This PDF is a selection from a published volume from the National Bureau of Economic Research
Volume Title: Risk Elements in Consumer Instalment Financing, Technical Edition

Volume Author/Editor: David Durand

Volume Publisher: NBER

Volume ISBN:

Volume URL: http://www.nber.org/books/durad1-1

Publication Date: 1941

Chapter Title: Appendix C: Tests of Significance and Sampling Errors
Chapter Authors: David Durand
Chapter URL: http://www.nber.org/chapters/c12957

Chapter pages in book: (145 - 158)



Appendix C

Tests of Significance and Sampling
Errors

In TH1s study, problems of sampling error may arise in at least
three different connections: two samples drawn from the same
population may erroneously appear to be different (an error of
Type I); two samples drawn from different populations may
erroneously appear to be identical (an error of Type II); and
finally the sample estimates of some of the special measures
introduced here, such as the efficiency index and the bad-loan
relative, may deviate considerably from the true values. In
Chapter 2 the Chi-square test and the t-test were mentioned in
connection with the first of these sampling problems. These
tests, which are adequately described in standard treatises,’
need little further discussion. It is only necessary to point out
that special procedures for calculating Chi-square may be ap-
propriate when frequency distributions are presented in per-
centages, as they are in this study. (See pages 157-58.)

Both the Chi-square test and the t-test, if used as previously
suggested, have the great disadvantage of testing the significance
of only one variate at a time. This is unsatisfactory for two
reasons. First, two samples may not differ significantly in re-
spect to any one of p variates, and yet the combined difference
for all p variates may be highly significant. Second, a significant
difference may appear in one or two isolated variates when the
combined difference for all p variates is not significant; for if
100 tests of significance were applied to 100 independent fac-
tors, five of these tests could exceed the 5 percent significance
1 See footnotes 2 and 3, Chapter 2.
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146 RISK IN INSTALMENT FINANCING

level, and one of them could exceed the one percent level, with-
out discrediting the null hypothesis;? hence the singling out of
the particular variates that happened to meet the specifications
would be entirely erroneous. In a case entailing several factors,
the ideal procedure is simultancously to test the significance of
all the factors under consideration; and the findings of the in-
dividual tests should then be reviewed in the light of the findings
of the combined test.

A simultaneous test of significance can be accomplished in
two ways. In the first place, an n-way cross classification may
be made—if there are n factors—and the Chi-square test can be
used to test the difference between the two n-way distributions
Just as it would be used to test the difference between two one-
way distributions. This process requires considerable labor and
rather large samples if the number of factors considered is more
than four? An alternative approach is the generalized t-test,
which simultaneously tests the differences between a number of
means. This test, which has been discussed by several writers,
is extremely pertinent to some of the sampling problems en-
countered in this study.

The T*-statistic, introduced by Hotelling,* is appropriate for
determining whether an apparent difference between two sam-
ples is attributable to sampling error only (an error of Type I).
T? is defined by

(m+ @' 4 1)
n+n' 42

where x; is the mean value of the i-th variate for one sample

T2 = 22A4(x: — x'3) (x; — X))

>

? Here the null hypothesis is that both samples are drawn from the same popu-
lation.

* If only two classification cells are used for each factor—with and without bank
account, and more or less than six years of employment tenure, for example—
the number of classification cells for n factors is 2n. Thus five factors would
entail 32 cells; and if the number of good plus bad-loan cases in each cell is to
be at least 20, a sample of 320 good loans and 320 bad is the minimum, and
probably a much larger sample will be required.

4 Harold Hotelling, “The Generalization of ‘Student’s’ Ratio,” Annals of Mathe-
matical Statistics, vol. 2, no. 3 (1931) pp. 360-78.
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and x'; is the mean value for the other. Moreover, the matrix
Aj; is the inverse of the matrix of the covariances; i.e.,

sii
Aij =‘I’S°;J3

where |s;;] is the determinant of the s;;’s and sii is the cofactor

of s;; in that determinant. For two samples s;; 1s defined by

IS0 — %) (s — 5) + S — ) (<5 = ¥,

Si= no 2

where n is the number of degrees of freedom in one sample and
n' is the number in the other. On the assumption that the two
samples to be tested are drawn from the same multivariate nor-
mal population, T has the distribution

Jfn-+n'+1
A\ 3 Tr-1dT

X ;
P\p(otn'+1-p Y I Nndo 41
F(E)r(%——rm nte ) ! +n +n’ 2

This is obviously equal to “Student’s” ratio, t, for p equal to
one. For large values of n or n’ d(f) approaches

d(f) = (€]

which indicates that T is normally distributed for p equal to

one if both positive and negative values of T are considered,

and that T* has the Chi-square distribution for all values of p.

For small values of n and n’, the significance of T? can be de-

termined from the z-distribution by means of the transformation

n+n'+1-p

SRS Ty @)

where there are n; =p and i, =n+n'+ 1 — p degrees of
freedom.

The amount of clerical labor necessary to compute T in-

creases rapidly as the number of variates considered increases.
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This difficulty is not serious if the data can be punched on
cards, so that the sums of squares and products can be com-
puted l?y automatic multiplying punches, and if the necessary
determinants can be solved mechanically; otherwise, it is seri-
ous. In this study we have frequently been able to economize
la’t')or by determining T for a small number of variates and by
using this value as a test of significance for a larger number.
'I.'he reason is that the samples used here are large enough to
give very significant results for some of the individual factors.
'I:he generalized t-test is not needed to establish combined sig-
nificance when individual significance is lacking; it is only
necessary to confirm individual significance. Since the value of
T for p variates cannot be less than the value of T for any p-h
of the same variates,’ a large value of T (or t) for a single variate
may suffice to establish significance for all p variates; this value
of t can be used in (2) in place of the true value of T, and if
the resulting value of z is significant, the true value of z must
also be significant. To establish significance in this way, the
value of t would have to be distinctly higher than the \;alue
necessary to establish significance for one variate. If a single

5 s

"I’o prove thlS,. it is only necessary to show that Ty>Tp_n, where T, is deter-
mined for p variates and Ty, is determined for p — h of the original p variates.
In Appendix A we mentioned (see footnote 3) that

T+ 2 Zlia;
T,,‘/ n-n’ 4+ - A = U s s
@+DE"+1) — /S3lisy, po Gi=to..p),
where the fact thatl; = 3 —Sl—) i, j
a.x ;a’Jsu[ Gi=1....p),
makes Uy the maximum of all ratios having the form (sce page 111)
El’iag ..
NG Gy Gi=1t....p).
Up-n can be written in the same form, i.c.,
21
Upop = —or 31 =1 —_
N e arn Gj=1....p)
where 17, = Za; ~S~1 i,j=
'a,fsijl fori,j=1....p-h
and 17, =0 fori,j=p—-h+1....p.

Therefore Up>Up_y, and Ty > T

p—h-
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variate does not yield a sufficient value of t, a combination of
two or three of the most likely variates may give a generalized
T large enough for all other variates.

The generalized t-test was used in practice to establish sig-
nificance for the four factors singled out for special analysis in
connection with the used-car sample—down payment, cash
purchase price, borrower’s income, and length of contract. The
value of T? obtained was 86.76. This is more than large enough
to establish significance for the four factors in question; the
value of z was 1.54 against the 1 percent value of less than .65.
In fact, 86.76 for T2 is large enough to establish significance for
many more than four factors. The corresponding value of z for
24 factors (n; = p = 24), which is the largest finite number
tabulated for n; by R. A. Fisher,’ is .63; it is more than sig-
nificant by the 1 percent criterion.

A similar determination of T? can be made for the seven
factors included in thesecond credit-rating formula. Thisformula
was originally determined from a subsample of 191 good loans
and 190 bad loans; and the first problem is to establish sig-
nificance within the subsample. The value of t in the subsample
for stability of occupation is 5.29, which is more than sufficient
to establish significance for one degree of freedom. Since t* (27.9)
is necessarily less than T?, and since the corresponding value of
z (.682) is significant for seven factors (n; = p = 7), it follows
that the seven factors are conjointly significant for the original
subsample. Furthermore, after the formula had been deter-
mined for the subsample, it was tested on the entire commercial
bank sample; then it was tested, with slight modifications, on
the industrial bank sample. In both cases, an extremely sig-
nificant difference between good and bad loans can be shown
by means of the Chi-square test.

The sampling distribution of T in (1) is based on the assump-
tion that the population value, 7, is 0. This distribution is ap-
propriate only to determine the probability that two samples

¢ Statistical Methods for Research Workers (london and Edinburgh, 6th edition,
1936) Table VI.
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showing an apparent discrepancy could have been drawn from
a single universe (an error of Type I). Sometimes, however, it
is desirable to determine the probability that no significant dis-
crepancy will be observed between two samples drawn from
different universes (an error of Type II). For this purpose the
distribution of T must be determined on the assumption that
7is not 0. This problem has been investigated by Bose and Roy,
Hsu, and Tang.” Tang has prepared tables of the distribution
to permit the calculation of the probability of a Type II error.
When a discriminant function,

Z=11X1+12X2+. . ey

is determined for several factors, the I-cocflicients are naturally
subject to sampling error. The problem of finding their sam-
pling distribution, however, can be reduced to a more funda-
mental one—that of finding the sampling distribution of the
ratio U. The l-coefficients are not unique. Although a unique
set of constants will be determined from the solution of equa-
tion (1) (see Appendix A, p. 111), any other set of constants
proportional to them will produce an equally effective dis-
criminant function with the same value of U; that is, the I’s
will be uniquely determined only after one of them has been
arbitrarily chosen. As a result it is meaningless to speak of the
sampling error of one single 1-coefficient, for an error in one
cocfficient implies an error in all the others. For most purposes
a set of I's will be erroneous only if they jointly produce an
unsatisfactory estimate of U; if U can be determined precisely,
possible variations in the I’s can usually be overlooked.

‘The sampling distribution of U follows directly from the dis-
"R. C. Bose and S. N. Roy, “The Distribution of the Studentised D2-Statistic,”
Sankhya, vol. 4, no. 1 (Dec. 1938) pp. 19-38; S. N. Roy, “A Note on the Distribu-
tion of the Studentised D?-Statistic,” Sankhya, vol. 4, no. 3 (Scpt. 1939) Pp-
373-80; P. L. Hsu, “Notes on Hotelling’s Generalized T, Annals of Mathematical
Statistics, vol. 9, no. 4 (Dec. 1938) pp. 231-43; P. C. Tang, “The Power Func-
tion of the Analysis of Variance Tests with Tables and [llustrations of their

Use,” Statistical Research Memoirs, vol. 2 (1938) pp. 12649,
8 Occasionally the problem will arise of determining how much the I’s can
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tribution of Hotelling’s generalized T or from the distribution
of the D?statistic of Bose and Roy. These distributions are ad-
mirably adapted to determining the probability of a Type I or
a Type II error in a small sample, but sometimes another sam-
pling problem presents itself. In a large sample, the value of U
may be so large and its standard error may be so small that an
error of either Type I or Type II is unthinkable. Here we are
not interested in determining whether U departs significantly
from 0; we want to know how reliable U is as an estimate of
the population value 7. If, for example, T is equal to one, is'a
value of U less than .9 or greater than 1.1 likely to occur? For
problems like this the limiting value of the distribution of U
will usually be a satisfactory approximation.

In the one-variate case, two populations have a standard
deviation of ¢ and a mean difference of «. Two samples drawn
from these populations will have a standard deviation of s and
a mean difference of a. We require the limiting distribution of
a/s for large samples. The difference a is normally distributed
with variance ¢* (n + n’)/nn’ where n is the number of cases
in one sample and n’ is the number in the other. The standard
deviation s has the Chi distribution with n + n’ — 2 degrees of
freedom, but for large values of cither n or n’ the distribution
approaches normal, with variance of ¢2/2(n + n’). The problem
therefore reduces to the distribution of the quotient of two nor-
mal independent variates.

Geary has shown that if x and y are uncorrelated normal
variates with 0 means, and if z is defined by

_ Y4y
25X T x
where Y and X are constants, and X > 3¢, —
Xz—Y

then t = T
Vol + o2

vary without unduly affecting U. We illustrated this sort of problem in Appen-
dix A, where we investigated the effect of the arbitrary assumption that all
correlation coefficients are 0.
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will be approximately normally distributed with unit variance.?
It can be shown that as o and ¢, both approach 0,

Xz - Y/X)

Ve F <
also approaches normal with unit variance.*” From this it fol-

lows that the limiting distribution of a/s is normal with a
variance of

n+n o 1 n-+n’ o nn’
o’ T 9+ n"y T nn (1 T 2(n+ n’)z)’
2
where %2 can be replaced by v% This result, moreover, can be

gencralized to any finite number of variates: in the limit the
distribution of U is normal with variance of

n+n’ . 1 _n—{—n’( , oo’ 1
o T T 2m+n') " non’ L+1 2(n+ n')?

¢ R. C. Geary, “The Frequency Distribution of the Quotient of Two Normal
Variates,” Fournal of the Royal Statistical Societp, vol. XCIII, part III (1930)
pp. 442~46. The notation used here is not Geary’s.

10 T'o prove this, we have only to prove that

Y2
oLt o

approaches 1 as ox and ¢y approach 0. Squaring, we get

Y? 2 2 Y2 2
ox2z? + a'y2 - 1- }“ZE—Z)O';: _ X—é—z
V2 Vi T T 2
i T o bl it on
. Y? Y2 ox?
which clearly approaches 1 because S z*> approaches 0, and < +

X2 T o
does not.
Ulet U=T+ U sij = a5; + 8i;5, and a; = a; + a;, where the Greek letters
represent population parameters, and the German letters represent random
variations about them; as the size of sample increases, the random variations
grow smaller and eventually approach zero. By definition

U= (T4 1) = ZZ(ar; + a;)(er; + a;) cofactor (oi; + 81;)
[(oi; + 833)] )

Since U remains invariant for all non-singular linear transformations, we can
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A single example will serve to illustrate the size of the errors
to be expected in our good- and bad-loan samples. In a sample
of about 825 good and 825 bad loans, the approximate standard

error of U is .049v/1 + 12/8. For a value of .5 for T, the standar'd
error is .050, which suggests that there is about one chance in
twenty that U will lie outside the range of .4 to .6.

STANDARD ERROR OF THE EFFICIENCY INDEX

Since the efficiency index is related to T by the relation
T/r 2
Index = / e 2dt

-1 /2

assume without loss of generality that ¢;; = 0 whenever i.¢ j- Wc wish to
reduce this to a linear function in the a;’s and 8;’s, wl’}lch is Hossxble bc?ausc
second order terms in a;; and 8;; can be neglected as infinitesimals of higher
order. We may therefore write:
(a; + a;)(a; + a;) cofactor (o1; -+ 8i3) i 5 i]

[(o35 + 8:i3)]

(os + as)(e; + a)833(om F 81) (oo 4 8m) - . . (opp + 8pp)

(o15 + 8is)(o3s + 853)

(o + 3u) (o2 + 82) + - « - (opp -+ $pp)
= %1;:_2?%; = (v + u)(v; + ui)riz
where u; = vi 1 = \/%: and xiy = Vo + @s:;(vss -+ 555); more
.y . . D2
over, (ai—*‘ai);(ic:faitzl;ig?”‘+§“) = (::i—:_(;'i)i = (v + ud™

Therefore, (T + )% = TE(vi + w)(v; + uri;, where ri; = 1. ‘Omitting all
second-order terms in u; and r;; gives T2 + 2UT = TZvuri; + 2Zuilty,
Suiti + $ZTviviri
1 J

whence 1 = —_—

since 12 = Zv;k o o
This last is a linear function in #; and ry;; it is therefore normally distributed

in the limit.

u;? . 1 . .
Since Oy = Eg:n—?j m and since Oorj; = e the variance of U is
equal to , \ .
1 ntn o, Ui ST yly ]
T E( PO +2(n+n’)) +s¢sv‘ atn
1 n + n, .2 __..l_.-._—- ., 2,2
=7f2 ——IFEU, +2(n+n’) Tvilvg
n-+n’ e _n+ n’ 14 Tnn’ )
= Ton’ + 2 +n’) oo’ 2(n +n')?
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for a normal population, sampling errors of the efficiency index
can be estimated from the standard error of U. In the above
example, a value of .5 for T corresponds to an efficiency index
of about 20, and the sampling range of .4 to .6 for U corre-
sponds to a range of approximately 16 to 24 for the efficiency
index.

An alternative approach to the standard error of the efficiency
index is worth pointing out. Consider the 2x2 contingency table

Class A Class B
Good loans B 100 — B
Bad loans B 100 — g

where B represents the population probability in percentage
form that a good loan will belong to Class A, etc. The effi-
ciency index is equal to the absolute value of f—p’. Since the
standard error of b, the sampling estimate of 8 in a sample of

. 8(100 — g)
N cases, is /‘/ §~(~—N~—~@, and since the standard error of b’ is

/‘/ B N B )‘, the standard error of the difference is

/‘/5(100 — B) + B8’(100 — )
N N’
This formula, derived for a 2x2 table, can also be used for a
2xp table, for a 2xp table can be reduced to a 2x2 table by
the simple expedient of consolidating all better-than-average
classes into one class, and all worse-than-average classes into
another. When the formula is used, the sample estimates must
be used in place of the population parameters. This'is particu-
larly unfortunate when a 2xp table is to be consolidated, for
some better-than-average classes may be erroneously classed as

worse than average, and vice versa.

STANDARD ERROR OF THE BAD-LOAN RELATIVE

The bad-loan relative, the ratio of the percent of bad loans in a
particular class to the percent of good loans in that class, has
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been used as a means of comparing the risk merits of any class
with those of any other class or with the average. This relative
is, of course, subject to sampling error, and comparisons should
be modified accordingly. An approximate expression for the
standard error of this ratio is derived here.

Let a be the probability that a loan drawn at random from
the good-loan population will belong to class A; let o be the
probability that a loan drawn from the bad-loan population

’
will belong to class A; then % is the true bad-loan relative for

14 14
a . @ .
class A. Let a, a’, and Y be the estimates of a, o, and = derived

from samples of n good loans and n’ bad ones. If n and n’ are
large, a and a’ are both normally and independently distributed
with variance

o (1 - o)

and 7
n

ol — @)
n
From the previous discussion of the sampling error of a quotient,
it will be seen that the limiting distribution of a’/a is normal
with variance of

2 2.72

022 + Uaoj: , which equals
1 [ad/ (1 —a') a1~ a)]
o8 [ n’ T n (3)

The square root of (3) is the approximate expression for the
standard error of the bad-loan relative. :
To give some idea of the amount of error to be expected, the

- standard errors shown in Table C-1 were computed for six-

teen assumed class intervals and two assumed sample sizes.
In samples of this size the distribution of a’/a is not normal,
but distinctly skewed. These standard errors are computed for
a sufficient range of values to indicate fairly well the amount of
error possible in the bad-loan relatives computed from the avail-
able samples. The standard errors quoted are probably not
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TABLE C-1
STANDARD ERRORS FOR ASSUMED SET oF CASES

04 /a
a o o’
(percent) (percent) « 1,000 cases in 500 cases in
cach sample cach sample
5 5 1.0 .195 276
10 10 1.0 .134 .190
20 20 1.0 .089 .127
40 40 1.0 .055 .078
3 6 2.0 .438 .620
5 10 2.0 .334 .473
10 20 2.0 .228 .322
20 40 2.0 .148 .210
5 15 3.0 471 .667
5 20 4.0 .606 .858
15 5 .33 .052 .074
20 5 .25 .038 .054
6 3 .50 110 .155
10 5 .50 .084 .118
20 10 .50 .057 .081
40 20 .50 .037 .052

adequate to represent a satisfactory margin of error; twice the
above standard errors is probably a better estimate, and even
then about 5 percent of the sample estimates can be expected
to differ from the true value by more than this margin. Since
roughly 300 bad-loan relatives are quoted in the tables accom-
panying this report, some 15 of them are probably erroneous
by more than two standard errors.

This discussion of error throws more light on the limitations
of small samples in risk analysis. The samples used here are
large enough—in many cases much larger than necessary—to
demonstrate bona fide relations between bad-loan experience
and certain credit factors; stability of employment is a prime
example. Although the available samples are adequate to show
that persons who have been engaged in the same employment
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for 10 years or more are better-than-average risks, and much
better than those employed for less than two years, they are
not adequate to estimate precisely the degree of difference. To
obtain a high degree of precision in estimating bad-loan rela-
tives, much larger samples are necessary; for a sample contain-
ing as many as 10,000 good and 10,000 bad loans, the standard
errors amount to about 31 percent of the errors for 1,000 cases,
which are shown in the set of hypothetical errors presented
above.

COMPUTATION OF CHI-SQUARE FOR PERGENT-
AGE DISTRIBUTIONS

The numerous common methods for computing Chi-square
presuppose that the distribution of cases is given in actual fre-
quencics and not in percentages. In the present study, where all
distributions have been reduced to percentages, an alternative
method designed for percentage distributions was found con-
venient. To apply this method, only the total number of cases
in the samples need be known. The following formula is appro-
priate:

n'n” (3 = )

ain’  a;"n

=1100 T 1000
where n’ and n” are the total number of cases in the good and
bad samples, m is the number of classes into which each sample
is divided, and a;" and a;” are the percentages of cases in the ith
ai”n 14
100
is the total actual number of cases of both samples in class i.
When n” and n” arc equal, or approximately equal, the above
formula takes the very simple and convenient form

n y(a’ — a;")?

=100 24 a7 T 2"

'I ’
class for the good and bad samples. The quantity Tor(; +

2

where n is the number of cases in either sample.
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Where n” and n” are only approximately equal, this second
formula is still useful. If a significant value of x* is obtained
when the smaller of the two n’s is substituted, the true x? is
obviously greater and also significant; and if a non-significant
value is obtained with the larger of the two n’s, the true value
is also non-significant. An example may prove enlightening.
The following is the percentage distribution of loans by sex and
marital status in the sample submitted by one bank:

Single Single Married Married
Females Males Females Males Others

150 Good loans 30.0 9.3 12.7 40.7 7.3

100 Bad loans 5.0 24.0 2.0 59.0 10.0
. (30.0 —5.0)%.

In the first class the quantity Eﬁmﬂo—} is 17.86; the sum of

this and four similar quantities for the other four classes is
35.89.2 If we substitute 100, the smaller of the two n’s, we still
have 35.89, which is an underestimate of the true x% Since
the 1 percent value of x? is only 13.28, 35.89 is clearly signifi-
cant. Since the contribution of the first class to the total x?,
17.86, is itself greater than the 1 percent value of 13.28, the
significance can be demonstrated from the first class alone, and
additional computation is unnecessary.

12 With the aid of a table of squares and a calculating machine, the calculation of
x2 by this process is reasonably easy.
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