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ABSTRACT

The security of sensitive individual data is a subject of indisputable importance. One of the major
threats to sensitive data arises when one can link sensitive information and publicly available data.
In this paper we demonstrate that even if the sensitive data are never publicly released, the point
estimates from the empirical model estimated from the combined public and sensitive data may lead
to a disclosure of individual information. Our theory builds on the work in Komarova, Nekipelov
and Yakovlev (2012) where we analyze the individual disclosure that arises from the releases of
marginal empirical distributions of individual data. The disclosure threat in that case is posed by
the possibility of a linkage between the released marginal distributions. In this paper, we analyze a
different type of disclosure. Namely, we use the notion of the risk of statistical partial disclosure to
measure the threat from the inference on sensitive individual attributes from the released empirical
model that uses the data combined from the public and private sources. As our main example we
consider a treatment effect model in which the treatment status of an individual constitutes sensitive

information.
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1 INTRODUCTION

1 Introduction

In policy analysis and decision making in many areas it is instrumental to have ac-
cess to individual data that may be considered sensitive or damaging when released
publicly. For instance, a statistical analysis of the data from clinical studies that
can include the information on the health status of their participants is crucial to
study the effectiveness of medical procedures and treatments. In financial industry a
statistical analysis of individual decisions combined with financial information, credit
scores and demographic data allows banks to evaluate risks associated with loans
and mortgages. The resulting estimated statistical models will reflect the character-
istics of individuals whose information was used in estimation. The policies based on
this statistical model will also reflect the underlying individual data. The reality of
the modern world is that the amount of publicly available (or searchable) individual
information that comes from search traffic, social networks and personal online file
depositories (such as photo collections) is increasing on the daily basis. Thus, some
of the variables in the datasets used for policy analysis may be publicly observable.!
Very frequently verious bits of information regarding the same individual are con-
tained in several separate datasets. Individual names or labels are most frequently
absent from available data (either for the purposes of data anonymization or as an
artifact of the data collection methodology). Each individual dataset in this case may
not pose a direct security threat to individuals. For instance, a collection of online
search logs will not reveal any individual information unless one can attach the names
of other identifying information to the generic identifiers attached to each unique user.
However, if one can combine information from multiple sources, the combined array
of data may pose a direct security threat to some or all individuals contained in the
data. For instance, one dataset may be a registry of HIV patients which names and
location of the patiens removed. Another dataset may be the address book that con-
tains names and addresses of people in a given area. Both these datasets individually
do not disclose any sensitive information regarding concrete individuals. A combined
dataset will essentially attach names and addresses to the anonymous labels of patiens

in the registry and thus will disclose sensitive individual information.

'Reportedly, many businesses indeed rely on the combined data. See, e.g. Wright (2010) and
Bradley, Penberthy, Devers, and Holden (2010), among others.



1 INTRODUCTION

The path to digitization in a variety of markets with the simultaneous availabiliuty
of the data from sources like social networks makes this scenario quite realistic. It
is pretty clear that from policy perspective the prevention of further increase in the
availiability of such multiple sources is unrealistic. As a result, a feasible solution
seems to be aimed at assuring some degree of anonymization as a possible security
measure. At the same time inferences and conclusions based on such multiple sources
may be vital for making accurate policy decisions. Thus, a key agenda item in the
design of methods and techniques for secure data storage and release is in finding a
trade-off between keeping the data informative for policy-relevant statistical model
and, at the same time, preventing an adversary from the reconstruction of the sensitive
information in the combined dataset.

In this paper we exlore one question in this agenda. Our aim is to learn how one can
evaluate the treatment effect when the treatment status of an individual may present
sensitive information while the individual demographic characteristics are either pub-
licly observable or may be inferred from some publicly observable characteristics. In
such cases we are concerned with the risk of disclosing sensitive individual informa-
tion. The questions that we address are, first, whether the identification of treatment
effects from the combined public and sensitive data is compatible with formal restric-
tions on the risk of so-called partial disclosure. Second, we want to investigate how
the public release of the estimated statistical model can lead to an increased risk of

such a disclosure.

In our empirical application we provide a concrete example of the analysis of treat-
ment effects from two “anonymized” datasets. The data that we use come from the
Russian Longitudinal Monitoring Survey (RLMS) that combines several question-
naires collected on the yearly basis. The respondents are surveyed on a variety of
topics from employment to health. However, for anonymization purposes any iden-
tifying location information is removed from the data making it impossible to verify

where each respondent is located.

Due to the vast soviet heritage, most people in Russia live in large apartment de-
velopments that include several blocks of mult-story (usually, from 5 floors and up)
apartment buildings connected together with common infrastructure, shops, schools

and medical facilities. With such a setup in place the life of each family becomes
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very visible to most of the neighbors. Our specific question of interest is the potential
impact of dominant religious affiliation of the neighborhood on the decision of parents
to get their children checked up by a doctor in a given year as wll as the deicion of

the parents to vaccinate their child with the age-prescribed vaccine.

Such an analysis is impossible without neighborhood identifiers. Neighborhood iden-
tifiers are made available to selected researchers upon a special agreement with the
data curator (University of North Carolina and the Higher School of Economics in
Moscow). This allows us to construct the benchmark where the neighborhood identi-
fication is known. Then we consider a realistic scenario where such an identification
needs to be restored from the data. Using the record linkage technique adopted from
the data mining literature, we reconstruct neighborhood affiliation using the individ-
ual demographic data. Our data linkage technique relies on observing data entries
with infrequent attribute values. Accurate links for these entries may disclose indi-
vidual location and then lead to the name disclosure based on the combination of the
location and demographic data. We note that the goal of our work is not to demon-
strate the vulnerability of anonymized personal data but to demonstrate a synthetic
situation that reflects the component of the actual data-driven decision making and
to show the privacy versus identification trade-off that arises in that situation. Fur-
ther, we analyze how the estimates of the empirical model will be affected by the
constraints on partial disclosure. We find that any such limitation leads to a loss of
point identification in the model of interest. In other words, we find that there is a
clear-cut trade-off between the restrictions imposed on partial disclosure and the point

identification of the model using consumer-level data.

Our analysis combines ideas from the data mining literature with those from the
literature on statistical disclosure limitations, as well as the literature on model iden-
tification with corrupted or contaminated data. We provide a new approach to model
identification from combined datasets as a limit in the sequence of statistical experi-

ments.

A situation when the chosen data combination procedure provides a link between at
least one data entry in the consumer dataset and auxiliary individual information
with the probability exceeding the selected confidence threshold presents a case of

a successful linkage attack. The optimal structure of such attacks, as well as the
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requirements in relation to the data release have been studied in the computer science
literature. The structure of linkage attacks is based on the optimal record linkage
results that have been long used in the analysis of databases and data mining. To
some extent, these results were used in econometrics for combination of datasets as
described in Ridder and Moffitt (2007). In record linkage one provides a (possibly)
probabilistic rule that can match the records from one dataset with the records from
the other dataset in an effort to link the data entries corresponding to the same
individual. In several striking examples, computer scientists have shown that the
simple removal of personal information such as names and social security numbers
does not protect the data from individual disclosure. Sweeney (2002b) identified the
medical records of William Weld, then governor of Massachusetts, by linking voter
registration records to “anonymized” Massachusetts Group Insurance Commission
(GIC) medical encounter data, which retained the birthdate, sex, and zip code of the
patient. Recent “de-personalized” data released for the Netflix prize challenge turned
out to lead to a substantial privacy breach. As shown in Narayanan and Shmatikov
(2008), using auxiliary information one can detect the identities of several Netflix

users from the movie selection information and other data stored by Netflix.

Modern medical databases pose even larger threats to individual disclosure. A dra-
matic example of a large individual-level database are the data from genome-wide
association studies (GWAS). GWAS are devoted to an in-depth analysis of genetic
origins of human health conditions and receptiveness to deceases, among other things.
A common practice of such studies was to publish the data on the the minor allele
frequencies. The analysis of such data allows researchers to demonstrate the evidence
of a genetic origin of the studied condition. However, there is a publicly available
single nucleotide polymorphism (SNP) dataset from the HapMap NIH project which
consists of SNP data from 4 populations with about 60 individuals each. Homer,
Szelinger, Redman, Duggan, Tembe, Muehling, Pearson, Stephan, Nelson, and Craig
(2008) demonstrated that they could infer the presence of an individual with a known
genotype in a mix of DNA samples from the reported averages of the minor allele
frequencies using the HapMap data. To create the privacy breach, one can take an
individual DNA sequence and then compare the nucleotide sequence of this individual
with the reported averages of minor allele frequencies in the HapMap population and

in the studied subsample. Provided that the entire list of reported allele frequencies
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can be very long, individual disclosure may occur with an extremely high probability.
As a result, if a particular study is devoted to the analysis of a particular health con-
dition or a decease, the discovery that a particular individual belongs to the studied

subsample means that this individual has that condition or that decease.

Samarati and Sweeney (1998), Sweeney (2002b), Sweeney (2002a), LeFevre, De-
Witt, and Ramakrishnan (2005), Aggarwal, Feder, Kenthapadi, Motwani, Panigrahy,
Thomas, and Zhu (2005), LeFevre, DeWitt, and Ramakrishnan (2006), Ciriani, di Vimer-
cati, Foresti, and Samarati (2007) developed and implemented the so-called k-anonymity
approach to address the threats of linkage attacks. Intuitively, a database provides
k-anonymity, for some number k, if every way of singling an individual out of the
database returns records for at least k individuals. In other words, anyone whose
information is stored in the database can be “confused” with k others. Several oper-
ational prototypes for maintaining k-anonymity have been offered for practical use.
The data combination procedure will then respect the required bound on the indi-
vidual disclosure (disclosure of identities) risk if it only uses the links with at least k

possible matches.

A different solution has been offered in the literature on synthetic data. Duncan
and Lambert (1986), Duncan and Mukherjee (1991), Duncan and Pearson (1991),
Fienberg (1994), and Fienberg (2001) Duncan, Fienberg, Krishnan, Padman, and
Roehrig (2001), Abowd and Woodcock (2001) show that synthetic data may be a
useful tool in the analysis of particular distributional properties of the data such
as tabulations, while guaranteeing a certain value for the measure of the individual
disclosure risk (for instance, the probability of “singling out” some proportion of the
population from the data). An interesting feature of the synthetic data is that they
can be robust against stronger requirements for disclosure risk. Dwork and Nissim
(2004) and Dwork (2006) introduced the notion of differential privacy that provides a
probabilistic disclosure risk guarantee against the privacy breach associated with an
arbitrary auxiliary data. Abowd and Vilhuber (2008) demonstrate a striking result
that the release of synthetic data is robust to differential privacy. As a result, one can
use the synthetic data to enforce the constraints on the risk of disclosure by replacing
the actual consumer data with the synthetic consumer data for a combination with

an auxiliary individual data source.
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In our paper we focus on the threat of partial disclosure. Partial disclosure occurs
if the released information such as statistical estimates obtained from the combined
data sample reveals with high enough probability some sensitive characteristics of a
group of individuals. We provide a formal definition of partial disclosure and show
that one can control the risk of this disclosure, so the bounds on the partial disclosure

risk are practically enforceable.

Although our identification approach is new, to understand the impact of the bounds
on the individual disclosure risk we use ideas from literature on partial identification
of models with contaminated or corrupted data. Manski (2003), Horowitz, Manski,
Ponomareva, and Stoye (2003), Horowitz and Manski (2006), Magnac and Maurin
(2008) have understood that many data modifications such as top-coding suppression
of attributes and stratification lead to the loss of point identification of parameters
of interest. Consideration of the general setup in Molinari (2008) allows one to assess
the impact of some data “anonymization” as a general misclassification problem. In
this paper we find the approach to the identification of the parameters of interest by
constructing sets compatible with the chosen data combination procedure extremely
useful. As we show in this paper, the sizes of such identified sets for the propensity
scores and the average treatment effect are directly proportional to the pessimistic
measure of the disclosure risk. This is a powerful result that essentially states that
there is a direct conflict between the informativeness of the data used in the consumer
behavioral model and the security of individual data. As a result, the combination of
the company’s internal data with the auxiliary public individual data is not compat-
ible with the non-disclosure of individual identities. An increase in the complexity

and nonlinearity of the model can further worsen the trade-off.

In the paper we associate the ability of a third party to recover sensitive information
about consumers from the reported statistical estimates based on the combined data
with the risk of partial disclosure. We argue that the estimated model may itself be
disclosive. As a result, if this model is used to make (observable) policy decisions,
some confidential information about consumers may become discoverable. Existing
real world examples of linkage attacks on the consumer data using the observable firm
policies have been constructed for online advertising. In particular, Korolova (2010)

gives examples of privacy breaches through micro ad targeting on Facebook.com.
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Facebook does not give advertisers direct access to user data. Instead, the advertiser
interface allows them to create targeted advertising campaigns with a very granular
set of targets. In other words, one can create a set of targets that will isolate a very
small group of Facebook users (based on the location, friends and likes). Korolova
shows that certain users may be perfectly isolated from other users with a particularly
detailed list of targets. Then, one can recover the “hidden” consumer attributes, such
as age or sexual orientation, by constructing differential advertising campaigns such
that a different version of the ad will be shown to the user depending on the value
of the private attribute. Then the advertiser’s tools allow the advertiser to observe

which version of the ad was shown to the Facebook user.

When the company “customizes” its policy regarding individual users, e.g. a PPO
gives its customers personalized recommendations regarding their daily routines and
exercise or hospitals re-assign specialty doctors based on the number of patients in
need of specific procedures, then the observe policy results may disclose individual
information. In other words, the disclosure may occur even when the company had

no intention of disclosing customer information.

Security of individual data is not synonymous to privacy, as privacy may have subjec-
tive value for consumers (see Acquisti (2004)). Privacy is a complicated concept that
frequently cannot be expressed as a formal guarantee against intruders’ attacks. Con-
sidering personal information as a “good” valued by consumers leads to important
insights in the economics of privacy. As seen in Varian (2009), this approach allowed
the researchers to analyze the release of private data in the context of the trade-off
between the network effects created by the data release and the utility loss associated
with this release. The network effect can be associated with the loss of competitive
advantage of the owner of personal data, as discussed in Taylor (2004), Acquisti and
Varian (2005), Calzolari and Pavan (2006). Consider the setting where firms obtain
a comparative advantage due to the possibility of offering prices that are based on
the past consumer behavior. Here, the subjective individual perception of privacy is
important. This is clearly shown in both the lab experiments in Gross and Acquisti
(2005), Acquisti and Grossklags (2008), as well as in the real-world environment in
Acquisti, Friedman, and Telang (2006), Miller and Tucker (2009) and Goldfarb and
Tucker (2010). Given all these findings, we believe that the disclosure protection plays
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a central role in the privacy discourse, as privacy protection is impossible without the

data protection.

The rest of the paper is organized as follows. Section 2 describes the analyzed treat-
ment effects models, the availability of the data and gives a description of data combi-
nation procedures employed in the paper. Section 3 provides a notion of the identified
sets, which are compatible with the data combination procedure, for the propensity
score and the average treatment effect. It looks at the properties of these sets as the
sizes of available data sets go to infinity. Section 4 introduces formal notions of partial
disclosure and partial disclosure guarantees. It discusses the trade-off between the
point identification of the true model parameters and partial disclosure limitations.

Section 5 provide an empirical illustration.

2 Model setup

In many practical settings the treatment status of an individual in the analyzed sam-
ple is a very sensitive piece of information, much more sensitive than the treatment
outcome and/or this individual’s demographics. For instance, in evaluation of the ef-
fect of a particular drug, one may be concerned with the interference of this drug with
other medications. Many anti-inflammatory medications may interfere with standard
HIV treatments. To determine the effect of the interference one would evaluate how
the HIV treatment status influences the effect of the studied anti-inflammatory drug.
The fact that a particular person participates in the study of the anti-inflammatory
drug does not perhaps present a very sensitive piece of information. However, the
fact that a particular person receives HIV treatment medications may be extremely

sensitive.

We consider the problem of estimating the propensity score and the average treatment
effect in cases when the treatment status is a sensitive (and potentially harmful)
piece of information. Suppose that the response of an individual to the treatment is
characterized by two potential outcomes Yi,Yy, € V C R, and the treatment status
is characterized by D € {0,1}. Outcome Y] corresponds to the individuals receiving
the treatment and Y| corresponds to the non-treated individuals. Each individual is

also characterized by the vector of individual-specific covariates X € X C RP such as
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the demographic characteristics, income and location.

Individuals are also described by vectors V' and W containing a combination of real-
valued and string-valued variables (such as social security numbers, names, addresses,
etc.) that identify the individual but do not interfere with the treatment outcome.
The realizations of V' belong to the product space V = §* x R", where §* is a fi-
nite space of arbitrary (non-numeric) nature. §*, for instance, may be the space of
combinations of all human names and dates of birth (where we impose some ‘“reason-
able” bound on the length of the name, e.g. 30 characters). The string combination
{"John'/ Smith’,/01/01/1990'} in an example of a point in this space. Each string in
this combination can be converted into the digital binary format. Then the count-
ability and finiteness of the space &* will follow from the countability of the set of all
binary numbers of fixed length. We also assume that the space V is endowed with the
distance. There are numerous examples of definitions of a distance over strings (e.g.
see Wilson, Graves, Hamada, and Reese (2006)). We can then define the norm in
S* as the distance between the given point in & and a “generic” point corresponding
to the most commonly observed set of attributes. We define the norm in V' as the
weighted sum of the defined norm in & and the standard Euclidean norm in R” and
denote it ||||y. Similarly, we assume that W takes values in W = §** x R*, where §**
is also a finite space. The norm in W is defined as a weighted norm and denoted as
Il|lw- Spaces S* and S** may have common subspaces. For instance, they both may
contain the first names of individuals. However, we do not require that such common

elements indeed exist.

Random variables V' and W are then defined by the probability space with a o-finite
probability measure defined on Borel subsets of VV and W.

We assume that the data generating process creates N, i.i.d. draws from the joint
distribution of the random vector (Y, D, X, V,W). These draws form the (infeasible)
“master” sample {yi,di,xi,vi,wi}f\ﬁ’l. However, because either all the variables in
this vector are not collected simultaneously or some of the variables are intentionally
deleted, the data on the treatment status and treatment outcome are not contained
in the same sample. One sample, containing N, observations is the i.i.d. sample
{z, v@-}f-v:yl is in the public domain. In other words, individual researchers or research

organizations can get access to this dataset. The second dataset is a subset of N <

10
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N, observations from the “master” dataset and contains information regarding the
treatment status {y;,d;, w;}},.* This dataset is private in the sense that it is only
available to the data curator (e.g. the hospital network) and cannot be acquired by
external researchers or general public. We consider the case when even for the data
curator, there is no direct link between the private and the public datasets. In other
words, the variables in v; and w; do not provide immediate links between the two
datasets. In our example on the HIV treatment status, we could consider the cases
where the data on HIV treatment (or testing) are partially or fully anonymized (due
to the requests by the patients) and there are only very few data attributes that allow

the data curator to link the two datasets.

Suppose that the true response model can be characterized by two potential outcomes
Y; and Y| corresponding to the value of the treatment status. We impose the following

assumptions on the elements of the model.
ASSUMPTION 1 (i) The treatment outcomes satisfy the conditional unconfound-
edness, i.e. (Y1,Yy) LD|X ==
(i1) At least one element of X has a continuous distribution with density strictly

positive on its support

We consider the propensity score P(z) = E[D|X = z] and suppose that for some
specified 0 < 0 < 1 the knowledge that the propensity score exceeds 1 — ¢ — that is,

P(x)>1-4,

constitutes sensitive information.

The next assumption states that there is a part of the population with the propensity

score above the sensitivity threshold.

2Qur analysis applies to other frameworks of split data sets. For instance, we could consider the
case when z and y are contained in the same data subset, while d is observed only in the other
data subset. We could also consider cases when some of the variables in x (but not all of them)
are observed together with d. This is the situation we deal with in our empirical illustration. The
important requirement in our analysis is that some of the relevant variables in = are not observed
together with d.

11
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ASSUMPTION 2
Pr(z:P(z)>1-4)>0.

P will denote the average propensity score over the distribution of all individuals:

P =E[P(z)].

We leave distributions of potential outcomes Y; and Y| conditional on X nonpara-

metric with the observed outcome determined by
Y=DY,+(1-D)Y,.

In addition to the propensity score, we are interested in the value of the conditional

average treatment effect
tarp(z) = E Y1 — Yo|X =4,

or the average treatment effect conditional on individuals in a group described by

some set of covariates Xjp:
tare(Xo) = E Y1 — Y| X € &),
as well as overall average treatment effect (ATE)
tare = E[Y1 = Yyl.

In this paper we focus on the propensity score and the overall treatment effect.

Evaluation of the propensity score and the mentioned treatment effects requires us
to observe the treatment status and outcome together with the covariates. A con-
sistent estimator for the average treatment effect ¢ 475 could be constructed then by,
first, evaluating the propensity score and then estimating the overall effect via the

propensity score weighting:

DY  (1-D)Y
P(X) 1-P(X)

tars = E (2.1)

12
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In our case, however, the treatment and its outcome are not observed together with
the covariates. To deal with this challenge, we will use the information contained in
the identifying vectors V' and W to connect the information from the two datasets

and provide an estimate for the ATE.

Provided that the data curator is interested in correctly estimating the treatment
effect (to further use the findings to make potentially observable policy decisions, e.g.
by putting a warning label on the package of the studied drug), we assume that she

will construct the linkage procedure that will combine the two datasets.

We consider a two-step procedure that first uses the similarity of information con-
tained in the identifiers and covariates to provide the links between the two datasets.
Then, the effect of interest will be estimated from the reconstructed joint dataset.
To establish similarity between the two datasets, the researcher constructs vector-
valued variables that exploit the numerical and string information contained in the
variables. We assume that the researcher constructs variables Z¢ = Z4(D,Y, W) and
7Y = Z%X,V) (individual identifiers) that both belong to the space Z = S x R?.
The space § is a finite set of arbitrary nature such as a set of strings, corresponding
to the string information contained in &* and §**. We choose a distance in S con-
structed using one of commonly used distances defined on the strings ds(-,-). Then
the distance in Z is defined as a weighted combination of ds and the standard Eu-
clidean distance d.(Z%, Z%) = (w,ds(z2,22)? + w.||2F — z§||2)1/2, where Z% = (2%, 27)
and w,,wyg > 0. Then we define the “null” element in S as the observed set of at-
tributes that has the most number of components shared with the other observed sets
of attributes and denote it Og. Then the norm in Z is defined as distance from the

null element: || Z|. = (wsds(zs,0s)% + Ws||2z||2)1/2-

The construction of variables may exploit the fact that W and V' can contain over-
lapping components, such as individuals’ first names and the dates of birth. Then the
corresponding components of the identifiers can be set equal to those characteristics.
However, the identifiers may also include a more remote similarity of the individual
characteristics. For instance, V' may contain the name of an individual and W may
contain the race (but not contain the name). Then we can make one component of
Z? to take values from 0 to 4 corresponding to the individual in the private dataset

either having the race not recorded, or being black, white, hispanic or asian.

13
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Then, using the public dataset we can construct a component of Z# that will corre-
spond to the guess regarding the race of an individual based on his name. This guess
can be based on some simple classification rule, e.g. whether the individual’s name
belongs to the list of top 500 hispanic names in the US Census or if the name belongs
to the top 500 name in a country that is dominated by a particular nationality. This
classifier, for instance, will classify the name "Vladimir Putin’ as the name of a white
individual giving Z% value 2, and it will classify the name 'Kim Jong I1”” as the name

of an asian individual giving Z% value 4.

If the set of numeric and string characteristics used for combining two datasets is
sufficiently large or it can contain some potentially “hard to replicate” information
such as an individual’s full name, if such a match occurs it very likely singles out
the data of one person. We formalize this idea by expecting that the probability
of two observations with close values of identifiers Z¢ and Z% belong to the same
individual is the higher, the more infrequent their values are (the larger is their norm,
that we define as a distance from the “generic” set of attributes). Our maintained

assumptions regarding the distribution of constructed identifiers are listed below.
ASSUMPTION 3 We fix some a, & € (0,1) with o < &, then for any a € (o, @):

(i) (Proxzimity of identifiers) Pr(d.(Z%, Z) < a | X =z, D=d,Y =y, |Z¢. > 1) >

1—a.

(ii) (Non-zero probability of extreme values)
lim Pr( |29, > 1 |D=d, Y =y /¢(a) =1
a—0 N «a ’

1
a—0 0%
for some non-decreasing and positive functions ¢(-) and ().

(11i) (Redundancy of identifiers in the combined data) There exists a sufficiently large
M such that for all | Z%||, > M and all || 27|, > M

fY|D=dX=2,2=2"72"=2")= f(Y|D=d,X =x).

14
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Assumption 3 (i) reflects the idea that more reliable matches are provided by the pairs
of identifiers whose values are infrequent. In other words, if in both public and private
datasets collected in Durham, NC we found observations with an attribute 'Denis
Nekipelov’, we expect them to belong to the same individual with a higher probability
than if we found two attribute values 'Jane Doe’. Thus, the treatment status can be
recovered more reliably for more unique individuals. We emphasize, that infrequency
of a particular identifier does not mean that the corresponding observation is an
“outlier”. In fact, if both public and private datasets contain very detailed individual
information such as a combination of the full name and the address, most attribute

values will be unique.

Assumption (ii) requires that there are sufficiently many observations with infrequent
attribute values. This fact can actually be established empirically in each of the
observed subsets and, thus, this assumption is testable. The same is true for the
Assumption (iv) as continuity of the of the observed marginal distributions can be

directly observed and tested.

Assumption 3 (iii) is the most important one for identification purposes. It implies
that even for the extreme values of the identifiers and the observed covariates, the
identifiers only served the purpose of data labels as soon as the “master” dataset is
recovered. There are two distinct arguments that allow us to use this assumption.
First, in cases where the identifiers are high-dimensional, infrequent attribute com-
binations do not have to correspond to “unusual” values of the variables. If both
datasets contain, for instance, first and last names along with the dates of birth and
the last four digits of the social security number of individuals, then a particular
combination of all attributes can be can be extremely rare even for individuals with
common names. Second, even if the identifiers can contain a model relevant informa-
tion (e.g. we expect the restaurant choice of an individual labeled as "Vladimir Putin’
to be different than the choice of an individual labeled as 'Kim Jong II'), we expect
that information to be absorbed in the covariates. In other words, if the gender and
the nationality of individual may be the information relevant for the model, than we

include that information into the covariates.

We continue our analysis with the discussion of identification of the model from the

combined dataset.

15



3 IDENTIFICATION OF THE TREATMENT EFFECT FROM THE
COMBINED DATA

In the remainder of the paper we suppose that Assumptions 1-3 hold.

3 Identification of the treatment effect from the combined
data

Provided that the variables are not contained in the same dataset, identification of the
treatment effect parameter becomes impossible without having some approximation
to the distribution of the data in the “master” sample. The only way to link the
observations in two datasets is to use the identifiers that we described in the previous
section. The identifiers, on the other hand, are individual-level variables. Even though
the data generating process is characterized by the distribution over strings, such as
names, we only recover the “master” dataset correctly if we link the data of one
concrete "John Smith” in the two datasets. This means that the data combination is
an intrinsically small sample procedure. We represent the data combination procedure
by the deterministic data combination rule DV that for each pair of identifiers z¢ and

J
z¥ returns a binary outcome

Mz’j = DN(ZQ-E Zd)

177

which labels two observations as a “match” (M;; = 1) if we think they belong to the
same individual, and label them as a “non-match” (M;; = 0) if we think that the
observations are unlikely to belong to the same individual or are simply uncertain.
Although we can potentially consider many nonlinear data combination rules, in this
paper we focus at the set of parametric data combination rules that are generated by
our Assumption 3 (i). In particular for some pre-specified @ € (0,1) we consider a
data combination rule

DN = l{dz(zf,zg) < an, |27 > 1/an},

generated by a Cauchy sequence ay such that 0 < ay < @ and ]\}15)13)0 ay = 0. The
goal of this sequence is to construct the set of thresholds that in the limit would
isolate all of the infrequent observations. For those observations, the probability
of the correct match will be approaching one as the probability of observing two
identifiers taking very close values for two different individuals will be very small

(proportional to the square of the probability of observing the infrequent attribute
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values). On the other hand, the conditional probability that the values of identifiers
are close for a particular individual with infrequent values of the attributes will be of
a larger order of magnitude (proportional to the probability of observing the attribute
value). Thus, an appropriately scaled sequence of thresholds will be able to single

out correct matches.

Let m;; be the indicator of the event that the observation 7 from the public dataset
and the observation j from the private dataset belong to the same individual. Given
that we can make incorrect matches M;; is not necessarily equal to m;;. However,
we would want these two variables to be highly correlated meaning that the data

combination procedure that we use is good.

With our data combination procedure we will form the reconstructed “master” dataset
by taking the pairs of all observations from the public and the private datasets which
we indicated as matches (M;; = 1) and discard all other observations. We can consider
more complicated rules for reconstructing the master sample. In particular, we can
create multiple copies of the master sample by varying the threshold ay and then
we combine the information from those samples by downweighting the datasets that

were constructed with higher threshold values.

The reconstructed master dataset will have a small sample distribution, characteriz-
ing the joint distribution of outcomes and the covariates for all observations that are
identified as matches by the decision rule DV. We use iVN (yi |dj, z, 27, z;i) to denote
the conditional density of the outcome distribution with the decision rule applied to
samples of size N. Provided that the decision rule does not perfectly identify the
information from the same individual, density fczxv (+) will be a mixture of the “cor-
rect” distribution with the distribution of outcomes that were incorrectly identified

as matches:

fa Wildy, @i, 27) = fyip x (ysldy, zi) Pr(mi; = 1] DY (2], 2§) = 1)

+ frix.ze (yslas, 20) Pr(mi; = 0 | DY (27, 2§) = 1),

where we used the fact that identifiers are redundant once a correct match was made
as well as the fact that in the i.i.d. sample the observations have to be independent.
So if an incorrect match was made, the outcome should not be correlated with the

treatment. By EY [|d;] we denote the conditional expectation with respect to the
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density product f2 (-|d;, i, 2¥) f (2, 2F).

We can also introduce the propensity score implied by the finite sample distribu-
tion which we denote Pé\]fv (1). The finite sample propensity score is characterized
by the mixture distribution combining the correct propensity score and the average
propensity score

PY (z) = P(z)Pr(myj =1 | z; =z, D" (2} 24 =1)

g

—I—PPT(mij =0 | Ti = m7DN<Zix7'Z]C'l> - 1)

We can extend our data combination method by choosing sequences oy depending
on the value of z. Then the value of Pr(m;; =0 | z; = x, DV (2}, 2¢) = 1) even in the
limit will depend on . We allow for such situations. In fact, later in the paper we
make use of this opportunity to choose differences threshold sequences for different
values of x. To stress that we permit the threshold sequences to depend on = we

denote a sequence of thresholds chosen for = as ay, (instead of ay).

In the beginning of this section, we indicated that the estimation that requires com-
bining the data based on the string-valued identifiers is an intrinsically finite sample
procedure. As a result, we suggest the analysis of identification of this model as the
limit of a sequence of data combination procedures. We allow for situation when the
data curator could want to use several sequences oy, for some x and denote the

collection of such sequences as Cj .

DEFINITION 1 By PV we denote the set of all functions p : X + [0,1] that

correspond to the set of finite sample propensity scores for all sequences a5 in Cpz:
Y= U (RO}
{O‘N,z}ECO,z

We call PN the identified set for the propensity score compatible with the data com-

bination procedure with a threshold decision rule.

By TN we denote the subset of R that corresponds to the set of treatment effects

calculated as (2.1) for all sequences ay, in Cy, using the corresponding to ap .

18



3 IDENTIFICATION OF THE TREATMENT EFFECT FROM THE
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propensity score Pé\llvz()

™= |J EY Dyy;  (1-DyYy;
{on2}ECo el PY(Xa) 1= PY (X))

We call TV the identified set for the average treatment effect compatible with the data

combination procedure with a threshold decision rule.

Definition 2 below characterizes the identified set compatible with the data combi-
nation procedure as the set of all limits of the estimated treatment effects and the
propensity scores under all possible threshold sequences chosen for the decision rule
that are bounded and converge to zero. We note that provided that the reconstructed
master sample depends on the sample size, the set of treatment effect parameters that
are compatible with the data combination procedure applied to random split sam-
ples of size N will depend on N. Provided that the small sample distribution in the
sample of size N will always be a mixture of the correct joint distribution and the
marginal outcome distribution for the outcomes that are misidentified as matches,
the only way to attain the point identification is in the limit. Thus consider the con-
cept of parameter identification in terms of the limiting behavior of the identified sets
compatible with the data combination procedure constructed from the finite sample

distributions as the sample size N approaches infinity.

DEFINITION 2 (i) We call P> the identified set for propensity score under the
threshold decision rule if for the set of graphs of functions in P> denoted as
G(P>®) and the set of graphs of functions in PN denoted as G(PYN) if

dim dyy (G(P®),G(P™)) =0,

where dy(+,-) stands for the Hausdorff distance.

(i1) Similarly, we call T the identified set for the average treatment effect under

the decision threshold rules if

lim dy (T, 7") =0.
N—00
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(i1i) The propensity score is point-identified from the combined data if P> = {P(-)}.
Otherwise, it is identified only up to a set compatible with the the decision
threshold rules.

(iv) The average treatment effect parameter is point-identified from the combined
data if the identified set is a singleton T = {targ}. Otherwise, it is identified

only up to a set compatible with the the decision threshold rules.

Our next idea will be based on the characterization of the sets for the average treat-
ment effect parameter and the propensity score identified under the given threshold
decision rule under Assumption 3. We start our analysis with the following lemma,

that follows directly from the combination of Assumptions 3 (ii) and (iii).

LEMMA 1 Under Assumption 3 the propensity score is point-identified from the

observations with infrequent attribute values:
P(x) = E [DIX =2, d. (2%, 2%) < axe, |12°]. > 72

Also, the average treatment effect is point-identified from the observations with infre-

quent attribute values:

DY (1-D)Y
P(X) 1-P(X)

d. (Z°,2%) < ang, [|1Z27). > al } .

N,x

targ = E {

This lemma states that if we are able to correctly reconstruct the “master” dataset
only for the observations with infrequent values of the attributes, those observations
are sufficient for correct identification of the components of interest. Two elements
are crucial for this results. First, we need Assumption 3 (iii) to establish redundancy
of identifiers for matches constructed for observations with infrequent values of those
identifiers. Second, we need Assumption 3 (ii) to guarantee that there is a non-zero

probability of observing individuals with those infrequent values of identifiers.

The biggest challenge in our analysis is to determine which Cauchy sequences have
appropriate behavior to isolate the infrequent attribute values as N — oo and guar-

antee that the probability of the mismatch, conditional on the observation being in
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the reconstructed master sample, approaches zero. We do so by an appropriate in-
version of the probability of misidentification of the pair of observations as a match.
We can provide the general result that delivers a fixed probability of a mismatch in
the limiting reconstructed master sample.

Proposition 1 Suppose that for x € X the chosen sequence {an .} € Cy,. satisfes

Pr(mj =0z = I,DN(ZEJ,ZJ‘-i) =1) = ()

for some y(x) € [0,1] as N — oo. Then

PY (1) = B D1 X =] = (1-4(@) P(&) +1(0) P, (32)
and
N _ N Dij (1_Dj)yj
N LN R e e )
N _p 7(X) B
8 (806 BYIX, D =11 P) sy sy ) 43)
_ _ 01— P v(X) i
0] 1.0 =010 ) e

Proposition 1 states that if one controls the mismatch probability in the combined
dataset, then the propensity score recovered through such a procedure is a combina-
tion of the true propensity score and the expected fraction P of treated individuals
and it is biased toward P. Also, the resulting identified average treatment effect will
be a sum of the true ATE and a non-trivial term. In other words, the presence of
mismatched observations in the “limiting” reconstructed master dataset biases the
estimated ATE towards zero. Also, the propensity score that is recovered through

such a procedure will be biased towards the expected fraction of treated individuals.

The formulated theorem is based on the premise that a sequence in Cp, that leads
to the limiting probability of an incorrect match equal to ~y(z) exists. The proof
of existence of fundamental sequences satisfying this property is given in Komarova,
Nekipelov, and Yakovlev (2011). These sequences are determined from the behavior

of functions ¢(-) and ®(:). The result in that paper demonstrates that for each
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v(z) € [0,1] we can find a Cauchy sequence that leads to the limiting mismatch
probability equal to ().

Our next goal is to use one particular sequence that will make the mismatch proba-

bility approach zero in the limit.

THEOREM 1 (Point identification of the propensity score and the ATE).

There exists a sequence {ay .} € Co for which %\1]111 Pr(mi; =0|DN(ZF, Z8) =1) =
—

0 forxz e X.

In other words, for this sequence:
N
PaN’w(') - P()
pointwise everywhere on X and
N
T\, = tare

as N — oo.

In other words, the propensity score and the treatment effect are point identified.

4 Inference of the propensity score and the average treat-

ment effect with limited partial disclosure

The calculations of the propensity score and the treatment effect require the data
curator to have a technique that would combine the two datasets with the available
observation identifying information. Our approach to data combination described
above is based on constructing the threshold decision rule that identifies the obser-
vations as “a match” corresponding to the data on a single individual if the observed
individual attributes are close in terms of the chosen distance. With this approach we
can construct the sequences of thresholds that would lead to very high probabilities
of correct matches for a part of the population which allows us to point identify the

propensity score and the treatment effect parameter.

If we provide a high-quality match, then we have a reliable link between the public

information regarding the individual and this individual’s treatment status. The
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release of the reconstructed master dataset then would constitute an evident threat to
individual’s privacy. However, even if the reconstructed master dataset is not public,
the release of the estimated propensity score and/or the value of the treatment effect
itself may pose a direct threat to the security of individual data. To measure the risk
of such a disclosure in the possible linkage attacks we use a measure based on the
notion of partial disclosure in Lambert (1993). We provide a formal definition for this

measure.

Partial disclosure can occur if the released information that was obtained from the
data may potentially reveal some sensitive characteristics of individual. In our case
the information we are concerned with are the propensity score and the treatment
effect. In particular, in our case the sensitive characteristic of an individual is his
or her treatment status, or how an individual with given characteristics is likely to

recelve a treatment.

Below we provide a formal definition of the risk of partial disclosure for the propensity
score. The definition takes as given the following two parameters. One parameter is
1—¢ and it characterizes the sensitivity level of the information about the propensity
score. Namely, the information that the propensity score of an individual is above 1—9
is considered to be damaging. The other parameter is denoted as v and represents a
tolerance level — specifically, v is the upper bound on the proportion of individuals

for whom the damaging information that P(z) > 1 — § may be revealed.

Another important component of our definition of partial disclosure is how much in-
formation about the data combination procedure is revealed to the public by the data
curator. We denote this information as Z. For instance, if the data curator reveals
that Pr(my; =0 |2; = 2, DN(Z!,Z¢) =1) — ~(x), then the public can determine
that in the limit the released propensity score for an individual with characteristics
x has the form (1 —~(x)) P(x) +~(x) P. If, in addition, the data curator releases the
value of Pr (my; =0 | 2; = x,DN(Z},Z}) = 1) or the value of y(x), then the public
can pin down the true propensity score P(z)* and, thus, obtain potentially damaging

information if this propensity score is above 1 — 9.

DEFINITION 3 Let Z be the information about the data combination procedure

3Note that the value P is known from the public dataset.
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released to the public by the data curator. Let § € (0,1) and v € [0, 1].

Given I, we say that a (1 — §,v) bound guarantee is given for the risk of partial
disclosure, if the proportion of individuals in the private dataset for whom the public

can determine with certainty that P(x) > 1 — 0 does not exceed v.

The value of v s called the bound on the risk of partial disclosure.

Setting v at ¥ = 0 means that we want to protect all the individuals in the private

dataset.

The idea behind our definition of partial disclosure is that one can use the released
values of P (or limy o Py ) from the model to determine whether the proba-
bility of the positive treatment status exceeds the given threshold. If this is possible
to determine with a high confidence level for some individual, then this individual
is identified as the one with “the high risk” of the positive treatment status. Such

information can be extremely damaging.

In the following theorem we demonstrate that a release of the true propensity score

is not compatible with a low disclosure risk.

THEOREM 2 Suppose that

Y(x) = lim Pr(my;=0|D"(Z,2))=1) =0 forz € X. (4.4)

N—o0
If the data curator releases information (4.4), then for sufficiently large N the release
of the propensity score Pcfxw (or its limit) is not compatible with the bound on the

risk of partial disclosure v for sufficiently small v.

The formal result of Theorem 2 relies on Assumption 2 and Theorem 1 and is based
on two elements. First, using the threshold decision rule we were able to construct
the sequence of combined datasets where the finite-sample distribution of covariates
approaches the true distribution. Second, from the estimated distribution, we could
improve our knowledge of the treatment status individuals in the data. For some

individuals the probability of the positive treatment status may be very high.
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This result forces us to think about the ways of avoiding the situations where po-
tentially very sensitive information may be learned regarding some individuals. The
bound guarantee on the risk of partial disclosure essentially requires the data curator
to keep a given proportion of incorrect matches in the datasets of any size. As dis-
cussed in Proposition 1, a fixed proportion of the incorrect matches, leads to the the
calculated propensity score to be biased towards the proportion of treated individuals

in the population and also causes bias in the average treatment effect.

THEOREM 3 Suppose the value of P is publicly available, and P < 1 —§.

A (1 —6,0) bound guarantee for the risk of partial disclosure can be achieved if the
data curator chooses a(x) in such a way that

v(z) = lim Pr(mij=0|DN(Zf,Z§l):1) >0 forall v € X

N—oo

and for individuals with P(x) > 1 — § the value of vy(x) is chosen large enough to
guarantee that

lim P(ZV’I = (1 —~v(z)) P(x) +y(z) P < 1—46.

N—oo

We assume that the data curator provides information that the data were matched
with an error and the matching error does not approach 0 as N — oo but does not
provide the values of Pr(my; =0 | DN(Z7, Z%) = 1) ory(x).

In this case, the behavior of the released propensity score and the treatment effect
is as described in (3.2) and (3.3), and thus, the true propensity score and the true

treatment effect are not identified.

Note that in the framework of Theorem 3 for individuals with small P(x) the data
curator may want to choose a very small 7(z) > 0 whereas for individuals with large

P(z) the bias towards P has to be large enough.

Remark 1 Continue to assume that P < 1 — 6.

Note that if the released propensity score for an individual with x is strictly less than
P, then the public will be able to conclude that the true propensity score for this

individual is strictly less than P.
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If the released propensity score for an individual with x is strictly greater than P, then
the public will be able to conclude that the true propensity score for this individual is
strictly greater than P but, under conditions of Theorem 3, will not know whether
P(z) >1-4.

If the released propensity score for an individual with x is equal to P, then the public
is unable to make any non-trivial conclusions about P(x) — that is, P(z) can be any

value from [0, 1].

We can consider other approaches the data curator may exploit regarding the release
of the propensity score values and the information provided with this release. For
instance, for some individuals with P(z) < 1 — ¢ she may choose v(x) = 0 and
provide information that for some individuals the data were matched without an
error in the limit but for the other individuals the matching error is strictly positive
and does not approach 0 as N — oo (given that she does not specify the values
of Pr(mi; =0|DN(ZF, Z}) =1) or y(z)). In this case, the result of Theorem 3

continues to hold.

The next theorem gives a result on privacy protection when the data curator releases

more information.

THEOREM 4 Suppose the value of P is publicly available, and P <1 —§.

A (1 —0,0) bound guarantee for the risk of partial disclosure can be achieved if the

data curator chooses an(x) in such a way that
Pr(my=0|DN(ZF Z{)=1) >7 forall z € X

for all N, and for individuals with P(x) > 1—6 the value of Pr (m;; = 0 | DN (ZF, Z%) = 1)

15 chosen large enough to guarantee that
Py, .= —=Pr(my=0|DY(Z7, Z) = 1)) P(x) + Pr (m;; =0 | DV(Z7, Z§) =1) P <134

for all N. We assume that the data curator provides information that the data were

matched with an error and the matching error is greater or equal than the known %
but does not provide the values of Pr (mg; = 0| DN(ZF,Z%) = 1) or y(x).

26



4 INFERENCE OF THE PROPENSITY SCORE AND THE AVERAGE
TREATMENT EFFECT WITH LIMITED PARTIAL DISCLOSURE

In this case, the behavior of the released propensity score and the treatment effect
is as described in (3.2) and (3.3), and thus, the true propensity score and the true

treatment effect are not identified.

To summarize, the fact that we want to impose a bound on the risk of disclosure, leads
us to the loss of point identification of both the true propensity score and true average
treatment effect. This means that point identification of the econometric model from
the combined dataset is incompatible with the security of individual information. If
the publicly observed policy is based on the combination of the non-public treatment
status and the public information regarding the individual, then the treatment status
of any individual cannot be learned from this policy only if it is based on a biased

estimate for the propensity score and a biased treatment effect.

The next theorem considers the case when P > 1 — 6. It shows that in this case any
release of point estimates of the propensity score from the treatment effect evaluation

is not compatible with a low disclosure risk.

THEOREM 5 Suppose the value of P is publicly available, and P > 1 —§.

Then the released propensity score will reveal all the individuals with P(x) > 1 — 9

even if the data are combined with a positive (even very large) error. Let
p*=Pr(z: Plx) >1-9)

— that s, p* is the proportion of individuals with the damaging information about the
propensity score. Then a (1 —6,v) bound guarantee cannot be attained for the risk of

partial disclosure if v < p*.

In the framework of Theorem 5 the release (or publicly observable use) of the propen-
sity score is blatantly non-secure. In other words, there will exist sufficiently many
individuals for whom we can learn their high propensity scores. To protect their

privacy, no propensity scores whatsoever should be released.
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5 Does a religious affiliation affect a parent’s decision on

childhood vaccination and medical check-ups?

To illustrate our theoretical analysis, we want to bring our results to the real data.

Even though in the main body of this paper we do not develop a formal theory of the
statistical estimation of P2 (-) or the true propensity score P(-) in a finite sample
when only two split datasets are available, in this section we want to illustrate an

empirical procedure one could implement in practice.

The data that we use come from the Russian Longitudinal Monitoring survey (RLMS)
4. The RLMS is a nationally representative annual survey that covers more than 4,000
households (the number of children varies between 1,900 and 3,682), starting from
1992 till 2011. The survey gathers information on a very broad set of questions,
including demographic and household characteristics, health, religion, and so on. The
survey covers 33 Russian regions — 31 oblasts (krays, republics), and also Moscow
and St. Petersburg. Islam is the dominant religion in two regions, and Orthodox

Christianity is the dominant religion in the rest.

We combine our data from two parts of RLMS — the survey for adults and the survey
for children. The question that we want to answer can be informally stated as follows:
Does a religion of family members affect the probability of the child to get regular
medical check-ups or to be vaccinated? More specifically, we analyze whether 1)
religious (Muslim or Orthodox Christian) families have their children seen by doctors
or have their children vaccinated from tuberculosis with lower probability; 2) families
from neighborhoods with high percentages of religious people have their children seen

by doctors with lower probability.

From the data set for children we extract the following individual characteristics for
a child: the indicator for whether the child had a medical check-up in the last 12 (or

4This survey is conducted by the Carolina Population Center at the University of Carolina at
Chapel Hill, and by the Higher School of Economics in Moscow. Official Source name: Russia
Longitudinal Monitoring survey, RLMS-HSE,” conducted by Higher School of Economics and ZAO
“Demoscope” together with Carolina Population Center, University of North Carolina at Chapel Hill
and the Institute of Sociology RAS. (RLMS-HSE web sites: http://www.cpc.unc.edu/projects/rlms-
hse, http://www.hse.ru/org/hse/rlms).
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Table 1: Summary statistics of various variables for a child.

Variable Obs Mean Std. Dev. Min Max
Child: medical check-up in last 12 months? 33924  0.69 0.46 0 1
Child: medical check-up in last 3 months? 62316  0.45 0.50 0 1
Child: vaccinated (tuberculosis)? 49464  0.96 0.19 0 1
Child: I(lives in a city) 73100  0.38 0.49 0 1
Child: age 73100  7.19 4.09 0 18
Family: share of Orthodox Christians 59142 0.22 0.35 0 1
Family: share of Muslims 59142  0.06 0.23 0 1
Family: share of those with college degree ~ 66314  0.26 0.37 0 1
Region: share of Muslims 73100  8.83 16.74 0.8 70.7
Region: log grp per capita 71466 10.96 1.38 7.04 13.50

3) months, the indicator for whether the child was vaccinated against tuberculosis,
the indicator for whether the child lives in a city, and the child’s age. We also
observe have the following information on the child’s family: the share of Orthodox
Christian family members, the share of Muslim family members, and the share of
family members with a college degree. From other publicly available data sets we
obtain the following information for the child’s region: the share of Muslims and the
gross regional product per capita. The summary statistics of all these variables are
presented in Table 1.

Our analysis focuses on the propensity scores that represent the probability of the
child getting regular check-ups (being vaccinated against tuberculosis). In our model,
the following information is considered to be sensitive: propensity scores are below a
given threshold; the variable of the share of Orthodox Christian (or Muslim) family
members has a negative marginal effect on the propensity score; the variable of the
share of Orthodox Christians (or Muslims) in the child’s neighborhood has a negative

marginal effect on the propensity score.

The RLMS data set has a clustered structure as people are surveyed within small
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Table 2: Summary statistics of neighborhood characteristics.

Variable Obs Mean Std. Dev. Min Max
Neigborhood: share of Muslims 53800  0.06 0.20 0 1
Neigborhood: share of Orthodox 53800  0.23 0.18 0 1
Neigborhood: log(income) 58578  6.25 1.86 0 109

neighborhoods with a population of around 300 people (so called census district, see
?). Thus, it is possible to construct characteristics of neighborhoods — in particular,
on the shares of Orthodox Christians (or Muslims) in neighborhoods, — by using
the religion variable from the RLMS data set for adults if one has information on
neighborhood labels. Due to a vast Soviet heritage the majority of people in Russia
live in large communal developments that combine several multi-story apartment
buildings. These developmens have common infrastructure, shops and schools. High
concentration in a relatively small area makes the life of each family very visible to
all the neighbors. The neighborhoods are defined precisely by such developments.
Neighborhood labels were publicly available till 2009 but then were deleted by the
RLMS staff due to the privacy concerns.” In our study we exploit the RLMS survey
data from 1994 till 2009 because the neighborhood identifiers were publicly available
in those years and, thus, one was able to consider the child’s neighborhood and then
use the religious affiliation variable from the adult data set to construct the data for
religion in that particular neighborhood, and use the income variable from the adult
data set to calculate the average logarithm if income in that particular neighborhood.

The summary statistics of neighborhood characteristics are presented in Table 2.

In order to answer the posed questions, we estimate the following probit regression

Pr(D; =1) = ®(ayshareof Muslims in family;, +
+agshare of Orthodox Christians in family; +
+0B1share of Muslims in neighborhood;; +
+agshare of Orthodox Christians in neighborhoody + '),

5Fortunately, we happened to have the data on neighborhood identifiers.

30



5 DOES A RELIGIOUS AFFILIATION AFFECT A PARENT’S DECISION ON
CHILDHOOD VACCINATION AND MEDICAL CHECK-UPS?

where D;; stands for the indicator whether a child had a medical check-up within the
last 12 (or 3) months, or the indicator whether a child has a vaccination against tuber-
culosis. The set of controls ¢;; contains child’s characteristics of (age, I(live in city)),
regional characteristics such as the GRP per capita and the share of Muslims in the
region), family characteristics such as family income and the share of family members
with a college degree, neighborhood characteristics (average income in neighborhood),
and the year fixed effects. For notational simplicity, we write Pr(D;; = 1) instead of

Pr(Dy =1 | religious characteristics;, ;).

The estimation results are presented in Table 3. Columns 2 and 4 in the table show
the evidence that a higher percentage of Muslims in the family is associated with
a lower chance of the child being regularly seen by a doctor. This holds for the
sample of all children and for the subsample of children with health problems. Also,
when the sample of all children is considered, a higher percentage of Muslims in the
neighborhood has a negative marginal effect on the probability of the child being
vaccinated against tuberculosis as well as being regularly seen by a doctor. The

variables for the shares of Orthodox Christians are not significant.

The discussion below considers the sample of all children. The first two graphs in
Figure 1 are for the case when the dependent variable is the indicator for a check-up
within the last 12 months. The last two graphs in that figure are for the case when
the dependent variable is the indicator for a vaccination against tuberculosis. The
large dot in the first graph in Figure 1 shows the pair (—0.3416, —0.3314) of estimated
coefficients for the share of Muslims in the family and the share of Muslims in the
neighborhood from column 2 in Table 3. The large dot in the second graph in Figure
1 shows the pair (—0.105, —0.3314) of estimated coefficients for the share of Ortho-
dox Christians in the neighborhood and the share of Muslims in the neighborhood,
respectively, from column 2 in Table 3. The large dot in the third graph in Figure
1 shows the pair (—0.1506, —0.429) of estimated coefficients for the share of Muslims
in the family and the share of Muslims in the neighborhood from column 3 in Table
3. The large dot in the fourth graph in Figure 1 shows the pair (—0.105, —0.429) of
estimated coefficients for the share of Orthodox Christians in the neighborhood and

the share of Muslims in the neighborhood, respectively, from column 3 in Table 3.

Finally, we analyze how the estimates of our parameters would change if we enforce
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Table 3: Probit regression estimation.

sample: all children

sample: children
that have
health problems

medical check-up vaccinated against

medical check-up

in last 12 m? tuberculosis? in last 3 m?
Child: age -0.0423 0.0685 -0.0438
[0.0032]*** [0.0047]*** [0.0067]***
Child: I(live in city) 0.1704 -0.2062 0.0601
[0.0313]*** [0.0441]*** [0.0543]
Family: share of Muslims -0.3314 -0.1506 -0.4193
[0.1127]** [0.1686] [0.2515]*
Family: share of Orthodox Christians 0.0478 -0.0936 -0.0244
[0.0394] [0.0604] [0.0711]
Family: average log (income) 0.0602 -0.0169 0.0437
[0.0151]*** [0.0211] [0.0303]
Family: share of those 0.0741 0.0296 0.1561
with a college degree [0.0367]** [0.0571] [0.0651]**
Region: share of Muslims -0.0001 -0.0031 0.0026
[0.0014] [0.0021] [0.0031]
Region: log GRP per capita 0.1838 -0.0412 -0.0858
[0.0308]*** [0.0463] [0.0544]
Neighborhood: share of Muslims -0.3416 -0.429 -0.4922
0.1757)* 0.2319]* 0.4512]
Neighborhood: share of Orthodox -0.105 -0.0169 -0.1603
[0.0840] [0.1272] [0.1603]
Year fixed effects yes yes yes
Constant -2.0794 1.9472 -3.9003
[0.3701]*** [0.4039]*** [103.6494]
Observations 10780 17413 2902
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a bound on the risk of partial disclosure and consider the bound of 0.5 — that is,
Pr (mi; =0|DN(ZF, Z8) = 1) > 7, where 4 = 0.5. This is the case of attaining

2-anonymity.

In order to attain 2-anonymity we conduct the following exercise. For every child in in
our sample we create two possible neighborhoods — one neighborhood is the true one,
and the other one is drawn randomly from the empirical distribution of neighborhoods
in the corresponding region. Such empirical distributions can be easily obtained from
the publicly available data in RLMS. As a result, for every child we have two possible

sets of values of neighborhood characteristics.

Then, ideally we would like to simulate all possible combined datasets but the number
of these datasets is of exponential complexity, namely, of the rate 2". Instead of
considering all possible combined datasets we randomly simulate only a 1000 of such
datasets. For each simulated combined dataset we conduct the probit estimation.
Thus, we end up with a 1000 of different sets of estimated coefficients (as well as the
propensity scores). The contour sets in the graphs in Figure 1 are the convex hulls
of the obtained estimates. Namely, the contour set in the first graph in Figure 1 is
the convex hull of the 1000 pairs of estimated coefficients for the share of Muslims in
the family and the share of Muslims in the neighborhood, respectively. The contour
set in the second graph in Figure 1 is the convex hull of the 1000 pairs of estimated
coefficients for the share of Orthodox Christians in the neighborhood and the share
of Muslims in the neighborhood, respectively. Similarly for the other two graphs.

As can be seen, in the analysis of the probability of a medical check-up in the last 12
months all the 1000 coefficients corresponding to variables of the share of Muslims in
the family and the share of Muslims in the neighborhood are negative® If the data
curator thinks that the release of these sets of estimates is not satisfactory with regard
to partial disclosure guarantees, then she should increase the guarantee level by, for

instance, attaining 3-anonymity.

As for the case of the probability of being vaccinated against tuberculosis, among

the 1000 coefficients corresponding to the share of Muslims in the family, there are

6These variables are significant in each of 1,000 cases (even though the confidence intervals are

not depicted in the graphs).
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some positive ones, even though all the 1000 coefficients corresponding to the share
of Muslims in the neighborhood are negative” Again, the data curator may want to

increase the guarantee level.

"The variable of the share of Muslims in the neighborhood is significant in each of 1,000 cases.
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Figure 1: Sets of estimates from 1000 datasets combined using neighborhoods. Con-

tour sets are for the cases of 2-anonymity.
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6 Conclusion

In this paper we we analyze how combination of data from multiple anonymized
sources can lead to serious threats to disclosure of indvidual information. While the
anonimized datasets by themselves may pose no direct threat, such a threat may
arize in the combined data. The main question that we want to address is whether
statistical inference based on the information from all these datasets is possible with-
out the risk of disclosure. We introduce the notion of statistical partial disclosure to
characterize a situation when data combination allows an adversary to identify a cer-
tain individual characteristic with a smal probability of misidentification. We focus
our analysis on the estimation of treatment effects where the treatment status of an
individual is sensitive and thus the possibility of statistical recovery of this treatment
status may be highly undesirable. We show that a variety of techniques from data
mining literature can be used for reconstruction of the combined datasets with little
to no auxiliary information. We also demonstrate that the point indentification of
the statistical model for the average treatment effects is incompatible with bounds
imposed on the risk of statistical partial disclosure imposed to protect individual in-
formation. We illustrate our findings in the empirical study of the impact of religious
affiliation of parents on the probability of child’s vaccination from tuberculosis using

the individual level data from Russia.
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