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Abstract

Online advertising offers unprecedented opportunities for measurement. A host of new met-
rics, clicks being the leading example, have become widespread in advertising science. New data
and experimentation platforms open the door for firms and researchers to measure true causal
effects of advertising on a variety of consumer behaviors, such as purchases. In this chapter we
dissect the new metrics and methods currently used by industry researchers, attacking the ques-
tion, “How hard is it to reliably measure advertising effectiveness?” We outline the questions
that we think can be answered by current data and methods, those that we believe will be in
play within five years, and those that we believe could not be answered with arbitrarily large
and detailed data. We pay close attention to the advances in computational advertising that
are not only increasing the impact of advertising, but also usefully shifting the focus from “who
to hit” to “what do I get.”

1 Introduction

In the United States, advertising is a $200 billion industry, annually. We all consume “free”

services—those monetized by consumer attention to advertising—such as network television, email,

social networking, and a vast array of online content. Yet despite representing a relatively stable 2%

of GDP since World War I and subsidizing activities that comprise most of Americans’ leisure time

(American Time Use Survey, 2010), advertising remains poorly understood by economists. This is

primarily because offline data have typically been insufficient for a firm (or researcher) to measure

the true impact of advertising on consumer purchasing behavior. Theories of advertising (Demsetz,

1982; Kessides, 1986; Becker and Murphy, 1993) that have important implications for competition

are even harder to empirically validate. The digital era offers an unprecedented opportunity to

bridge this informational divide. These advances, both realized and potential, can be attributed

to two key factors: 1) individual-level data on ad delivery and subsequent purchasing behavior can

be linked and made available to advertisers at low cost, and 2) ad delivery can be randomized at

the individual level, generating exogenous variation essential to identifying causal effects. In this

chapter we explore the dramatic improvement in the empirical measurements of the returns to
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Preston McAfee, and numerous other colleagues for their assistance and support in carrying out the research.
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advertising, highlight fundamental challenges that currently remain and look to what solutions we

think the future will bring.

Digital advertising has led to standard reporting of precise quantitative data for advertising

campaigns, most notably the click-through rate (CTR). Of course, the CTR of an ad is only

an intermediate proxy for the real outcome of interest to the advertiser: increased purchases by

consumers, both in the present and future.1 Despite these limitations, intermediate metrics such

as the CTR have proved to be enormously useful dependent variables in automated targeting

algorithms that match ads with consumers and contexts (Pandey and Olston, 2006; Gonen and

Pavlov, 2007). Related intermediate metrics comes from “purchasing intent” surveys paired with

randomized exposure to a firm’s advertising. Cross-experiment analysis of such surveys has provided

estimates of the relative value of targeted (vs. untargeted) advertising (Goldfarb and Tucker,

2011b), contextual relevance and ad intrusiveness (Goldfarb and Tucker, 2011a) and has informed

the debate on privacy (Tucker, 2012).

The advances in both academic understanding and business best-practice attributable to these

intermediate metrics should not be understated. But while general insights on how ad features

impact users can guide advertising spend and CTR maximizing algorithms can make spending

more efficient, a firm is presumably interested in measuring the overall returns on advertising

investment: dollars of sales causally linked to the campaign vs. dollars spent. An over-reliance

on intermediate metrics can draw attention away from the true underlying goal, and research has

shown it can lead to highly suboptimal spending decisions (Blake et al., 2013).

Along with deficiencies in intermediate metrics, endogeneity of advertising exposure is the other

key challenge in measuring advertising returns. Traditional econometric measurements typically

rely on aggregate data fraught with identification problems due to the targeted nature of advertising

(Bagwell, 2008).2 Yet despite the ability to run very large randomized control trials made possible

by digital delivery and measurement, we have discovered a number of conceptual flaws in standard

industry data collection and analysis methods used to measure the effects of advertising. In other

words, the deluge of data on advertising exposures, clicks, and other associated outcomes have

not necessarily created greater understanding of the basic causal effects of advertising, much less

an understanding of more subtle questions such as the relative effectiveness of different types of

consumer targeting, ad creatives, cross-channel effects or frequency of exposure. The voluminous

data, it seems to us, have not only created opportunity for intelligent algorithmic advances but also

mistaken inference under the guise of “big data.”

1Towards these ends, advertisers use browser cookies and click beacons to obtain a “conversion rate,” the ratio
of transactions attributed to the campaign to ad exposures. This measure seems ideal, but the attribution step is
critical and current methods of assigning attribution have serious flaws, which we discuss in detail.

2The split cable TV experiments reported in Abraham et al. (1995) are a notable exception. The sample sizes
in these experiments, run a in small U.S. town, were far smaller than online experiments, and the authors did not
report per experiment confidence intervals, rather they used cross-experiment techniques to understand what factors
tended to influence consumers (for a follow-up analysis, see Hu et al., 2007.
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First, many models assume that if you do not click on the ad, then the ad has no effect on

your behavior. Here we discuss work by coauthors Lewis and Reiley that showed online ads can

drive offline sales, which are typically not measured in conversion or click rates; omitting these

non-click-based sales leads to underestimating the total effects of advertising. Linking online and

offline sales requires a dedicated experimental infractructure and third-party data merging that

have only recently become possible.

Second, many models assume that if you do click on an ad and subsequently purchase, that

conversion must have been due to that ad. This assumption seems particularly suspect in cases,

such as search advertising, where the advertising is deliberately targeted at those consumers most

likely to purchase the advertised product and temporally targeted to arrive when a consumer is

performing a task related to the advertised good. Research has shown, for example, that a person

searching for “ebay shoes” is very likely to purchase shoes on eBay regardless of the intensity

of advertising (Blake et al., 2013). While this is an extreme example, Blake et al. (2013) also

show that the problem arises generally and measuring the degree to which advertising crowds out

“organic conversions” is difficult to measure precisely. Näive approaches effectively assume this

problem away, but since only “marginal clicks” are valuable and all clicks count towards the CTR,

these methods will always overstate the quantity we really care about.

Third, more sophisticated models that do compare exposed to unexposed users to establish a

baseline purchase rate typically rely on natural, endogenous advertising exposure and can easily

generate biased estimates due to unobserved heterogeneity (Lewis et al., 2011). This occurs when

the pseudo-control group does not capture important characteristics of the treated group, such

as purchase intent or browsing intensity, which we show can easily be correlated with purchases

whether advertising is present or not. Using data from 25 large experiments run at Yahoo! (Lewis

and Rao, 2013), we have found that the standard deviation of purchases is typically ten times the

mean. With such a noisy dependent variable, even a tiny amount of endogeneity can severely bias

estimates. Beyond inducing bias in coefficient estimates, these specification errors also give rise

to an over-precision problem. Because advertising typically explains only a very small fraction of

the variance in consumer transaction behavior, even cleanly designed experiments typically require

over a million subjects in order to be able to measure economically meaningful effects with any

statistical precision (but even experiments with 1 million subjects can have surprisingly weak power,

depending on the variance in sales).

Since experiments are generally considered the gold standard for precision3 (treatment is ex-

ogenous and independent across individuals), we should be suspicious if observational methods

claim to offer higher precision. Further, with non-experimental methods, omitted heterogeneity

or selection bias (so long as it can generate a partial R-squared of 0.00005 or greater) can induce

bias that swamps plausible estimates of advertising effectiveness. Thus, if an advertiser does not

3Not all experiments are created equal and methodologies to use pre-experiment data to enhance power as well as
post-experiment trimming have advanced considerably in the digital era (Deng et al., 2013).
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use an experiment to evaluate advertising effectiveness, she has to have a level of confidence in her

model that, frankly speaking, we find unreasonable given the obvious selection effects due to ad

targeting and synchronization of advertising with product launches (e.g., new iPad release) and

demand shocks (e.g., holiday shopping season).

Experimental work on measuring the dollar returns to advertising has given us a deeper appre-

ciation for the limits of current data and methods. For example, we show that seemingly simple

“cross-channel” complementarity measures are exceedingly difficult to reliably estimate. Here we

present evidence taken from Lewis and Nguyen (2013) that display advertising can increase key-

word searches for the advertised brand. Some clicks on sponsored links are incorrectly attributed

entirely to the search ad, but while the directional impact on searches can be documented we cannot

tell if search ads perform better or worse in terms of the conversion rate when paired with display

advertising. A similar experimental design at a much larger scale could answer this sort of question,

but advertising to order 5–10 million individuals may be out of reach4 for most advertisers. These

findings are confirmed by similar work on online advertising spillovers (Rutz and Bucklin, 2011;

Papadimitriou et al., 2011).

So while some questions are answerable with feasible (at least for some market participants)

scale, we believe other questions are still outside the statistical power of current experimental

infrastructure and methods. The most prominent example is the long-run effects of advertising.

Essentially any analysis of the impact of advertising has to make a judgment call on which time

periods to use in the analysis. Often this is the “campaign window” or the campaign window plus

a chosen interval of time (typically 1-4 weeks). These thresholds are almost certainly “wrong”

because any impact that occurs after the cutoff should count in the return on investment (ROI)

calculation. We explain why practitioners typically choose relatively short impact windows. The

intuition is that the longer the time window under study, the lower the signal-to-noise ratio in the

data (presuming the ad gets less impactful over time): point estimates of the cumulative effect tend

to increase with longer time horizons, but standard errors of the effect increase by even more. This

leads to an estimation “impossibility” analogous to the well-known “curse of dimensionality.”

In the next two sections we shift our gaze further into the future. First, we discuss how

computational methods have increased advertising effectiveness through automated targeting and

bidding. With automated targeting, the conversation is usefully shifted from “who to hit” to

“what should I get.” Currently the key parameters of the automated system, such as the valuation

of actions such as clicks or conversions, the budget of the campaign and the duration must still

be entered by a human. Indeed these are the exact parameters that we have argued are very

difficult to estimate. However, there is no major technical barrier to incorporating controlled

randomization—on the fly experimentation—into the core algorithm. By constantly incorporating

experimentation, an informative prior could be developed and returns could be more precisely

4Pun intended.
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estimated (which would then govern bid, budget, and so forth). To unlock the full potential of this

class of algorithms, ad exchanges would have to provide data to participants on the outcomes of

auctions in which the bidder intentionally lost. Currently outcome tracking is only possible if you

win the auction, meaning today this type of experimentation is limited to temporal and geography

based identification, severely limiting power. In our final section we extend the discussion on how

advances in ad-delivery, measurement, and infrastructure are creating opportunities to advance

the science of advertising. We discuss how the provision of these features and data relates to the

incentives facing the advertising platform. In the final section we present concluding remarks.

2 Selection and power

In today’s dollars the average American is exposed to about $500 worth of advertising per year.5

To break even, the universe of advertisers needs to net about $1.35 in marginal profits per person

per day. Given the gross margins of firms that advertise, our educated guess is that this roughly

corresponds to about $4-6 in incremental sales per day.

When an advertiser enters this fray, it must compete for consumers’ attention. The cost per

person of a typical campaign is quite low. Online “display” (banners, rectangular units, etc.)

campaigns that deliver a few ads per day to a targeted individual cost about 1–2 cents per person

per day. Television ads delivered once per person per day are only a bit more expensive. Note

that even an aggressive campaign will typically only garner a small percentage of an individual’s

daily advertising exposure. We see many ads per day and presumably only a minority of them are

relevant enough to a given person to impact his behavior.

The relatively modest average impact per person makes it difficult to assess cost-effectiveness.

What complicates matters further is that individual-level sales are quite volatile for many adver-

tisers. An extreme example is automobiles—the sales impact is either tens of thousands of dollars,

or it is zero.6 While not as extreme, many other heavily advertised categories, including consumer

electronics, clothing and apparel, jewelry, air travel, banking, and financial planning also have

volatile consumption patterns.7 Exceptions to this class are single goods sold through direct con-

version channels. Here we summarize work presented in Lewis and Rao (2013), which used 25 large

advertising field experiments to quantify how individual expenditure volatility impacts the power

of advertising effectiveness (hereafter, adfx ) experiments. In general, the signal-to-noise ratio is

much lower than we typically encounter in economics.

5Mean GDP per American is approximately $50,000 in 2011, but median household income is also approximately
$50,000. The average household size is approximately 2.5, implying an individual’s share of median household income
is roughly $20,000. Thus, while 2% of GDP actually implies a per capita expenditure of $1,000, we use $500 as a
round and conservative figure that is more representative of the average American’s ad exposure.

6The marginal profit impact is large, but clearly smaller, as it is the gross margin times the sales impact.
7For a bank, the consumption pattern once you sign up might be predictable, but the bank is making money from

consumer switching which is “all or nothing.”
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We now introduce some formal notation to clarify the argument. Consider an outcome variable

y (sales), an indicator variable x equal to 1 if the person was exposed to the advertising, and a

regression estimate β̂, which gives the average difference between the exposed (E) and unexposed

(U) groups. In an experiment, exposure is exogenous—determined by a flip of the proverbial coin.

In an observational study, one would also condition on covariates W , which could include individual

fixed effects, and the following notation would use y|W . All the following results go through with

the usual “conditional upon” caveat. We consider a regression of y on x, whose coefficient β̂ will

give us a measure of the average dollar impact of the advertising per consumer.

We use standard notation for the sample means and variances of the sales of the exposed and

unexposed groups, the difference in means between those groups, and the estimated standard error

of that difference in means. We assume for simplicity that the exposed and unexposed samples are

the same size (NE = NU = N) as well as equal variances (σE = σU = σ) to simplify the formulas:

ȳE ≡
1

NE

∑
i∈E

yi, ȳU ≡
1

NU

∑
i∈U

yi (1)

σ̂2
E ≡

1

NE − 1

∑
i∈E

(yi − ȳE)2, σ̂2
U ≡

1

NU − 1

∑
i∈U

(yi − ȳU )2 (2)

∆ȳ ≡ ȳE − ȳU (3)

σ̂∆ȳ ≡

√
σ̂2
E

NE
+
σ̂2
U

NU
=

√
2

N
· σ̂ (4)

We focus on two familiar econometric statistics. The first is the R2 of the regression of y on x,

which gives the fraction of the variance in sales explained by the advertising (or, in the model with

covariates, the partial R2 after first partialling out covariates—for more explanation, see Lovell,

2008):

R2 =

∑
i∈U (ȳU − ȳ)2 +

∑
i∈E (ȳE − ȳ)2∑

i (yi − ȳ)2 =
2N
(

1
2∆ȳ

)2
2Nσ̂2

=
1

4

(
∆ȳ

σ̂

)2

(5)

Second is the t-statistic for testing the hypothesis that the advertising had no impact:

t∆ȳ =
∆ȳ

σ̂∆ȳ
=

√
N

2

(
∆ȳ

σ̂

)
(6)

In both cases, we have related a standard regression statistic to the ratio between the average

impact on sales and the standard deviation of sales between consumers.

In the following hypothetical example, we calibrate values using approximately median values

from 19 retail sales experiments run at Yahoo!. For expositional ease, we will discuss it as if it

is a single experiment. The campaign goal is a 5% increase in sales during the two weeks of the

campaign, which we will use as our “impact period” of interest. During this period, customers of
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this advertiser make purchases with a mean of $7 and a standard deviation of $75.8 The campaign

costs $0.14 per customer, which amounts to delivering 20–100 display ads at a price of $1-$5 CPM,9

and the gross margin (markup over cost of goods sold, as a fraction of price) is assumed to be about

50%.10 A 5% increase in sales equals $0.35 per person, netting profits of $0.175 per person. Hence,

the goal for this campaign is to deliver a 25% return on investment (ROI): $0.175/$0.14 = 1.25.11

The estimation challenge facing the advertiser in this example is to detect a $0.35 difference in

sales between the treatment and control groups amid the noise of a $75 standard deviation in sales.

The ratio is very low: 0.0047. From our derivation above, this implies an R2 of:

R2 =
1

4
·
(

$0.35

$75

)2

= 0.0000054 (7)

That is, even for a successful campaign with a relatively large ROI, we expect an R2 of only

0.0000054. This will require a very large N to identify any influence at all of the advertising,

let alone give a precise confidence interval. Suppose we had 2 million unique users evenly split

between test and control in a fully randomized experiment. With a true ROI of 25% and a ratio of

0.0047 between impact size and standard deviation of sales, the expected t-stat is 3.30, using the

above formula. This corresponds to a test with power of about 95% at the 10% (5% one-sided)

significance level, as the normally distributed t-statistic should be less than the critical value of

1.65 about 5% of the time given the true effect is a 25% ROI. With 200,000 unique customers,

the expected t-statistic is 1.04, indicating the test is hopelessly underpowered to reliably detect an

economically relevant impact: under the alternative hypothesis of a healthy 25% ROI, we fail to

reject the null 74% of the time.12

The low R2 = 0.0000054 for the treatment variable x in our hypothetical randomized trial

has serious implications for observational studies, such as regression with controls, difference-in-

differences, and propensity score matching. A very small amount of endogeneity would severely

bias estimates of advertising effectiveness. An omitted variable, misspecified functional form, or

slight amount of correlation between browsing behavior and sales behavior generating R2 on the

order of 0.0001 is a full order of magnitude larger than the true treatment effect. Compare this to

a classic economic example such as the Mincer wage/schooling regression (Mincer, 1962), in which

the endogeneity is roughly 1/8 the treatment effect (Card, 1999). For observational studies, it is

8Based on data-sharing arrangements between Yahoo! and a number of advertisers spanning the range from
discount to high-end retailers, the standard deviation of sales is typically about 10 times the mean. Customers
purchase goods relatively infrequently, but when they do, the purchases tend to be quite large relative to the mean.

9CPM is the standard for impression-based pricing for online display advertising. It stands for “cost per mille” or
“cost per thousand;” M is the roman numeral for 1,000.

10We base this assumption on our conversations with retailers and our knowledge of the industry.
11For calibration purposes, note that if the gross margin were 40% instead of 50%, this would imply a 0% ROI.
12Note that when a low powered test does, in fact, correctly reject the null, the point estimates conditional on

rejecting will be significantly larger than the alternatively hypothesized ROI. See Carlin and Gelman (2013) regarding
this “exaggeration factor.”
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always important to ask, “What is the partial R2 of the treatment variable?” If it is very small, as

in the case of advertising effectiveness, clean identification becomes paramount, as a small amount

of bias can easily translate into an economically large impact on the coefficient estimates.

Our view has not yet been widely adopted, however, as evidenced by the following quotation

from the president of comScore, a large data-provider for online advertising:

Measuring the online sales impact of an online ad or a paid-search campaign—in which

a company pays to have its link appear at the top of a page of search results—is

straightforward: We determine who has viewed the ad, then compare online purchases

made by those who have and those who have not seen it.

M. Abraham, 2008. Harvard Business Review

The argument we have made shows that simply comparing exposed to unexposed can lead to bias

that is many orders of magnitude larger than the true size of the effect. Indeed, this methodology

led the author to report as much as a 300% improvement in outcomes for the exposed group, which

seems surprisingly high (it would imply, for instance, that advertisers are grossly underadvertising).

Since all ads have some form of targeting,13 endogeneity is always a concern. For example, most

display advertising aims to reach people likely to be interested in the advertised product, where

such interest is inferred using demographics or past online behavior of that consumer. Similarly,

search advertising targets consumers who express interest in a good at a particular point in time,

where the interest is inferred from their search query (and potentially past browsing behavior).

In these cases, comparing exposed to unexposed is precisely the wrong thing to do. By creating

exogenous exposure, the first generation of advertising experiments have been a step in the right

direction. Experiments are ideal—necessary, in fact—for solid identification.

Unfortunately, for many advertised products the volatility of sales means that even experiments

with millions of unique users can still be underpowered to answer basic questions such as “Can we

reject the null hypothesis that the campaign had zero influence on consumer behavior?” Measuring

sales impact, even in the short-run, turns out to be much more difficult than one might have thought.

The ability to randomize ad delivery on an individual level and link it to data on customer-level

purchasing behavior has opened up new doors in measuring advertising effectiveness, but the task

is still by no means easy. In the remainder of the paper we discuss these challenges. The next

section focuses on using the right metrics to evaluate advertising.

13“Untargeted” advertising usually has implicit audience targeting based on where the ads are shown or implicit
complementary targeting due to other advertisers purchasing targeted inventory and leaving the remnant inventory
to be claimed by advertisers purchasing “untargeted” advertising inventory.
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3 The evolution of advertising metrics

The click-through-rate, or CTR, has become ubiquitous in the analysis and decision-making sur-

rounding online advertising. It is easy to understand why: clicks are cleanly defined, easily mea-

surable, and occur relatively frequently. An obvious but intuitively appealing characteristic is that

an ad-click cannot occur in the absence of an ad. If one runs 100,000 ads and gets a 0.2% CTR (a

typical rate for a display ad or a low-ranked search ad), it is tempting to conclude the ad caused

200 new website visits. The assumption may well be true for new or little-known brands. But for

well-known advertisers, there are important ways that consumers might navigate to the site in the

absence of an ad, such as browsing directly to the site by typing the name in the URL window of

the browser or finding it in organic (that is, not paid or “sponsored”) search results on a topic like

“car rental.” It is a mistake to assume that all of those 200 visits would not have occurred in the

absence of the ad—that is, those clicks may be crowding out visits that would have happened via

other means (Kumar and Yildiz, 2011; Chan et al., 2010).

The overcounting problem is surmountable with randomized trials where the control group is

used to estimate the “baseline arrival rate.” For example, a sponsored search ad could be turned

off during random times of the day and the firm could measure arrivals from the search engine for

when the ad is running and when it is not (this approach is used in Blake et al., 2013).14 A deeper

problem with the CTR is what it misses. First, it does little for “brand advertisers”—firms that

are not trying to generate immediate online sales, but rather to promote awareness and good-will

for the brand. To assess their spend, brand advertisers have traditionally relied on surveys that

attempt to measure whether a campaign raised the opinion of the firm in the minds of their target

consumers (Goldfarb and Tucker, 2011b). Linking the surveys to future purchasing behavior adds

another layer of complexity, both because the time frame from exposure to sale is longer (something

we will discuss in more detail in Section 5) and because it requires a reliable link from hypothetical

responses to actual behavior, which can be fraught with what is known as “hypothetical bias”

(Dickie et al., 1987; Murphy et al., 2005). One common approach to neutralize hypothetical bias

is to use the surveys to make relative comparisons between campaigns.

For advertisers that sell goods both online and in brick-and-mortar stores the click (or online

conversions) can be a poor proxy for overall ROI. Lewis and Reiley (2013b) show that for a major

retailer, the majority of the sales impact comes offline. Johnson, Lewis, and Reiley (2013) link the

offline impact to consumers who lived in close physical proximity to one of the retailer’s locations.

These studies indicate purely online measurements can induce a large negative bias in measuring

the returns to advertising. For firms that do business on and offline it is essentialy to develop the

infrastructure to link online ad exposure to offline sales.

An alternative to the click is the further downstream outcome measure known as a “customer

14Despite the simplicity of their design, Blake et al. estimate that their employer, eBay, had been wasting tens of
millions of dollars a year.
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acquisition” (which itself might be considered a short-term proxy for the net-present-discounted

value of a customer). Advertisers can now run “cost per acquisition” (CPA) advertising on many

ad exchanges.15 An acquisition, or conversion, is defined as a successful transaction that has a

“qualifying connection” to the advertisement. On the surface, focusing on conversions seems more

attractive than clicks because it is a step closer to sales. Unfortunately this benefit brings with

it what is known as the “attribution problem:” which ad gets “credit” for a given sale? Suppose

a consumer views and clicks a given ad, but does not purchase on the same day. Over the next

few days, she sees a host of other ads for the product (which is likely, given a practice known as

“re-targeting”) and then purchases the good. Which ad should get credit for the purchase?

Ad exchanges tend to use a set of rules to solve these problems from an accounting perspective.

Common rules include requiring a click for credit or only counting the “last click” (so if a consumer

clicks a re-targeted ad, that ad gets credit). Requiring a click seems to make sense and is enormously

practical as it means a record of all viewers that see the ad but do not click need not be saved.16

However, requiring a click errs in assuming that ads can only have an impact through clicks, which

is empirically not true (Lewis et al., 2012). The “last click” rule also has intuitive appeal. The

reasoning goes as follows: had the last click not occurred, the sale would not have happened. Even

if this were true, which we doubt, the first click or ad view might have led to web search, or other

activity, including the behavioral markers used for re-targeting, which made the last click possible.

The causal attribution problem is typically “solved” by ad-hoc rules set by the ad exchange or

publisher, such as “the first ad and the last ad viewed before purchase each get 40% of the credit,

while the intermediate ad views share the remaining 20% of the credit for the purchase.”17 A

proliferation of such rules gives practitioners lots of choices, but none of them necessarily gives

an unbiased measurement of the performance of their ad spending. In the end, such complicated

payment rules might make the click more attractive after all.

The attribution problem is also present in the question of complementaries between display

and search advertising. Recent work has shown that display ads causally influence search behav-

ior (Lewis and Nguyen, 2013). The authors demonstrate this by comparing the search behavior

of users exposed to the campaign ad to users who would have been served the campaign ad but

were randomly served a placebo. Brand-related keywords were significantly more prevalent in the

treatment group as compared to the control. The attribution problem has received more attention

in online advertising because of the popularity of cost-per-acquisition and cost-per-click payment

mechanisms, but it applies to offline settings as well. How do we know, for example, whether

an online ad was more responsible for an online conversion than was the television ad that same

user saw? Nearly every online campaign occurs contemporaneously with a firm’s offline adverising

15But not the major search engines, as of August 2013.
16A CTR of ≈ 0.2%, meaning, storage and processing costs of only clicks involves only 1

500
of the total ad exposure

logs.
17Source: https://support.google.com/analytics/bin/answer.py?hl=en&answer=1665189
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through media such as billboards and television because large advertisers are continuously advertis-

ing across many media.18 Directly modeling the full matrix of first-order interactions is well beyond

the current state of the art. Indeed in every paper we know of evaluating online advertising, the

interactions with offline spending is ignored.

Our discussion thus far has indicated that the evolution of advertising metrics has brought

forth new challenges linking these metrics to the causal impact on sales. However one way in which

intermediate metrics have proved unambiguously useful for advertisers is providing relatively quick

feedback on targeting strategies allowing for algorithmic adjustments to the ad serving plan. For

instance, while it may be unreasonable to assume that the click captures all relevant effects of the

ad it may very natural to assume that within a given class of advertisements run by a firm a higher

CTR is always preferred to a lower one. If so, bandit algorithms can be applied to improve the

efficiency of advertising spend and give relative comparisons of campaign effectiveness, allowing

on to prioritize better performing advertisements (Pandey and Olston, 2006; Gonen and Pavlov,

2007). We discuss these advances in more detail in Section 7.

4 A case study of a large-scale advertising experiment

To get a better idea of how large advertising experiments are actually run, in this section we present

a case study taken from Lewis and Reiley (2013b) (herein “LR”). LR ran a large-scale experiment

for a major North American retailer. The advance the paper makes is linking existing customers

in the retailer’s sales records, for both online and brick-and-mortar sales, to a unique online user

identifier, in this case the customer’s Yahoo! username.

The experiment was conducted as follows. The match yielded a sample of 1,577,256 individ-

uals who matched on name and either email or postal address. The campaign was targeted only

to existing customers of the retailers as determined by the match. Of these matched users, LR

assigned 81% to a treatment group who subsequently viewed two advertising campaigns promoting

the retailer when logged into Yahoo’s services. The remaining 19% were assigned to the control

group and prevented from seeing any of the retailer’s ads from this campaign on the Yahoo! net-

work of sites. The simple randomization was designed to make the treatment-control assignment

independent of all other relevant variables.

The treatment group of 1.3 million Yahoo! users was exposed to two different advertising

campaigns over the course of two months in fall 2007, separated by approximately one month.

Table 1 gives summary statistics for the campaigns, which delivered 32 million and 10 million

impressions, respectively. The two campaigns exposed ads to a total of 868,000 users in the 1.3-

million-person treatment group. These individuals viewed an average of 48 ad impressions per

person.

18(Lewis and Reiley, 2013a) show that Super Bowl commercials cause viewers to search for brand-related content
across a wide spectrum of advertisers.
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Table 1: Summary Statistics for the Campaigns

Campaign 1 Campaign 2 Both Campaigns

Time Period Covered Early Fall ’07 Late Fall ’07
Length of Campaign 14 days 10 days
Number of Ads Displayed 32,272,816 9,664,332 41,937,148
Number of Users Shown Ads 814,052 721,378 867,839
% Treatment Group Viewing Ads 63.7% 56.5% 67.9%
Mean Ad Views per Viewer 39.6 13.4 48.3

Source: Lewis and Reiley (2013b).

The experiment indicated an increase in sales of nearly 5% relative to the control group during

the campaign, a point estimate which would translate to an extremely profitable campaign (with

the retailer receiving nearly a 100% rate of return on the advertising spending). However, purchases

had sufficiently high variance (due in part to 95% of consumers making zero purchases in a given

week) to render the point estimate not statistically significantly different from zero at the 5% level.

Controlling for available covariates (age, gender, state of residence) did not meaningfully reduce

standard errors. This is good example of how economically important effects of advertising can

be statistically very difficult to detect, even with a million-person sample size. Just as we saw in

Section 2, we see here that the effects of advertising are so diffuse, explaining such a small fraction

of the overall variance in sales, that the statistical power can be quite low. For this experiment,

power calculations show that assuming the alternative hypothesis that the ad broke even is true,

the probability of rejecting the null hypothesis of zero effect of advertising is only 21%.

The second important result of this initial study was a demonstration of the biases inherent in

using cross-sectional econometric techniques when there is endogenous advertising exposure. This

is important because these techniques are often employed by quantitative marketing experts in

industry. Abraham (2008), for example, advocates comparing the purchases of exposed users to

unexposed users, despite the fact that this exposure is endogenously determined by user character-

istics and browsing behavior, which might easily be correlated with shopping behavior. To expose

the biases in these methods, LR temporarily “discarded” their control group and compared the

levels of purchases between exposed and (endogenously) unexposed parts of the treatment group.

The estimated effects of advertising were three times as large as in the experiment, and with the

opposite sign! This erroneous result would also have been deemed highly statistically significant.

The consumers who browsed Yahoo! more intensely during this time period (and hence were more

likely to see ads) tended to buy less, on average, at the retailer, regardless of whether they saw the

ads or not (this makes sense, because as we will see most of the ad effect occurred offline). The

control group’s baseline purchases prior to the ad campaign showed the same pattern. Without

an experiment an analyst would have had no way of realizing the extent of the endogeneity bias

(in this case, four times as large as the true causal effect size) and may have come to a strikingly
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wrong conclusion.

Observing the consistent differences between exposed and unexposed groups over time motivated

LR to employ a difference-in-differences estimator. Assuming that any unobserved heterogeneity

was constant over time allowed LR to take advantage of both exogenous and endogenous sources

of variation in advertising exposure, which turned out to reduce standard errors to the point where

the effects were statistically significant at the 5% level. The point estimate was approximately

the same as (though slightly higher than) the straight experimental estimate, providing a nice

specification check. With this estimator, LR also demonstrated that the effects of the advertising

were persistent for weeks after the end of the campaign, that the effects were significant for in-store

as well as online sales (with 93% of the effect occurring offline), and that the effects were significant

even for those consumers who merely viewed but never clicked the online ads (with an estimated

78% of the effect coming from non-clicking viewers). In a companion paper (Lewis and Reiley,

2012), the authors also showed that the effects were particularly strong for the older consumers

in the sample—sufficiently strong to be statistically significant even with the simple (less efficient)

experimental estimator.

In a follow-up study, Johnson, Lewis, and Reiley (2013, henceforth JLR) improved on some of the

weaknesses of the design of the original LR experiment. First, JLR ran “control ads” (advertising

one of Yahoo’s own services) to the control group, allowing them to record which control-group

members would have been exposed to the ad campaign if they had been in the treatment group. This

allowed them to exclude from their analysis those users (in both treatment and control groups) who

were not exposed to the ads and therefore contributed noise but no signal to the statistics. Second,

JLR convinced the advertiser to run equal-sized treatment and control groups, which improved

statistical power relative to the LR article’s 81:19 split. Third, JLR obtained more detailed data

on purchases: two years of pre-campaign sales data on each individual helped to explain some of the

variance in purchases, and disaggregated daily data during the campaign allowed them to exclude

any purchases that took place before the first ad delivery to a given customer (which therefore

could not have been caused by the ads, so including those purchases merely contributed noise to

the estimates). The more precise estimates in this study corroborate the results of LR, showing

point estimates of a profitable 5% increase in advertising which are statistically significant at the

5% level, though the confidence intervals remain quite wide.

5 Activity bias

In the preceding sections, we have presented this argument on an abstract level, arguing that

the since the partial R2 of advertising, even for a successful campaign, is so low (on the order of

0.00001 or less), the likelihood of omitted factors not accounting for this much variation is unlikely,

especially since ads are targeted across time and people. In this section we show that our argument

is not just theoretical. Here identify a bias that we believe is present in most online ad serving;
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in past work we gave it the name “activity bias” (Lewis et al., 2011). “Activity bias” is a form of

selection bias based on the following two features of online consumer behavior: 1) since one has to be

browsing online to see ads, those browsing more actively on a given day are more likely to see your

ad, and 2) active browsers tend to do more of everything online, including buying goods, clicking

links and signing up for services. any of the selection mechanisms that lead to their exposure to

the advertising are highly correlated with other online activities. Indeed many of the selection

mechanisms that lead to their exposure to the advertisin, such as retargeting19 and behavioral

targeting, are highly correlated with other online activities. Hence, we see that ad exposure is

highly and non-causally correlated with many online activities, making most panel and time-series

methods subject to bias. In a non-experimental study, the unexposed group, as compared to the

group exposed to an ad, typically failed to see the ad for one or both of the following reasons: the

unexposed users browsed less actively or the user did not qualify for the targeting of the campaign.

When the former fails, we have activity bias. When the latter fails, we have classic selection bias.

In our 2011 paper, we explored three empirical examples demonstrating the importance of

activity bias in different types of web browsing. The first application investigates the causal effects

of display ads on users’ search queries. In Figure 5 we plot the time series of the number of searches

by exposed users for a set of keywords deemed to be brand-relevant for a firm. The figure shows

results for a time period that includes a one-day display-advertising campaign for a national brand

on www.yahoo.com.

The campaign excluded a randomized experimental control group, though for the moment we

ignore the control group and focus on the sort of observational data typically available to advertisers

(the treatment group, those that saw the firm’s advertisements). The x-axis displays days relative

to the campaign date, which is labeled as Day 0. One can easily see that on the date of the ad, ad

viewers were much more likely to conduct a brand-relevant search than on days prior or following.

The advertising appears to double baseline search volume. Is this evidence of a wildly successful ad?

Actually, no. Examining the control group, we see almost the same trend. Brand-relevant keyword

searches spike for even those who saw a totally irrelevant ad. What is going on? The control group

is, by design of the experiment just as active online as the treatment group, searching for more of

everything, not just the brand-relevant keywords of interest. The time series also shows that search

volume is positively serially correlated over time and shows striking day of week effects—both could

hinder observational methods. The true treatment-control difference is a statistically significant,

but far more modest, 5.1%. Without an experiment, we would have no way of knowing the baseline

“activity-related increase” which we infer from the control group. Indeed, we might have been

tempted to conclude the ad was wildly successful.

Our second application involves correlation of activity not just across a publisher and search

engine, but across very different domains. We ran a marketing study to evaluate the effectiveness

19For a discussion and empirical analysis of retargeting see Lambrecht and Tucker (2011).

14



Figure 1: Brand keyword search patterns over time. Source: Lewis, Rao and Reiley (2011)

of a video advertisement promoting the Yahoo! network of sites. We recruited subjects on Amazon

Mechanical Turk, showed them the video and gave them a Yahoo! cookie so we could track their

future behavior. Using the cookie we could see if the ad really generated more Yahoo! activity.

The control group saw a political ad totally unrelated to Yahoo! products and services. Again, we

ignore the control group to begin. Figure 5 has the same format as Figure 5 Day 0 on the x-axis

labels the day an individual saw the video ad (with the actual calendar date depending on the day

the subject participated in the study).

Examining the treatment group, we can see that on the day of and the days following ad-

exposure, subjects were much more likely to visit a Yahoo! site as compared to their baseline

propensity, indicating a large apparent lift in engagement. However, data on the control group

reveals the magnitude of activity bias—a very similar spike in activity on Yahoo! occurs on the day

of placebo exposure as well. Both groups also show some evidence of positive serial correlation in

browsing across days: being active today makes it more likely that you will be active tomorrow as

compared to several days from now. People evidently do not engage in the same online activities

(such as visiting Yahoo! and visiting Amazon Mechanical Turk) every day, but they engage in

somewhat bursty activity that is contemporaneously correlated across sites. Online activity leads

to ad exposure, which mechanically tends to occur on the same days as outcome measures we hope

to affect with advertising. In the absence of a control group, we can easily make errors in causal

inference due to activity bias. In this particular case, the true causal effect of the ad was estimated

to be small and not statistically significant—given the cost of running a video ad, it was probably

not worth showing, but the biased estimates would have led us to a wrong conclusion in this regard.

The third application again involves multiple websites. This time the outcome measure was

filling out a new-account sign-up form at an online brokerage advertised on Yahoo! Finance. Again

our results show that even those who were randomly selected to see irrelevant placebo ads were
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Figure 2: The effect on various Yahoo! usage metric of exposure to treatment/control ads. Panels
A-C: Probability of at least 1 visit to the Yahoo! network, Yahoo.com and Mail respectively. Panel
D: Total page views on the Yahoo! network. Source: Lewis, Rao and Reiley (2011)
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much more likely to sign up on the day they saw the (placebo) ad than on some other day. We

refer the reader to our original paper for the details, stating here that the results are very similar

to the ones we have just presented (the now familiar mountain-shaped graphs are again present).

With activity bias it seems that one could erroneously “show” that nearly any browsing behavior

is caused by nearly any other browsing behavior! We hope that our results will cause industry

researchers to be more cautious in their conclusions. Activity bias is a real form of bias that limits

the reliability of observational methods.

In the absence of an experiment, researchers may be able to use some other cross-validation

technique in order to check the robustness of causal effects. For example, one could measure

the “effect” of movie advertisements on searches for the seemingly irrelevant query “car rental.”

Similarly, one could check whether (placebo) ad views of a Toyota ad on the New York Times

website on May 29 “causes” the same effect on Netflix subscriptions that day as did the actual

Netflix ad on the New York Times website on May 30. Differences in differences using such pseudo-

control groups will likely give better estimates of true causal effects than simple time-series or

cross-sectional studies, though of course a randomized experiment is superior if it is available

(Lewis et al., 2011).20

Is activity bias a new phenomenon that is unique to the online domain? While it is not obvious

that offline behavior is as bursty and as contemporaneously correlated as online behavior, before

our study we did not think these patterns were obvious in online behavior either (and scanning

industry white papers, one will see that many others still do not find it obvious!). We believe the

importance of activity bias in the offline domain is an open question. It is not difficult to come

up with examples in which offline advertising exposure could spuriously correlate with dependent

variables of interest. Billboards undoubtedly “cause” car accidents. Ads near hospitals “cause”

illness. Restaurant ads near malls probably “cause” food consumption in general. Exposure to

ads in the supermarket “saver” are likely correlated with consumption of unadvertised products.

And so forth. The superior quality of data (and experiments) available in online advertising has

laid bare the presence of activity bias in this domain. We believe the level of activity bias in other

domains is an interesting, open question.

6 Measuring the long-run returns to advertising

Any study of advertising effectiveness invariably has to specify the window of time to be included

in the study. While effects of advertising could in principle last a long time, in practice one must

pick a cut-off date. From a business perspective, making decisions quickly is an asset worth trading

decision accuracy for at the margin. But can patient scholars (or firms) hope to measure the long-

20In some cases, even such placebo tests may fail as the qualifications for seeing the ad may be intrinsically correlated
with the desired outcome as may be the case for remarketing and other forms of targeting which account for search
activity and browsing behavior.
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run effects of advertising? Here we address the statistical challenges of this question. The answer,

unfortunately, is rather negative. As one moves further and further from the campaign date, the

cumulative magnitude of the sales impact tends to increase. (This is not guaranteed, as ads could

simply shift purchases forward in time, so a short time window could measure a positive effect while

a long time window gives a zero effect. But in practice, we have so far noticed point estimates of

cumulative effects to be increasing in the time window we have studied.) However, the amount of

noise in the estimate tends to increase faster than the increase in the signal (treatment effect) itself

because in the additional data the control and treatment groups look increasingly similar, making

long-run studies less statistically feasible than short-run ones. In the remainder of this section we

formalize and calibrate this argument.

We again employ the treatment vs. control t-statistic indexed by little t for time. For con-

creteness, let time be denominated in weeks. For notational simplicity, we will assume constant

variance in the outcome over time, no covariance in outcomes over time,21 constant variance across

exposed and unexposed groups, and balanced group sizes. We will consider the long-term effects by

examining a cumulative t-statistic (against the null of no effect) for T weeks rather than a separate

statistic for each week. We write the cumulative t-statistic for T weeks as:

t∆ȳT =

√
N

2

(∑T
t=1 ∆ȳt√
T σ̂

)
. (8)

At first glance, this t-statistic appears to be a typical O
(√

T
)

asymptotic rate with the numerator

being a sum over T ad effects and the denominator growing at a
√
T rate. This is where economics

comes to bear. Since ∆ȳt represents the impact of a given advertising campaign during and following

the campaign (since t = 1 indexes the first week of the campaign), ∆ȳt ≥ 0. But the effect of the

ad each week cannot be a constant–if it were, the effect of the campaign would be infinite. Thus,

it is generally modeled to be decreasing over time.

With a decreasing ad effect, we should still be able to use all of the extra data we gather

following the campaign to obtain more statistically significant effects, right? Wrong. Consider the

condition necessary for an additional week to increase the t-statistic:

t∆ȳT < t∆ȳT+1∑T
t=1 ∆ȳt√
T

<

∑T+1
t=1 ∆ȳt√
T + 1

21This assumption is clearly false: individual heterogeneity and habitual purchase behavior result in serial corre-
lation in purchasing behavior. However, as we are considering the analysis over time, if we assume a panel structure
with fixed effect or other residual-variance absorbing techniques to account for the source of this heterogeneity, this
assumption should not be a first-order concern.
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Some additional algebra leads us to

1 +
1

T
<

(
1 +

∆ȳT+1∑T
t=1 ∆ȳt

)2

which approximately implies

1

2
· 1

T

T∑
t=1

∆ȳt < ∆ȳT+1. (9)

This last expression says, “If the next week’s expected effect is less than one-half the average effect

over all previous weeks, then adding it in will only reduce precision.” Thus, the marginal week

can easily cloud the previous weeks, as its signal-to-noise ratio is not sufficiently large enough to

warrant its inclusion.22 If the expected impact of the campaign following exposure decays rapidly

(although not necessarily all the way to zero), it is likely that including additional weeks beyond

the campaign weeks will decrease the statistical precision.

Suppose that you were just content with the lower bound of the confidence interval increasing

in expectation. A similar calculation, under similar assumptions, shows that the lower bound of a

95% confidence interval will increase if and only if

1.96
(√

T + 1−
√
T
)
<

∆ȳT+1

σ̂/
√
N

(10)

where the right-hand expression is the marginal expected t-statistic of the T + 1th week.

We can summarize these insights by returning to our formula for the t-statistic:

t∆ȳT =

√
N

2

(∑T
t=1 ∆ȳt√
T σ̂

)
.

Since the denominator is growing at O
(√

T
)

, in order for the t-statistic to grow, the numerator

must grow at a faster rate. In the limit we know this cannot be as the the total impact of the

advertising would diverge faster than even the harmonic series.23

Now ex-ante it is hard to know when the trade-off turns against you. The effect may decay

slower than the harmonic series initially and then move towards zero quite quickly. Of course if

we knew the pattern of decay, we would have answered the question the whole exercise is asking!

So in the end the practitioner must make a judgment call. While choosing longer time frames for

22Note that this expression is completely general for independent random draws under any marginal indexing
or ordering. In the identically distributed case, though, the expected mean for the marginal draw is equal to all
inframarginal draws, so the inequality always holds.

23We note that an asset with infinite (nominal) returns is not implausible per se (a consol does this), but we do find
infinite effects of advertising implausible. The harmonic series is

∑
1
t

whereas the requisite series for an increasing
t-statistic would be ≈

∑
1√
t

which diverges much more quickly.
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advertising effectiveness analyses should capture more of the cumulative effect (assuming that it is

generally positive), including additional weeks may just cloud the picture by adding more noise than

ad impact. Measuring the effects of advertising inherently involves this sort of “judgment call”—an

unsatisfying step in the estimation process for any empirical scientist. But the step is necessary

since, as we have shown, estimating the long-run effect of advertising is a losing proposition—the

noise eventually overwhelms the signal. The question is “when,” and right now our judgment call

is to use 1–4 weeks, but this is far from the final word.

7 Advances in computational advertising

In traditional media, targeting is typically a human-controlled process of determining the demo-

graphic groups most likely to consume the product. Readers may be familiar with Nielsen ratings

for television, which break down to viewership by demographic categories. Campaigns often have

“reach goals” for specific demographics a firm is interested in advertising to and marketing repre-

sentatives use a portfolio of media outlets to meet these goals.

Online advertising opens up the possibilities for automated approaches to targeting because

online ad delivery systems both gather information about specific users and make real-time ad-

serving decisions. “Computational advertising” is described by one of the founders of the field,

Andrei Broder, as “a principled way to find the best match between a given user in a given context

and a suitable advertisement” (Broder, 2008). In traditional media, you have to specify who you

want to advertise to. With computational advertising, you instead specify outcome metrics—an

end-goal supported by the system—the system’s algorithms determine how to achieve that goal

most efficiently. The end goal could be online sign-ups, clicks to a sales page, and so on. The

end goals a system can support is limited by the bidding rules and data feedback supported by

the advertising exchange. Some supported goals, such as conversions, might exhibit slow learning

because the success rate is so low (1 in 300,000 would not be uncommon for account sign-ups, for

instance).

While the details of these systems are well beyond the scope of this paper, we’ll give the flavor

of how they work. Which display ad to show can be modeled as a multi-armed bandit problem.

The possible ads are the “arms” and a user-ad pair is a “pull of the arm.” Papers in this literature

adapt classic machine learning tools to the ad-serving context (see for instance Pandey et al.,

2007). A complimentary approach (which borrows from search advertising technology) is to view

the advertisement as a document that must be retrieved and matched to the content page the ad

is served on (which can be thought of as the query in search terminology) (Rusmevichientong and

Williamson, 2006; Cary et al., 2007).

We view (the current incarnation of) computational advertising primarily as automated tar-

geting and local bid adjustment (to equalize CTR across campaigns, for instance). It helps locally

optimize ad spend by minimizing costs for given a campaign goal. By using an end goal, such as
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clicks or sign-ups, combined with a budget, these systems reduce the need to set targeting dimen-

sions (reduces not eliminates because one might still set priors for the learning system, which might

matter a lot in slow-to-learn tasks) and funnels spend to better performing inventory. Focusing

on end goals also helps shift the conversation from “who should get ads” to “what do we want

to get from our ad spending.” Practitioners should be cautious, however, that the system does

not conflate “the audience most likely to convert” to the “audience that delivers the most addi-

tional conversions.” To see the difference, imagine a customer that would buy anyway, but finds it

convenient to click on an ad if he sees one. Paying for this conversion is a total waste of money.

In our experience, some automated systems fail to draw this distinction and in doing so, “order

anticipate” by advertising to people likely to make a future purchase anyway. A natural solution

is to integrate computational advertising with experimental platforms to provide randomization in

order to measure incremental conversions. The technical infrastructure to make this possible would

require advertiser’s to express a demand for reliable information.

Computational advertising is promising advance advertising science. It can improve efficiency

in the market by providing a better match of advertisements to consumers, thereby creating value,

but current systems do not solve all the challenges we have laid out thus far, such as how much of an

given action should be attributed to a given ad. For instance, suppose an online brokerage calculates

that it nets $100 in profit from every account sign-up. Should it specify $100 as a maximum bid

an automated system and then “set it and forget it?” Well presumably the brokerage is advertising

heavily on TV and other media, including other online media that was not the “last click.” Bidding

$100 effectively says all this other spending gets zero credit — the firm would over-advertise using

this rule. Of course this is just the “attribution problem” reframed from the advertiser’s perspective.

It is thus our opinion that many of the difficulties we have discussed about globally optimizing

ad spending apply to the current incarnation of computational advertising as well. Perhaps the

next revolution in advertising science will be in core algorithms to conduct automated experiments

to measure incremental conversions and self-govern bids based on the experimental feedback. To

our knowledge, there are no major technical barriers to this sort of pervasive experimentation and it

has been applied fruitfully to infer causality in other online settings (Li et al., 2010). The challenge

is that unlike ranking in search or recommendation of a news story, the response rate on a profitable

ad is very low, on the order of 1/100 – 1/1000 for clicks on a display ad and an order of magnitude

smaller for purchases, meaning feedback typically has low informational content. A second challenge

is that the advertising exchange would have to facilitate the use of this technology by providing

data on auctions the advertiser did not win (due to randomly entering a bid of 0 to experiment,

for instance), which interacts with privacy concerns and platform incentives in interesting ways.

Current practice does not provide this level of feedback and we discuss workarounds firms currently

use further on.
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8 Moving forward

Digital measurement has opened up many doors in measuring advertising effectiveness, but many

challenges persist. In this section we look toward the future and discuss how we think many of the

existing challenges will be overcome. Overall we expect the advances to mainly come from better

experimentation infrastructure to generate high-quality data at scale.

Experimental infrastructure has the potential to drastically reduce the cost of experimentation.

The first generation of field experiments we ran at Yahoo! randomly selected a relatively small

sample of users targeted by the campaign to see an unrelated advertisement. The problem was

that an unrelated ad had to be entered into the booking system and run for the users that were

randomized into the control group. The booking system was set up so that a firm could run

multiple “creatives” (different versions of the ad) and the firm for whom we ran the experiment

did not want to let another retailer get the traffic, because the competitor would benefit from the

targeting dimensions set up by the retailer (including, for instance, past purchasing behavior).24

The solution was to use charity ads for the control group. But this meant that either the advertiser

had to pay for the control ads or Yahoo! had to donate them—both options came at a cost that

increased linearly in the size of the control group, meaning that first generation experiments had

relatively small control groups.

A small control group not only hurts power but also makes experimentation less useful as an

evaluative tool. An experiment with 90% of subjects in the treatment group and 10% in the control

has the same power as one with 10% in the treatment and 90% control. If control ads are free, then

the an advertiser could run 9 of the latter for the cost of 1 of the former.25 For control ads to be

free, the ad server needs to be able to serve the “next ad in line” every time a user is randomized

into the control group. Technologically this requires a short serving latency between the request

to the ad server, the randomization, and the request for the replacement ad. The replacement ads

are known as “ghost ads”—ads that naturally qualified to be served to a given user targeted by

the campaign under study but not associated with the advertiser. Ghost ads make exploration and

evaluation cheaper. Small treatment groups limit cost and allow advertisers to hone copy early in

a campaign, while free control subjects help evaluate the campaign ex-post.

Major online publishers are developing similar experimentation platforms. As experiments be-

come cheaper and easier to run, advertisers will be able to form more precise beliefs on effectiveness

than has heretofore been possible and further integrate experimentation into computational adver-

tising platforms. These systems could incorporate an informative prior, which would help combat

24The treatment/control comparison would also provide the answer to a different question of advertising effective-
ness.

25Note that the statistical gains from such a change in experimental design are 3-fold. Further altering the design,
assuming constant returns to scale from advertising (Lewis, 2010; Johnson et al., 2012), by concentrating the 90%
treatment group’s ad impressions all within a smaller 10% treatment group expects an impact that is 9 times as
large, resulting in the equivalent ad effectiveness insights from running 81 of the 90%/10% experiments, producing
confidence intervals of the ROI that are 9 times more precise at no additional advertising cost.
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the power concerns we detailed earlier.

Another experimentation technology that improves power is the pre-experiment matching of

users. To see how this works, consider an experiment with subjects spread across treatment and

control 50-50. A standard experiment would simply flip a coin each time a user arrived at the website

and show the ad corresponding to the outcome of the flip. Matching works as follows. Specify a set

of attributes you care about such as recent sales levels and linear time trend. Form pairs of users

by minimizing some objective function that defines the distance between two nodes in the graph

of users. Then for each pair, flip a coin to determine experimental grouping. By construction the

specified metrics should be almost exactly equal between the two groups. For evaluating a noisy

variable such as sales, guaranteeing the pre-period sales were the same can be useful. The treatment

assignment is still totally exogenous, so all our normal intuition on how experiments identify causal

effects goes through. Recent work has demonstrated that these techniques can double the power

of experiments in many relevant settings (Deng et al., 2013).

These experimentation technologies create great potential for the next generation of compu-

tational advertising algorithms that we discussed in the last section. Automated experimentation

would not be possible without the ability to deliver “non-ads” for free, record the interaction and

provide this feedback to non-winning bidders. Of course major publishers and exchanges will have

to facilitate this capability, currently an advertiser bidding on an exchange only gets data on the im-

pression (and what happens to the user) only when it wins the auction. Temporally (or geographic)

based experiments offer something of a workaround, but can severely damage power (Blake et al.,

2013). As to whether this capability becomes standard practice for ad exchanges will presumably

depend on advertiser demand, market power by major ad exchanges and privacy legislation.

The future is also looking up for evaluating television advertising and associated “cross media”

interaction effects (Joo et al., 2013). More people are viewing TV through devices like the Xbox

and through services like Google TV, both of which link users to ads in systems similar to major

web publishers. Furthermore, these users often have identifiers that can link television, sponsored

search, and display ads for a single individual. Never before in the history of advertising has

this been possible. The ability to measure cross-channel effects with the reliability of randomized

experiments opens the door to many new questions for academics and many new strategies for

advertisers. As more forms of advertising become measurable on an individual level, our ability to

provide reliable estimates of advertising effectiveness will expand as well. The advances so far have

already set a new state-of-the-art in measurement, and we expect the trend to continue.

9 Concluding remarks

The science of measuring advertising effectiveness has evolved considerably due to new digital data

sources and experimentation platforms. We view experimentation on the individual level with

the ad delivery linked to purchasing behavior as a true game-changer offered by digital media as
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compared to traditional counterparts. Whether in search or display, new advertisers can gather

feedback that is immune from the biases that plague observational methods. Another important

advance is computational advertising. Computational advertising helps solve the targeting problem

and usefully shifts the conversation from “who to hit” to “what do I get.” Yet neither of these

advances have yet to solve all the measurement problems in advertising science. Experiments are

noisy and computational advertising still relies on humans to enter the key parameters, such as

valuations of clicks or conversions, that govern spend. The future holds promise, but depends on

economic incentives that at this point hard to predict.

Moving forward, experimentation and data collection technology is evolving alongside new forms

of ad-serving and computational advertising systems. Questions such as the cross-derivative of

certain media on the effectiveness of other media will be in play in the coming years. Measuring the

effectiveness of media, such as television, that were previously not technologically feasible, because

randomizing delivery was not possible at scale, will also greatly expand knowledge on advertising

effectiveness. This will in turn allow firms to more accurately guide their advertising expenditure.

Our view, however, is that challenges such as the measuring long-run effects of advertising and the

impact of “brand advertising” appear to be out of reach for at least the next 5–10 years, if not

longer. We await new developments in advertising science at the digital frontier to facilitate the

answers to these and new questions.
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