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Abstract

We report a puzzling pair of facts concerning the organization of science. The concentration
of research output is declining at the department level but increasing at the individual level.
For example, in evolutionary biology, over the period 1980 to 2000, the fraction of citation-
weighted publications produced by the top 20% of departments falls from approximately 75%
to 60% but over the same period rises for the top 20% of individual scientists from 70% to 80%.
We speculate that this may be due to changing patterns of collaboration, perhaps caused by
the rising burden of knowledge and the falling cost of communication, both of which increase
the returns to collaboration. Indeed, we report evidence that the propensity to collaborate
is rising over time. Furthermore, the nature of collaboration is also changing. For example,
the geographic distance as well as the difference in institution rank between collaborators is
increasing over time. Moreover, the relative size of the pool of potential distant collaborators
for star versus non-star scientists is rising over time. We develop a simple model based on star
advantage in terms of the opportunities for collaboration that provides a unified explanation
for these facts. Finally, considering the effect of individual location decisions of stars on the
overall distribution of human capital, we speculate on the efficiency of the emerging distribution
of scientific activity, given the localized externalities generated by stars on the one hand and
the increasing returns to distant collaboration on the other.
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1 Introduction

The spatial organization of science is undergoing a fundamental transformation. New patterns
of institutional participation, division of labor, and star scientist centrality are emerging. Given
the essentially combinatory nature of invention and innovation, changes in organization that affect
access to knowledge and ease of collaboration to produce new knowledge are potentially of great
importance to aggregate technological progress and economic growth.!

In this paper, we document and discuss significant changes in the spatial organization of science
over recent decades in the field of evolutionary biology. Specifically, we identify two trends that
appear contradictory at first glance. First, we find that the concentration of scientific output at the
institution level is falling. More institutions are participating in scientific research over time and
relatively more activity is migrating to lower-ranked institutions, broadening the base of science.
At the same time, however, we find that the concentration of scientific output at the individual level
is increasing. Publications and citations have always been highly skewed towards star performers.
However, the relative importance of stars has increased in recent decades.

What could explain these seemingly contradictory trends? Collaboration offers a possible expla-
nation. An increase in collaborative activity could broaden the base of science at the department-
level by raising the relative amount of participation by previously lesser-involved research insti-
tutions and at the same time increase the concentration of output at the individual-level by dis-
proportionately benefiting highly productive scientists, perhaps through more efficient matching
with collaborators, thus enabling more finely grained specialization. Stars may disproportionately
benefit from better matching because they have a larger pool of potential distant collaborators to
choose from. We report descriptive evidence that is consistent with these conjectures.

Specifically, we report evidence that the level of collaboration has increased significantly over
time. Furthermore, the average distance between collaborators has grown in terms of both physical
distance and the rank-separation of collaborating institutions, consistent with the conjecture that

collaboration plays a role in the expanding base of science. We further show that the base of

!For influential work that emphasizes the role of combining ideas in the generation of new knowledge, see Romer
(1990), Jones (1995), Weitzman (1998), and Mokyr (2002).



institutional participation has grown, including the entry of institutions from emerging economies.
Moreover, we show that star scientists have an increasingly larger pool of potential collaborators
relative to non-stars, consistent with the assertion that they may disproportionately benefit from
lower communication costs due to better matching opportunities.

Why might collaboration be increasing? We see two central forces that increase the returns
to collaboration although also work in opposing directions on the returns to co-location. The first
is the rising “burden of knowledge” (Jones, 2009). The increasing depth of knowledge required
to work at the scientific frontier is leading to increasing returns to specialization. This in turn
raises the returns to collaboration, given the need to combine ideas and skills to produce new ideas.
Furthermore, to the extent that co-location lowers the cost of collaboration, the rising burden of
knowledge increases the returns to co-location. Agrawal, Goldfarb, and Teodoridis (2013) report
evidence consistent with the knowledge burden hypothesis. Utilizing the sudden and unexpected
release of previously hidden knowledge caused by the collapse of the Soviet Union as a natural
experiment, the authors find that an outward shift in the knowledge frontier does indeed cause an
increase in collaboration.

The second force is the improvement in collaboration-supporting technologies that reduce the
barriers created by distance, such as email, low-cost conferencing, and file-sharing technologies
(Agrawal and Goldfarb, 2008; Kim, Morse, and Zingales, 2009). All else equal, these advances
allow for a greater physical dispersal of collaborating scientists. So, although the declining cost of
communication may decrease the returns to co-location, it increases the returns to collaboration.
Therefore, despite the potential conflict between these two forces with respect to their impact on
the relative returns to co-location, they both increase the returns to collaboration.

We develop a simple model that provides a potential unified explanation for these facts. The
key idea behind the model is that stars have a larger set of potential collaborators to choose from
— perhaps due to having more former graduate students — and thus have the potential to gain
disproportionately from improvements in collaboration technology. Moreover, some of these cross-
institutional collaborations may occur with scientists from lesser-ranked institutions, consistent

with a broadening institutional base in the production of science.



Drawing on parallel work on the causal impact of star scientists on departmental performance
(Agrawal, McHale, and Oettl, 2013), we speculate on the efficiency of the emerging spatial distribu-
tion of scientific activity. Recognizing the existence of knowledge, reputational, and consumption
externalities associated with the location decisions of star scientists, we make no presumption that
the resulting spatial distribution of stars is efficient. We find that stars attract other stars and
also that the recruitment of a star can have positive effects on the productivity of co-located in-
cumbents working in areas related to the star. These effects appear to be particularly strong when
recruitment takes place at non-top-ranked institutions.

However, while strong forces may lead to star agglomeration due to localized externalities,
lower-ranked institutions may have strong incentives to compete for stars as a core part of strate-
gies aimed at climbing the institutional rankings. We document significant movement up the
rankings for a select set of institutions that begin outside the top-ranked institutions. Congestion
effects may also exist from star co-location due to clashing egos and increasing returns to “vertical
collaboration” across skill sets located at different institutions. Overall, we find a tendency towards
reduced concentration of the field’s best scientists at its top-ranked institutions. In addition, the
increasing propensity to collaborate across institutions, particularly across institutions of signifi-
cantly different rank, further diminishes the concentration of knowledge production. Thus, fears of
excessive concentration of stars due to positive sorting might be overblown, although research on
the normative implications of the observed changes in the organization of science is still at an early
stage.

We structure the rest of the chapter as follows. In Section 2, we explain the construction of
our evolutionary biology data at the institutional and individual levels. In Section 3, we report
evidence of the broadening institutional and international base of scientific activity. We describe
the increasing concentration of individual productivity and in particular the rising importance of
stars in Section 4. In Section 5, we present data on the overall rise of collaborative activity and the
change in collaboration patterns. In Section 6, we develop a model that offers a potential unified
explanation of the facts documented in previous sections. Finally, in Section 7, we provide a more

speculative discussion of possible normative implications of these participation, concentration, and



collaboration patterns, with an emphasis on the role of the location of stars and the increasing

propensity to collaborate across institutions.

2 Data

Our study focuses on the field of evolutionary biology, a sub-field of biology concerned with the
processes that generate diversity of life on earth. Although some debate exists among historians of
science and practicing evolutionary biologists over the key early contributors to this discipline, the

general consensus remains that On the Origin of Species by Means of Natural Selection, authored

by Charles Darwin in 1859, is the foundational text of this field. As in most fields of science, research
in evolutionary biology consists of both theoretical and experimental contributions. In addition
to specializing in particular topic areas, empiricists often specialize in working with particular
organisms such as Macrotrachela quadricornifera (rotifer), Drosophila melanogaster (fruit fly), and
Gasterosteus aculeatus (three-spined stickleback fish). The returns to species specialization result
from, for example, the upfront costs of learning how to work with a particular species (including,
in many cases, learning where to find them and how to catch and care for them to facilitate
reproduction in order to observe, for instance, the variation in genotypes and phenotypes of offspring
over multiple generations) as well as setting up the infrastructure in a lab or in nature to study

them.

2.1 Defining Evolutionary Biology

Defining knowledge in evolutionary biology is not straightforward. On the input side, evolutionary
biology, as in many areas of science, draws from many fields, such as statistics, molecular biology,
chemistry, genetics, and population ecology. Furthermore, on the output side, some of the most
influential papers are published in general interest as opposed to field-specific journals. Therefore,
identifying the set of papers that comprise the corpus of the field is complicated because although
every paper in the Journal of Evolutionary Biology is probably relevant, most papers in Science and
Nature are not, although a significant fraction of the field’s most important papers are published

in those latter two journals.



Therefore, we follow a three-step process for defining “evolutionary biology papers.” First, us-
ing bibliometric data from the ISI Web of Science, we collect data on all articles published during
the 29-year period 1980 through 2008 in the journals associated with the four main societies that
focus on the study of evolutionary biology: the Society for the Study of Evolution, the Society for
Systematic Biology, the Society for Molecular Biology and Evolution, and the European Society
of Evolutionary Biology. Their respective journals are: Fuvolution, Systematic Biology, Molecular
Biology and Evolution, and Journal of Evolutionary Biology. We focus on these four society jour-
nals because every article published within them is relevant to evolutionary biologists. In other
words, unlike general interest journals such as Science, Nature, and Cell, which include papers from
evolutionary biology but also research from many other fields, these four journals focus specifically
on our field of interest. This process yields 15,256 articles.

Second, we collect all articles that are referenced at least once by these 15,526 society journal
articles. There are 149,497 unique articles that are referenced at least once by the set of 15,256
evolutionary biology society articles. This set of 149,497 articles includes, for example, papers
that are important to the field but are published outside the four society journals, such as key
evolutionary biology papers published in Science that are cited, likely multiple times, by articles
in the four society journals. We call this set of 149,497 papers the corpus of influence because each
of these articles has had impact on at least one “pure” evolutionary biology article.

Third, we citation-weight the corpus of influence. We do this by counting the references to each
of the 149,497 articles from the original 15,256 society journal articles. There are 501,952 references
from the 15,256 society journal articles. So, on average, articles in the corpus are cited 3.4 times.
Unsurprisingly, the distribution of citations is highly skewed. The minimum number of citations
is one (by construction), the median is one, and the maximum is 9062. For most of the analyses
in this paper, we use counts of citation-weighted publications. When we do so, we use the 149,497

articles weighted by the 501,952 society article references.

2This paper is “The neighbor-joining method - a new method for reconstructing phylogenetic trees” published in
Molecular Biology and Evolution (1987) by Saitou Naruya (University of Tokyo) and Masatoshi Nei (University of
Texas).



2.2 Identifying Authors

We follow several steps to attribute the 149,497 articles in the corpus of influence to individual
authors. The reason this process requires several steps is that authors are not uniquely identified
and therefore name disambiguation is necessary. In other words, when we encounter multiple
papers authored by James Smith, we need to determine whether each is written by the same James
Smith or if instead these are different people with the same name. This process is made more
challenging because until recently the ISI Web of Science only listed the first initial, a middle initial
(if present), and the last name for each author. Is J Smith the same person as JA Smith? Name
disambiguation is particularly important for properly assessing researcher productivity over time
and changing collaboration patterns.

To address this issue, we employ heuristics developed by Tang and Walsh (2010). The heuristic
utilizes backward citations of focal papers to estimate the likelihood of the named author being
a particular person. For example, if two papers reference a higher number of the same papers
(weighted by how many times the paper has been cited, i.e., how popular or obscure it is), then
the likelihood of those two papers belonging to the same author is higher. We attribute two papers
to the same author if both papers cite two or more rare papers (fewer than 50 citations) in both
papers. We repeat this process for all papers that list non-unique author names (i.e., same first
initial and last name). We exclude scientists who do not have more than two publications linked
to their name.

Overall, 171,428 authors are listed on the 149,497 articles. We drop 140,240 names because they
do not have more than two publications linked to their name. Employing the process described
above, we assign the remaining 31,188 author names to 32,955 unique authors (a single name may
map to more than one person). We conduct our analyses using these 32,955 authors. It is important
to note that this is the total number of scientists in our sample over the 29-year period, but that the
number of active scientists varies from year to year. Unsurprisingly, the output produced by these
authors is highly skewed. Considering the overall period of our study, the minimum number of
publications per author is 3 (by construction), the median is 4, the mean is 7.5, and the maximum

is 210 (Professor Rick Shine at the University of Sydney).



We use citation-weighted paper counts per year as our primary measure of author output. We
treat as equal every paper on which a scientist is listed as an author. In other words, we do not
distinguish between a paper on which a scientist is one of two authors from one on which they
are one of three authors. An alternative approach is to use fractional paper counts where half a
paper unit is attributed to the focal author in the former case and a third in the latter. Although
we report results using the former approach, we conduct our analysis using both approaches. The
results are qualitatively similar.

In certain analyses, we refer to the Top 100 (or 200, or 50) scientists. When we do so, we
determine ranking by the accumulated stock of citation-weighted output over the preceding years.
When we refer to ’stars,” we are referring to scientists in the 90th percentile in a given year in
terms of their accumulated stock of citation-weighted paper output over the preceding years. We
provide a more detailed explanation of how we identify stars and related features of the data in our
companion paper that focuses on stars and that uses the same data (Agrawal, McHale, and Oettl,

2013).

2.3 Identifying Scientist Locations

Using the unique author identifiers we generate in the process described above for each evolutionary
biology paper, we then attribute each scientist to a particular institution for every year they are
active. A scientist is active from the year they publish their first paper to the year they publish
their last paper. Here again, we must overcome a data deficiency inherent within the ISI Web of
Science data; until recently, the Web of Science did not link institutions listed on an article to the
authors. Instead, we impute author location using reprint information that provides a one-to-one
mapping between the reprint author and the scientist’s affiliation. In addition, we take advantage of
the fact that almost 57% of evolutionary biology papers are produced with only a single institution
listing. Thus, we are able to directly attribute the location of all authors on these papers to the
focal institution. This method of location attribution is more effective for evolutionary biology
than for many other science disciplines since articles in this field are generally produced by smaller-

sized teams relative to other disciplines in the natural sciences (3.32 average number of authors per



paper).

Overall, we are able to attribute 78.9% of the 32,955 unique authors to an institution. We drop
institutions that do not produce at least one publication in each of the 29 years under study. This
results in the identification of 255 institutions that actively produce new knowledge in the field of
evolutionary biology throughout our study period. Although we refer to these as “departments,”
they are actually the set of authors at an institution (e.g., Georgia Tech) who publish at least
three articles that we categorize as being part of the corpus of influence in evolutionary biology
during the study period. In other words, these individuals may not all formally belong to the same
department within the institution. Again, the output of departments is highly skewed. Over the
29-year period, the minimum number of publications per institution per year is 1 (by construction),

the median is 11, the mean is 17.7, and the maximum is 181 (Harvard University in 2005).

3 Participation: A Broadening Base

The first trend in the organization of evolutionary biology we document is a decline in the skew of
the distribution of output across institutions. This may reflect: 1) an increasing emphasis in knowl-
edge production across previously lesser-producing institutions that are now more concerned about
rankings and thus increasingly emphasizing research output as a factor in promotion and tenure, 2)
changing preferences of faculty who have spent more time than their predecessors developing spe-
cialized research expertise, and/or 3) mounting political pressure to distribute government funding
more evenly across institutions and political jurisdictions. In addition, we find a dramatic increase
in research activity in emerging economies, possibly reflecting a broader movement towards higher
value-added activities as part of the economic development process.

In Figures 1 to 3, we report evidence of the broadening base of science in terms of the declining
department-level concentration of scientists, publications, and citations, respectively. Specifically,
we plot Gini coefficients to illustrate the distribution of scientists (publications, citations) across
departments by year. The pattern of falling concentration is pronounced for the period between
1980 and 2000, although there is some indication of a turnaround in this pattern after 2000.

In Figure 4, we plot department-level Lorenz curves for publications and citations. These curves



illustrate the overall shift in the distribution over time. For example, the top 20% of departments
produce 60% of all publications in 1980 but only 50% in 2000. Similarly, the top 20% produce
75% of all citation-weighted publications in 1980 but only 60% in 2000. It is important to note
that we use a balanced panel for these analyses, including only the 255 institutions publishing
in evolutionary biology throughout the period under study. In other words, we do not allow for
entry of new institutions part way through the study period. Since most institutions that are ever
meaningful contributors to this field are active throughout our study period, this is not a serious
restriction.

However, we relax the no-entry restriction for the data we use in the next graph where we
plot output by country because several institutions in previously low-income countries are not
active in the early years but have since become increasingly important in the overall production of
knowledge. We plot the increasing importance of institutions based in emerging markets in Figure
5. The growth rate of publications from institutions based in BRIC countries (Brazil, Russia, India,
China) begins to rise dramatically from the early 1990s onwards and increases fortyfold by 2000.
However, in absolute terms, the BRIC countries are still minor knowledge producers in this field
relative to the leading nations, such as the US, UK, France, Germany, and Canada.

These decentralization findings from university-based research in evolutionary biology are con-
sistent with prior findings on the decentralization of innovative activity more broadly (Rosenbloom
and Spencer, 1996; Bresnahan and Greenstein, 1999). Also, more recently, in a study of innovation
in information and communication technologies (ICT) over almost the identical period as our study
(1976-2010), Ozcan and Greenstein (2013) examine US patent data and find that although the top
25 firms account for 72% of the entire patent stock and 59% of new patents in 1976, they account
for only 55% and 50%, respectively, by 2010. The decline is even more dramatic when they restrict
the sample to the ownership of high-quality patents (82% down to 62%). They interpret their
results as supporting the view that decentralization is resulting from “more widespread access to
the fundamental knowledge and building blocks for innovative activity” (p.5).

Overall, we interpret our data as reflecting a decline in the concentration of output at the

department level. In other words, the top institutions are producing a decreasing fraction of the



overall output, and previously lesser-producing institutions are now contributing a higher portion
of overall output. However, this is not the case at the individual level. We turn to this unit of

analysis next.

4 Concentration: The Increasing Importance of Stars

With greater democratization in knowledge production across departments, is science becoming a
less elite activity, with a falling centrality of stars as they compete with scientists from an ever-
widening base? Omne might expect the broadening base of science at the department level to be
accompanied by a reduction in the concentration of output at the individual level. However, we
find evidence of the opposite.

We again plot Gini coefficients by year using citation-weighted publications, but this time at the
individual level. These data, illustrated in Figure 6, indicate a significant increase in concentration
during the 1980s and then relative stability during the following decade. Then, in Figure 7, we
plot individual-level Lorenz curves for 1980, 1990, and 2000 with the same data to illustrate how
the full distribution shifts over time. Again, we see individual-level output increasing over time.
For example, the top 20% of scientists produce 70% of output in 1980 but 80% by 2000, with most
of the shift occurring in the first decade. Furthermore, in Figure 8, we illustrate the increasing
spread between the top-performing scientists and the rest by comparing the number of citation-
weighted publications required to be in the Top 50, which increases fivefold, to the average number
of citation-weighted publications, where the increase over the same time period is negligible.

How might we reconcile decreasing concentration at the department level but increasing con-
centration at the individual level? The answer may lie in the changing patterns of collaboration.
Recall that although the rising burden of knowledge and declining communication costs exert op-
posing forces on the returns to co-location, both increase the returns to collaboration. We turn to

the topic of collaboration next.
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5 Collaboration: Increasing Across Distance and Rank

The trend towards increasing collaboration is a well-documented feature of the changing organi-
zation of science (for example, see Wuchty et al., 2007). In fact, the rising role of collaboration
is one of the most common themes across the papers in this volume on the changing frontiers
of science. For example, Branstetter, Li, and Veloso (2013) state: “Our study suggests that the
increase in US patents in China and India are to a great extent driven by MNCs [multi-national
corporations| from advanced economies and are highly dependent on collaborations with inventors
in those advanced economies.”® Forman, Goldfarb, and Greenstein (2013) explain: “We show that
these [geographic distribution of inventive activity] results are largely driven by patents filed by
distant collaborators rather than by non-collaborative patents or by patents by non-distant collab-
orators...”. Stephan (2013) argues: “Much of the equipment associated with these shifts in logic
were, although expensive, still affordable at the lab or institutional level. Some, however, such as
an NMR [nuclear magnetic resonance], carried sufficiently large price tags to encourage, if not de-
mand, collaboration across institutions.” Conti and Liu (2013) report: “Collaborations with other
scientists, as measured by the number of coauthors on a paper, have increased. This increase is

” Freeman, Ganguli, and

driven by collaborations with scientists outside of a trainee’s laboratory.
Murciano-Goroff (2013) discover through their survey: “The major factor cited for all types of col-
laborations was ‘unique knowledge, expertise, capabilities.” Non-co-located and international teams
were more likely to have a coauthor contributing data, material, or components - a pattern that
has been increasing over time....”

We document this phenomenon of increasing collaboration over time in our own setting in
Figure 9. Specifically, this figure illustrates the steady increase in the average number of authors
on evolutionary biology papers, rising from 2.3 in 1980 to 3.8 in 2005. Moreover, this collaboration
increasingly has been taking place across university boundaries (Jones, Wuchty, and Uzzi, 2008).
We illustrate this in Figure 10, where we plot the average number of unique institutions represented

on a paper over time. The figure shows that this number increases from 1.46 in 1980 to 2.45 in

2005.

3The emphasis in this and the other quotes in this paragraph is our own, not that of the original authors.
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We also observe a dramatic trend in the average rank difference between authors on co-authored
papers (Figure 11). For example, in 1980, the average distance in rank between collaborating
institutions is approximately 30 (e.g., one collaborator is at an institution ranked number 20 and the
coauthor is at an institution ranked number 50); by 2005, the difference increases to approximately
55. Furthermore, we find evidence of increasing distance between collaborators over time. We
illustrate this in Figure 12, where the average distance between coauthors increases from 325 to
500 miles over the period 1980 to 2005.

Why might the falling cost of distant collaboration disproportionately benefit stars? Freeman,
Ganguli, and Murciano-Goroff (2013) present survey evidence indicating that, in general, a large
fraction of collaborations occur between scientists who were previously co-located. We conjecture
that one reason stars disproportionately benefit from a drop in the cost of distant collaboration is
because they have a greater number of distant potential collaborators. For example, stars are likely
to have more graduate students and postdoctoral students than non-stars, on average, and these
students are likely to subsequently move to other institutions. To the extent that communication
technologies like the internet are most suitable for facilitating communication between individuals
with an already established relationship as opposed to establishing new relationships (Gaspar and
Glaeser, 1998), then lowering communication costs will disproportionately benefit those individuals,
such as stars, who have more previously co-located but now distant potential coauthors. In other
words, stars are able to employ this technology over a larger number of previously co-located but
now distant potential collaborators.

This benefit to stars could accrue through two non-mutually exclusive channels. First, stars
could disproportionately increase the number of individuals they collaborate with. Our descriptive
evidence suggests that although stars do increase their propensity to collaborate over time, so do
non-stars. We illustrate this in Figures 13 and 14. First, we show that although the number of
coauthors per paper increases over time, there is no meaningful difference between papers with
and without stars. Second, we construct three measures of stars (Top 50, Top 100, and Top 200
scientists) and plot the number of unique coauthors per year for stars versus non-stars. These data

indicate that although the annual number of unique collaborators is increasing over time for star
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scientists, stars do not seem to increase their number of unique collaborators at a meaningfully
faster rate than non-stars.

Second, stars may disproportionately benefit from the fall in communication costs because they
are able to make better matches with coauthors since they have more potential collaborators to
choose from. In other words, the best of the available pool of potential collaborators is better for
stars than for non-stars. So, for example, if the falling cost of communications increases the returns
to collaboration such that both a star and a non-star increase their number of collaborations by
1, then the average star may choose the best-suited collaborator from a pool of many previously
co-located but now distant potential collaborators, while the non-star can only choose from a pool
of few. Even if stars and non-stars are choosing collaborators from pools with the same distribution
in terms of quality or range of skills, stars likely will be able to choose a superior match simply due
to the larger pool size to which they have access.

We construct a measure of the size of the pool of previously co-located but now distant col-
laborators by counting the cumulative number of individuals who coauthor with the focal scientist
at least once while located at their home institution and then subsequently at least once while at
another institution. We again construct three measures of stars (Top 50, Top 100, and Top 200
scientists). In Figure 15, we plot the potential distant coauthor pool size for stars versus non-stars
(cumulative number of unique coauthors that were previously co-located but are now distant). It
is important to note that this count is not simply the aggregation of the annual counts plotted in
the prior figure. That is because in the prior figure repeated coauthorships are counted as distinct
in each new year (although multiple coauthorships with the same individual in the same year are
not double counted). However, in this plot only unique coauthorships that are unique in the ab-
solute sense (cumulatively) are counted. Furthermore, in Figure 15 we only count distant distant
coauthors that were previously located whereas in the prior figure there were no distance or prior
co-location restrictions in counting unique coauthors. These data indicate that the pool size of
potential collaborators (such as graduate students and postdocs) grows significantly faster for stars
than for non-stars. Furthermore, in Figure 16, we plot the inverse of the ratio of the number of

actual collaborations in a given year to the number of potential collaborators in the pool that year
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and compare the change in this ratio over time for stars versus non-stars. We interpret the ratio
as a proxy for the degree of selectivity afforded to stars and non-stars. In other words, a higher
ratio for stars versus non-stars indicates that stars collaborate with a smaller fraction of their pool
of potential coauthors than non-stars. The figure thus suggests that the relative selectivity of stars
versus non-stars in terms of choosing collaborators is increasing over time. While not conclusive,
these descriptive data are consistent with the conjecture that stars disproportionately benefit from
falling communication costs by way of an increased pool size of distant collaborations to choose

from relative to non-stars.

6 Improved Collaboration Technology and the Distribution of Sci-

entific Output: An Integrating Model

In this section, we develop a simple model to examine the effects of an improvement in collabo-
ration technology on the distribution of scientific output. In particular, we examine how such an
improvement both disproportionately affects stars and leads to more collaboration. The model’s
results are consistent with both an increased concentration of scientific output across individual
scientists — i.e., a star concentration effect — and also a broadening institutional base of science.

A key assumption is that relationships with previously co-located but now distant former coau-
thors, such as former graduate students and postdocs, are central to developing opportunities for
subsequent collaboration. This is consistent with the survey evidence on collaboration reported by
Freeman, Ganguli, and Murciano-Goroff (2013), which documents the extent to which such rela-
tionships account for the majority of collaborative partnerships. We also assume that the number
of feasible collaborative relationships is limited due to the costs of collaboration. Furthermore,
we assume that stars know a larger set of former graduate students and post docs from which to
choose their collaborative relationships. We do not need to assume that stars have better graduate
students in general or engage in more collaborative relationships. We show that simply having a
greater range of graduate students to choose from enables stars to gain disproportionately from an

improvement in collaborative technologies, which we take to be due to improvements in communi-
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cation technologies (email, file-sharing technologies, etc).

For a given scientist, we assume the value of a collaborative relationship, X, with a given former
graduate student is uniformly distributed on the interval [0, M]. We assume that an improvement
in collaboration technology increases the value of any relationship by a multiplicative factor. The
increased value of collaboration could also reflect a greater need for collaboration due to the “burden
of knowledge” effect. Thus, we can simply model an improvement in technology (or the greater

need for collaboration) as an increase in M, effectively a stretching of the distribution to the right.

6.1 Basic Model

We assume initially that each scientist chooses the single best relationship from her set of n former
graduate students. We use the size of n as a proxy for the scientist’s degree of stardom. For a given

scientist, the expected value of the best available relationship is:

M n
X
E(X)—/ x2(2) ax =" M. (1)
0 X\ M 1+n
This result uses the distribution of the maximum value of n, which draws from the uniform
distribution.*

The increase in expected value from a small increase in the available collaboration technology

is then:

OE(X) n
OM — 1+n

The size of this increase is increasing in n:

PEX) 1
OMon (1 +n)2 > 0. 3)

Thus, stars — those with a high n — gain disproportionately from the improvement in the

collaboration technology.

“The CDF for this extreme value distribution is: F(X) = (%)n The density function is then: f(X) = % (%)n
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6.2 Extended Model

A limitation of the basic model is that it assumes a scientist will choose to collaborate with her best
former graduate student no matter how low the value of that best collaboration. A more realistic
assumption is that scientists have some threshold below which they will not collaborate, given the
opportunity costs of collaboration (e.g., reduced time for sole authorship). Denoting this threshold

as X*, the expected value of a collaboration is now:

- 3G ()] o

The expected value is lower than when the threshold is absent because best draws from the

distribution that are below the threshold result in zero value. It is also increasing in M, so that

improvements in the collaboration technology are again beneficial.

1
+n(M>

We again ask if the technology improvement disproportionately benefits stars. This requires

OE(X):[ n }

oM 1+n > 0. (5)

that the cross derivative with respect to n is positive. Making use of logarithmic differentiation,

the cross derivative is:

a;ﬁgl) B <1+1n>2+<17fn> <)A(4)+ B‘ 1in+l”<)§>]- (6)

This cross derivative is obviously quite a complex function of n, M, and X*. However, it can

be shown to be positive for all n given a low enough value of X* relative to the starting value of M,
so that OE(X)/0M is then monotonically increasing in n. Figure 17 shows the cross derivative as
a function of n for different values of X* (conveniently scaled by the starting value of M): 0.1, 0.2,
and 0.3. At high values of X*/M, the cross derivative can be negative over an intermediate range
of n but becomes positive for high enough values of n. We assume, however, that the threshold is
sufficiently low such that the cross derivative is positive for all n.

An additional consequence of introducing a threshold for collaboration is that the probability
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of collaboration is now itself a function of M.

Prob[X>X*]:1—<‘;\i:)n. (1)

This probability is also increasing in M, so that improvements in the collaborative technology

lead to more as well as higher expected value collaboration:

(8)

OProb[X > X*| _n (X*)n S
oM M\ M

Summing up, the extended model demonstrates two effects of an improvement in collaborative
technology that could impact the distribution of scientific output. First, provided that scientists
do not set too high a threshold for engaging in collaboration, the benefit from the improvement in
technology is increasing in n, so that stars — whom we assume to be disproportionately endowed
with previously co-located but now distant former coauthors — benefit disproportionately. This is
consistent with an increased concentration of scientific output at the individual level. Second, it
will be beneficial for more scientists to engage in collaborative research. This is consistent with

an expanding institutional base of science as more former students and postdocs — who will have

dispersed across the institutional ranks — are involved in collaborative research.

7 Discussion: Normative Implications of Star Location

Our review of the basic trends in participation, concentration, and collaboration reveals the dramat-
ically changing organization of scientific activity in the field of evolutionary biology. The emerging
picture also points to the increasingly central role played by stars in collaboration and overall out-
put. Moreover, stars, like the overall research community, appear to be increasingly collaborating
across distance and institution rank. Overall, we see evidence of a developing cross-institutional
division of scientific labor, with stars playing a leadership role in institution- and distance-spanning
multi-author research teams.

The rising centrality of stars raises questions about the efficient distribution of stars across

institutions. We thus reflect on the efficiency of the emerging pattern of the division of labor,
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drawing on both the factual picture just documented and parallel work on the causal impact of star
scientists at the departmental level (Waldinger, 2012, 2013; Agrawal, McHale, and Oettl, 2013). A
key question is whether the emerging spatial distribution of stars is efficient from the perspective
of maximizing the value of scientific output.

We do not presume that the distribution will be efficient, given the free location choices of
individual scientists and the productivity, reputational, and consumption externalities associated
with those choices. We note in particular that the reputational spillover from locating at top-ranked
institutions could lead to an excessive positive sorting of stars at these institutions. Such inefficiency,
if it exists, could be ameliorated by easier cross-institution collaboration, effectively making the
location of stars less important to knowledge production. Even so, given the ongoing costs of
distance-related collaboration, a concern still remains that there may be excessive concentration
from a social welfare perspective.

In Agrawal, McHale, and Oettl (2013), we show that the arrival of a star, whom we define as a
scientist whose output in terms of citation-weighted publications is above the 90th percentile of the
citation-weighted stock of papers published up until year t_1, leads to a significant increase in the
productivity of co-located scientists. More specifically, we show this effect operates through two
channels: knowledge and recruiting externalities. We show that the arrival of the star leads to an
increase in the productivity of incumbents, those scientists already at the department prior to the
arrival of the star, but only for those incumbents working on topics related to those of the star. We
do not find any evidence of productivity gains by incumbents working in the field of evolutionary
biology but on topics unrelated to those of the star. These effects are robust to including controls
for broader departmental and university expansion. Furthermore, they are robust to placebo tests
for the timing of the effect; we find no evidence of a pre-trend in terms of increasing productivity
prior to the arrival of the star. Moreover, the results are also robust to using a plausibly exogenous
instrument for star arrival.

The star’s arrival also leads to a significant increase in subsequent joiner quality (recruits hired
after the arrival of the star), which is most pronounced for related joiners but also occurs for

unrelated joiners. These results also hold when subjected to the robustness tests described above.
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These recruiting results raise a concern about the possibility of reputation-driven positive sorting
at top institutions, with stars attracting stars irrespective of productivity-increasing knowledge
spillovers. This in turn raises a concern about lost opportunities for stars to seed focused and
dynamic research clusters at lower-ranked institutions.

But are these opportunities actually lost? Given the apparent role of star recruitment in depart-
ment building — which our evidence suggests would be particularly effective where the institution
already has a cadre of incumbents working in related areas to the star and has a sufficient flow
of new openings to take advantage of star-related recruitment externalities — an offsetting force
to excessive concentration could come from the incentive of lower-ranked institutions to use star-
focused strategies to ascend departmental rankings. We show how departmental rankings changed
between 1980 and 2000 in Figure 18. While these data imply a reasonably high degree of rank
persistence, they also show that some institutions made significant movements up the rankings.
Anecdotal evidence suggests that the recruitment of stars may have played an important role here.

Moreover, stars may increasingly benefit institutions they do not join but where they have col-
laborative relationships. Azoulay, Graff Zivin, and Wang (2010) and Oettl (2012), who both use
the unexpected death of star scientists to estimate their effect on the productivity of their peers,
report evidence that stars significantly influence the productivity of their collaborators. Moreover,
Agrawal and Goldfarb (2008) show that the greatest effect of universities connecting to Bitnet (an
early version of the internet) in terms of influencing cross-institution collaboration patterns was not
between researchers at tier 1 institutions but rather tier 1 — tier 2 collaborations. This is consistent
with the data we report here on the increasing institution rank distance between collaborators. One
interpretation of this result is that lowering communication costs particularly benefits vertical col-
laboration, suggesting an increasingly vertically disaggregated division of labor as communication
costs fall. Perhaps, for example, declining communication costs increase the returns for individ-
uals at top institutions specializing in leading major research initiatives, identifying key research
questions, and writing grant applications, while their collaborators at lower ranked-institutions run
experiments, collect and analyze data, and work together with all collaborators to interpret and

write their results. The results reported by Kim, Morse, and Zingales (2009) are consistent with
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this when they document the rise of lesser-ranked universities.

To obtain more direct evidence of changes in star concentrations, we plot in Figure 19 the share
of the top 100 evolutionary biology scientists at the top 50, top 25, and top 10 evolutionary biology
departments. The basic pattern shows, if anything, a fall in the concentration of stars at top
institutions, somewhat allaying fears of excessive concentration due to reputation-driven positive
sorting.

Our examination of the efficiency of the emerging organization of activity in the field of evolu-
tionary biology is unavoidably preliminary and speculative given current levels of knowledge. The
broad pattern of increased spatial and cross-institution collaboration — often centered on a star —
is pronounced in the data. However, despite institution-level evidence of reputation-based sorting,
we do not observe the feared rise in concentration at top institutions. Given the importance of the
spatial and institutional distribution of stars to the workings of collaborative science, we expect
the normative implications of the changing spatial distribution of scientific activity — and its stars

— to be an active area of future research on the organization of science.
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Figure 1: Gini Coefficients by Year for the Distribution of Scientists across Departments
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Figure 3: Gini Coefficients by Year for the Distribution of Citations Received across Departments
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Figure 4: Lorenz Curves by Department for Publications and Citation-Weighted Publications
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Figure 5: Publication Count by Country by Year Normalized Relative to Output in 1980
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Figure 6: Gini Coefficients for the Distribution of Citation-Weighted Publications across Individuals
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Figure 7: Lorenz Curves by Individual for Citation-Weighted Publications
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Average Author Count
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Figure 11: Mean Difference in Institution Rank Between Coauthors
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Figure 12: Mean Distance Between Coauthors (miles)
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Figure 13: Mean Number of Authors Per Paper (Star versus Non-Star)
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Figure 14: Number of Unique Coauthors Per Year
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Figure 15: Cumulative Number of Unique Previously Co-Located but Now Distant Coauthors
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Figure 16: Selectivity Index
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Note: We construct the selectivity index as the inverse of the ratio of the number of of unique collaborators in a given year
over the cumulative number of previously co-located but now distant collaborators.
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Figure 17: Relationship of the Cross Derivative to n
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Figure 18: Department Level Rank in Evolutionary Biology: 1930 vs 2000
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Figure 19: Fraction of Top 100 Ranked Researchers at Top Ranked Departments
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