
the generalized duration measure for bonds is that the proportional 
change in net worth for the bank accounts for the effects of changes in 
interest rates on the future cash flows received by the bank's owners. 

Given the forecasts of the periodic payout to the bank's owners that 
may be obtained using the cash flow forecasting equations given in tables 
13.4 through 13.10 and a term structure of risk-free rates, one has the 
basic data for estimating the current net worth of the bank, using equa­
tion (17). 

13.5.1 Risk Adjustment Estimation 

For our estimates the proportional risk aversion factor, b, was taken to 
be 1 (which implies logarithmic utility). The excess return on the market 
was estimated as a linear function of the one month risk-free rate. The 
resulting forecasting equation, based on monthly observations12 from 
1965 to 1975, is given in table 13.11. Finally, to estimate the covariance 
between the bank's cash flows and the compound market return, it was 
assumed that (a) market returns are serially uncorrelated; (b) bank cash 
flows are uncorrelated with lagged market returns; (c) the variability of 
net interest income is a reasonable proxy for the variability in the net cash 
flows to the bank's owners; (d) the correlation between the net cash flows 
and the market return is not a function of time or interest rates; and (e) 
the variance of the market return is constant. With these simplifying 
assumptions, the sample correlation between the bank's net interest 
income and the inverse of the monthly market returns was estimated for 
the period 1969-75. The results were: 

Table 13.11 

Std(llr m) = .06 

Std(X) = 1.96 million N = 69 months 

p(X,rm- 1
) = - .22. 

Excess Market Return (EX,) vs. the Risk-Free Rate (r,) 

a 

-.043 
(-2.14) 

EX,= a+ br, 

Std 
b N D-W Error 

13 119 1.81 .037 
(2.6) 

12. Both excess market return and the risk-free rate are expressed as one-month 
returns, that is, without conversion to an annually compounded equivalent. 
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With Std(Xr) and E(r nu) permitted to depend on the funding strategy 
employed and on interest rates, the entire risk adjustment term becomes: 

(20) 
COV(Xr, - R,-;, 1r) E(R,-;, 1r _ 1).22(.06)Std(Xr) 

E(R- 1 
) 

= .0132 Std(Xr) m,t 
1
-

1 

E(R,-;;,r) 

13.5.2 Estimation of Future Spot Rates 

McCulloch (1971) described a procedure for estimating the discount 
function (i.e., the value today of a certain promise to pay $1 at timet for 
all values oft) from observed prices. With the additions contained in his 
later article (McCulloch 1975a), this method was adapted for term struc­
ture estimation in this study. Once the discount function is obtained by 
McCulloch's procedure, estimated forward rates for all future periods 
may be calculated along with the current spot rate. 

The estimated forward rates will differ from estimated future spot rates 
to the extent that the current term structure includes liquidity premiums. 
A number of studies of the liquidity premium have been made, and, 
though many of these studies agree that premiums exist, there is con­
siderable disagreement on the details of the liquidity premium structure. 
Again we have adopted results obtained by McCulloch (1975a) to obtain 
the mean liquidity premium as a function of the time period for which 
each premium applies. The resulting estimates of liquidity premiums 
were subtracted from the forward rate estimates to obtain the estimates 
of future spot rates period by period. 

The procedures just described provide two of the three characteristics 
of risk-free interest rates needed for the simulations of proportional 
changes in net worth. The estimated function is used directly in calculat­
ing the estimated present value of net worth, as shown in equation (17). 
The estimated future spot rates are a major determinant of the estimates 
of future cash flows for the bank. The third aspect of risk-free interest 
rates needed for the simulations is the response of future spot rates and 
the discount function to changes in the spot rate. This is obtained from 
the empirical model of interest rate changes discussed earlier and summa­
rized in equation (7). 

13.5.3 Simulation of the Interest Rate Elasticities of Bank Net Worth 

The calculation of net worth elasticities for the hypothetical wholesale 
bank examined in this study begins with the selection of a time at which 
the present value of net worth and its interest rate sensitivity are to be 
calculated. A basic interest rate forecast is obtained by the methods 
pioneered by McCulloch and discussed earlier. The term structure is 
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estimated for the base period, forward rates are calculated, and a liquid­
ity premium estimate is subtracted from each to give estimates of future 
one-month rates. The future spot rates are used to forecast prime rates, 
NCD rates, and expected returns on market portfolio. Prime rates are 
used to calculate the loan yield series. 

Macroeconomic variable forecasts are taken from publications of the 
producer of one of the aggregate macroeconomic forecasting services, 
again as of the base period. 13 The macro variable forecasts, along with the 
interest rate forecasts, allow monthly loan volume and commitments to 
be estimated. With loan volume and commitments forecasts, one can 
forecast monthly deposit balances. When combined with an assumption 
about the bank's capital structure, these various forecasts are sufficient to 
generate cash flow forecasts for the payout stream to the owners of the 
bank's equity. As noted earlier, the procedure used in this study is to 
assume that the ratio of total book assets to book equity (capital ratio) is 
held constant through time. 14 Recalling that the balance sheet of the 
simplified model of a wholesale bank includes loans and cash as assets and 
demand deposits, purchased funds, and equity capital liabilities, the 
forecasts of demand deposit volume are used to forecast cash balances. 
These cash balances plus the estimated loan volume provide a total asset 
forecast that, when multiplied by the inverse of the assumed capital ratio, 
gives an estimate of book equity. Purchased fund balances are then 
obtained as the difference between book total assets and the sum of 
demand deposits plus book equity. 

In addition to the expected cash flow forecasts for each future time 
period, the valuation method we have employed requires estimates of the 
standard deviation of these cash flows. These estimates were obtained by 
assuming that the growth rate in the cash flow is from a stationary 
distribution and is serially uncorrelated. The mean growth rate and the 
variance of the growth rate needed for these estimates are derived from 
historical patterns in the bank's net interest income. Since those patterns 
resulted from a capital ratio of about 22, an adjustment is made when 
other capital ratios are assumed. 15 

The final problem to be solved before making the calculations is 
choosing a horizon. A horizon of ten years is assumed largely because it 

13. If no forecasts were published during the base period, the most recent forecasts are 
assumed to remain in effect. Linear approximations are used if forecasts were other than 
monthly. When forecasts end before the horizon, the rest of the values are generated by 
using an average growth rate based on the forecasts that are provided. 

14. This assumption has the advantage of centering attention on a major regulatory 
measure of capital adequacy, but otherwise it is arbitrary and used for computation 
convenience. 

15. Using this approach Std(X,) increases with t and decreased with the capital ratio. 
Morrison (1977) also made estimates for Std (X,) was assumed constant for all 1. The 
differences in results were slight, and only the results using the growth rate assumption are 
used here. 
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appears to be an upper limit for accurate forecasts of forward rates. The 
end-point problem is solved by assuming that the risk-adjusted book 
equity at the end of ten years is invested in one-month Treasury bills 
forever. 

There is an added complication in calculating the interest-rate sensitiv­
ity of net worth, since one is required to calculate the derivative of 
expected cash flows with respect to the spot rate. This derivative is 
evaluated by numerical analysis, specifically by the technique of extrap­
olation to the limit. 16 

13.5.4 Simulation Results 

Simulations of the market value of net worth for the hypothetical bank 
and of the interest rate elasticity of the market net worth are reported for 
three basis periods, January 1973, January 1974, and May 1975. The 
estimated yield curves for these three dates are given in table 13.12. The 
January 1973 curve can be described as mildly upward sloping (173 basis 
points from t = 0 to t = 10 years), while the May 1975 curve is sharply 
upward sloping (330 basis points from t = 0 tot= 10 years). In contrast, 
the January 1974 curve has a "hump" that peaks at t = 5 months and is 
slightly downward sloping over most of the rest of its span. These three 
curves encompass the main term structure shapes that existed during the 
period for which the bank data are available. 

The estimates of market net worth and the interest rate elasticities of 
net worth for various book capital ratios are given in table 13.13. The 
market net worth values are the solutions to equation (17) given the 
previously discussed estimates of the variables in that equation. Clearly, 
as the ratio of total assets to book equity decreases, the quantity of 
purchased funds decreases, and the market value accruing to the owners 
of the equity increases. 

Four estimates of the interest rate elasticities (IRE) are given. Since 
the empirical model of interest rate changes in equation (7) shows the 
response of future spot rates to changes in the current spot rate to be 
different for spot rate changes due to changes in the real component as 
compared with changes in the inflation rate, it is possible to estimate the 
percentage change in the market value of net worth for a 100 basis point 
change in the real rate and for a 100 basis point change in the inflation 
rate. IRE 1 and IRE 2 are based on a 100 basis point change in the real 
component of spot rates and IRE 3 and IRE 4 on a 100 basis point change 
in the inflation rate. For a change in the nominal spot rate that is partly 
due to real effects and partly due to inflation, a weighted average of the 
real and inflationary IREs would be calculated. 17 

16. The method is explained in detail in most elementary numerical analysis texts (see, 
for example, Conte 1965, pp. ll4-20). 

17. We have placed the bar over the symbol for the percentage change in bank net worth 
per 100 basis point change in interest rates to distinguish this concept from the interest rate 
elasticities for bonds that were expressed as percentage changes in value for a 1 percent 
change in one plus the spot interest rate. 
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Table 13.12 Tax-Adjusted Yield Curve on 1173, 1174, and 5175 

Maturity 1173 1/74 5175 

0 4.77±.16 7.21 ± .23 4.86± .58 
1 mo 4.89± .05 7.23± .07 5.10± .17 
2 mo 5.03 ± .03 7.36±.05 5.34± .08 
3 mo 5.19±.02 7.53±.03 5.57± .06 
4 mo 5.32± .02 7.62± .03 5.80± .09 
5 mo 5.43 ± .02 7.63±.03 6.02± .07 
6 mo 5.49 ± .02 7.60± .03 6.22± .07 
7 mo 5.53± .02 7.54±.03 6.39± .07 
8 mo 5.55 ± .02 7.47±.04 6.54± .07 
9 mo 5.56± .03 7.40±.04 6.68± .06 

10 mo 5.58± .03 7.34±.05 6.80± .05 
11 mo 5.61 ± .03 7.27± .05 6.91 ± .05 
12 mo 5.63± .03 7.21 ± .05 7.01 ± .05 
13 mo 5.66± .03 7.16±.05 7.10±.05 
14 mo 5.70± .03 7.11 ± .04 7.19±.05 
15 mo 5.73± .03 7.07± .04 7.27±.05 
16 mo 5.76± .03 7.03 ± .04 7.35± .05 
17 mo 5.79± .03 6.99± .04 7.42 ± .04 
18 mo 5.82± .03 6.96± .04 7.48 ± .04 
21 mo 5.91 ± .03 6.89± .04 7.65 ± .03 
2 yrs 5.97± .03 6.86± .04 7.78± .04 

30 mo 6.07± .02 6.85 ± .02 7.96± .04 
3 yrs 6.13± .02 6.85 ± .03 8.07± .05 
4 yrs 6.18± .02 6.82± .03 8.17±.05 
5 yrs 6.21 ± .02 6.77 ± .02 8.17±.04 
6 yrs 6.27± .02 6.74± .02 8.15 ± .04 
7 yrs 6.34± .02 6.74± .02 8.14±.06 
8 yrs 6.42± .02 6.77 ± .02 8.14±.07 
9 yrs 6.47 ± .02 6.82± .03 8.15 ± .07 

10 yrs 6.50± .02 6.88± .03 8.16±.07 

Note: All yields are annual internally compounded rates of return. Numbers following the 
± signs are standard errors. 

The second distinction in IRE estimates involves the separation of 
income and wealth effects in the equation for the proportional change in 
net worth (equation 18). The wealth effect results from the existing cash 
flows being priced by a new discount factor. The income effect involves 
the pricing of the changes in future cash flows resulting from changes in 
future spot rates. It has been suggested that in an efficient market, with all 
the components of risk adjustment correctly specified and measured, 
there would be no income effect. 18 IRE 1 and IRE 3 are estimates of the 
percentage change in net worth including the full income effect, while 
IRE 2 and IRE 4 include only the wealth effect. Thus, since the income 
effect is positive, IRE 1 and IRE 3 are lower limits on the estimates of the 
percentage change in net worth, and IRE 2 and IRE 4 are upper limits on 
these estimates. 

18. This point was first brought to our attention by William Sharpe. 
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An examination of table 13.13 shows that the estimates of the sensitiv­
ity of bank net worth to spot rate changes are all negative. Banks of the 
sort modeled in this study are made worse off by interest rate increases. 
However, the magnitude of the estimated net worth losses is quite small, 
especially in comparison with the elasticity estimates for bonds reported 
in table 13.3. For example, according to table 13.3 a 100 basis point 
increase in the May 1975 spot rate would have resulted in a decrease in 
the net worth of a 10 percent, ten-year coupon bond of between 2.3 and 
3.4 percent. From the final section of table 13.13, we can see that the 
same spot rate change is estimated (at most) to result in a change in the 
net worth of the hypothetical bank of less than 0.5 percent. 

Another point of interest from the table is that the IRE estimates for 
the bank are rather insensitive to whether the source of the spot rate 
change is real rates or inflation. Again we can contrast this result with the 
almost 50 percent greater sensitivity to inflation displayed by ten-year 
bonds in table 13.3. 

Table 13.13 Market Values and Interest Rate Elasticities 

Estimated 
Market 

Book Value IRE Estimates 
Capital of Bank 
Ratio Net Worth IRE 1 IRE 2 IRE 3 IRE 4 

January 1973 

30 447.9 .40 .44 .38 .41 
20 468.2 -.40 -.44 -.38 .42 
10 528.9 -.40 -.45 -.40 -.44 
2 1,014.8 -.40 -.47 -.44 -.50 

January 1974 

30 464.4 -.23 -.26 -.22 -.25 
20 489.5 -.23 -.26 -.22 -.25 
10 564.9 -.23 -.27 -.23 -.26 
2 1,168.0 -.23 -.28 -.24 -.28 

May 1975 

30 516.9 -.29 -.39 -.29 -.37 
20 546.1 .29 -.39 -.29 -.37 
10 633.7 .30 -.40 -.31 -.39 
2 1,134.8 -.32 .45 

Note: IRE 1 (IRE 3) is the percentage change in bank net worth for a 100 basis point change 
in the real spot rate (one-month inflation rate) assuming both an income effect and a wealth 
effect. 
IRE 2 (IRE 4) is the percentage change in bank net worth for a 100 basis point change in the 
real spot rate (one-month inflation rate) assuming there is no income effect. 
Market values are in units of $1 million. 
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Both the small magnitude of the estimated net worth elasticities for 
bank net worth and their insensitivity to the source of spot rate changes 
can be attributed to the model bank's loan mix, which is predominantly 
floating rate loans and short-term notes. Even though ltJan renewals and 
loan commitments tend to make the effective maturity of loan portfolios 
longer than their nominal maturities, that they are largely floating rate 
loans (or equivalently renegotiable on renewal) and are supported to a 
significant degree by interest-sensitive borrowed funds means that the 
hypothetical bank is very close to being immunized from nominal interest 
rate changes. 

These conclusions should be tempered somewhat by the realization 
that the market value estimates are biased upward. The major reason for 
this bias is that the estimated cash flows do not include noninterest 
expenses for the hypothetical bank. Including noninterest expenses 
would have involved arbitrary allocation of actual expense for the bank to 
the asset and liability categories that were modeled in the hypothetical 
bank, and we did not attempt this. However, it is clear that including such 
expenses would have reduced the measured income effect (assuming that 
noninterest cash flows would tend to increase as spot rates increase) and 
reduced the market value of the bank's net worth. Both effects would 
tend to increase the sensitivity of the hypothetical bank's net worth to 
interest rate changes, but perhaps not much beyond the estimates that 
assume no income effects (i.e., IRE 2 and IRE 4). 

Another notable result of the simulations is the insensitivity of the 
IRE estimates to the book capital ratio. As we decrease the book capital 
ratio, equity capital is substituted for purchased funds to support the 
bank's assets. Since the asset structure is unchanged in the process, this 
appears to imply that the absolute values of IRE should fall as the book 
capital ratio decreases. This line of reasoning ignores the effects of 
reducing the amount of interest-sensitive purchased funds. As rates 
increase, future income flows are reduced owing to increases in the rates 
paid on purchased funds, and as the amount of purchased funds decreases 
this negative income effect on the IRE estimates is weakened. However, 
the relative insensitivity of IRE 2 and IRE 4 (i.e., the estimates that do not 
include income effects) to changes in the assumed book capital ratio 
suggests that this income effect is not important; on the whole, purchased 
funds are being purchased at market prices. On the other hand, rate 
increases result in decreases in the market value of outstanding liabilities 
and, of course, decreases in the market value of purchased funds result in 
increases in the bank's net worth. As purchased funds become a less 
important source of funds for the bank, this positive wealth effect on 
IRE as the book capital ratio decreases completely offsets the associated 
increase in the market value of the equity. 
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The level and structure of interest rates is seen to have some effect on 
IRE estimates. For the two upward sloping term structures (January 1973 
and May 1975), the difference in the IRE estimates is small, especially 
when we consider only wealth effects. However, the IRE estimates for 
the humped curve of January 1974 are consistently smaller than their 
counterparts for the other two term structures. This suggests that the 
level of interest rate risk for banks of the sort described here is smaller 
when interest rates are anticipated to be at or near a peak than it is when 
rates are expected to rise. Given the importance of wealth effects in 
determining the IRE estimates, this is a reasonable result. 

13.6 Conclusions 

In this study we have demonstrated a method for estimating the market 
value of net worth and the sensitivity of that net worth to changes in 
interest rates for a hypothetical wholesale bank. The major conclusion 
reached from our simulations is that interest rate risk is not a very 
significant proposition for a bank similar to the bank in our model (or for 
the loan portfolio of a more complex bank with a similar loan mix, where 
it is assumed that loans are supported by demand deposits and purchased 
funds). Decreasing the ratio of total assets to book capital was shown to 
have little effect on the interest rate sensitivity in percentage terms, 
though of course the smaller asset/capital ratio implies a larger buffer for 
depositors in absolute terms. 

While the results of this study suggest that there is little need for 
regulatory attention to interest rate risk for loan portfolios of the sort 
modeled here, it does not follow that the approach discussed here is 
useless in other aspects of risk evaluation for banks. The results in table 
13.3 suggest that the interest rate for municipal bond portfolios may well 
be an important source of risk for banks. Application of generalized 
duration concepts to bond portfolios is relatively simple and could readily 
be incorporated into the examination process. Furthermore, except in 
money center banks, loan portfolios may be less well immunized from 
interest rate changes than was true for the simplified bank examined 
here. 

This is clearly the case for real estate portfolios. A companion study to 
the one reported here was made by Nadauld (1977). He attempted to 
measure market values of net worth and interest rate elasticities of net 
worth for savings and loan associations. The results in the Nadauld study 
suggest that net worth losses from 36 percent to 71 percent (depending on 
the association considered) are feasible for interest rate changes similar 
to those that have occurred in the past. Clearly, the real estate portfolio 
of commercial banks is another potential area where examiners might 
apply the principles discussed in this study. 


