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Abstract 
Since independence a quiet revolution has taken place in maize production in the Sahel 
with Mali increasing production more than ten-fold and yields going up ~2% a year.  This 
research work uses farm level panel data from southern Mali’s maize growing regions to 
demonstrate this success in agricultural production and technological change. We analyze 
the determinants of production to unpack increases in input use from technological 
change.  The estimations show that farmer adoption of increased fertilizer use has driven 
much of the productivity growth rather than the adoption of improvements in seeds and 
management.  Additionally, we find strong evidence of observed and unobserved 
heterogeneity, which affects both the choice of fertilizer amounts and the marginal returns 
to fertilizer use.  The results demonstrate the key changes behind this silent maize 
revolution and point to the importance of taking into account farmer heterogeneity in 
estimating productivity and returns to fertilizer. 
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N’i ti kaba séné, e ti balo 

If you are not growing maize, you cannot feed your family (Malian Farmer, 2010) 

 
Introduction 
 
According to aggregate data, since 1961 total maize production in Mali has increased 
more than ten-fold; bringing maize from being a minor crop to one on par with traditional 
Sahelian crops of millet and sorghum (see Figure 1).  This ten-fold increase in production 
has come about through both a major increase in acreage and impressive improvements in 
yields.  Maize yields in Mali have doubled in this period while those in Burkina Faso have 
tripled; in contrast yields in Senegal, Mauritania, and Niger have barely increased. The 
maize revolution in the Sahel has gone relatively unnoticed in research circles.  Recent 
work on productivity growth of agriculture in Africa has indeed identified significant 
increases in productivity in the last decade after some decades of stagnation (Block, 1994; 
2010) and increases in maize production have led the way in many parts of Africa (Smale, 
Byerlee, and Jayne; 2011). But commentators such as Smale et al. (2011) point out a 
number of disappointing results in maize production across the continent and suggest a 
key role of fertilizer in determining yield increases and the potential for maize to jump-
start a green revolution. 
 
While the current yields in Mali of around 2 tons per hectare are still low by world 
standards, the rate of yield increase over the last 45 years (~2%) is equal or better than that 
of maize production in Iowa, Wisconsin, and India.  The maize yield increases in the 
Midwest of the US have been the work of hundreds of scientists and garnered many 
laurels, and yet similar yield increases in the Sahel have gone mostly unnoticed and 
unexplained.  In addition these great increases in yields go in the opposite direction of 
most of the rest of Sub-Saharan Africa where maize yields have stagnated since the mid-
1970’s. 
 
Such a success suggests Mali has succeeded in at least partially solving exactly the issues 
that most bedevil agricultural development projects in the Sahel and most of Africa: 
farmers bought inputs such as fertilizer, farmers changed their agronomic techniques, 
farmers paid for new seeds, farmers found markets for their production, farmers responded 
to price signals.  The large increases in yields in Mali would also not have been possible 
without research, extension, and marketing.   It is evidence of successful extension work 
that brought to farmers information that induced them to add more fertilizer, invest in new 
plowing techniques (i.e., animal traction), purchase improved quality seeds, and change in 
their eating habits.   
 
What has pushed the great expansion of maize production in Mali?  How much is due to 
expanded use of inputs such as fertilizer versus technical changes in seeds and 
management? What are the key elements of this technical change? This work analyzes 
these questions by documenting and analyzing the growth of maize production in southern 
Mali using a novel panel data set that spans the last 20 years.  In order to disentangle the 
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different factors behind the increase in maize production, we focus our efforts on 
generating a consistent and non biased estimate of the impact of fertilizer use on yields.    
 
Figure 1: The growth of maize production 1961-2009 

 
 
Generally the economics literature shows estimates of high returns to fertilizer in Africa, 
but that farmers do not adopt fertilizer or they use too little of it (Crawford, Jayne, and 
Kelly; 2006).  Standard estimates of the average fertilizer use in Africa is 1/10th of the 
levels used in the rest of the world.  The literature has explained this puzzle through the 
presence of high levels of heterogeneity in the returns to fertilizer use.    
 
Duflo et al. (2008) use an RCT to find high but heterogeneous returns to fertilizer in maize 
production in Kenya.  They find that the optimal fertilizer use is less than recommended 
levels, and that the heterogeneity in returns seems related to length of use (i.e. knowledge 
in how to use fertilizer).  Duflo et al. (2011) find that helping farmers save for fertilizer 
can nudge them into using more on their maize.  Marenya and Barrett (2009) show that 
returns to fertilizer in Kenya are a function of soil qualities, in particular the amount of 
organic matter in the soil.  Xu et al. (2009) find substantial variability in the yield response 
of fertilizer based on a number of observable agronomic (timelines of application) and 
household factors (access to complementary production factors).  In the scientific 
literature Sileshi et al. (2010) find similar variability in maize yields across the African 
continent. 
 
In the work closest in spirit to our work, Suri (2011) also finds high but heterogeneous 
returns to fertilizer and hybrid corn in Kenya.  Suri’s methodology accounts for 
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unobserved heterogeneity in choice of fertilizer and hybrid econometrically through a 
control function approach where farmer choice of fertilizer/hybrid is a function of future 
and past period’s fertilizer/hybrid use.  While robust to some heterogeneity, the Suri 
methodology does not allow for unobserved heterogeneity to change through time, nor 
does it adequately address potential dynamics in soil fertility.  Suri concludes that farmers 
do not use fertilizer where it’s not available or expensive even though returns are high.  
Overall these studies identify a large amount of heterogeneity in returns to fertilizer and 
that the sources of heterogeneity are both observable (price of and experience with 
fertilizer) and unobservable to most econometric efforts (soil organic matter, knowledge).   
 
The presence of heterogeneity in the impact of fertilizer use poses a problem for the 
estimation of this impact.  While Suri’s method allows for control of unobserved 
heterogeneity, her assumption that heterogeneity does not change through time is not 
applicable to our data set and context.  During the years covered by our data set, new 
seeds where continuously appearing in the market, changing the impact of fertilizer use.  
Since we do not observe the seeds used by the farmers, this technological innovation could 
generate a time varying unobserved heterogeneity. 
 
The current work estimates the impact of fertilizer use and explores the heterogeneity in 
these returns for the Sikasso region in Mali.   It focuses on analyzing technological change 
as both a disembodied technological change and one due to observed as well as 
unobserved heterogeneity in the returns to fertilizer use.  With regard to observed 
heterogeneity, we test whether the impact of fertilizer use on yields varies with literacy 
levels and with the use of organic fertilizer.  In order to address unobserved heterogeneity, 
we apply a control function method first presented by Garen (1984).  He developed the 
method to test for unobserved heterogeneity and control for the bias that it brings.  Such a 
control function method allows us to control also for the endogeneity that might exist even 
in the absence of unobserved heterogeneity in the impact of fertilizer use.  This last type of 
endogeneity is the more classic one and it is related to the potential bias that could come 
from the correlation between unobserved determinants of yields and fertilizer use. All of 
these efforts allow us to consistently estimate the impact of fertilizer use and, 
consequently, to analyze the importance of increases in fertilizer use versus generalized 
technological change in the yield increases in Mali. 
 
The work proceeds as follows.  Section II describes the data and farmer interviews that 
form the basis for the analysis presented in this work and provides a descriptive analysis 
of the success in maize production in Mali.  Section III develops a theoretical and 
econometric model to estimate the determinants of maize yields with a focus on farmer 
heterogeneity and the returns to fertilizer.  Specifically, it develops a model of fertilizer 
choice based on farm profit functions with heterogeneity in farm returns and builds an 
econometric technique based on control functions to account for farmer heterogeneity in 
fertilizer responsiveness.  Section IV estimates and provides results for fertilizer demand 
functions and then maize yield functions that account for farmer heterogeneity.  Section 5 
concludes and points to open questions for future research. 
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II.  Description of the data  
 
We use a 12-year panel data set (1994-2006) for over 100 farm households from nine 
villages located in Mali’s southern maize belt. The Malian agricultural research 
organization Institut d’Economie Rurale (IER) started collecting these data in 1988 from 
149 farmers spread across 12 villages in 3 different communes in the Sikasso region.  The 
data set starts with 149 farmers in 1988 and ends with 84 in 2008 due to sample attrition. 
IER researchers chose the villages to represent different agro-ecological zones within the 
Sikasso region and the farmers to represent different types of farms stratified by farm 
assets.1 
 
IER researchers collected the data primarily for agronomic studies and they most closely 
resemble the kind of data one might get from farm trials, except that they come from 
individual farmers.  With their level of agronomic detail and long time series, these micro-
level panel data can answer questions that aggregate and cross-sectional data are unable to 
tackle.  They have details such as daily rainfall data that can solve a number of the 
econometric problems that cause difficulties for many productivity studies. The data set 
contains disaggregated fertilizer and chemical input data by input type and by crop.   
 
Figure 2:  Map of the Sikasso region and research sites in the Bougouni, Kadiolo, and 
Koutiala districts. 

 
II.B.  Sikasso Region Context 
 
The Sikasso Region is the best-watered region of Mali (800-1200mm of rainfall) and the 
zone best adapted to maize and cotton cultivation.  Yet the Sikasso region is reputed to be 

                                                 
1 Most of the analysis is conducted using data from 1994-2006, because of problems matching the data from 
1988-1993 with later years.    
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the location of the greatest poverty in the country (Delarue et al. 2008).2  The data comes 
from three of the primary ecological zones within the region.  Koutiala is where the 
farmers are the most sophisticated and have a long tradition of growing cotton.  Kadiolo 
sub-region is the traditional maize growing area, but with less progressive farmers.  
Bougouni started the 1990’s as the least developed of these regions with farmers least 
touched by extension services among the sub-regions, but has developed in the last 20 
years into a major maize and cotton growing area, through a combination of 
extensification along with improved techniques (intensification). 
 
In terms of the agronomy of maize production in Mali there are significant dynamics 
between years since soil quality can change from one year to the next.  That change in soil 
quality can be a function of the previous year’s crop, especially because maize is typically 
grown in rotation on a field that had cotton the previous year.  In addition maize varieties 
in Mali have proliferated from 1or 2 to 8 – 10 in the decade of the dataset and seed 
varieties are unobserved in this data set.  The main differences between varieties are 
related to their suitability to soils and weed conditions, not maximum yield potential.  
Thus we expect there to be significant unobserved heterogeneity in the impact of fertilizer 
use, in this dataset.  
 
Figure 3 shows the increases in maize productivity in the sample and across the three 
surveyed regions.  Overall it shows a 17% increase in maize yields, but that hides a near 
flat change in yields in Bougouni to a nearly 35% increase in yields in Kadiolo.  The 
figure is suggestive of reasonably high levels of technological change that could be either 
in the form of better seeds, management, or more use of inputs, in particular fertilizer.   
 
Figure 4 shows the relationship between fertilizer use, its price and the price of maize.  
What is obvious is the great increase in fertilizer use (left axis) of about 25% at the same 
time that its price increased 175% (right axis) and maize prices increased only marginally 
in the same period.  This suggests that there has been a secular increase in fertilizer use 
that is more akin to the adoption of a new technology rather than to marginal calculations 
of the price/cost margins that would drive the use of a well-known variable input.   
 
This pattern of adoption of fertilizer in maize production is well demonstrated by the 
regional fertilizer data in Figure 5.  There one sees that Koutiala, the region with the most 
progressive and informed farmers, has fairly consistent fertilizer use across time and in a 
pattern reminiscent of a variable input that obeys price signals.  Meanwhile both Bougouni 
and Kadiolo exhibit a pattern of fertilizer use increase that mimics the S-curves of 
standard technology adoption models.    
 
Fok et al. (2000) argue that maize is a risky crop and that the farmer’s widespread 
adoption of maize could be related to a change in their risk aversion.   They argue that 
maize is risky due to the use of expensive inputs such as fertilizers and herbicides.    
Nevertheless, as explained in Laris and Foltz (2011), maize also reduces risk because it 
matures quickly, providing a good harvest in years with a short rainfall season.  In 
                                                 
2 Many scholars knowledgeable in the economics of Mali dispute this finding in private conversations, but 
no refutation of the data has yet appeared in the literature. 
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addition as shown below in figure 6 the distribution of yield outcomes of maize 
production has changed over the last 20 years, reducing the risk farmers face in growing 
maize.  Figure 6 shows the distribution of yields in the Sikasso farm data over different 
time periods.  The distributions show a distinct pattern of technological change with the 
distribution on average moving up in a steady fashion over the 12 years of the data.  The 
mean of the distribution increases and one sees for almost all quantiles of the distribution 
that yields increase close to 500kg per hectare, which is suggestive of broad based 
participation in the benefits of maize yield increases. In addition the downside risk of 
maize production in terms of yields is greatly reduced, with many fewer farmers below 
500kg/ha.   
 
Laris and Foltz (2011) argue that an important factor behind the increase in fertilizer use is 
the provision of credit for fertilizer.   As the authors point out, in the area that corresponds 
to the data we use, the credit for fertilizer is obtained through the parastatal CMDT 
(Compagnie Malienne pour le Developpment des Textiles).  This company provides 
fertilizer at the beginning of the season in exchange for the cotton that this company will 
receive at the time of the harvest.  In some cases, the farmers use, in their maize plots, 
some of the fertilizer they claim that will be used for growing cotton. 
 
Laris and Foltz (2011) provide evidence of this link between cotton and the access to 
fertilizer for maize. Their interview and quantitative evidence shows, for example, that 
farmers who grow cotton get higher yields in their other field crops.   The estimations that 
we present below support the idea presented in Laris and Foltz, as they show that the 
percentage of land under cotton is positively associated with the amount of fertilizer used 
for growing maize, which contrasts somewhat with Benjaminsen, Aune, and Sidibé’s 
(2010) finding of declining soil fertility in cotton growing areas. 
 
Taken together the graphical data in figures 3,4, 5 and 6 shows increases in maize yield at 
the same time that there are major increases in fertilizer use.  Below we test whether the 
increase in maize yield is solely attributable to the increased use of fertilizer or whether 
there is an element of disembodied technological change such as improvements in seeds 
and or management. 
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Figure 3: Maize yields by Sikasso region zone 

 
 
Figure 4: Fertilizer use with maize and fertilizer prices, Lowess curves
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Figure 5: Fertilizer use by Sikasso region zone, Lowess curves 

 
Figure 6: Maize yield distributions over time Sikasso farm data 
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III.  Conceptual Framework 
 
The conceptual framework for analyzing the determinants of maize yields starts with a 
farmer maximizing profits on his farm:  where T represents total land area and π 
is per hectare profits.  Assuming that land is fixed or that the production function exhibits 
constant returns to scale the farmer can maximize per hectare profits which setting the 
price of output to 1 can be described as: 

       
( , , , ) f xg f x r p f p xπ α= − −

    
(1) 

 
where g(.) reflects the yield function, α represents the level of technology, f reflects the 
amount of fertilizer per hectare, x reflects other variables that affect yields, r reflects those 
unobserved variables, such as soil quality that affect yields, and the relative input prices 
are pf and px.  The first order conditions to maximize profits with respect to fertilizer will 

produce the following first order condition for optimality: , which 

when solved for fertilizer will give the following fertilizer demand function for the 
optimizing farmer: 
       

( , , , , )ff h f x r pα=      (2) 
 
Note if the unobserved component, r, is additive in (1), then it does not enter into equation 
(2).  But if heterogeneity and the observed differences, x, enter the production function 
g(.) in a non additive way, as they would in a Cobb-Douglas, generalized quadratic, or 
translog production function, then they will appear in the fertilizer demand function h(.).   
We use a Cobb Douglas and allow unobserved variables to appear not only as factors of 
production (multiplying fertilizer use) but also in the exponent associated to fertilizer use. 

This simple maximization problem has a number of immediate implications for the 
observability of different levels of fertilizer use in real world data. First, assuming that r, 
is not additive, optimal levels of fertilizer chosen by farmers will be a function of both 
observable, x, and unobservable r, differences between farms.  Second the returns to 
fertilizer will be a function of both observable and unobservable variables.  The 
dependence of fertilizer use and of fertilizer’s impact on unobservable variables poses an 
econometric problem in that these unobservables could bias our estimates of the returns to 
fertilizer.  
 
 
III.A.   Econometric Framework 
 
This section presents the econometric framework that will be used to estimate 
technological change in maize yields (the Solow residual) and the impact of fertilizer use 
on yields.  While the level of technological change is a straightforward parameter 
estimation, that of the impact of fertilizer is more complex due to the maximization 
problem outlined above. The estimation method we use is based on a fixed effect 
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estimation that allows the demeaned error to be correlated with the demeaned fertilizer 
variable and that also allows for heterogeneity in the impact of fertilizer use.  Specifically 
the marginal effect of fertilizer on yields can change according to both observables and 
unobservables that can be different for observations across time and farms.3 
 
Our basic yield specification is a standard one, where the impact of fertilizer on yields is 
the same for all the households in all the periods. 
 

       (3) 

 
where  is the log of yield per hectare, At is a time variable whose coefficient, α , is the 
standard Solow residual measuring disembodied technological change, is log of 
fertilizer per hectare and  is a vector that contains other variables that determine yields.  
We are interested in estimating both the rate of disembodied technical change and the 
marginal product of fertilizer, α and .  The estimate of α is straightforward, while that 

of  requires careful attention to both observable and unobservable determinants, whose 

econometric properties are delineated below.  
 
In a panel data context it is useful to decompose the unobservable component, , into a 
time invariant and a time variant component.  That is: 
 

       
 
As it is well known, access to a panel data allows for a fixed effect estimation, which 
controls for the potential correlation between the independent variables and the farm or 
plot specific error term, . Nevertheless, it is likely that a fixed effect will not fully 
capture or control for the farm level heterogeneity we seek to measure.  Specifically, we 
expect the effects of fertilizer use to be non-uniform across time, since it can change with 
seeds used and time varying differences in soil and other agronomic conditions. We 
therefore use a modified fixed effect estimation that allows the impact of fertilizer to 
change for different individuals and at different periods. The heterogeneity in marginal 
returns to fertilizer is likely to have both observable and unobservable (to the 
econometrician) elements.4 Thus, we specify  as: 
 

        
 
                                                 
3 Note this focus on unobservables that effect the marginal returns to a factor of production differs from the 
methods proposed by Levinson and Petrin (2003) for capturing unobservables in a measurement of overall 
productivity. 
4 We assume that farmers know, observe and act on the elements that are unobservable to the 
econometrician. 

ity
itf

itx

itµ

it i itµ η ε= +

iη

ftβ

o
fit o it itxβ γ γ γ= + +
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where  is a vector of observable variables that affect the impact of fertilizer use on 
yields and  reflects unobservable heterogeneity on the impact of fertilizer on yields. 
The parameter  can be considered as an element from r, the unobserved variables in the 
production function. We assume that the unobservable element, , has an expected 
value of zero: .   
 
Taking into account this specification of , and ignoring At to simplify the exposition, 
the new yield equation will be given by: 
 

.    (4) 
 
Equation (4) provides a less restrictive specification of the impact of fertilizer on yields.   
The presence of unobserved heterogeneity will bring a bias in the estimation of the 
average impact of fertilizer use ( ). In the current work, we apply Garen’s (1984) control 
function method to account for unobserved heterogeneity in an estimation based on fixed 
effects, which is to our knowledge the first application of control functions to a panel data 
setting. 5 
 
A fixed effects estimation controls for the potential correlation between  and , 
through .  This method estimates the demeaned dependent variable as a function of the 
demeaned independent variables:  
 

 
          (5)   
Given that  is not observable the new error of the estimation, will include the terms 
related to this unobserved heterogeneity.  That is: 
 

.     
 
The first two terms of this compounded error come from the unobserved heterogeneity 

.  These two terms are likely to be correlated with , creating a bias in the 

estimation of . Assuming that  is not correlated with , the linear 

projection of the error over  will be given by: 

                                                 
5 The control function used here is similar in spirit to Suri’s (2011) method for controlling for heterogeneous 
returns, but avoids the problem of using past choices to identify current choices which could be biased in a 
situation with crop rotations across years on a single plot.  In general, panel data should obviate the need for 
a control function approach with its multiple years of data to account for individual heterogeneity.  In this 
case the heterogeneity is independent variable specific and changes through time, which means a simple 
fixed effect cannot fully control for the heterogeneity. 

o
itx

itγ

itγ

itγ
( ) 0itE γ =

fitβ

o
it x it it o it it it it ity x f x f fβ γ γ γ µ= + + + +

γ

itf itµ

iη

( ) ( ) ( ) ( )o
it i x it i it o it it i it it it it it iiy y x x f f x f f f fβ γ γ γ γ µ µ− = − + − + − + − + −

itγ itu

( )it it it it it it iu f fγ γ µ µ= − + −

itγ it if f−
γ ( )it iµ µ− ( )it if f−

itu ( )it if f−
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where .  Thus the estimated 

coefficient will be given by: .  Theta is expected to be positive given 
that an increase in  is likely to be correlated with an increase in 6.    
 
As argued by Garen (1984) one can recover  from the residual of an estimation where 
the dependent variable is .  The idea, which comes from the first order conditions of a 
firm profit function that produces the fertilizer factor demand function, equation (2), is 
that if the impact of fertilizer use on yields is higher, farmers will respond by using more 
fertilizer.  Thus, the error from estimation of  will be positively correlated with .   
 
A second potential problem of the fixed effects estimator is that even after eliminating the 
time invariant component form the error, the demeaned error, , might still be 

correlated with the dependent variable, .   This might happen if, for example, 
the use of fertilizer responds to conditions that change over time, and, simultaneously, 
these changing conditions affect yields.  For example, if the use of fertilizer responds to 
unobservable changes in the fertility of the soil, there will be a correlation between 

 and . We consider the presence of unobservables in the exponent of 
fertilizer and also, as an additional production factor that multiplies fertilizer use.   The 
presence of unobservables as an additional production factor, imply a correlation between 

  and   .  This correlation will further bias the estimates of the 
impact of fertilizer on yields.  The control function method that we deploy allows us to 
overcome these two potential problems.   
 
The coefficient  has two components, one component that is observed by the farmer 

before deciding how much fertilizer to use ( ) and another that is not observed early 

enough in the growing season ( ) and, consequently, does not affect the farmer’s choice 
of the amount of fertilizer.    If we assume a standard production function, the factor 
demand equation for fertilizer in equation (2), which describes the optimal amount of 
fertilizer per hectare (in logs), will depend negatively on the price of fertilizer, positively 
on the log of the other inputs used in production (per hectare) and positively on the 
observable component of . Using a first order approximation of the fertilizer demand 
equation, we have: 
 

                                                 
6 This implies a positive correlation between  and  

( )it it it itu f f rθ= − +

cov(( )( )) / (( ))it i it it it it it if f f f Var f fθ γ γ= − − −
hatγ hatγ γ θ= +

itγ itf

itγ

itf

itf itγ

( )it iµ µ−
( )it if f−

( )it iµ µ− ( )it if f−

( )it iµ µ− ( )it if f−

itγ
o
itγ

u
itγ

itγ

it if f− it it it itf fγ γ−
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    (6)  

 
where  includes variables that determine the price of fertilizer and   is equal to the 

derivative of  with respect to  multiplied by .   If we estimate equation (6) 
including the relevant production inputs that determine fertilizer demand and an 
exhaustive list of the variables that determine the price of fertilizer,  can be recovered 
by estimating equation (4) and capturing the residuals of such estimation. 
 
Expressing individual heterogeneity  as well as the error of equation (4) as functions of 

, we have: 
 

 
 

       
(7) 

where   is equal to . 
 
Plugging equation (7) in equation (5), we have: 
 

 
          (8) 
where         
 
The term ( )it it it itz f z fγλ −  controls for unobserved heterogeneity, or the presence of 

unobservables in the exponent associated with fertilizer use.  The term ( )it itz zµλ −  
controls for the more classical endogeneity, that will be brought about by the presence of 
unobservables as additional inputs.  Under the assumption that 

 (assumption 1), we will have that  
 
E( )=0 which will allow us to consistently estimate .7 

                                                 
7 If   then  given that  and  

are one to one functions of each other given .  Using the law of iterated expectations it can be shown 

that:  .    Since   is a function of  

, we can say that .  Using the law of iterated 

expectations, then: .    

of

o
it f it p it it itx

f x m x z= Ω +Ω +Ω +

itm itz

itf o
itγ

o
itγ

itz

itγ

itz

it it itz vγγ λ= +

it it itz wµµ λ= +

itv u
itγ

( ) ( ) ( ) ( ) ( )o
it i x it i it o it it i it it it it it it itiy y x x f f x f f z f z f z zγ µβ γ γ λ λ ω− = − + − + − + − + − +

( )it it it it it it iv f v f w wω = − + −

1 2( | , , , ) 0it i i iT itE v z z z x =

itω ( )it itf f− γ

1 2( | , ,.. , ) 0it i i iT itE v z z z x = 1 2( | , ,.. , ) 0it i i iT itE v f f f x = itf itz

itx

1 2(( ) | , ,.. , ) 0it it it it i i iT itE v f v f f f f x− = it if f−

1 2, ,..i i iTf f f (( ) | , ) 0it it it it it itiE v f v f f f x− − =

(( )( )) 0it it it it it iE v f v f f f− − =
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For assumption 1 to hold, we need to include the relevant other factors of production that 
determine fertilizer demand and all potential the determinants of the price of fertilizer.  If 
this is not the case,  will include not only  but also the determinants of fertilizer use 
that have been excluded from the estimation. If assumption 1 holds, including the 
interaction of the log of fertilizer and the residual will take care of unobserved 
heterogeneity.  At the same time, the inclusion of the residual, by itself, will take care of 
the potential time varying correlation that might exist between fertilizer use and the error, 
even after controlling for unobserved heterogeneity.  
 
 
IV.  Econometric Estimations and Results 
 
IV.A.  Specification of the equations 
 
The current section estimates the impact of fertilizer use on yields at the plot level where 
each observation is a specific plot in a particular year.  We will use the control function 
method described above which uses the residuals from the estimation of the fertilizer 
demand equation in order to account for two potential biases.  The first one originates in 
unobserved heterogeneity while the second one comes from the potential correlation 
between the demeaned fertilizer variable and unobservables, a correlation that might exist 
even after controlling for unobserved heterogeneity.  
 
As shown in the previous section, the use of fertilizer can be estimated as a function of the 
other factors of production, the factors linked to observed heterogeneity and the price of 
fertilizer. We consider as potential factors linked to observed heterogeneity: organic 
fertilizer and the percentage of adult members (members with more than 16 years old) 
who are literate.8   We use two types of measures for the price of fertilizer, one for the 
relative price and the other for the availability of capital to finance fertilizer purchases.  
For the relative price we use the log of the price of fertilizer divided by the average price 
for maize in the household’s village.  To measure capital availability we measure with 
proxy variables the two main ways villagers access capital: remittances and cotton based 

                                                                                                                                                   
Additionally, if the observable determinants of fertilizer use are not correlated with the error and since 

it iz z−  is, by construction, not correlated with it if f−  we can conclude that 

(( )( )) 0it i it iE w w f f− − = .  

Thus, we can conclude that (( )( )) 0it i it iE f fω ω− − = . 
 
8 Literacy of household members is likely to improve the productivity of fertilizer in two important ways.  
First it can help farmers understand the instructions in how to use fertilizer and second it likely increases 
farmer ability to learn from extension agents and other knowledgeable outsiders.  Interviews in the study 
villages identified the latter effect as quite important, in that literate farmers were much more likely to have 
the local extension agents and school teachers as part of their social networks.  One can also think of the 
literacy variable in the context of a target input model (e.g., Foster and Rosensweig, 1995, 2010) in which 
higher levels of literacy improves farmer accuracy in hitting the optimal level of fertilizer. 

itv u
itγ
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loans.  Households that have higher remittances face a more relaxed budget constraint, 
which should affect fertilizer demand and use.  As a proxy for remittances, we use the 
number of permanent migrants from the household. In the Sikasso region, producers can 
acquire fertilizer on credit from CMDT, the cotton parastatal, under the promise of paying 
for it with cotton, after the harvest.  We therefore use the percentage of land under cotton 
in the current year as a determinant of access to credit to buy fertilizer.   
 
In addition to the variables describing heterogeneity and costs/access to fertilizer, we 
include key determinants of production from the yield equation: adult family labor per 
hectare, a dummy for having grown cotton last year on the plot, and a time trend.  We 
expect that maize grown on fields that in the previous year grew cotton are likely to 
require more fertilizer and have lower yields because cotton is well known for depleting 
the soil. Table 1 shows the descriptive statistics of the variables used in the estimations of 
fertilizer use and of yields. 
 
In order to capture  from the estimation of equation (6), we need the coefficients of the 
determinants of fertilizer use to be estimated consistently.  Nevertheless, some of the 
independent variables included in equation (6) are likely to be correlated with .  To 
avoid a potential inconsistency in the estimation of these coefficients, we exploit the panel 
structure of the data and estimate the coefficients of the variables that are not constant 
through time, through a fixed effects method.     Thus, we run the following estimations: 
 

 
  (9.1) 

       
  
        (9.2)  

where denotes the subset of variables included in equation (4) that change through 

time,    denotes the coefficients associated with these variables,  denotes the 
estimated coefficients of  ,  denotes the subset of variables that do not change 

through time and   the coefficients of these variables.   That is, we first run a fixed 
effects estimation of the use of fertilizer, including only those variables that change 
through time.   Afterwards, we run a standard estimation of the error of the first estimation 
against the variables that do not change through time.    The residuals of this last 
estimation will be used in the estimation of yields as shown in equation (8). 
 
The fertilizer (6) and maize yield equations (8) are estimated as fixed effect models at the 
plot level with robust standard errors clustered at the farm household level.  There are up 
to 8 observations per plot with an average just below 3 observations per plot across 120 
households in 12 years.  The panel is unbalanced and the number of observations varies 
between 733 and 675 depending on the variables included in the model.  In all models the 
fixed effects are tested to be significant.   
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Yield estimates will have log maize yields as a function of key production variables, a 
time trend to capture disembodied technological change and observable and unobservable 
determinants of fertilizer returns.  For key production variables we include adult labor in 
the household, rainfall in June during planting, rainfall in August during maize flowering, 
and the area of the plot.  Labor inputs are only available at the household, rather than the 
plot level, and only measures household adult labor available to farm, rather than actual 
labor inputs.  Because farmer interviews identified hired labor as being rare in the survey 
villages and representing only a small proportion of labor inputs, this measure is likely 
reasonably well correlated with total labor use. We measure labor in per hectare terms.  
We chose the two key periods of rainfall for maize production, planting and harvesting, 
rather than total rainfall, which includes rainfall outside of the growing season, in order to 
get a more precise estimate.  Lack of June rainfall often leads to plants not sprouting and 
farmers having to replant maize, while lack of August rainfall can affect whether the 
maize will pollinate and is the most common reason for crop failures. We include the area 
of the plot to control for any potential increasing or decreasing returns to scale as is 
sometimes found in peasant agriculture (e.g., Chayanov, 1986 and Benjamin, 1995), 
although yield estimations implicitly assumes constant returns to scale. 
 
We estimate the yield model two ways to measure the returns to soil fertility both 
observed and unobserved.  The first basic model includes an observable related to 
knowledge acquisition, the percent literate household members as an interaction with 
fertilizer.  Following the findings of Marenya and Barrett (2009) as well as many 
agronomic studies (e.g. Chikowo et al., 2010; Sileshi et al. 2010; Wopereis et al., 2008) 
that higher levels of soil organic matter improves the efficiency of chemical fertilizer use, 
the second model includes measures of the amount of organic fertilizer (cow manure) 
applied to the fields.  Soils in Mali are particularly low in organic matter and cow manure 
is the primary method available aside from long-term fallowing that Malian farmers can 
use to improve soil organic matter.  Organic fertilizer is measured as the log of 150 kg 
donkey cartloads.  The first version of model 2 includes organic fertilizer alone, while the 
second also includes the interaction of organic fertilizer with chemical fertilizer.  
  
In addition as a robustness check we provide estimates of the yield function in both model 
one and two versions without controlling for endogeneity through the residuals of the 
control function.  These estimates provide the baseline from which we can understand the 
importance of controlling for the endogeneity of chosen inputs in yield functions.   
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Table 1 Descriptive Statistics 
    
Variable Measurement unit Mean  Std 

Dev 
Yield Estimation Variables    
log (maize yields) log (kg per ha) 7.11 0.69 
Maize yields kg per ha 1494.5 942.38 
log (area of the plot) log (hectares) -0.07 0.95 
area of the plot  hectares 1.33 1.04 
Time Trend (1995=1) year (1995=1) 6.65 3.07 
Previous yr cotton dummy 0 - 1 0.23 0.42 
Number of adults per cultivated hectare  0.66 0.27 
Log (number of adults/ha)  -0.498 0.44 
log (Rain in june)  5.00 0.33 
Rain in june millimeters 157.24 53.74 
log (Rain august)  5.74 0.34 
Rain in august millimeters 328.83 111.81 
log (organic fert per ha) log (150 kg per ha) -6.14 2.70 
Organic fert per hectare  (150 kg) 150 kg per ha 4.55 37.72 
log (fertilizer per ha) log (kg per ha) 3.39 3.94 
% lit members*log (fertilizer per ha)  0.35 0.73 
log (fertilizer per ha)*log (organic fert per 
ha) 

 -20.52 28.24 

    
Fertilizer Demand Additional Variables    
% of land under cotton % (from 0 to 1) 0.29 0.13 
Relative per kg price of fertilizer/price of 
maize 

 2.53 0.88 

Number of migrants in the household  4.14 4.18 
% of adult members that are literate % (from 0 to 1) 0.10 0.12 
    

 
 

 
IV.B.  Fertilizer function estimates 
 
Table 2 shows the estimation of the fertilizer equation in two specifications.  The 
difference between the specifications is the inclusion of the use of organic fertilizer as an 
independent variable for model 2. The model is a fixed effects estimation with robust 
standard errors to correct for the correlation of the error across plots that belong to the 
same household.  
 
The estimations show no time trend in fertilizer demand once one controls for other 
factors that influence fertilizer demand.  There is a strong association between previous 
cotton production on a plot and the following year’s fertilizer use, with an 82-86% higher 
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rate of application on plots that previously grew cotton.  In addition the model 2 
specification shows farmers applying lower levels of chemical fertilizer to plots that 
received higher levels of organic fertilizer, suggesting farmers see these as at least partial 
substitutes.  These two results suggest that Malian farmers apply chemical fertilizer to 
improve fields with lower natural or applied fertility, which implies that a naïve regression 
of the effects of fertilizer that did not control for the endogeneity of its use would produce 
biased estimates.   
 
We do not find a statistically significant effect of labor availability, but see a strong effect 
in terms of labor quality in our measure of the number of literate adults in the household.  
As seen below in the yield equations levels of household literacy increase the productivity 
of fertilizer (likely through learning and management effects) and it stands to reason that 
this would also increase fertilizer demand.   
 
In terms of price variables, the estimates show a weakly significant but negative effect of 
fertilizer prices on fertilizer demand.  We find much stronger effects on fertilizer demand 
from our proxies for access to capital.  While the number of migrants is not significant, the 
percentage of land devoted to cotton in the household shows a large and significant effect 
on the ability of farmers to purchase chemical fertilizer for their maize fields. 
 
Table 2 Estimation for fertilizer demand 
 Model 1  Model 2  
Dep variable: log (fertilizer per ha) Coefficient S.E. Coefficient S.E. 
     
Time Trend 0.087 0.06 0.067 0.07 
1 if cotton plant previous year 0.861*** 0.24 0.821*** 0.25 
Log(organic fert per ha)   -0.116* 0.06 
Log fert price/maize price -1.074* 0.6 -0.788 0.56 
Number of migrants in the household 0.222 0.19 0.286 0.18 
% land under cotton 3.832*** 1.41 4.426*** 1.41 
Log (number of adults/ha) 0.176 0.66 0.479 0.64 
% of adults that are literate in hh 2.5793** 1.21 2.622** 1.34 
Constant 1.782** 0.82 0.597 0.77 
     
Number of observations 733  675  

 
  

IV.C.  Yield Function Estimates 
 
Table 3 presents the fixed effects yield estimations for the baseline model and model 1. 
Both estimates include a time trend to capture disembodied technical change and a set of 
yield determinants including land, labor, rainfall, and fertilizer.  The baseline estimation 
does not include the terms associated with the residuals of the fertilizer estimation, while 
the second includes the residuals and their interaction with the log of fertilizer as specified 
in equation (8).  
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The baseline estimation demonstrates a number of the pitfalls of not addressing farm and 
farmer heterogeneity in the demand for fertilizer.  It shows a negative and statistically 
non-significant impact of the use of chemical fertilizer on yields.  The only positive 
relation between fertilizers and maize yields is through the interaction with the percentage 
of adult members that are literate in the household.  In addition the baseline estimation 
shows a strong time trend, suggesting a nearly 4% per year level of technical change in 
maize yields. 
 
In contrast the model 1 estimates, which control for the potential endogeneity of fertilizer 
use, show much stronger effects of chemical fertilizer on yields and a much more modest 
and marginally significant level of technical change of ~2%.  The model 1 estimate of a 
yield elasticity of 0.2 for fertilizer when combined with the literacy premium of 0.36, 
yields a substantial effect of fertilizer on yields especially for the most educated 
households.  The positive impact of the interaction between literacy and the use of 
fertilizer is consistent with the importance of adequate management in fertilizer 
application.  At the same time, this coefficient might reflect other variables such as a 
higher presence of extension agents in areas that are more developed and that 
consequently present a more educated population. 
 
The model 1 estimates show significant effects of farmer heterogeneity in their optimal 
fertilizer application and that this heterogeneity does effect yields.  This second 
specification shows a negative and statistically significant relationship between the 
demeaned residuals of fertilizer use and the demeaned yields: our estimate of  (in 
equation (7)) is negative.  At the same time, the estimation shows a positive and 
statistically significant impact of the interaction between fertilizer use and the residuals of 
the fertilizer equation: our estimate of  (in equation (7)) is positive. 
 
A positive and statistically significant estimation of  implies that households that use 
more fertilizer are households that benefit more from the using it.   These results confirm 
the presence of unobserved heterogeneity in the sample under analysis.    On the other 
hand, the negative and statistically significant estimate of , implying a negative 
correlation between the residuals of the fertilizer equation and yields, suggests that 
fertilizers might compensate for the declining soil fertility.  The residuals alone having a 
significant and negative coefficient suggest that the unobservables in the fertilizer 
equation that tend to increase fertilizer demand have a negative effect on maize yields (for 
example unobserved low soil fertility).  Meanwhile the interaction of the unobservables 
with fertilizer use suggests that those unobservables increase the marginal productivity of 
fertilizer.  If one takes the unobservables from the fertilizer equation to be related to soil 
fertility, one sees that it reduces maize yields but produces a higher marginal return to 
fertilizer application as one would expect across low ranges of soil fertility common in 
West African soils.   
 

µλ

γλ

γλ

µλ
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We find no effect of either rainfall or household labor on maize yields.  The lack of a 
rainfall result may be due to farmer’s ability to do ex-post farm management of the crops 
in which they can make up for poor rain in June, by replanting, and poor rain in August by 
extra effort in other farm tasks such as weeding.  The household labor variable is likely 
not measured accurately enough to demonstrate an effect on yields. 
 
 
Table 3 Maize Yield Estimations: Model 1 
 Baseline  Model 1  
Dep. variable: log (maize per ha) Coefficient S.E. Coefficient S.E. 
     
Time Trend 0.039*** 0.01 0.019* 0.01 
Log(area of the plot) -0.006 0.05 0.038 0.06 
1 if cotton plant prev year -0.031 0.07 -0.173* 0.09 
Log (number of adults/ha) -0.077 0.15 -0.115 0.16 
log (Rain in june) -0.048 0.10 -0.02 0.10 
log (Rain august) 0.005 0.13 0.014 0.13 
log (fertilizer per ha) -0.015 0.01 0.232*** 0.05 
% lit members*log (fertilizer/ha) 0.343** 0.14 0.364*** 0.12 
Residuals of fert demand equation   -0.208*** 0.05 
Residuals *(log (fertilizer per ha))   0.010*** 0.001 
Constant 6.971*** 0.56 5.941*** 0.61 
     
N 733  733  

 
 

A second factor that might influence yields, as well as the impact of fertilizer on yields, is 
the use of organic fertilizer, which we control for in our model 2 estimates. The next set of 
estimations includes the use of organic fertilizer as an additional determinant of yields as 
well as a determinant of the use of chemical fertilizer.  Table 4 shows yield estimations 
that include the use of organic fertilizer.   The first specification shows the baseline model, 
which has a positive and statistically significant impact of organic fertilizer use on yields.  
The second specification corrects for the residuals of the fertilizer use equation, where this 
equation includes the use of organic fertilizer as an independent variable.   The results for 
either fertilizer, it’s residual, or other variables do not change much from the results 
shown in Table 3.   The third specification includes the interaction between the use of 
organic fertilizer and the use of chemical fertilizers.    The estimated coefficient on this 
interaction is not statistically significant, suggesting no significant complementary 
interaction between organic and chemical fertilizer.  While this result contrasts with that 
of Marenya and Barrett (2009), this lack of significant complementarity matches well with 
the fertilizer demand equation, which shows chemical and organic fertilizer to be 
substitutes rather than complements.         
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Table 4 Maize Yield Estimates: Model 2 with organic fertilizer 
 
 Baseline  Model 2A  Model 2B  
Dep. variable: log (maize per ha) Coeff. S.E. Coeff. S.E. Coeff. S.E. 
       
Time Trend 0.036*** 0.01 0.009 0.01 0.008 0.01 
Log(area of the plot) -0.006 0.05 0.025 0.05 0.029 0.05 
1 if cotton plant prev year -0.052 0.08 -0.227** 0.10 -0.228** 0.10 
Log (number of adults/ha) -0.111 0.16 -0.22 0.16 -0.22 0.16 
log (Rain in june) -0.038 0.10 -0.026 0.10 -0.024 0.10 
log (Rain august) 0.059 0.12 0.064 0.12 0.062 0.12 
Log(organic fert per ha) 0.027** 0.01 0.054*** 0.01 0.061*** 0.02 
log (fertilizer per ha) -0.014 0.01 0.255*** 0.05 0.247*** 0.05 
% lit members*log (fertilizer/ha) 0.377*** 0.13 0.397*** 0.12 0.407*** 0.12 
log (fert/ha)*log (organic fert/ha)     -0.002 0.003 
Residuals of fert use equation   -0.238*** 0.05 -0.243*** 0.05 
Residuals *(log (fertilizer/ha))   0.009** 0.004 0.009** 0.004 
Constant 6.775*** 0.55 5.977*** 0.59 5.998*** 0.59 
       
N 675  675  675  
 
 
 
 

IV.D.  Econometric Results Discussion 
 
The estimations presented here have demonstrated the importance of controlling for the 
endogeneity of fertilizer use.   The results indicate that in the absence of controlling for 
endogeneity, the impact of fertilizer use on yields would not be consistently estimated due 
to the correlation between the unobservables and the use of chemical fertilizer. In addition, 
we find that there is evidence of heterogeneity in the impact of fertilizer on yields.   First, 
this impact is higher for households with a higher percentage of members in the household 
that are literate.  Secondly, we find strong evidence of unobserved heterogeneity, which 
affects both the choice of fertilizer amounts and the marginal returns to fertilizers.    
 
The estimations show much stronger evidence for the growth in maize yields having been 
driven by farmer adoption of higher levels of fertilizer use rather than improvements in 
seeds and management, disembodied technical change.  This is not to say that farmers did 
not adopt new technologies, but rather the maize revolution came as a sequential adoption 
process (e.g., Aldana et al. 2010) in which farmers adopted parts of a package in 
succession:  seed first, appropriate levels of organic and chemical fertilizer later. 
 
The importance of controlling for endogeneity in fertilizer use, goes beyond a correct 
decomposition of the determinants of corn yields.  The naïve model ignoring this 
endogeneity would have decided that most of the technical change was in seeds and 
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management and seriously underestimated the return to fertilizer.  Such an underestimate 
of the returns to fertilizer could seriously call into question public policies such as the 
Malian government’s current program to subsidize fertilizer.  Once one controls for both 
observed and unobserved heterogeneity in the returns to fertilizer one sees yield 
elasticities of about 0.2-0.3 for fertilizer.  In addition farmers seem to respond to reduced 
fertility of their soils, as happens with cotton cultivation (Benjaminsen et al. 2010), with 
increased applications of fertilizer.  This suggests a sophistication in African farmer 
knowledge that goes beyond that commonly suggested in the economics literature.  Malian 
farmers are using fertilizer application rates to make both temporally and dynamically 
rational decisions about the fertility of their soils. 
 
 
V.  Conclusions 
 
The success of Mali’s farmers in adopting technologies and intensifying their maize 
production has created a green revolution in maize production in the region.  In part 
through the adoption of improved maize seeds, farming techniques, and the growing use 
of fertilizer on maize fields, farmers in southern Mali have helped turn Mali from being a 
food deficit country to a regional bread basket.  This success has been fostered by a 
combination of research efforts, extension and diffusion of ideas especially by the cotton 
parastatal CMDT, and a farmer willingness to adopt new seeds and inputs.  The success is 
not unique, as Alene et al. (2009) show that a number of other countries have had similar 
improvements in maize production. 
 
Adoption of improved maize varieties in Mali in the late 1980s early 1990’s led first to a 
growth in maize production, which was followed by a sharp growth in the use of fertilizer 
in maize production from the late 1990’s to the 2000’s.  This later growth in fertilizer use 
(adoption of fertilizer for maize cultivation) is primarily responsible for the growth in 
maize yields one sees in the last decade, as opposed to better management or seeds.  
Counter to the situation one sees in many African countries, Malian farmers adopted 
fertilizer for maize in growing numbers despite an increasing price for fertilizer relative to 
the flat price of maize.  This suggests that recent efforts to subsidize fertilizer for maize 
production could have an increasing knock-on effect.   
 
It is important to highlight that the high estimates of the impact of fertilizer do not mean 
that the adoption of new seed varieties has had no impact on yields. Based on our results, 
we can assert that the adoption of new seed varieties needs to be complemented by 
increased use of fertilizers. This finding is aligned with Smale et al. (2011) who assert that 
yields in many African countries have remained stagnated, in spite of the generalized 
adoption of new seeds, due to the low levels of fertilizer use.  
 
The results presented in this paper also highlight the importance of cash and credit 
constraints in the adoption and use of fertilizer.  The results show that an important 
determinant of fertilizer use is given by the percentage of land under cotton.  Since the 
fertilizer used in corn plots is financed with the promise of delivering cotton to the 
parastatal textile company CMDT, our results confirm the argument presented in Laris and 
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Foltz, (2011) and in Tefft (2010) that cotton production contributes to food security 
through the credit it provides for fertilizer use.   
 
There remains room for a great deal of improvement in maize yields in Mali and the West 
African region in the future.  Most of the last decade’s growth in yields is due to improved 
use of inputs, but higher performing varieties of maize seed, including hybrids, are already 
available on the market in Mali and could lead to a next jump in maize yields and 
production.  In addition new maize varieties that are drought resistant have the potential to 
spread maize production into lower rainfall regions of Mali and give those farmers the 
potential to access the higher fertilizer responsiveness of maize compared to sorghum or 
millet. There is also room for more work on the silent green revolution in maize in Mali.  
First, Mali is not alone in experiencing this growth and work that compared and analyzed 
the similarly large growth of maize in Burkina Faso would provide a comparative 
perspective that might help identify key institutional factors that promoted this revolution.  
Expanding the analysis to the whole region could be particularly important in identifying 
institutional factors, since other neighboring countries such as Senegal, Gambia, Guinea, 
and Niger have been left out of the growth in maize. 
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Appendix 
 
Table A1 Available maize varieties in Mali, 2008. 
Maize Variety Maximum 

Farmer 
Yields 

Origin Type Minimu
m 
rainfall 

Date 
of 
Intro 

Other quality 

Kogoni B 2 - 3 T/HA Mali 
IER 

OPV 800mm
/yr 

1970 90 day variety, 
resists leaf disease 

Tzersw 2 - 3 T/HA Mali 
IER 

OPV 800mm
/yr 

1983 90 day variety, 
resists leaf disease 

Tiémantié 3.5 - 4 
T/HA 

Mali 
IER 

OPV 800mm
/yr 

1983 100-120 day, 
sensitive to leaf 
disease,  

SR22 
(EV8422SR) 

4 - 5 T/HA Mali 
IER 

OPV 800mm
/yr 

1984 100-120 day, resists 
leaf disease 

Sotubaka 4 - 5 T/HA Mali 
IER 

OPV 800mm
/yr 

1985 100-120 day, resists 
leaf disease 

Niéléni 3 T/HA Mali 
IER 

OPV 600mm
/yr 

1996 90 day variety, 
resists leaf disease 

Appolo 2 T/HA Mali 
IER 

OPV 500mm
/yr 

1996 70 day variety, 
resists leaf disease 

Dembanyuman 4 - 5 T/HA Ghana OPV 800mm
/yr 

1998 100-120 day, resists 
leaf disease 

Jorobana 2 - 3 T/HA Mali 
IER 

OPV 600mm
/yr 

2008 80 day variety, 
resists leaf disease 

Mali Hybride 7 6 -7 T/HA Mali 
IER 

Hybrid 800mm
/yr 

2008 100-120 day, resists 
leaf disease 

Source: Coulibaly, Ntji. 2008. “Fiche Technique sur Les Variétés de Mais au Mali” IER-
Mali. 

 
 


