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ABSTRACT

The security of sensitive individual data is a subject of indisputable importance. One of the major

threats to sensitive data arises when one can link sensitive information and publicly available data.

In this paper we demonstrate that even if the sensitive data are never publicly released, the point

estimates from the empirical model estimated from the combined public and sensitive data may lead

to a disclosure of individual information. Our theory builds on the work in Komarova, Nekipelov

and Yakovlev (2012) where we analyze the individual disclosure that arises from the releases of

marginal empirical distributions of individual data. The disclosure threat in that case is posed by

the possibility of a linkage between the released marginal distributions. In this paper, we analyze a

different type of disclosure. Namely, we use the notion of the risk of statistical partial disclosure to

measure the threat from the inference on sensitive individual attributes from the released empirical

model that uses the data combined from the public and private sources. As our main example we

consider a treatment effect model in which the treatment status of an individual constitutes sensitive

information.
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1 INTRODUCTION

1 Introduction

In policy analysis and decision making in many areas it is instrumental to have ac-

cess to individual data that may be considered sensitive or damaging when released

publicly. For instance, a statistical analysis of the data from clinical studies that

can include the information on the health status of their participants is crucial to

study the effectiveness of medical procedures and treatments. In financial industry a

statistical analysis of individual decisions combined with financial information, credit

scores and demographic data allows banks to evaluate risks associated with loans

and mortgages. The resulting estimated statistical models will reflect the character-

istics of individuals whose information was used in estimation. The policies based on

this statistical model will also reflect the underlying individual data. The reality of

the modern world is that the amount of publicly available (or searchable) individual

information that comes from search traffic, social networks and personal online file

depositories (such as photo collections) is increasing on the daily basis. Thus, some

of the variables in the datasets used for policy analysis may be publicly observable.1

Very frequently verious bits of information regarding the same individual are con-

tained in several separate datasets. Individual names or labels are most frequently

absent from available data (either for the purposes of data anonymization or as an

artifact of the data collection methodology). Each individual dataset in this case may

not pose a direct security threat to individuals. For instance, a collection of online

search logs will not reveal any individual information unless one can attach the names

of other identifying information to the generic identifiers attached to each unique user.

However, if one can combine information from multiple sources, the combined array

of data may pose a direct security threat to some or all individuals contained in the

data. For instance, one dataset may be a registry of HIV patients which names and

location of the patiens removed. Another dataset may be the address book that con-

tains names and addresses of people in a given area. Both these datasets individually

do not disclose any sensitive information regarding concrete individuals. A combined

dataset will essentially attach names and addresses to the anonymous labels of patiens

in the registry and thus will disclose sensitive individual information.

1Reportedly, many businesses indeed rely on the combined data. See, e.g. Wright (2010) and

Bradley, Penberthy, Devers, and Holden (2010), among others.
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The path to digitization in a variety of markets with the simultaneous availabiliuty

of the data from sources like social networks makes this scenario quite realistic. It

is pretty clear that from policy perspective the prevention of further increase in the

availiability of such multiple sources is unrealistic. As a result, a feasible solution

seems to be aimed at assuring some degree of anonymization as a possible security

measure. At the same time inferences and conclusions based on such multiple sources

may be vital for making accurate policy decisions. Thus, a key agenda item in the

design of methods and techniques for secure data storage and release is in finding a

trade-off between keeping the data informative for policy-relevant statistical model

and, at the same time, preventing an adversary from the reconstruction of the sensitive

information in the combined dataset.

In this paper we exlore one question in this agenda. Our aim is to learn how one can

evaluate the treatment effect when the treatment status of an individual may present

sensitive information while the individual demographic characteristics are either pub-

licly observable or may be inferred from some publicly observable characteristics. In

such cases we are concerned with the risk of disclosing sensitive individual informa-

tion. The questions that we address are, first, whether the identification of treatment

effects from the combined public and sensitive data is compatible with formal restric-

tions on the risk of so-called partial disclosure. Second, we want to investigate how

the public release of the estimated statistical model can lead to an increased risk of

such a disclosure.

In our empirical application we provide a concrete example of the analysis of treat-

ment effects from two “anonymized” datasets. The data that we use come from the

Russian Longitudinal Monitoring Survey (RLMS) that combines several question-

naires collected on the yearly basis. The respondents are surveyed on a variety of

topics from employment to health. However, for anonymization purposes any iden-

tifying location information is removed from the data making it impossible to verify

where each respondent is located.

Due to the vast soviet heritage, most people in Russia live in large apartment de-

velopments that include several blocks of mult-story (usually, from 5 floors and up)

apartment buildings connected together with common infrastructure, shops, schools

and medical facilities. With such a setup in place the life of each family becomes
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1 INTRODUCTION

very visible to most of the neighbors. Our specific question of interest is the potential

impact of dominant religious affiliation of the neighborhood on the decision of parents

to get their children checked up by a doctor in a given year as wll as the deicion of

the parents to vaccinate their child with the age-prescribed vaccine.

Such an analysis is impossible without neighborhood identifiers. Neighborhood iden-

tifiers are made available to selected researchers upon a special agreement with the

data curator (University of North Carolina and the Higher School of Economics in

Moscow). This allows us to construct the benchmark where the neighborhood identi-

fication is known. Then we consider a realistic scenario where such an identification

needs to be restored from the data. Using the record linkage technique adopted from

the data mining literature, we reconstruct neighborhood affiliation using the individ-

ual demographic data. Our data linkage technique relies on observing data entries

with infrequent attribute values. Accurate links for these entries may disclose indi-

vidual location and then lead to the name disclosure based on the combination of the

location and demographic data. We note that the goal of our work is not to demon-

strate the vulnerability of anonymized personal data but to demonstrate a synthetic

situation that reflects the component of the actual data-driven decision making and

to show the privacy versus identification trade-off that arises in that situation. Fur-

ther, we analyze how the estimates of the empirical model will be affected by the

constraints on partial disclosure. We find that any such limitation leads to a loss of

point identification in the model of interest. In other words, we find that there is a

clear-cut trade-off between the restrictions imposed on partial disclosure and the point

identification of the model using consumer-level data.

Our analysis combines ideas from the data mining literature with those from the

literature on statistical disclosure limitations, as well as the literature on model iden-

tification with corrupted or contaminated data. We provide a new approach to model

identification from combined datasets as a limit in the sequence of statistical experi-

ments.

A situation when the chosen data combination procedure provides a link between at

least one data entry in the consumer dataset and auxiliary individual information

with the probability exceeding the selected confidence threshold presents a case of

a successful linkage attack. The optimal structure of such attacks, as well as the
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requirements in relation to the data release have been studied in the computer science

literature. The structure of linkage attacks is based on the optimal record linkage

results that have been long used in the analysis of databases and data mining. To

some extent, these results were used in econometrics for combination of datasets as

described in Ridder and Moffitt (2007). In record linkage one provides a (possibly)

probabilistic rule that can match the records from one dataset with the records from

the other dataset in an effort to link the data entries corresponding to the same

individual. In several striking examples, computer scientists have shown that the

simple removal of personal information such as names and social security numbers

does not protect the data from individual disclosure. Sweeney (2002b) identified the

medical records of William Weld, then governor of Massachusetts, by linking voter

registration records to “anonymized” Massachusetts Group Insurance Commission

(GIC) medical encounter data, which retained the birthdate, sex, and zip code of the

patient. Recent “de-personalized” data released for the Netflix prize challenge turned

out to lead to a substantial privacy breach. As shown in Narayanan and Shmatikov

(2008), using auxiliary information one can detect the identities of several Netflix

users from the movie selection information and other data stored by Netflix.

Modern medical databases pose even larger threats to individual disclosure. A dra-

matic example of a large individual-level database are the data from genome-wide

association studies (GWAS). GWAS are devoted to an in-depth analysis of genetic

origins of human health conditions and receptiveness to deceases, among other things.

A common practice of such studies was to publish the data on the the minor allele

frequencies. The analysis of such data allows researchers to demonstrate the evidence

of a genetic origin of the studied condition. However, there is a publicly available

single nucleotide polymorphism (SNP) dataset from the HapMap NIH project which

consists of SNP data from 4 populations with about 60 individuals each. Homer,

Szelinger, Redman, Duggan, Tembe, Muehling, Pearson, Stephan, Nelson, and Craig

(2008) demonstrated that they could infer the presence of an individual with a known

genotype in a mix of DNA samples from the reported averages of the minor allele

frequencies using the HapMap data. To create the privacy breach, one can take an

individual DNA sequence and then compare the nucleotide sequence of this individual

with the reported averages of minor allele frequencies in the HapMap population and

in the studied subsample. Provided that the entire list of reported allele frequencies

5



1 INTRODUCTION

can be very long, individual disclosure may occur with an extremely high probability.

As a result, if a particular study is devoted to the analysis of a particular health con-

dition or a decease, the discovery that a particular individual belongs to the studied

subsample means that this individual has that condition or that decease.

Samarati and Sweeney (1998), Sweeney (2002b), Sweeney (2002a), LeFevre, De-

Witt, and Ramakrishnan (2005), Aggarwal, Feder, Kenthapadi, Motwani, Panigrahy,

Thomas, and Zhu (2005), LeFevre, DeWitt, and Ramakrishnan (2006), Ciriani, di Vimer-

cati, Foresti, and Samarati (2007) developed and implemented the so-called k-anonymity

approach to address the threats of linkage attacks. Intuitively, a database provides

k-anonymity, for some number k, if every way of singling an individual out of the

database returns records for at least k individuals. In other words, anyone whose

information is stored in the database can be “confused” with k others. Several oper-

ational prototypes for maintaining k-anonymity have been offered for practical use.

The data combination procedure will then respect the required bound on the indi-

vidual disclosure (disclosure of identities) risk if it only uses the links with at least k

possible matches.

A different solution has been offered in the literature on synthetic data. Duncan

and Lambert (1986), Duncan and Mukherjee (1991), Duncan and Pearson (1991),

Fienberg (1994), and Fienberg (2001) Duncan, Fienberg, Krishnan, Padman, and

Roehrig (2001), Abowd and Woodcock (2001) show that synthetic data may be a

useful tool in the analysis of particular distributional properties of the data such

as tabulations, while guaranteeing a certain value for the measure of the individual

disclosure risk (for instance, the probability of “singling out” some proportion of the

population from the data). An interesting feature of the synthetic data is that they

can be robust against stronger requirements for disclosure risk. Dwork and Nissim

(2004) and Dwork (2006) introduced the notion of differential privacy that provides a

probabilistic disclosure risk guarantee against the privacy breach associated with an

arbitrary auxiliary data. Abowd and Vilhuber (2008) demonstrate a striking result

that the release of synthetic data is robust to differential privacy. As a result, one can

use the synthetic data to enforce the constraints on the risk of disclosure by replacing

the actual consumer data with the synthetic consumer data for a combination with

an auxiliary individual data source.
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In our paper we focus on the threat of partial disclosure. Partial disclosure occurs

if the released information such as statistical estimates obtained from the combined

data sample reveals with high enough probability some sensitive characteristics of a

group of individuals. We provide a formal definition of partial disclosure and show

that one can control the risk of this disclosure, so the bounds on the partial disclosure

risk are practically enforceable.

Although our identification approach is new, to understand the impact of the bounds

on the individual disclosure risk we use ideas from literature on partial identification

of models with contaminated or corrupted data. Manski (2003), Horowitz, Manski,

Ponomareva, and Stoye (2003), Horowitz and Manski (2006), Magnac and Maurin

(2008) have understood that many data modifications such as top-coding suppression

of attributes and stratification lead to the loss of point identification of parameters

of interest. Consideration of the general setup in Molinari (2008) allows one to assess

the impact of some data “anonymization” as a general misclassification problem. In

this paper we find the approach to the identification of the parameters of interest by

constructing sets compatible with the chosen data combination procedure extremely

useful. As we show in this paper, the sizes of such identified sets for the propensity

scores and the average treatment effect are directly proportional to the pessimistic

measure of the disclosure risk. This is a powerful result that essentially states that

there is a direct conflict between the informativeness of the data used in the consumer

behavioral model and the security of individual data. As a result, the combination of

the company’s internal data with the auxiliary public individual data is not compat-

ible with the non-disclosure of individual identities. An increase in the complexity

and nonlinearity of the model can further worsen the trade-off.

In the paper we associate the ability of a third party to recover sensitive information

about consumers from the reported statistical estimates based on the combined data

with the risk of partial disclosure. We argue that the estimated model may itself be

disclosive. As a result, if this model is used to make (observable) policy decisions,

some confidential information about consumers may become discoverable. Existing

real world examples of linkage attacks on the consumer data using the observable firm

policies have been constructed for online advertising. In particular, Korolova (2010)

gives examples of privacy breaches through micro ad targeting on Facebook.com.
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Facebook does not give advertisers direct access to user data. Instead, the advertiser

interface allows them to create targeted advertising campaigns with a very granular

set of targets. In other words, one can create a set of targets that will isolate a very

small group of Facebook users (based on the location, friends and likes). Korolova

shows that certain users may be perfectly isolated from other users with a particularly

detailed list of targets. Then, one can recover the “hidden” consumer attributes, such

as age or sexual orientation, by constructing differential advertising campaigns such

that a different version of the ad will be shown to the user depending on the value

of the private attribute. Then the advertiser’s tools allow the advertiser to observe

which version of the ad was shown to the Facebook user.

When the company “customizes” its policy regarding individual users, e.g. a PPO

gives its customers personalized recommendations regarding their daily routines and

exercise or hospitals re-assign specialty doctors based on the number of patients in

need of specific procedures, then the observe policy results may disclose individual

information. In other words, the disclosure may occur even when the company had

no intention of disclosing customer information.

Security of individual data is not synonymous to privacy, as privacy may have subjec-

tive value for consumers (see Acquisti (2004)). Privacy is a complicated concept that

frequently cannot be expressed as a formal guarantee against intruders’ attacks. Con-

sidering personal information as a “good” valued by consumers leads to important

insights in the economics of privacy. As seen in Varian (2009), this approach allowed

the researchers to analyze the release of private data in the context of the trade-off

between the network effects created by the data release and the utility loss associated

with this release. The network effect can be associated with the loss of competitive

advantage of the owner of personal data, as discussed in Taylor (2004), Acquisti and

Varian (2005), Calzolari and Pavan (2006). Consider the setting where firms obtain

a comparative advantage due to the possibility of offering prices that are based on

the past consumer behavior. Here, the subjective individual perception of privacy is

important. This is clearly shown in both the lab experiments in Gross and Acquisti

(2005), Acquisti and Grossklags (2008), as well as in the real-world environment in

Acquisti, Friedman, and Telang (2006), Miller and Tucker (2009) and Goldfarb and

Tucker (2010). Given all these findings, we believe that the disclosure protection plays
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a central role in the privacy discourse, as privacy protection is impossible without the

data protection.

The rest of the paper is organized as follows. Section 2 describes the analyzed treat-

ment effects models, the availability of the data and gives a description of data combi-

nation procedures employed in the paper. Section 3 provides a notion of the identified

sets, which are compatible with the data combination procedure, for the propensity

score and the average treatment effect. It looks at the properties of these sets as the

sizes of available data sets go to infinity. Section 4 introduces formal notions of partial

disclosure and partial disclosure guarantees. It discusses the trade-off between the

point identification of the true model parameters and partial disclosure limitations.

Section 5 provide an empirical illustration.

2 Model setup

In many practical settings the treatment status of an individual in the analyzed sam-

ple is a very sensitive piece of information, much more sensitive than the treatment

outcome and/or this individual’s demographics. For instance, in evaluation of the ef-

fect of a particular drug, one may be concerned with the interference of this drug with

other medications. Many anti-inflammatory medications may interfere with standard

HIV treatments. To determine the effect of the interference one would evaluate how

the HIV treatment status influences the effect of the studied anti-inflammatory drug.

The fact that a particular person participates in the study of the anti-inflammatory

drug does not perhaps present a very sensitive piece of information. However, the

fact that a particular person receives HIV treatment medications may be extremely

sensitive.

We consider the problem of estimating the propensity score and the average treatment

effect in cases when the treatment status is a sensitive (and potentially harmful)

piece of information. Suppose that the response of an individual to the treatment is

characterized by two potential outcomes Y1, Y0 ∈ Y ⊂ R, and the treatment status

is characterized by D ∈ {0, 1}. Outcome Y1 corresponds to the individuals receiving

the treatment and Y0 corresponds to the non-treated individuals. Each individual is

also characterized by the vector of individual-specific covariates X ∈ X ⊂ Rp such as
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2 MODEL SETUP

the demographic characteristics, income and location.

Individuals are also described by vectors V and W containing a combination of real-

valued and string-valued variables (such as social security numbers, names, addresses,

etc.) that identify the individual but do not interfere with the treatment outcome.

The realizations of V belong to the product space V = S∗ × Rv, where S∗ is a fi-

nite space of arbitrary (non-numeric) nature. S∗, for instance, may be the space of

combinations of all human names and dates of birth (where we impose some “reason-

able” bound on the length of the name, e.g. 30 characters). The string combination

{′John′,′ Smith′,′ 01/01/1990′} in an example of a point in this space. Each string in

this combination can be converted into the digital binary format. Then the count-

ability and finiteness of the space S∗ will follow from the countability of the set of all

binary numbers of fixed length. We also assume that the space V is endowed with the

distance. There are numerous examples of definitions of a distance over strings (e.g.

see Wilson, Graves, Hamada, and Reese (2006)). We can then define the norm in

S∗ as the distance between the given point in S and a “generic” point corresponding

to the most commonly observed set of attributes. We define the norm in V as the

weighted sum of the defined norm in S and the standard Euclidean norm in Rv and

denote it ‖‖V . Similarly, we assume that W takes values inW = S∗∗×Rw, where S∗∗

is also a finite space. The norm in W is defined as a weighted norm and denoted as

‖‖W . Spaces S∗ and S∗∗ may have common subspaces. For instance, they both may

contain the first names of individuals. However, we do not require that such common

elements indeed exist.

Random variables V and W are then defined by the probability space with a σ-finite

probability measure defined on Borel subsets of V and W .

We assume that the data generating process creates Ny i.i.d. draws from the joint

distribution of the random vector (Y,D,X, V,W ). These draws form the (infeasible)

“master” sample {yi, di, xi, vi, wi}Ny

i=1. However, because either all the variables in

this vector are not collected simultaneously or some of the variables are intentionally

deleted, the data on the treatment status and treatment outcome are not contained

in the same sample. One sample, containing Ny observations is the i.i.d. sample

{xi, vi}Ny

i=1 is in the public domain. In other words, individual researchers or research

organizations can get access to this dataset. The second dataset is a subset of N ≤

10



2 MODEL SETUP

Ny observations from the “master” dataset and contains information regarding the

treatment status {yj, dj, wj}Nj=1.
2 This dataset is private in the sense that it is only

available to the data curator (e.g. the hospital network) and cannot be acquired by

external researchers or general public. We consider the case when even for the data

curator, there is no direct link between the private and the public datasets. In other

words, the variables in vi and wj do not provide immediate links between the two

datasets. In our example on the HIV treatment status, we could consider the cases

where the data on HIV treatment (or testing) are partially or fully anonymized (due

to the requests by the patients) and there are only very few data attributes that allow

the data curator to link the two datasets.

Suppose that the true response model can be characterized by two potential outcomes

Y1 and Y0 corresponding to the value of the treatment status. We impose the following

assumptions on the elements of the model.

ASSUMPTION 1 (i) The treatment outcomes satisfy the conditional unconfound-

edness, i.e. (Y1, Y0) ⊥ D
∣∣X = x

(ii) At least one element of X has a continuous distribution with density strictly

positive on its support

We consider the propensity score P (x) = E[D |X = x] and suppose that for some

specified 0 < δ < 1 the knowledge that the propensity score exceeds 1− δ – that is,

P (x) > 1− δ,

constitutes sensitive information.

The next assumption states that there is a part of the population with the propensity

score above the sensitivity threshold.

2Our analysis applies to other frameworks of split data sets. For instance, we could consider the

case when x and y are contained in the same data subset, while d is observed only in the other

data subset. We could also consider cases when some of the variables in x (but not all of them)

are observed together with d. This is the situation we deal with in our empirical illustration. The

important requirement in our analysis is that some of the relevant variables in x are not observed

together with d.
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2 MODEL SETUP

ASSUMPTION 2

Pr (x : P (x) > 1− δ) > 0.

P̄ will denote the average propensity score over the distribution of all individuals:

P̄ = E [P (x)] .

We leave distributions of potential outcomes Y1 and Y0 conditional on X nonpara-

metric with the observed outcome determined by

Y = DY1 + (1−D)Y0.

In addition to the propensity score, we are interested in the value of the conditional

average treatment effect

tATE(x) = E [Y1 − Y0|X = x] ,

or the average treatment effect conditional on individuals in a group described by

some set of covariates X0:

tATE(X0) = E [Y1 − Y0|X ∈ X0] ,

as well as overall average treatment effect (ATE)

tATE = E [Y1 − Y0] .

In this paper we focus on the propensity score and the overall treatment effect.

Evaluation of the propensity score and the mentioned treatment effects requires us

to observe the treatment status and outcome together with the covariates. A con-

sistent estimator for the average treatment effect tATE could be constructed then by,

first, evaluating the propensity score and then estimating the overall effect via the

propensity score weighting:

tATE = E

[
DY

P (X)
− (1−D)Y

1− P (X)

]
. (2.1)
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In our case, however, the treatment and its outcome are not observed together with

the covariates. To deal with this challenge, we will use the information contained in

the identifying vectors V and W to connect the information from the two datasets

and provide an estimate for the ATE.

Provided that the data curator is interested in correctly estimating the treatment

effect (to further use the findings to make potentially observable policy decisions, e.g.

by putting a warning label on the package of the studied drug), we assume that she

will construct the linkage procedure that will combine the two datasets.

We consider a two-step procedure that first uses the similarity of information con-

tained in the identifiers and covariates to provide the links between the two datasets.

Then, the effect of interest will be estimated from the reconstructed joint dataset.

To establish similarity between the two datasets, the researcher constructs vector-

valued variables that exploit the numerical and string information contained in the

variables. We assume that the researcher constructs variables Zd = Zd(D, Y,W ) and

Zy = Zd(X, V ) (individual identifiers) that both belong to the space Z = S × Rz.

The space S is a finite set of arbitrary nature such as a set of strings, corresponding

to the string information contained in S∗ and S∗∗. We choose a distance in S con-

structed using one of commonly used distances defined on the strings dS(·, ·). Then

the distance in Z is defined as a weighted combination of dS and the standard Eu-

clidean distance dz(Z
x, Zd) =

(
ωsdS(zxs , z

d
s )

2 + ωz‖zxz − zsz‖2
)1/2

, where Zx = (zxs , z
x
z )

and ωs, ωd > 0. Then we define the “null” element in S as the observed set of at-

tributes that has the most number of components shared with the other observed sets

of attributes and denote it 0S . Then the norm in Z is defined as distance from the

null element: ‖Z‖z = (ωsdS(zs, 0S)2 + ωs‖zz‖2)1/2.

The construction of variables may exploit the fact that W and V can contain over-

lapping components, such as individuals’ first names and the dates of birth. Then the

corresponding components of the identifiers can be set equal to those characteristics.

However, the identifiers may also include a more remote similarity of the individual

characteristics. For instance, V may contain the name of an individual and W may

contain the race (but not contain the name). Then we can make one component of

Zd to take values from 0 to 4 corresponding to the individual in the private dataset

either having the race not recorded, or being black, white, hispanic or asian.
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Then, using the public dataset we can construct a component of Zx that will corre-

spond to the guess regarding the race of an individual based on his name. This guess

can be based on some simple classification rule, e.g. whether the individual’s name

belongs to the list of top 500 hispanic names in the US Census or if the name belongs

to the top 500 name in a country that is dominated by a particular nationality. This

classifier, for instance, will classify the name ’Vladimir Putin’ as the name of a white

individual giving Zx value 2, and it will classify the name ’Kim Jong Il”’ as the name

of an asian individual giving Zx value 4.

If the set of numeric and string characteristics used for combining two datasets is

sufficiently large or it can contain some potentially “hard to replicate” information

such as an individual’s full name, if such a match occurs it very likely singles out

the data of one person. We formalize this idea by expecting that the probability

of two observations with close values of identifiers Zd and Zx belong to the same

individual is the higher, the more infrequent their values are (the larger is their norm,

that we define as a distance from the “generic” set of attributes). Our maintained

assumptions regarding the distribution of constructed identifiers are listed below.

ASSUMPTION 3 We fix some α, ᾱ ∈ (0, 1) with α < ᾱ, then for any α ∈ (α, ᾱ):

(i) (Proximity of identifiers) Pr
(
dz(Z

x, Zd) < α
∣∣ X = x, D = d, Y = y, ‖Zd‖z > 1

α

)
≥

1− α.

(ii) (Non-zero probability of extreme values)

lim
α→0

Pr

(
‖Zd‖z >

1

α

∣∣ D = d, Y = y

)
/φ(α) = 1

lim
α→0

Pr

(
‖Zx‖z >

1

α

∣∣ X = x

)
/ψ(α) = 1

for some non-decreasing and positive functions φ(·) and ψ(·).

(iii) (Redundancy of identifiers in the combined data) There exists a sufficiently large

M such that for all ‖Zd‖z ≥M and all ‖Zx‖z > M

f(Y |D = d,X = x, Zd = zd, Zx = zx) = f(Y |D = d,X = x).
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Assumption 3 (i) reflects the idea that more reliable matches are provided by the pairs

of identifiers whose values are infrequent. In other words, if in both public and private

datasets collected in Durham, NC we found observations with an attribute ’Denis

Nekipelov’, we expect them to belong to the same individual with a higher probability

than if we found two attribute values ’Jane Doe’. Thus, the treatment status can be

recovered more reliably for more unique individuals. We emphasize, that infrequency

of a particular identifier does not mean that the corresponding observation is an

“outlier”. In fact, if both public and private datasets contain very detailed individual

information such as a combination of the full name and the address, most attribute

values will be unique.

Assumption (ii) requires that there are sufficiently many observations with infrequent

attribute values. This fact can actually be established empirically in each of the

observed subsets and, thus, this assumption is testable. The same is true for the

Assumption (iv) as continuity of the of the observed marginal distributions can be

directly observed and tested.

Assumption 3 (iii) is the most important one for identification purposes. It implies

that even for the extreme values of the identifiers and the observed covariates, the

identifiers only served the purpose of data labels as soon as the “master” dataset is

recovered. There are two distinct arguments that allow us to use this assumption.

First, in cases where the identifiers are high-dimensional, infrequent attribute com-

binations do not have to correspond to “unusual” values of the variables. If both

datasets contain, for instance, first and last names along with the dates of birth and

the last four digits of the social security number of individuals, then a particular

combination of all attributes can be can be extremely rare even for individuals with

common names. Second, even if the identifiers can contain a model relevant informa-

tion (e.g. we expect the restaurant choice of an individual labeled as ’Vladimir Putin’

to be different than the choice of an individual labeled as ’Kim Jong Il’), we expect

that information to be absorbed in the covariates. In other words, if the gender and

the nationality of individual may be the information relevant for the model, than we

include that information into the covariates.

We continue our analysis with the discussion of identification of the model from the

combined dataset.
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In the remainder of the paper we suppose that Assumptions 1-3 hold.

3 Identification of the treatment effect from the combined

data

Provided that the variables are not contained in the same dataset, identification of the

treatment effect parameter becomes impossible without having some approximation

to the distribution of the data in the “master” sample. The only way to link the

observations in two datasets is to use the identifiers that we described in the previous

section. The identifiers, on the other hand, are individual-level variables. Even though

the data generating process is characterized by the distribution over strings, such as

names, we only recover the “master” dataset correctly if we link the data of one

concrete ’John Smith’ in the two datasets. This means that the data combination is

an intrinsically small sample procedure. We represent the data combination procedure

by the deterministic data combination rule DN that for each pair of identifiers zdj and

zxi returns a binary outcome

Mij = DN(zxi , z
d
j )

which labels two observations as a “match” (Mij = 1) if we think they belong to the

same individual, and label them as a “non-match” (Mij = 0) if we think that the

observations are unlikely to belong to the same individual or are simply uncertain.

Although we can potentially consider many nonlinear data combination rules, in this

paper we focus at the set of parametric data combination rules that are generated by

our Assumption 3 (i). In particular for some pre-specified ᾱ ∈ (0, 1) we consider a

data combination rule

DN = 1{dz(zxi , zdj ) < αN , ‖zxi ‖ > 1/αN},

generated by a Cauchy sequence αN such that 0 < αN < ᾱ and lim
N→∞

αN = 0. The

goal of this sequence is to construct the set of thresholds that in the limit would

isolate all of the infrequent observations. For those observations, the probability

of the correct match will be approaching one as the probability of observing two

identifiers taking very close values for two different individuals will be very small

(proportional to the square of the probability of observing the infrequent attribute
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values). On the other hand, the conditional probability that the values of identifiers

are close for a particular individual with infrequent values of the attributes will be of

a larger order of magnitude (proportional to the probability of observing the attribute

value). Thus, an appropriately scaled sequence of thresholds will be able to single

out correct matches.

Let mij be the indicator of the event that the observation i from the public dataset

and the observation j from the private dataset belong to the same individual. Given

that we can make incorrect matches Mij is not necessarily equal to mij. However,

we would want these two variables to be highly correlated meaning that the data

combination procedure that we use is good.

With our data combination procedure we will form the reconstructed “master” dataset

by taking the pairs of all observations from the public and the private datasets which

we indicated as matches (Mij = 1) and discard all other observations. We can consider

more complicated rules for reconstructing the master sample. In particular, we can

create multiple copies of the master sample by varying the threshold αN and then

we combine the information from those samples by downweighting the datasets that

were constructed with higher threshold values.

The reconstructed master dataset will have a small sample distribution, characteriz-

ing the joint distribution of outcomes and the covariates for all observations that are

identified as matches by the decision rule DN . We use fNαN
(yi |dj, xi, zxi , zdj ) to denote

the conditional density of the outcome distribution with the decision rule applied to

samples of size N . Provided that the decision rule does not perfectly identify the

information from the same individual, density fNαN
(·) will be a mixture of the “cor-

rect” distribution with the distribution of outcomes that were incorrectly identified

as matches:

fNαN
(yj|dj, xi, zxi ) = fY |D,X(yj|dj, xi)Pr(mij = 1 | DN(zxi , z

d
j ) = 1)

+ fY |X,Zx(yj|xi, zxi )Pr(mij = 0 | DN(zxi , z
d
j ) = 1),

where we used the fact that identifiers are redundant once a correct match was made

as well as the fact that in the i.i.d. sample the observations have to be independent.

So if an incorrect match was made, the outcome should not be correlated with the

treatment. By EN
αN

[·|dj] we denote the conditional expectation with respect to the
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density product fNαN
(·|dj, xi, zxi )f(xi, z

x
i ).

We can also introduce the propensity score implied by the finite sample distribu-

tion which we denote PN
αN

(·). The finite sample propensity score is characterized

by the mixture distribution combining the correct propensity score and the average

propensity score

PN
αN

(x) = P (x)Pr(mij = 1 | xi = x,DN(zxi , z
d
j ) = 1)

+ P̄Pr(mij = 0 | xi = x,DN(zxi , z
d
j ) = 1).

We can extend our data combination method by choosing sequences αN depending

on the value of x. Then the value of Pr(mij = 0 | xi = x,DN(zxi , z
d
j ) = 1) even in the

limit will depend on x. We allow for such situations. In fact, later in the paper we

make use of this opportunity to choose differences threshold sequences for different

values of x. To stress that we permit the threshold sequences to depend on x we

denote a sequence of thresholds chosen for x as αN,x (instead of αN).

In the beginning of this section, we indicated that the estimation that requires com-

bining the data based on the string-valued identifiers is an intrinsically finite sample

procedure. As a result, we suggest the analysis of identification of this model as the

limit of a sequence of data combination procedures. We allow for situation when the

data curator could want to use several sequences αN,x for some x and denote the

collection of such sequences as C0,x.

DEFINITION 1 By PN we denote the set of all functions p : X 7→ [0, 1] that

correspond to the set of finite sample propensity scores for all sequences αN,x in C0,x:

PN =
⋃

{αN,x}∈C0,x

{
PN
αN,x

(·)
}
.

We call PN the identified set for the propensity score compatible with the data com-

bination procedure with a threshold decision rule.

By T N we denote the subset of R that corresponds to the set of treatment effects

calculated as (2.1) for all sequences αN,x in C0,x using the corresponding to αN,x
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propensity score PN
αN,x

(·):

T N =
⋃

{αN,x}∈C0,x

EN
αN,x

[
DjYj

PN
αN,x

(Xi)
− (1−Dj)Yj

1− PN
αN,x

(Xi)

]
.

We call T N the identified set for the average treatment effect compatible with the data

combination procedure with a threshold decision rule.

Definition 2 below characterizes the identified set compatible with the data combi-

nation procedure as the set of all limits of the estimated treatment effects and the

propensity scores under all possible threshold sequences chosen for the decision rule

that are bounded and converge to zero. We note that provided that the reconstructed

master sample depends on the sample size, the set of treatment effect parameters that

are compatible with the data combination procedure applied to random split sam-

ples of size N will depend on N . Provided that the small sample distribution in the

sample of size N will always be a mixture of the correct joint distribution and the

marginal outcome distribution for the outcomes that are misidentified as matches,

the only way to attain the point identification is in the limit. Thus consider the con-

cept of parameter identification in terms of the limiting behavior of the identified sets

compatible with the data combination procedure constructed from the finite sample

distributions as the sample size N approaches infinity.

DEFINITION 2 (i) We call P∞ the identified set for propensity score under the

threshold decision rule if for the set of graphs of functions in P∞ denoted as

G(P∞) and the set of graphs of functions in PN denoted as G(PN) if

lim
N→∞

dH
(
G(P∞), G(PN)

)
= 0,

where dH(·, ·) stands for the Hausdorff distance.

(ii) Similarly, we call T ∞ the identified set for the average treatment effect under

the decision threshold rules if

lim
N→∞

dH
(
T ∞, T N

)
= 0.
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(iii) The propensity score is point-identified from the combined data if P∞ = {P (·)}.
Otherwise, it is identified only up to a set compatible with the the decision

threshold rules.

(iv) The average treatment effect parameter is point-identified from the combined

data if the identified set is a singleton T ∞ = {tATE}. Otherwise, it is identified

only up to a set compatible with the the decision threshold rules.

Our next idea will be based on the characterization of the sets for the average treat-

ment effect parameter and the propensity score identified under the given threshold

decision rule under Assumption 3. We start our analysis with the following lemma,

that follows directly from the combination of Assumptions 3 (ii) and (iii).

LEMMA 1 Under Assumption 3 the propensity score is point-identified from the

observations with infrequent attribute values:

P (x) = E
[
D|X = x, dz

(
Zx, Zd

)
< αN,x, ‖Zx‖z > 1

αN,x

]
.

Also, the average treatment effect is point-identified from the observations with infre-

quent attribute values:

tATE = E

[
DY

P (X)
− (1−D)Y

1− P (X)

∣∣∣∣ dz (Zx, Zd
)
< αN,x, ‖Zx‖z >

1

αN,x

]
.

This lemma states that if we are able to correctly reconstruct the “master” dataset

only for the observations with infrequent values of the attributes, those observations

are sufficient for correct identification of the components of interest. Two elements

are crucial for this results. First, we need Assumption 3 (iii) to establish redundancy

of identifiers for matches constructed for observations with infrequent values of those

identifiers. Second, we need Assumption 3 (ii) to guarantee that there is a non-zero

probability of observing individuals with those infrequent values of identifiers.

The biggest challenge in our analysis is to determine which Cauchy sequences have

appropriate behavior to isolate the infrequent attribute values as N →∞ and guar-

antee that the probability of the mismatch, conditional on the observation being in
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the reconstructed master sample, approaches zero. We do so by an appropriate in-

version of the probability of misidentification of the pair of observations as a match.

We can provide the general result that delivers a fixed probability of a mismatch in

the limiting reconstructed master sample.

Proposition 1 Suppose that for x ∈ X the chosen sequence {αN,x} ∈ C0,x satisfes

Pr
(
mij = 0 | xi = x,DN(Zy

i , Z
d
j ) = 1

)
→ γ(x)

for some γ(x) ∈ [0, 1] as N →∞. Then

PN
αN,x

(x) = EN
αN,x

[Dj |Xi = x]→ (1− γ(x))P (x) + γ(x) P̄ , (3.2)

and

TNαN,x
= EN

αN,x

[
DjYj

PN
αN,x

(Xi)
− (1−Dj)Yj

1− PN
αN,x

(Xi)

]
→ tATE+

+ E

[
(E[Y1]− E[Y |X, D = 1] P̄ )

γ(X)

(1− γ(X))P (X) + γ(X) P̄

]
− (3.3)

− E
[
(E[Y0]− E[Y |X, D = 0] (1− P̄ ))

γ(X)

1− (1− γ(X))P (X)− γ(X) P̄

]
.

Proposition 1 states that if one controls the mismatch probability in the combined

dataset, then the propensity score recovered through such a procedure is a combina-

tion of the true propensity score and the expected fraction P̄ of treated individuals

and it is biased toward P̄ . Also, the resulting identified average treatment effect will

be a sum of the true ATE and a non-trivial term. In other words, the presence of

mismatched observations in the “limiting” reconstructed master dataset biases the

estimated ATE towards zero. Also, the propensity score that is recovered through

such a procedure will be biased towards the expected fraction of treated individuals.

The formulated theorem is based on the premise that a sequence in C0,x that leads

to the limiting probability of an incorrect match equal to γ(x) exists. The proof

of existence of fundamental sequences satisfying this property is given in Komarova,

Nekipelov, and Yakovlev (2011). These sequences are determined from the behavior

of functions φ(·) and ψ(·). The result in that paper demonstrates that for each
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γ(x) ∈ [0, 1] we can find a Cauchy sequence that leads to the limiting mismatch

probability equal to γ(x).

Our next goal is to use one particular sequence that will make the mismatch proba-

bility approach zero in the limit.

THEOREM 1 (Point identification of the propensity score and the ATE).

There exists a sequence {αN,x} ∈ C0,x for which lim
N→

Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
=

0 for x ∈ X .

In other words, for this sequence:

PN
αN,x

(·)→ P (·)

pointwise everywhere on X and

TNαN,x
→ tATE

as N →∞.

In other words, the propensity score and the treatment effect are point identified.

4 Inference of the propensity score and the average treat-

ment effect with limited partial disclosure

The calculations of the propensity score and the treatment effect require the data

curator to have a technique that would combine the two datasets with the available

observation identifying information. Our approach to data combination described

above is based on constructing the threshold decision rule that identifies the obser-

vations as “a match” corresponding to the data on a single individual if the observed

individual attributes are close in terms of the chosen distance. With this approach we

can construct the sequences of thresholds that would lead to very high probabilities

of correct matches for a part of the population which allows us to point identify the

propensity score and the treatment effect parameter.

If we provide a high-quality match, then we have a reliable link between the public

information regarding the individual and this individual’s treatment status. The
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release of the reconstructed master dataset then would constitute an evident threat to

individual’s privacy. However, even if the reconstructed master dataset is not public,

the release of the estimated propensity score and/or the value of the treatment effect

itself may pose a direct threat to the security of individual data. To measure the risk

of such a disclosure in the possible linkage attacks we use a measure based on the

notion of partial disclosure in Lambert (1993). We provide a formal definition for this

measure.

Partial disclosure can occur if the released information that was obtained from the

data may potentially reveal some sensitive characteristics of individual. In our case

the information we are concerned with are the propensity score and the treatment

effect. In particular, in our case the sensitive characteristic of an individual is his

or her treatment status, or how an individual with given characteristics is likely to

receive a treatment.

Below we provide a formal definition of the risk of partial disclosure for the propensity

score. The definition takes as given the following two parameters. One parameter is

1− δ and it characterizes the sensitivity level of the information about the propensity

score. Namely, the information that the propensity score of an individual is above 1−δ
is considered to be damaging. The other parameter is denoted as ν and represents a

tolerance level – specifically, ν is the upper bound on the proportion of individuals

for whom the damaging information that P (x) > 1− δ may be revealed.

Another important component of our definition of partial disclosure is how much in-

formation about the data combination procedure is revealed to the public by the data

curator. We denote this information as I. For instance, if the data curator reveals

that Pr
(
mij = 0 | xi = x,DN(Zy

i , Z
d
j ) = 1

)
→ γ(x), then the public can determine

that in the limit the released propensity score for an individual with characteristics

x has the form (1− γ(x))P (x) + γ(x) P̄ . If, in addition, the data curator releases the

value of Pr
(
mij = 0 | xi = x,DN(Zy

i , Z
d
j ) = 1

)
or the value of γ(x), then the public

can pin down the true propensity score P (x)3 and, thus, obtain potentially damaging

information if this propensity score is above 1− δ.

DEFINITION 3 Let I be the information about the data combination procedure

3Note that the value P̄ is known from the public dataset.
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released to the public by the data curator. Let δ ∈ (0, 1) and ν ∈ [0, 1].

Given I, we say that a (1 − δ, ν) bound guarantee is given for the risk of partial

disclosure, if the proportion of individuals in the private dataset for whom the public

can determine with certainty that P (x) > 1− δ does not exceed ν.

The value of ν is called the bound on the risk of partial disclosure.

Setting ν at ν = 0 means that we want to protect all the individuals in the private

dataset.

The idea behind our definition of partial disclosure is that one can use the released

values of PN
αN,x

(or limN→∞ P
N
αN,x

) from the model to determine whether the proba-

bility of the positive treatment status exceeds the given threshold. If this is possible

to determine with a high confidence level for some individual, then this individual

is identified as the one with “the high risk” of the positive treatment status. Such

information can be extremely damaging.

In the following theorem we demonstrate that a release of the true propensity score

is not compatible with a low disclosure risk.

THEOREM 2 Suppose that

γ(x) = lim
N→∞

Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
= 0 for x ∈ X . (4.4)

If the data curator releases information (4.4), then for sufficiently large N the release

of the propensity score PN
αN,x

(or its limit) is not compatible with the bound on the

risk of partial disclosure ν for sufficiently small ν.

The formal result of Theorem 2 relies on Assumption 2 and Theorem 1 and is based

on two elements. First, using the threshold decision rule we were able to construct

the sequence of combined datasets where the finite-sample distribution of covariates

approaches the true distribution. Second, from the estimated distribution, we could

improve our knowledge of the treatment status individuals in the data. For some

individuals the probability of the positive treatment status may be very high.
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This result forces us to think about the ways of avoiding the situations where po-

tentially very sensitive information may be learned regarding some individuals. The

bound guarantee on the risk of partial disclosure essentially requires the data curator

to keep a given proportion of incorrect matches in the datasets of any size. As dis-

cussed in Proposition 1, a fixed proportion of the incorrect matches, leads to the the

calculated propensity score to be biased towards the proportion of treated individuals

in the population and also causes bias in the average treatment effect.

THEOREM 3 Suppose the value of P̄ is publicly available, and P̄ < 1− δ.

A (1 − δ, 0) bound guarantee for the risk of partial disclosure can be achieved if the

data curator chooses αN(x) in such a way that

γ(x) = lim
N→∞

Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
> 0 for all x ∈ X

and for individuals with P (x) > 1 − δ the value of γ(x) is chosen large enough to

guarantee that

lim
N→∞

PN
αN,x

= (1− γ(x))P (x) + γ(x) P̄ < 1− δ.

We assume that the data curator provides information that the data were matched

with an error and the matching error does not approach 0 as N → ∞ but does not

provide the values of Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
orγ(x).

In this case, the behavior of the released propensity score and the treatment effect

is as described in (3.2) and (3.3), and thus, the true propensity score and the true

treatment effect are not identified.

Note that in the framework of Theorem 3 for individuals with small P (x) the data

curator may want to choose a very small γ(x) > 0 whereas for individuals with large

P (x) the bias towards P̄ has to be large enough.

Remark 1 Continue to assume that P̄ < 1− δ.

Note that if the released propensity score for an individual with x is strictly less than

P̄ , then the public will be able to conclude that the true propensity score for this

individual is strictly less than P̄ .
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If the released propensity score for an individual with x is strictly greater than P̄ , then

the public will be able to conclude that the true propensity score for this individual is

strictly greater than P̄ but, under conditions of Theorem 3, will not know whether

P (x) > 1− δ.

If the released propensity score for an individual with x is equal to P̄ , then the public

is unable to make any non-trivial conclusions about P (x) – that is, P (x) can be any

value from [0, 1].

We can consider other approaches the data curator may exploit regarding the release

of the propensity score values and the information provided with this release. For

instance, for some individuals with P (x) < 1 − δ she may choose γ(x) = 0 and

provide information that for some individuals the data were matched without an

error in the limit but for the other individuals the matching error is strictly positive

and does not approach 0 as N → ∞ (given that she does not specify the values

of Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
or γ(x)). In this case, the result of Theorem 3

continues to hold.

The next theorem gives a result on privacy protection when the data curator releases

more information.

THEOREM 4 Suppose the value of P̄ is publicly available, and P̄ < 1− δ.

A (1 − δ, 0) bound guarantee for the risk of partial disclosure can be achieved if the

data curator chooses αN(x) in such a way that

Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
≥ γ̄ for all x ∈ X

for all N , and for individuals with P (x) > 1−δ the value of Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
is chosen large enough to guarantee that

PN
αN,x

= (1− Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
)P (x) + Pr

(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
P̄ < 1− δ

for all N . We assume that the data curator provides information that the data were

matched with an error and the matching error is greater or equal than the known γ̄

but does not provide the values of Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
or γ(x).
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In this case, the behavior of the released propensity score and the treatment effect

is as described in (3.2) and (3.3), and thus, the true propensity score and the true

treatment effect are not identified.

To summarize, the fact that we want to impose a bound on the risk of disclosure, leads

us to the loss of point identification of both the true propensity score and true average

treatment effect. This means that point identification of the econometric model from

the combined dataset is incompatible with the security of individual information. If

the publicly observed policy is based on the combination of the non-public treatment

status and the public information regarding the individual, then the treatment status

of any individual cannot be learned from this policy only if it is based on a biased

estimate for the propensity score and a biased treatment effect.

The next theorem considers the case when P̄ > 1− δ. It shows that in this case any

release of point estimates of the propensity score from the treatment effect evaluation

is not compatible with a low disclosure risk.

THEOREM 5 Suppose the value of P̄ is publicly available, and P̄ > 1− δ.

Then the released propensity score will reveal all the individuals with P (x) > 1 − δ
even if the data are combined with a positive (even very large) error. Let

p∗ = Pr(x : P (x) > 1− δ)

– that is, p∗ is the proportion of individuals with the damaging information about the

propensity score. Then a (1− δ, ν) bound guarantee cannot be attained for the risk of

partial disclosure if ν ≤ p∗.

In the framework of Theorem 5 the release (or publicly observable use) of the propen-

sity score is blatantly non-secure. In other words, there will exist sufficiently many

individuals for whom we can learn their high propensity scores. To protect their

privacy, no propensity scores whatsoever should be released.
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5 Does a religious affiliation affect a parent’s decision on

childhood vaccination and medical check-ups?

To illustrate our theoretical analysis, we want to bring our results to the real data.

Even though in the main body of this paper we do not develop a formal theory of the

statistical estimation of PN
αN,x

(·) or the true propensity score P (·) in a finite sample

when only two split datasets are available, in this section we want to illustrate an

empirical procedure one could implement in practice.

The data that we use come from the Russian Longitudinal Monitoring survey (RLMS)
4. The RLMS is a nationally representative annual survey that covers more than 4,000

households (the number of children varies between 1,900 and 3,682), starting from

1992 till 2011. The survey gathers information on a very broad set of questions,

including demographic and household characteristics, health, religion, and so on. The

survey covers 33 Russian regions – 31 oblasts (krays, republics), and also Moscow

and St. Petersburg. Islam is the dominant religion in two regions, and Orthodox

Christianity is the dominant religion in the rest.

We combine our data from two parts of RLMS – the survey for adults and the survey

for children. The question that we want to answer can be informally stated as follows:

Does a religion of family members affect the probability of the child to get regular

medical check-ups or to be vaccinated? More specifically, we analyze whether 1)

religious (Muslim or Orthodox Christian) families have their children seen by doctors

or have their children vaccinated from tuberculosis with lower probability; 2) families

from neighborhoods with high percentages of religious people have their children seen

by doctors with lower probability.

From the data set for children we extract the following individual characteristics for

a child: the indicator for whether the child had a medical check-up in the last 12 (or

4This survey is conducted by the Carolina Population Center at the University of Carolina at

Chapel Hill, and by the Higher School of Economics in Moscow. Official Source name: Russia

Longitudinal Monitoring survey, RLMS-HSE,” conducted by Higher School of Economics and ZAO

“Demoscope” together with Carolina Population Center, University of North Carolina at Chapel Hill

and the Institute of Sociology RAS. (RLMS-HSE web sites: http://www.cpc.unc.edu/projects/rlms-

hse, http://www.hse.ru/org/hse/rlms).
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Table 1: Summary statistics of various variables for a child.

Variable Obs Mean Std. Dev. Min Max

Child: medical check-up in last 12 months? 33924 0.69 0.46 0 1

Child: medical check-up in last 3 months? 62316 0.45 0.50 0 1

Child: vaccinated (tuberculosis)? 49464 0.96 0.19 0 1

Child: I(lives in a city) 73100 0.38 0.49 0 1

Child: age 73100 7.19 4.09 0 18

Family: share of Orthodox Christians 59142 0.22 0.35 0 1

Family: share of Muslims 59142 0.06 0.23 0 1

Family: share of those with college degree 66314 0.26 0.37 0 1

Region: share of Muslims 73100 8.83 16.74 0.8 70.7

Region: log grp per capita 71466 10.96 1.38 7.04 13.50

3) months, the indicator for whether the child was vaccinated against tuberculosis,

the indicator for whether the child lives in a city, and the child’s age. We also

observe have the following information on the child’s family: the share of Orthodox

Christian family members, the share of Muslim family members, and the share of

family members with a college degree. From other publicly available data sets we

obtain the following information for the child’s region: the share of Muslims and the

gross regional product per capita. The summary statistics of all these variables are

presented in Table 1.

Our analysis focuses on the propensity scores that represent the probability of the

child getting regular check-ups (being vaccinated against tuberculosis). In our model,

the following information is considered to be sensitive: propensity scores are below a

given threshold; the variable of the share of Orthodox Christian (or Muslim) family

members has a negative marginal effect on the propensity score; the variable of the

share of Orthodox Christians (or Muslims) in the child’s neighborhood has a negative

marginal effect on the propensity score.

The RLMS data set has a clustered structure as people are surveyed within small
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Table 2: Summary statistics of neighborhood characteristics.

Variable Obs Mean Std. Dev. Min Max

Neigborhood: share of Muslims 53800 0.06 0.20 0 1

Neigborhood: share of Orthodox 53800 0.23 0.18 0 1

Neigborhood: log(income) 58578 6.25 1.86 0 10.9

neighborhoods with a population of around 300 people (so called census district, see

?). Thus, it is possible to construct characteristics of neighborhoods – in particular,

on the shares of Orthodox Christians (or Muslims) in neighborhoods, – by using

the religion variable from the RLMS data set for adults if one has information on

neighborhood labels. Due to a vast Soviet heritage the majority of people in Russia

live in large communal developments that combine several multi-story apartment

buildings. These developmens have common infrastructure, shops and schools. High

concentration in a relatively small area makes the life of each family very visible to

all the neighbors. The neighborhoods are defined precisely by such developments.

Neighborhood labels were publicly available till 2009 but then were deleted by the

RLMS staff due to the privacy concerns.5 In our study we exploit the RLMS survey

data from 1994 till 2009 because the neighborhood identifiers were publicly available

in those years and, thus, one was able to consider the child’s neighborhood and then

use the religious affiliation variable from the adult data set to construct the data for

religion in that particular neighborhood, and use the income variable from the adult

data set to calculate the average logarithm if income in that particular neighborhood.

The summary statistics of neighborhood characteristics are presented in Table 2.

In order to answer the posed questions, we estimate the following probit regression

Pr(Dit = 1) = Φ(α1share of Muslims in familyit +

+α2share of Orthodox Christians in familyit +

+β1share of Muslims in neighborhoodit +

+α2share of Orthodox Christians in neighborhoodit + γ′qit),

5Fortunately, we happened to have the data on neighborhood identifiers.
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where Dit stands for the indicator whether a child had a medical check-up within the

last 12 (or 3) months, or the indicator whether a child has a vaccination against tuber-

culosis. The set of controls qit contains child’s characteristics of (age, I(live in city)),

regional characteristics such as the GRP per capita and the share of Muslims in the

region), family characteristics such as family income and the share of family members

with a college degree, neighborhood characteristics (average income in neighborhood),

and the year fixed effects. For notational simplicity, we write Pr(Dit = 1) instead of

Pr(Dit = 1
∣∣ religious characteristicsit, qit).

The estimation results are presented in Table 3. Columns 2 and 4 in the table show

the evidence that a higher percentage of Muslims in the family is associated with

a lower chance of the child being regularly seen by a doctor. This holds for the

sample of all children and for the subsample of children with health problems. Also,

when the sample of all children is considered, a higher percentage of Muslims in the

neighborhood has a negative marginal effect on the probability of the child being

vaccinated against tuberculosis as well as being regularly seen by a doctor. The

variables for the shares of Orthodox Christians are not significant.

The discussion below considers the sample of all children. The first two graphs in

Figure 1 are for the case when the dependent variable is the indicator for a check-up

within the last 12 months. The last two graphs in that figure are for the case when

the dependent variable is the indicator for a vaccination against tuberculosis. The

large dot in the first graph in Figure 1 shows the pair (−0.3416,−0.3314) of estimated

coefficients for the share of Muslims in the family and the share of Muslims in the

neighborhood from column 2 in Table 3. The large dot in the second graph in Figure

1 shows the pair (−0.105,−0.3314) of estimated coefficients for the share of Ortho-

dox Christians in the neighborhood and the share of Muslims in the neighborhood,

respectively, from column 2 in Table 3. The large dot in the third graph in Figure

1 shows the pair (−0.1506,−0.429) of estimated coefficients for the share of Muslims

in the family and the share of Muslims in the neighborhood from column 3 in Table

3. The large dot in the fourth graph in Figure 1 shows the pair (−0.105,−0.429) of

estimated coefficients for the share of Orthodox Christians in the neighborhood and

the share of Muslims in the neighborhood, respectively, from column 3 in Table 3.

Finally, we analyze how the estimates of our parameters would change if we enforce
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Table 3: Probit regression estimation.

sample: all children sample: children

that have

health problems

medical check-up vaccinated against medical check-up

in last 12 m? tuberculosis? in last 3 m?

Child: age -0.0423 0.0685 -0.0438

[0.0032]*** [0.0047]*** [0.0067]***

Child: I(live in city) 0.1704 -0.2062 0.0601

[0.0313]*** [0.0441]*** [0.0543]

Family: share of Muslims -0.3314 -0.1506 -0.4193

[0.1127]*** [0.1686] [0.2515]*

Family: share of Orthodox Christians 0.0478 -0.0936 -0.0244

[0.0394] [0.0604] [0.0711]

Family: average log (income) 0.0602 -0.0169 0.0437

[0.0151]*** [0.0211] [0.0303]

Family: share of those 0.0741 0.0296 0.1561

with a college degree [0.0367]** [0.0571] [0.0651]**

Region: share of Muslims -0.0001 -0.0031 0.0026

[0.0014] [0.0021] [0.0031]

Region: log GRP per capita 0.1838 -0.0412 -0.0858

[0.0308]*** [0.0463] [0.0544]

Neighborhood: share of Muslims -0.3416 -0.429 -0.4922

[0.1757]* [0.2319]* [0.4512]

Neighborhood: share of Orthodox -0.105 -0.0169 -0.1603

[0.0840] [0.1272] [0.1603]

Year fixed effects yes yes yes

Constant -2.0794 1.9472 -3.9003

[0.3701]*** [0.4039]*** [103.6494]

Observations 10780 17413 2902
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a bound on the risk of partial disclosure and consider the bound of 0.5 – that is,

Pr
(
mij = 0 | DN(Zx

i , Z
d
j ) = 1

)
≥ γ̄, where γ̄ = 0.5. This is the case of attaining

2-anonymity.

In order to attain 2-anonymity we conduct the following exercise. For every child in in

our sample we create two possible neighborhoods – one neighborhood is the true one,

and the other one is drawn randomly from the empirical distribution of neighborhoods

in the corresponding region. Such empirical distributions can be easily obtained from

the publicly available data in RLMS. As a result, for every child we have two possible

sets of values of neighborhood characteristics.

Then, ideally we would like to simulate all possible combined datasets but the number

of these datasets is of exponential complexity, namely, of the rate 2n. Instead of

considering all possible combined datasets we randomly simulate only a 1000 of such

datasets. For each simulated combined dataset we conduct the probit estimation.

Thus, we end up with a 1000 of different sets of estimated coefficients (as well as the

propensity scores). The contour sets in the graphs in Figure 1 are the convex hulls

of the obtained estimates. Namely, the contour set in the first graph in Figure 1 is

the convex hull of the 1000 pairs of estimated coefficients for the share of Muslims in

the family and the share of Muslims in the neighborhood, respectively. The contour

set in the second graph in Figure 1 is the convex hull of the 1000 pairs of estimated

coefficients for the share of Orthodox Christians in the neighborhood and the share

of Muslims in the neighborhood, respectively. Similarly for the other two graphs.

As can be seen, in the analysis of the probability of a medical check-up in the last 12

months all the 1000 coefficients corresponding to variables of the share of Muslims in

the family and the share of Muslims in the neighborhood are negative6 If the data

curator thinks that the release of these sets of estimates is not satisfactory with regard

to partial disclosure guarantees, then she should increase the guarantee level by, for

instance, attaining 3-anonymity.

As for the case of the probability of being vaccinated against tuberculosis, among

the 1000 coefficients corresponding to the share of Muslims in the family, there are

6These variables are significant in each of 1,000 cases (even though the confidence intervals are

not depicted in the graphs).
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some positive ones, even though all the 1000 coefficients corresponding to the share

of Muslims in the neighborhood are negative7 Again, the data curator may want to

increase the guarantee level.

7The variable of the share of Muslims in the neighborhood is significant in each of 1,000 cases.
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Figure 1: Sets of estimates from 1000 datasets combined using neighborhoods. Con-

tour sets are for the cases of 2-anonymity.
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6 Conclusion

In this paper we we analyze how combination of data from multiple anonymized

sources can lead to serious threats to disclosure of indvidual information. While the

anonimized datasets by themselves may pose no direct threat, such a threat may

arize in the combined data. The main question that we want to address is whether

statistical inference based on the information from all these datasets is possible with-

out the risk of disclosure. We introduce the notion of statistical partial disclosure to

characterize a situation when data combination allows an adversary to identify a cer-

tain individual characteristic with a smal probability of misidentification. We focus

our analysis on the estimation of treatment effects where the treatment status of an

individual is sensitive and thus the possibility of statistical recovery of this treatment

status may be highly undesirable. We show that a variety of techniques from data

mining literature can be used for reconstruction of the combined datasets with little

to no auxiliary information. We also demonstrate that the point indentification of

the statistical model for the average treatment effects is incompatible with bounds

imposed on the risk of statistical partial disclosure imposed to protect individual in-

formation. We illustrate our findings in the empirical study of the impact of religious

affiliation of parents on the probability of child’s vaccination from tuberculosis using

the individual level data from Russia.

References

Abowd, J., and L. Vilhuber (2008): “How Protective Are Synthetic Data?,” in

Privacy in Statistical Databases, pp. 239–246. Springer.

Abowd, J., and S. Woodcock (2001): “Disclosure limitation in longitudinal linked

data,” Confidentiality, Disclosure, and Data Access: Theory and Practical Appli-

cations for Statistical Agencies, pp. 215–277.

Acquisti, A. (2004): “Privacy and security of personal information,” Economics of

Information Security, pp. 179–186.

Acquisti, A., A. Friedman, and R. Telang (2006): “Is there a cost to privacy

36



REFERENCES REFERENCES

breaches? An event study,” in Fifth Workshop on the Economics of Information

Security. Citeseer.

Acquisti, A., and J. Grossklags (2008): “What can behavioral economics teach

us about privacy,” Digital Privacy: Theory, Technologies, and Practices, pp. 363–

377.

Acquisti, A., and H. Varian (2005): “Conditioning prices on purchase history,”

Marketing Science, pp. 367–381.

Aggarwal, G., T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu (2005): “Approximation algorithms for k-anonymity,”

Journal of Privacy Technology, 2005112001.

Bradley, C., L. Penberthy, K. Devers, and D. Holden (2010): “Health

services research and data linkages: issues, methods, and directions for the future,”

Health services research, 45(5(2)), 1468–1488.

Calzolari, G., and A. Pavan (2006): “On the optimality of privacy in sequential

contracting,” Journal of Economic Theory, 130(1), 168–204.

Ciriani, V., S. di Vimercati, S. Foresti, and P. Samarati (2007): “k-

Anonymity,” Secure Data Management in Decentralized Systems. Springer-Verlag.

Duncan, G., S. Fienberg, R. Krishnan, R. Padman, and S. Roehrig (2001):

“Disclosure limitation methods and information loss for tabular data,” Confiden-

tiality, Disclosure and Data Access: Theory and Practical Applications for Statis-

tical Agencies, pp. 135–166.

Duncan, G., and D. Lambert (1986): “Disclosure-limited data dissemination,”

Journal of the American statistical association, 81(393), 10–18.

Duncan, G., and S. Mukherjee (1991): “Microdata Disclosure Limitation in

Statistical Databases: Query Sizeand Random Sample Query Control,” .

Duncan, G., and R. Pearson (1991): “Enhancing access to microdata while

protecting confidentiality: Prospects for the future,” Statistical Science, pp. 219–

232.

37



REFERENCES REFERENCES

Dwork, C. (2006): “Differential privacy,” Automata, languages and programming,

pp. 1–12.

Dwork, C., and K. Nissim (2004): “Privacy-preserving datamining on vertically

partitioned databases,” in Advances in Cryptology–CRYPTO 2004, pp. 134–138.

Springer.

Fienberg, S. (1994): “Conflicts between the needs for access to statistical informa-

tion and demands for confidentiality,” Journal of Official Statistics, 10, 115–115.

(2001): “Statistical perspectives on confidentiality and data access in public

health,” Statistics in medicine, 20(9-10), 1347–1356.

Goldfarb, A., and C. Tucker (2010): “Online display advertising: Targeting

and obtrusiveness,” Marketing Science.

Gross, R., and A. Acquisti (2005): “Information revelation and privacy in online

social networks,” in Proceedings of the 2005 ACM workshop on Privacy in the

electronic society, pp. 71–80. ACM.

Homer, N., S. Szelinger, M. Redman, D. Duggan, W. Tembe,

J. Muehling, J. Pearson, D. Stephan, S. Nelson, and D. Craig (2008):

“Resolving individuals contributing trace amounts of DNA to highly complex

mixtures using high-density SNP genotyping microarrays,” PLoS Genetics, 4(8),

e1000167.

Horowitz, J., and C. Manski (2006): “Identification and estimation of statistical

functionals using incomplete data,” Journal of Econometrics, 132(2), 445–459.

Horowitz, J., C. Manski, M. Ponomareva, and J. Stoye (2003): “Computa-

tion of bounds on population parameters when the data are incomplete,” Reliable

computing, 9(6), 419–440.

Komarova, T., D. Nekipelov, and E. Yakovlev (2011): “Identification, data

combination and the risk of disclosure,” CeMMAP working papers.

38



REFERENCES REFERENCES

Korolova, A. (2010): “Privacy violations using microtargeted ads: A case study,”

in IEEE International Workshop on Privacy Aspects of Data Mining (PADM’2010),

pp. 474–482.

Lambert, D. (1993): “Measures of disclosure risk and harm,” Journal of Official

Statistics, 9, 313–313.

LeFevre, K., D. DeWitt, and R. Ramakrishnan (2005): “Incognito: Efficient

full-domain k-anonymity,” in Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, pp. 49–60. ACM.

(2006): “Mondrian multidimensional k-anonymity,” in Data Engineering,

2006. ICDE’06. Proceedings of the 22nd International Conference, pp. 25–25. IEEE.

Magnac, T., and E. Maurin (2008): “Partial identification in monotone binary

models: discrete regressors and interval data,” Review of Economic Studies, 75(3),

835–864.

Manski, C. (2003): Partial identification of probability distributions. Springer Ver-

lag.

Miller, A., and C. Tucker (2009): “Privacy protection and technology diffusion:

The case of electronic medical records,” Management Science, 55(7), 1077–1093.

Molinari, F. (2008): “Partial identification of probability distributions with mis-

classified data,” Journal of Econometrics, 144(1), 81–117.

Narayanan, A., and V. Shmatikov (2008): “Robust de-anonymization of large

sparse datasets,” in Security and Privacy, 2008. SP 2008. IEEE Symposium on,

pp. 111–125. IEEE.

Ridder, G., and R. Moffitt (2007): “The econometrics of data combination,”

Handbook of Econometrics, 6, 5469–5547.

Samarati, P., and L. Sweeney (1998): “Protecting privacy when disclosing infor-

mation: k-anonymity and its enforcement through generalization and suppression,”

Discussion paper, Citeseer.

39



REFERENCES REFERENCES

Sweeney, L. (2002a): “Achieving k-anonymity privacy protection using gener-

alization and suppression,” International Journal of Uncertainty Fuzziness and

Knowledge-Based Systems, 10(5), 571–588.

(2002b): “k-anonymity: A model for protecting privacy,” International

Journal of Uncertainty Fuzziness and Knowledge Based Systems, 10(5), 557–570.

Taylor, C. (2004): “Consumer privacy and the market for customer information,”

RAND Journal of Economics, pp. 631–650.

Varian, H. (2009): “Economic aspects of personal privacy,” Internet Policy and

Economics, pp. 101–109.

Wilson, A., T. Graves, M. Hamada, and C. Reese (2006): “Advances in data

combination, analysis and collection for system reliability assessment,” Statistical

Science, 21(4), 514–531.

Wright, G. (2010): “Probabilistic Record Linkage in SAS R©,” Keiser Permanente,

Oakland, CA.

40


