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3
The Sahel’s Silent Maize Revolution
Analyzing Maize Productivity in 
Mali at the Farm Level

Jeremy Foltz, Ursula Aldana, and Paul Laris

N’i ti kaba séné, e ti balo
If you are not growing maize, you cannot feed your family.
—Malian Farmer (2010)

3.1 Introduction

According to aggregate data, since 1961 total maize production in Mali 
has increased more than tenfold, bringing maize from being a minor crop 
to one on par with traditional Sahelian crops of millet and sorghum (see 
figure 3.1). This tenfold increase in production has come about through both 
a major increase in acreage and impressive improvements in yields. Maize 
yields in Mali have doubled in this period while those in Burkina Faso have 
tripled; in contrast, yields in Senegal, Mauritania, and Niger have barely 
increased. The maize revolution in the Sahel has gone relatively unnoticed in 
research circles. Recent work on productivity growth of agriculture in Africa 
has indeed identified significant increases in productivity in the last decade 
after some decades of stagnation (Block 1994, 2010) and increases in maize 
production have led the way in many parts of Africa (Smale, Byerlee, and 
Jayne 2011). But commentators such as Smale, Byerlee, and Jayne (2011) 
point out a number of disappointing results in maize production across the 
continent and suggest a key role of fertilizer in determining yield increases 
and the potential for maize to jump- start a green revolution.

While the current yields in Mali of around two tons per hectare are still 
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low by world standards, the rate of yield increase over the last forty- five years 
(~2 percent) is equal or better than that of maize production in Iowa, Wis-
consin, and India. The maize yield increases in the Midwest of the United 
States have been the work of  hundreds of  scientists and garnered many 
laurels, and yet similar yield increases in the Sahel have gone mostly unno-
ticed and unexplained. In addition, these great increases in yields go in the 
opposite direction of most of the rest of sub- Saharan Africa where maize 
yields have stagnated since the mid- 1970s.

Such a success suggests Mali has succeeded in at least partially solving 
exactly the issues that most bedevil agricultural development projects in the 
Sahel and most of Africa: farmers bought inputs such as fertilizer, farmers 
changed their agronomic techniques, farmers paid for new seeds, farmers 
found markets for their production, and farmers responded to price signals. 
The large increases in yields in Mali would also not have been possible with-
out research, extension, and marketing. It is evidence of successful extension 
work that brought to farmers information that induced them to add more 
fertilizer, invest in new plowing techniques (i.e., animal traction), purchase 
improved quality seeds, and change their eating habits.

What has pushed the great expansion of maize production in Mali? How 
much is due to expanded use of inputs such as fertilizer versus technical 

Fig. 3.1 The growth of maize production 1961– 2009
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changes in seeds and management? What are the key elements of this techni-
cal change? This work analyzes these questions by documenting and analyz-
ing the growth of maize production in southern Mali using a novel panel 
data set that spans the last twenty years. In order to disentangle the different 
factors behind the increase in maize production, we focus our efforts on 
generating a consistent and nonbiased estimate of the impact of fertilizer 
use on yields.

Generally the economics literature shows estimates of high returns to fer-
tilizer in Africa, but that farmers do not adopt fertilizer or they use too little 
of it (Crawford, Jayne, and Kelly 2006). Standard estimates of the average 
fertilizer use in Africa is one- tenth of the levels used in the rest of the world. 
The literature has explained this puzzle through the presence of high levels 
of heterogeneity in the returns to fertilizer use.

Duflo, Kremer, and Robinson (2008) use a randomized controlled trial 
(RCT) to find high but heterogeneous returns to fertilizer in maize produc-
tion in Kenya. They find that the optimal fertilizer use is less than recom-
mended levels, and that the heterogeneity in returns seems related to length 
of use (i.e., knowledge in how to use fertilizer). Duflo, Kremer, and Robin-
son (2011) find that helping farmers save for fertilizer can nudge them into 
using more on their maize. Marenya and Barrett (2009) show that returns to 
fertilizer in Kenya are a function of soil qualities, in particular the amount 
of organic matter in the soil. Xu et al. (2009) find substantial variability in 
the yield response of fertilizer based on a number of observable agronomic 
(timelines of  application) and household factors (access to complemen-
tary production factors). In the scientific literature Sileshi et al. (2010) find 
similar variability in maize yields across the African continent.

In the work closest in spirit to our work, Suri (2011) also finds high but 
heterogeneous returns to fertilizer and hybrid corn in Kenya. Suri’s meth-
odology accounts for unobserved heterogeneity in choice of fertilizer and 
hybrid econometrically through a control function approach where farmer 
choice of fertilizer/ hybrid is a function of future and past period’s fertil-
izer/ hybrid use. While robust to some heterogeneity, the Suri methodology 
does not allow for unobserved heterogeneity to change through time, nor 
does it adequately address potential dynamics in soil fertility. Suri concludes 
that farmers do not use fertilizer where it is not available or expensive, even 
though returns are high. Overall these studies identify a large amount of 
heterogeneity in returns to fertilizer and that the sources of heterogeneity are 
both observable (price of and experience with fertilizer) and unobservable 
to most econometric efforts (soil organic matter, knowledge).

The presence of heterogeneity in the impact of fertilizer use poses a prob-
lem for the estimation of this impact. While Suri’s method allows for control 
of unobserved heterogeneity, her assumption that heterogeneity does not 
change through time is not applicable to our data set and context. During 
the years covered by our data set, new seeds where continuously appearing 
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in the market, changing the impact of fertilizer use. Since we do not observe 
the seeds used by the farmers, this technological innovation could generate 
a time- varying unobserved heterogeneity.

The current work estimates the impact of fertilizer use and explores the 
heterogeneity in these returns for the Sikasso region in Mali. It focuses on 
analyzing technological change as both a disembodied technological change 
and one due to observed as well as unobserved heterogeneity in the returns 
to fertilizer use. With regard to observed heterogeneity, we test whether 
the impact of  fertilizer use on yields varies with literacy levels and with 
the use of organic fertilizer. In order to address unobserved heterogeneity, 
we apply a control function method first presented by Garen (1984). He 
developed the method to test for unobserved heterogeneity and control for 
the bias that it brings. Such a control- function method allows us to control 
also for the endogeneity that might exist even in the absence of unobserved 
heterogeneity in the impact of fertilizer use. This last type of endogeneity is 
the more classic one and it is related to the potential bias that could come 
from the correlation between unobserved determinants of yields and fertil-
izer use. All of these efforts allow us to consistently estimate the impact of 
fertilizer use and, consequently, to analyze the importance of increases in 
fertilizer use versus generalized technological change in the yield increases  
in Mali.

The work proceeds as follows: Section 3.2 describes the data and farmer 
interviews that form the basis for the analysis presented in this work and 
provides a descriptive analysis of the success in maize production in Mali. 
Section 3.3 develops a theoretical and econometric model to estimate the 
determinants of maize yields with a focus on farmer heterogeneity and the 
returns to fertilizer. Specifically, it develops a model of fertilizer choice based 
on farm profit functions with heterogeneity in farm returns and builds an 
econometric technique based on control functions to account for farmer 
heterogeneity in fertilizer responsiveness. Section 3.4 estimates and provides 
results for fertilizer- demand functions and then maize- yield functions that 
account for farmer heterogeneity. Section 3.5 concludes and points to open 
questions for future research.

3.2 Description of the Data

We use a twelve- year- panel data set (1994– 2006) for over 100 farm house-
holds from nine villages located in Mali’s southern maize belt. The Malian 
agricultural research organization Institut d’Economie Rurale (IER) started 
collecting these data in 1988 from 149 farmers spread across twelve villages 
in three different communes in the Sikasso region. The data set starts with 
149 farmers in 1988 and ends with 84 in 2008 due to sample attrition. The 
IER researchers chose the villages to represent different agroecological zones 
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within the Sikasso region and the farmers to represent different types of 
farms stratified by farm assets.1

The IER researchers collected the data primarily for agronomic studies 
and they most closely resemble the kind of data one might get from farm tri-
als, except that they come from individual farmers. With their level of agro-
nomic detail and long time series, these microlevel panel data can answer 
questions that aggregate and cross- sectional data are unable to tackle. They 
have details such as daily rainfall data that can solve a number of the econo-
metric problems that cause difficulties for many productivity studies. The 
data set contains disaggregated fertilizer and chemical input data by input 
type and by crop.

3.2.1 Sikasso Region Context

The Sikasso region is the best- watered region of Mali (800– 1,200 mm of 
rainfall) and the zone best adapted to maize and cotton cultivation. Yet the 
Sikasso region is reputed to be the location of the greatest poverty in the 
country (Delarue et al. 2008).2 The data comes from three of the primary 
ecological zones within the region (see figure 3.2). Koutiala is where the 
farmers are the most sophisticated and have a long tradition of growing 
cotton. Kadiolo subregion is the traditional maize growing area, but with 
less progressive farmers. Bougouni started the 1990s as the least developed 
of these regions with farmers least touched by extension services among the 
subregions, but has developed in the last twenty years into a major maize 
and cotton growing area through a combination of extensification along 
with improved techniques (intensification).

In terms of the agronomy of maize production in Mali, there are signifi-
cant dynamics between years since soil quality can change from one year 
to the next. That change in soil quality can be a function of the previous 
year’s crop, especially because maize is typically grown in rotation on a field 
that had cotton the previous year. In addition, maize varieties in Mali have 
proliferated from one or two to eight to ten in the decade of the data set and 
seed varieties are unobserved in this data set. The main differences between 
varieties are related to their suitability to soils and weed conditions, not 
maximum yield potential. Thus we expect there to be significant unobserved 
heterogeneity in the impact of fertilizer use in this data set.

Figure 3.3 shows the increases in maize productivity in the sample and 
across the three surveyed regions. Overall it shows a 17 percent increase 
in maize yields, but that hides a near flat change in yields in Bougouni to 
a nearly 35 percent increase in yields in Kadiolo. The figure is suggestive 

1. Most of the analysis is conducted using data from 1994– 2006 because of problems match-
ing the data from 1988– 1993 with later years.

2. Many scholars knowledgeable in the economics of Mali dispute this finding in private 
conversations, but no refutation of the data has yet appeared in the literature.
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of reasonably high levels of  technological change that could be either in 
the form of better seeds, management, or more use of inputs, in particular 
fertilizer.

Figure 3.4 shows the relationship between fertilizer use, its price, and the 
price of maize. What is obvious is the great increase in fertilizer use (left 
axis) of about 25 percent at the same time that its price increased 175 percent 
(right axis) and maize prices increased only marginally in the same period. 
This suggests that there has been a secular increase in fertilizer use that is 
more akin to the adoption of  a new technology rather than to marginal 
calculations of the price/ cost margins that would drive the use of a well- 
known variable input.

This pattern of adoption of fertilizer in maize production is well dem-
onstrated by the regional fertilizer data in figure 3.5. There one sees that 
Koutiala, the region with the most progressive and informed farmers, has 
fairly consistent fertilizer use across time and in a pattern reminiscent of 
a variable input that obeys price signals. Meanwhile, both Bougouni and 

Fig. 3.2 Map of the Sikasso region and research sites in the Bougouni, Kadiolo, 
and Koutiala districts



Fig. 3.4 Fertilizer use with maize and fertilizer prices, Lowess curves

Fig. 3.3 Maize yields by Sikasso region zone
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Kadiolo exhibit a pattern of fertilizer use increase that mimics the S-curves 
of standard technology adoption models.

Fok et al. (2000) argue that maize is a risky crop and that the farmers’ 
widespread adoption of maize could be related to a change in their risk aver-
sion. They argue that maize is risky due to the use of expensive inputs such 
as fertilizers and herbicides. Nevertheless, as explained in Laris and Foltz 
(2014), maize also reduces risk because it matures quickly, providing a good 
harvest in years with a short rainfall season. In addition, as shown in figure 
3.6, the distribution of yield outcomes of maize production has changed 
over the last twenty years, reducing the risk farmers face in growing maize. 
Figure 3.6 shows the distribution of yields in the Sikasso farm data over 
different time periods. The distributions show a distinct pattern of techno-
logical change with the distribution on average moving up in a steady fashion 
over the twelve years of the data. The mean of the distribution increases 
and one sees for almost all quantiles of the distribution that yields increase 
close to 500 kg per hectare, which is suggestive of broad- based participa-
tion in the benefits of maize yield increases. In addition, the downside risk 
of maize production in terms of yields is greatly reduced, with many fewer 
farmers below 500 kg/ ha.

Laris and Foltz (2014) argue that an important factor behind the increase 
in fertilizer use is the provision of credit for fertilizer. As the authors point 
out, in the area that corresponds to the data we use, the credit for fertilizer 
is obtained through the parastatal CMDT (Compagnie Malienne pour le 
Developpment des Textiles). This company provides fertilizer at the begin-
ning of the season in exchange for the cotton that this company will receive 
at the time of the harvest. In some cases, the farmers use, in their maize 
plots, some of the fertilizer they claim that will be used for growing cotton.

Laris and Foltz (2014) provide evidence of this link between cotton and 
the access to fertilizer for maize. Their interview and quantitative evidence 
shows, for example, that farmers who grow cotton get higher yields in their 
other field crops. The estimations that we present below support the idea 
presented in Laris and Foltz, as they show that the percentage of land under 
cotton is positively associated with the amount of fertilizer used for grow-
ing maize, which contrasts somewhat with Benjaminsen, Aune, and Sidibé’s 
(2010) finding of declining soil fertility in cotton growing areas.

Taken together, the graphical data in figures 3.3, 3.4, 3.5, and 3.6 show 
increases in maize yield at the same time that there are major increases in 
fertilizer use. Below we test whether the increase in maize yield is solely 
attributable to the increased use of fertilizer or whether there is an element 
of disembodied technological change such as improvements in seeds and 
or management.



Fig. 3.5 Fertilizer use by Sikasso region zone, Lowess curves

Fig. 3.6 Maize yield distributions over time, Sikasso farm data
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3.3 Conceptual Framework

The conceptual framework for analyzing the determinants of maize yields 
starts with a farmer maximizing profits on his farm: Π = πT where T rep-
resents total land area and π is per hectare profits. Assuming that land is 
fixed or that the production function exhibits constant returns to scale the 
farmer can maximize per hectare profits, which setting the price of output 
to 1, can be described as:

(1) p = g a, f ,x,r( ) − pf f − pxx,

where g (.) reflects the yield function, α represents the level of technology, 
f reflects the amount of fertilizer per hectare, x reflects other variables that 
affect yields, r reflects those unobserved variables, such as soil quality that 
affect yields, and the relative input prices are pf and px. The first- order condi-
tions to maximize profits with respect to fertilizer will produce the follow-
ing first- order condition for optimality: δπ/δf = ∂g/∂f – pf = 0 , which when 
solved for fertilizer will give the following fertilizer demand function for the 
optimizing farmer:

(2) f = h a, f ,x,r, pf( ).
Note if  the unobserved component, r, is additive in equation (1), then it 

does not enter into equation (2). But if  heterogeneity and the observed dif-
ferences, x, enter the production function g(.) in a nonadditive way, as they 
would in a Cobb- Douglas, generalized quadratic, or translog production 
function, then they will appear in the fertilizer demand function h(.). We 
use a Cobb- Douglas and allow unobserved variables to appear not only as 
factors of production (multiplying fertilizer use), but also in the exponent 
associated to fertilizer use.

This simple maximization problem has a number of immediate implica-
tions for the observability of different levels of fertilizer use in real- world 
data. First, assuming that r is not additive, optimal levels of fertilizer chosen 
by farmers will be a function of both observable, x, and unobservable, r, 
differences between farms. Second, the returns to fertilizer will be a func-
tion of  both observable and unobservable variables. The dependence of 
fertilizer use and of fertilizer’s impact on unobservable variables poses an 
econometric problem in that these unobservables could bias our estimates 
of the returns to fertilizer.

3.3.1 Econometric Framework

This section presents the econometric framework that will be used to 
estimate technological change in maize yields (the Solow residual) and the 
impact of fertilizer use on yields. While the level of technological change is 
a straightforward parameter estimation, that of the impact of fertilizer is 
more complex due to the maximization problem outlined above. The esti-



The Sahel’s Silent Maize Revolution    121

mation method we use is based on a fixed effect estimation that allows the 
demeaned error to be correlated with the demeaned fertilizer variable and 
that also allows for heterogeneity in the impact of  fertilizer use. Specifi-
cally, the marginal effect of fertilizer on yields can change according to both 
observables and unobservables that can be different for observations across 
time and farms.3

Our basic yield specification is a standard one, where the impact of fertil-
izer on yields is the same for all the households in all the periods.

(3) yit = aAt +bxxit +b f fit +mit ,

where yit is the log of yield per hectare, At is a time variable whose coeffi-
cient, α, is the standard Solow residual measuring disembodied technologi-
cal change, fit is log of fertilizer per hectare, and xit is a vector that contains 
other variables that determine yields. We are interested in estimating both 
the rate of disembodied technical change and the marginal product of fertil-
izer, α and βf. The estimate of α is straightforward, while that of βf requires 
careful attention to both observable and unobservable determinants, whose 
econometric properties are delineated below.

In a panel data context it is useful to decompose the unobservable com-
ponent, μit, into a time invariant and a time variant component. That is:

 mit = hi + ´it.

As it is well known, access to a panel data allows for a fixed effect estima-
tion, which controls for the potential correlation between the independent 
variables and the farm or plot specific error term, ηi. Nevertheless, it is likely 
that a fixed effect will not fully capture or control for the farm- level hetero-
geneity we seek to measure. Specifically, we expect the effects of fertilizer use 
to be nonuniform across time, since it can change with seeds used and time- 
varying differences in soil and other agronomic conditions. We therefore 
use a modified fixed effect estimation that allows the impact of fertilizer to 
change for different individuals and at different periods. The heterogeneity in 
marginal returns to fertilizer is likely to have both observable and unobserv-
able (to the econometrician) elements.4 Thus, we specify βft as:

 b fit = g + g0xit
0 + git,

where xit
0 is a vector of observable variables that affect the impact of fertilizer 

use on yields and γit reflects unobservable heterogeneity on the impact of 
fertilizer on yields. The parameter γit can be considered as an element from 

3. Note this focus on unobservables that affect the marginal returns to a factor of production 
differs from the methods proposed by Levinsohn and Petrin (2003) for capturing unobservables 
in a measurement of overall productivity.

4. We assume that farmers know, observe, and act on the elements that are unobservable to 
the econometrician.
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r, the unobserved variables in the production function. We assume that the 
unobservable element, γit, has an expected value of zero: E(γit) = 0.

Taking into account this specification of βfit, and ignoring At to simplify 
the exposition, the new yield equation will be given by:

(4) yit = bxxit + gfit + g0xit
0 fit + git fit +mit .

Equation (4) provides a less restrictive specification of the impact of fertil-
izer on yields.

The presence of unobserved heterogeneity will bring a bias in the estima-
tion of the average impact of fertilizer use (γ). In the current work, we apply 
Garen’s (1984) control function method to account for unobserved heteroge-
neity in an estimation based on fixed effects, which is to our knowledge the 
first application of control functions to a panel data setting.5

A fixed effects estimation controls for the potential correlation between fit 
and μit, through ηi. This method estimates the demeaned dependent variable 
as a function of the demeaned independent variables:

(5) yit − yi = bx xit − xi( ) + g fit − fi( ) + g0xit
0 fit − fi( ) + git fit − git fit

+ mit −mi( )
.

Given that γit is not observable, the new error of  the estimation, μit will 
include the terms related to this unobserved heterogeneity. That is:

 uit = git fit − git fit + mit −mi( ).
The first two terms of this compounded error come from the unobserved 

heterogeneity γit. These two terms are likely to be correlated with fit − fi , 
creating a bias in the estimation of γ. Assuming that mit −mi( ) is not corre-
lated with fit − fi( ), the linear projection of the error μit over fit − fi( ) will 
be given by:

 uit = u fit − fit( ) + rit,

where u = cov(( fit − fi )(git fit − git fit )) /Var(( fit − fi )). Thus the estimated 
coefficient γhat will be given by: γhat = γ + θ. Theta is expected to be positive 
given that an increase in γit is likely to be correlated with an increase in fit.

6

As argued by Garen (1984), one can recover γit from the residual of an 
estimation where the dependent variable is fit. The idea, which comes from 
the first- order conditions of a firm profit function that produces the fertilizer 
factor demand function, equation (2), is that if  the impact of fertilizer use 

5. The control function used here is similar in spirit to Suri’s (2011) method for controlling 
for heterogeneous returns, but avoids the problem of using past choices to identify current 
choices, which could be biased in a situation with crop rotations across years on a single plot. 
In general, panel data should obviate the need for a control function approach with its mul-
tiple years of  data to account for individual heterogeneity. In this case the heterogeneity is 
independent- variable specific and changes through time, which means a simple fixed effect 
cannot fully control for the heterogeneity.

6. This implies a positive correlation between fit − fi( ) and git fit − git fit .
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on yields is higher, farmers will respond by using more fertilizer. Thus, the 
error from estimation of fit will be positively correlated with γit.

A second potential problem of the fixed effects estimator is that even after 
eliminating the time invariant component from the error, the demeaned 
error, (mit −mi ), might still be correlated with the dependent variable, 
( fit − fi ). This might happen if, for example, the use of fertilizer responds to 
conditions that change over time, and, simultaneously, these changing con-
ditions affect yields. For example, if  the use of fertilizer responds to unob-
servable changes in the fertility of the soil, there will be a correlation between 
(mit −mi ) and ( fit − fi ). We consider the presence of unobservables in the 
exponent of fertilizer, and also as an additional production factor that mul-
tiplies fertilizer use. The presence of unobservables as an additional produc-
tion factor imply a correlation between (mit −mi ) and ( fit − fi ). This correla-
tion will further bias the estimates of the impact of fertilizer on yields. The 
control function method that we deploy allows us to overcome these two 
potential problems.

The coefficient γit has two components, one component that is observed 
by the farmer before deciding how much fertilizer to use (git

0 ) and another 
that is not observed early enough in the growing season (git

u ) and, conse-
quently, does not affect the farmer’s choice of the amount of fertilizer. If  we 
assume a standard production function, the factor demand equation for 
fertilizer in equation (2), which describes the optimal amount of fertilizer 
per hectare (in logs), will depend negatively on the price of fertilizer, posi-
tively on the log of the other inputs used in production (per hectare), and 
positively on the observable component of γit. Using a first- order approxi-
mation of the fertilizer demand equation, we have:

(6) fit = V f xit + V pf
mit + Vx0 xit

0 + zit

where mit includes variables that determine the price of fertilizer and zit is 
equal to the derivative of fit with respect to git

0  multiplied by git
0 . If  we estimate 

equation (6) including the relevant production inputs that determine fertil-
izer demand and an exhaustive list of the variables that determine the price 
of fertilizer, zit can be recovered by estimating equation (4) and capturing 
the residuals of such estimation.

Expressing individual heterogeneity γit as well as the error of equation (4) 
as functions of zit, we have:

(7) git = lgzit + nit

 mit = lmzit + wit

where vit is equal to git
u .

Plugging equation (7) in equation (5), we have:

(8) yit − yi = bx xit − xi( ) + g fit − fi( ) + g0xit
0 fit − fi( )

+ lg zit fit − zit fit( ) + lm zit − zit( ) + vit
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where vit = (nit fit − nit fit ) + wit − wi .
The term lg(zit fit − zit fit ) controls for unobserved heterogeneity, or the 

presence of unobservables in the exponent associated with fertilizer use. The 
term lm (zit − zit ) controls for the more classical endogeneity, that will be 
brought about by the presence of unobservables as additional inputs. Under 
the assumption that E(vit|zi1,zi2,ziT,xit) = 0 (assumption 1), we will have that 
E(vit ( fit − fit )) = 0, which will allow us to consistently estimate γ.7

For Assumption 1 to hold, we need to include the relevant other factors 
of production that determine fertilizer demand and all potential determi-
nants of the price of fertilizer. If  this is not the case, vit will include not only 
git

u , but also the determinants of fertilizer use that have been excluded from 
the estimation. If  Assumption 1 holds, including the interaction of the log 
of fertilizer and the residual will take care of unobserved heterogeneity. At 
the same time, the inclusion of the residual, by itself, will take care of the 
potential time- varying correlation that might exist between fertilizer use and 
the error, even after controlling for unobserved heterogeneity.

3.4 Econometric Estimations and Results

3.4.1 Specification of the Equations

The current section estimates the impact of fertilizer use on yields at the 
plot level where each observation is a specific plot in a particular year. We 
will use the control function method described above, which uses the residu-
als from the estimation of the fertilizer demand equation in order to account 
for two potential biases. The first one originates in unobserved heterogene-
ity while the second one comes from the potential correlation between the 
demeaned fertilizer variable and unobservables, a correlation that might 
exist even after controlling for unobserved heterogeneity.

As shown in the previous section, the use of fertilizer can be estimated as 
a function of the other factors of production, the factors linked to observed 
heterogeneity, and the price of fertilizer. We consider as potential factors 
linked to observed heterogeneity: organic fertilizer and the percentage of 
adult members (members with more than sixteen years old) who are literate.8 

7. If  E(vit|zi1,zi2,...ziT,xit) = 0 then E(vit| fi1,fi2,...fiT,xit) = 0 given that fit and zit are one- to- 
one functions of each other given xit. Using the law of iterated expectations it can be shown 
that: E((vit fit − git fit ) fi1, fi2,.. fiT ,xit ) = 0. Since fit − fi( ) is a function of fi1,fi2,..fiT, we can say 
that E((vit fit − vit fit ) fi1, fi2 − fi ,xit ) = 0. Using the law of  iterated expectations, then: 
E((vit fit − vit fit )( fit − fi )) = 0.

Additionally, if  the observable determinants of fertilizer use are not correlated with the error 
and since zit − zi  is, by construction, not correlated with fit − fi , we can conclude that 
E((wit − wi )( fit − fi )) = 0.

Thus, we can conclude that E((vit − vi )( fit − fi )) = 0.
8. Literacy of household members is likely to improve the productivity of fertilizer in two 

important ways. First it can help farmers understand the instructions in how to use fertilizer, 
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We use two types of measures for the price of fertilizer, one for the relative 
price and the other for the availability of capital to finance fertilizer pur-
chases. For the relative price we use the log of the price of fertilizer divided 
by the average price for maize in the household’s village. To measure capital 
availability we measure with proxy variables the two main ways villagers 
access capital: remittances and cotton- based loans. Households that have 
higher remittances face a more relaxed budget constraint, which should 
affect fertilizer demand and use. As a proxy for remittances, we use the 
number of permanent migrants from the household. In the Sikasso region, 
producers can acquire fertilizer on credit from CMDT, the cotton parastatal, 
under the promise of paying for it with cotton after the harvest. We therefore 
use the percentage of land under cotton in the current year as a determinant 
of access to credit to buy fertilizer.

In addition to the variables describing heterogeneity and costs/ access to 
fertilizer, we include key determinants of production from the yield equa-
tion: adult family labor per hectare, a dummy for having grown cotton last 
year on the plot, and a time trend. We expect that maize grown on fields that 
in the previous year grew cotton are likely to require more fertilizer and have 
lower yields because cotton is well known for depleting the soil. Table 3.1 
shows the descriptive statistics of the variables used in the estimations of 
fertilizer use and of yields.

In order to capture zit from the estimation of equation (6), we need the 
coefficients of the determinants of fertilizer use to be estimated consistently. 
Nevertheless, some of the independent variables included in equation (6) 
are likely to be correlated with zit. To avoid a potential inconsistency in the 
estimation of these coefficients, we exploit the panel structure of the data 
and estimate the coefficients of the variables that are not constant through 
time, through a fixed effects method. Thus, we run the following estimations:

(9.1) fit − fi = V1 kit
1 − kit

1( ) + jit

(9.2) fit − V1hatkit
1 = V2kit

2 + zit.

where kit
1  denotes the subset of variables included in equation (4) that change 

through time, Ω1 denotes the coefficients associated with these variables, 
Ω1hat denotes the estimated coefficients of Ω1, kit

2  denotes the subset of vari-
ables that do not change through time, and Ω2 the coefficients of these vari-
ables. That is, we first run a fixed effects estimation of the use of fertilizer, 
including only those variables that change through time. Afterward, we run 

and second it likely increases farmers’ ability to learn from extension agents and other knowl-
edgeable outsiders. Interviews in the study villages identified the latter effect as quite important, 
in that literate farmers were much more likely to have the local extension agents and school 
teachers as part of their social networks. One can also think of the literacy variable in the con-
text of a target input model (e.g., Foster and Rosenzweig 1995, 2010) in which higher levels of 
literacy improves farmer accuracy in hitting the optimal level of fertilizer.
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a standard estimation of the error of the first estimation against the variables 
that do not change through time. The residuals of this last estimation will 
be used in the estimation of yields as shown in equation (8).

The fertilizer (6) and maize yield equations (8) are estimated as fixed effect 
models at the plot level with robust standard errors clustered at the farm 
household level. There are up to eight observations per plot with an average 
just below three observations per plot across 120 households in twelve years. 
The panel is unbalanced and the number of observations varies between 733 
and 675 depending on the variables included in the model. In all models the 
fixed effects are tested to be significant.

Yield estimates will have log maize yields as a function of key produc-
tion variables, a time trend to capture disembodied technological change 
and observable and unobservable determinants of fertilizer returns. For key 
production variables we include adult labor in the household, rainfall in June 
during planting, rainfall in August during maize flowering, and the area of 
the plot. Labor inputs are only available at the household, rather than the 
plot level, and only measures household adult labor available to farm, rather 
than actual labor inputs. Because farmer interviews identified hired labor as 
being rare in the survey villages and representing only a small proportion of 

Table 3.1 Descriptive statistics

Variable  Measurement unit  Mean  Std. dev.

Yield estimation variables
 Log (maize yields) log (kg per ha) 7.11 0.69
 Maize yields kg per ha 1,494.5 942.38
 Log (area of the plot) log (hectares) – 0.07 0.95
 Area of the plot hectares 1.33 1.04
 Time trend (1995 = 1) year (1995 = 1) 6.65 3.07
 Previous yr. cotton dummy 0– 1 0.23 0.42
 Number of adults per cultivated hectare 0.66 0.27
 Log (number of adults/ ha) – 0.498 0.44
 Log (rain in June) 5.00 0.33
 Rain in June millimeters 157.24 53.74
 Log (rain August) 5.74 0.34
 Rain in August millimeters 328.83 111.81
 Log (organic fert. per ha) log (150 kg per ha) – 6.14 2.70
 Organic fert. per hectare (150 kg) 150 kg per ha 4.55 37.72
 Log (fertilizer per ha) log (kg per ha) 3.39 3.94
 Percent lit members * log (fertilizer per ha) 0.35 0.73
 Log (fertilizer per ha) * log (organic fert. per ha) – 20.52 28.24
Fertilizer demand additional variables
 Percent of land under cotton (from 0 to 1) 0.29 0.13
 Relative per kg price of fertilizer/ price of maize 2.53 0.88
 Number of migrants in the household 4.14 4.18
 Percent of adult members that are literate  (from 0 to 1)  0.10  0.12
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labor inputs, this measure is likely reasonably well correlated with total labor 
use. We measure labor in per hectare terms. We chose the two key periods 
of rainfall for maize production, planting and harvesting, rather than total 
rainfall, which includes rainfall outside of the growing season, in order to 
get a more precise estimate. Lack of June rainfall often leads to plants not 
sprouting and farmers having to replant maize, while lack of August rainfall 
can affect whether the maize will pollinate and is the most common reason 
for crop failures. We include the area of the plot to control for any potential 
increasing or decreasing returns to scale as is sometimes found in peasant 
agriculture (e.g., Chayanov 1986; Benjamin 1995), although yield estima-
tions implicitly assumes constant returns to scale.

We estimate the yield model two ways to measure the returns to soil fertil-
ity both observed and unobserved. The first basic model includes an observ-
able related to knowledge acquisition, the percent literate household mem-
bers as an interaction with fertilizer. Following the findings of Marenya and 
Barrett (2009) as well as many agronomic studies (e.g., Chikowo et al. 2010; 
Sileshi et al. 2010; Wopereis, Vanlauwe, and Mando 2008) that higher levels 
of soil organic matter improves the efficiency of chemical fertilizer use, the 
second model includes measures of the amount of organic fertilizer (cow 
manure) applied to the fields. Soils in Mali are particularly low in organic 
matter and cow manure is the primary method available, aside from long- 
term fallowing, that Malian farmers can use to improve soil organic matter. 
Organic fertilizer is measured as the log of 150 kg donkey cartloads. The 
first version of model 2 includes organic fertilizer alone, while the second 
also includes the interaction of organic fertilizer with chemical fertilizer.

In addition, as a robustness check we provide estimates of the yield func-
tion in both model 1 and 2 versions without controlling for endogeneity 
through the residuals of the control function. These estimates provide the 
baseline from which we can understand the importance of controlling for 
the endogeneity of chosen inputs in yield functions.

3.4.2 Fertilizer Function Estimates

Table 3.2 shows the estimation of the fertilizer equation in two specifica-
tions. The difference between the specifications is the inclusion of the use 
of organic fertilizer as an independent variable for model 2. The model is a 
fixed- effects estimation with robust standard errors to correct for the cor-
relation of the error across plots that belong to the same household.

The estimations show no time trend in fertilizer demand once one controls 
for other factors that influence fertilizer demand. There is a strong associa-
tion between previous cotton production on a plot and the following year’s 
fertilizer use, with an 82– 86 percent higher rate of application on plots that 
previously grew cotton. In addition, the model 2 specification shows farm-
ers applying lower levels of chemical fertilizer to plots that received higher 
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levels of organic fertilizer, suggesting farmers see these as at least partial 
substitutes. These two results suggest that Malian farmers apply chemi-
cal fertilizer to improve fields with lower natural or applied fertility, which 
implies that a naïve regression of the effects of fertilizer that did not control 
for the endogeneity of its use would produce biased estimates.

We do not find a statistically significant effect of labor availability, but see 
a strong effect in terms of labor quality in our measure of the number of 
literate adults in the household. As seen below in the yield equations, levels 
of household literacy increase the productivity of fertilizer (likely through 
learning and management effects) and it stands to reason that this would 
also increase fertilizer demand.

In terms of price variables, the estimates show a weakly significant but 
negative effect of fertilizer prices on fertilizer demand. We find much stron-
ger effects on fertilizer demand from our proxies for access to capital. While 
the number of migrants is not significant, the percentage of land devoted to 
cotton in the household shows a large and significant effect on the ability of 
farmers to purchase chemical fertilizer for their maize fields.

3.4.3 Yield Function Estimates

Table 3.3 presents the fixed- effects yield estimations for the baseline model 
and model 1. Both estimates include a time trend to capture disembod-
ied technical change and a set of yield determinants including land, labor, 
rainfall, and fertilizer. The baseline estimation does not include the terms 
associated with the residuals of the fertilizer estimation, while the second 
includes the residuals and their interaction with the log of fertilizer as speci-
fied in equation (8).

Table 3.2 Estimation for fertilizer demand

Dep. variable: log (fertilizer per ha)  Model 1 coefficient  S. E.  Model 2 coefficient  S. E.

Time trend 0.087 0.06 0.067 0.07
1 if  cotton plant previous year 0.861*** 0.24 0.821*** 0.25
Log(organic fert. per ha) – 0.116* 0.06
Log fert. price/ maize price – 1.074* 0.6 – 0.788 0.56
Number of migrants in the household 0.222 0.19 0.286 0.18
Percent land under cotton 3.832*** 1.41 4.426*** 1.41
Log (number of adults/ ha) 0.176 0.66 0.479 0.64
Percent of adults that are literate in hh 2.5793** 1.21 2.622** 1.34
Constant 1.782** 0.82 0.597 0.77

Number of observations  733    675   

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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The baseline estimation demonstrates a number of  the pitfalls of  not 
addressing farm and farmer heterogeneity in the demand for fertilizer. It 
shows a negative and statistically nonsignificant impact of the use of chemi-
cal fertilizer on yields. The only positive relation between fertilizers and 
maize yields is through the interaction with the percentage of adult members 
that are literate in the household. In addition the baseline estimation shows 
a strong time trend, suggesting a nearly 4 percent per year level of technical 
change in maize yields.

In contrast the model 1 estimates, which control for the potential endoge-
neity of fertilizer use, show much stronger effects of chemical fertilizer on 
yields and a much more modest and marginally significant level of technical 
change of ~2 percent. The model 1 estimate of a yield elasticity of 0.2 for fer-
tilizer when combined with the literacy premium of 0.36, yields a substantial 
effect of fertilizer on yields especially for the most educated households. The 
positive impact of the interaction between literacy and the use of fertilizer is 
consistent with the importance of adequate management in fertilizer appli-
cation. At the same time, this coefficient might reflect other variables such 
as a higher presence of extension agents in areas that are more developed 
and that consequently present a more educated population.

The model 1 estimates show significant effects of farmer heterogeneity 
in their optimal fertilizer application and that this heterogeneity does effect 
yields. This second specification shows a negative and statistically signifi-
cant relationship between the demeaned residuals of fertilizer use and the 
demeaned yields: our estimate of λμ (in equation [7]) is negative. At the same 
time, the estimation shows a positive and statistically significant impact of 

Table 3.3 Maize yield estimations: Model 1

Dep. variable: Log (maize per ha)  Baseline coefficient  S. E.  Model 1 coefficient  S. E.

Time trend 0.039*** 0.01 0.019* 0.01
Log(area of the plot) – 0.006 0.05 0.038 0.06
One if  cotton plant prev. year – 0.031 0.07 – 0.173* 0.09
Log (number of adults/ ha) – 0.077 0.15 – 0.115 0.16
Log (rain in June) – 0.048 0.10 – 0.02 0.10
Log (rain August) 0.005 0.13 0.014 0.13
Log (fertilizer per ha) – 0.015 0.01 0.232*** 0.05
Percent lit members * log (fertilizer/ ha) 0.343** 0.14 0.364*** 0.12
Residuals of fert. demand equation – 0.208*** 0.05
Residuals * (log [fertilizer per ha]) 0.010*** 0.001
Constant 6.971*** 0.56 5.941*** 0.61
N  733    733   

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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the interaction between fertilizer use and the residuals of the fertilizer equa-
tion: our estimate of λγ (in equation [7]) is positive.

A positive and statistically significant estimation of λγ implies that house-
holds that use more fertilizer are households that benefit more from the 
using it. These results confirm the presence of unobserved heterogeneity 
in the sample under analysis. On the other hand, the negative and statisti-
cally significant estimate of λμ, implying a negative correlation between the 
residuals of the fertilizer equation and yields, suggests that fertilizers might 
compensate for the declining soil fertility. The residuals alone having a sig-
nificant and negative coefficient suggest that the unobservables in the fertil-
izer equation that tend to increase fertilizer demand have a negative effect 
on maize yields (for example, unobserved low soil fertility). Meanwhile, 
the interaction of the unobservables with fertilizer use suggests that those 
unobservables increase the marginal productivity of fertilizer. If  one takes 
the unobservables from the fertilizer equation to be related to soil fertility, 
one sees that it reduces maize yields but produces a higher marginal return 
to fertilizer application as one would expect across low ranges of soil fertility 
common in West African soils.

We find no effect of either rainfall or household labor on maize yields. 
The lack of a rainfall result may be due to farmer’s ability to do ex post farm 
management of the crops in which they can make up for poor rain in June by 
replanting, and poor rain in August by extra effort in other farm tasks such 
as weeding. The household labor variable is likely not measured accurately 
enough to demonstrate an effect on yields.

A second factor that might influence yields, as well as the impact of fer-
tilizer on yields, is the use of organic fertilizer, which we control for in our 
model 2 estimates. The next set of estimations includes the use of organic 
fertilizer as an additional determinant of yields as well as a determinant of 
the use of chemical fertilizer. Table 3.4 shows yield estimations that include 
the use of organic fertilizer. The first specification shows the baseline model, 
which has a positive and statistically significant impact of organic fertilizer 
use on yields. The second specification corrects for the residuals of the fertil-
izer use equation, where this equation includes the use of organic fertilizer 
as an independent variable. The results for either fertilizer, its residual, or 
other variables do not change much from the results shown in table 3.3. 
The third specification includes the interaction between the use of organic 
fertilizer and the use of  chemical fertilizers. The estimated coefficient on 
this interaction is not statistically significant, suggesting no significant 
complementary interaction between organic and chemical fertilizer. While 
this result contrasts with that of Marenya and Barrett (2009), this lack of 
significant complementarity matches well with the fertilizer demand equa-
tion, which shows chemical and organic fertilizer to be substitutes rather 
than complements.
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3.4.4 Econometric Results Discussion

The estimations presented here have demonstrated the importance of con-
trolling for the endogeneity of fertilizer use. The results indicate that in the 
absence of controlling for endogeneity, the impact of fertilizer use on yields 
would not be consistently estimated due to the correlation between the unob-
servables and the use of chemical fertilizer. In addition, we find that there 
is evidence of heterogeneity in the impact of fertilizer on yields. First, this 
impact is higher for households with a higher percentage of members in the 
household that are literate. Secondly, we find strong evidence of unobserved 
heterogeneity, which affects both the choice of fertilizer amounts and the 
marginal returns to fertilizers.

The estimations show much stronger evidence for the growth in maize 
yields having been driven by farmer adoption of higher levels of fertilizer use 
rather than improvements in seeds and management, disembodied techni-
cal change. This is not to say that farmers did not adopt new technologies, 
but rather the maize revolution came as a sequential adoption process (e.g., 
Aldana et al. 2010) in which farmers adopted parts of a package in succes-
sion: seed first, appropriate levels of organic and chemical fertilizer later.

The importance of  controlling for endogeneity in fertilizer use goes 
beyond a correct decomposition of the determinants of  corn yields. The 
naïve model ignoring this endogeneity would have decided that most of 

Table 3.4 Maize yield estimates: Model 2 with organic fertilizer

Dep. variable: Log (maize per ha)  
Baseline 

coeff.  S. E.  
Model 2A 

coeff.  S. E.  
Model 2B 

coeff.  S. E.

Time trend 0.036*** 0.01 0.009 0.01 0.008 0.01
Log(area of the plot) – 0.006 0.05 0.025 0.05 0.029 0.05
One if  cotton plant prev. year – 0.052 0.08 – 0.227** 0.10 – 0.228** 0.10
Log (number of adults/ ha) – 0.111 0.16 – 0.22 0.16 – 0.22 0.16
Log (rain in June) – 0.038 0.10 – 0.026 0.10 – 0.024 0.10
Log (rain August) 0.059 0.12 0.064 0.12 0.062 0.12
Log(organic fert. per ha) 0.027** 0.01 0.054*** 0.01 0.061*** 0.02
Log (fertilizer per ha) – 0.014 0.01 0.255*** 0.05 0.247*** 0.05
Percent lit members * log (fertilizer/ ha) 0.377*** 0.13 0.397*** 0.12 0.407*** 0.12
Log (fert./ ha).*.log (organic fert./ ha) – 0.002 0.003
Residuals of fert. use equation – 0.238*** 0.05 – 0.243*** 0.05
Residuals * l(og [fertilizer/ ha]) 0.009** 0.004 0.009** 0.004
Constant 6.775*** 0.55 5.977*** 0.59 5.998*** 0.59

N  675    675    675   

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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the technical change was in seeds and management and seriously under-
estimated the return to fertilizer. Such an underestimate of the returns to 
fertilizer could seriously call into question public policies such as the Malian 
government’s current program to subsidize fertilizer. Once one controls for 
both observed and unobserved heterogeneity in the returns to fertilizer, one 
sees yield elasticities of about 0.2– 0.3 for fertilizer. In addition, farmers seem 
to respond to reduced fertility of their soils, as happens with cotton cultiva-
tion (Benjaminsen, Aune, and Sidibé 2010), with increased applications of 
fertilizer. This suggests a sophistication in African farmer knowledge that 
goes beyond that commonly suggested in the economics literature. Malian 
farmers are using fertilizer application rates to make both temporally and 
dynamically rational decisions about the fertility of their soils.

3.5 Conclusions

The success of Mali’s farmers in adopting technologies and intensifying 
their maize production has created a green revolution in maize production 
in the region. In part through the adoption of improved maize seeds, farm-
ing techniques, and the growing use of fertilizer on maize fields, farmers in 
southern Mali have helped turn Mali from being a food- deficit country to 
a regional bread basket. This success has been fostered by a combination 
of research efforts, extension and diffusion of ideas especially by the cotton 
parastatal CMDT, and a farmer willingness to adopt new seeds and inputs. 
The success is not unique, as Alene et al. (2009) show that a number of other 
countries have had similar improvements in maize production.

Adoption of improved maize varieties in Mali in the late 1980s to early 
1990s led first to a growth in maize production, which was followed by a 
sharp growth in the use of fertilizer in maize production from the late 1990s 
to early in the twenty- first century. This later growth in fertilizer use (adop-
tion of fertilizer for maize cultivation) is primarily responsible for the growth 
in maize yields one sees in the last decade, as opposed to better manage-
ment or seeds. Counter to the situation one sees in many African countries, 
Malian farmers adopted fertilizer for maize in growing numbers despite an 
increasing price for fertilizer relative to the flat price of maize. This suggests 
that recent efforts to subsidize fertilizer for maize production could have an 
increasing knock-on effect.

It is important to highlight that the high estimates of the impact of fertil-
izer do not mean that the adoption of new seed varieties has had no impact 
on yields. Based on our results, we can assert that the adoption of new seed 
varieties needs to be complemented by increased use of fertilizers. This find-
ing is aligned with Smale, Byerlee, and Jayne (2011) who assert that yields in 
many African countries have remained stagnated, in spite of the generalized 
adoption of new seeds, due to the low levels of fertilizer use.

The results presented in this chapter also highlight the importance of cash 
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and credit constraints in the adoption and use of fertilizer. The results show 
that an important determinant of fertilizer use is given by the percentage 
of land under cotton. Since the fertilizer used in corn plots is financed with 
the promise of delivering cotton to the parastatal textile company CMDT, 
our results confirm the argument presented in Laris and Foltz (2014) and 
in Tefft (2010) that cotton production contributes to food security through 
the credit it provides for fertilizer use.

There remains room for a great deal of improvement in maize yields in 
Mali and the West African region in the future. Most of the last decade’s 
growth in yields is due to improved use of inputs, but higher performing 
varieties of maize seed, including hybrids, are already available on the mar-
ket in Mali and could lead to a next jump in maize yields and production. 
In addition, new maize varieties that are drought resistant have the potential 
to spread maize production into lower rainfall regions of  Mali and give 
those farmers the potential to access the higher fertilizer responsiveness of 
maize compared to sorghum or millet. There is also room for more work 
on the silent green revolution in maize in Mali. First, Mali is not alone in 
experiencing this growth, and work that compared and analyzed the simi-
larly large growth of maize in Burkina Faso would provide a comparative 
perspective that might help identify key institutional factors that promoted 
this revolution. Expanding the analysis to the whole region could be particu-
larly important in identifying institutional factors, since other neighboring 
countries such as Senegal, Gambia, Guinea, and Niger have been left out 
of the growth in maize.
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