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Appendix A

A Note on the Theory of
Discriminant Functions

VIEWED in the abstract, the present problem of statistical analy-
sis is one of differentiating two species by means of a set of meas-
urements; it is analogous to some of the problems of biology in
which two varieties of plants or other organisms are differen-
tiated on the basis of length of leaf, breadth of stem, etc.
The two species under consideration in this study are the good
and bad loans of consumer instalment lending, or rather the
borrowers who repay their loans and those who fail to repay.
This twofold classification, as we have pointed out, is somewhat
artificial because loans or borrowers vary considerably in
quality; but the distinction is useful and, roughly speaking,
reasonably valid. The set of measurements includes informa-
tion concerning borrower’s income, occupation, sex, stability
of residence, and the like. Again, to speak of measuring charac-
teristics such as occupation, which is classified qualitatively
and not quantitatively, may not be strictly correct, but in a
broad sense the concept is satisfactory.

Statistical theorists have given considerable attention to the
problem of differentiating two species by a set of measurements,
and they have advanced the method of discriminant functions
to solve it. This method permits an investigator to weight
several credit factors according to their relative importance,
and to allow for interrelationships between factors, which are
extremely hard to account for by other approaches. A brief
discussion of the theory underlying the method will be useful
background for the study of good- and bad-loan samples.

Unfortunately, discriminant functions are usually determined
105



106 RISK IN INSTALMENT FINANCING

on the rather restrictive assumptions that each species con-
sidered has the multivariate normal distribution, and that the
two species differ only in the average values of the measurements
or variates—in other words, that the standard deviation of the
variates and the coefficients of correlation between them are
the same for each species. These conditions are not met in
the good- and bad-loan samples; hence the method in ques-
tion is not strictly applicable. Nevertheless, for illustrative
purposes, its value is sufficiently great to warrant detailed
attention.

The problem of differentiating two species by a set of meas-
urements may be introduced by a discussion of the one-variate
case. Assume the two species are normally distributed with
respect to the distinguishing criterion. Each distribution has
% and — %;
so that the difference between them is a. The two species then
have the probability distributions

) )

PA)=—— ¢ 2 dx

variance o% but the means are different—say +

If species A and species B are equally numerous, the distribu-
tions may be represented by two congruent curves, as in Figure
1. To make the example concrete, imagine that A represents
good loans, that B represents bad loans, and that the distin-
guishing criterion is number of years at present occupation.

axX

The ratio ggg; = e” is the ratio of the relative frequency

of A’s to B’s in a small region around x. The ratio is an increas-
ing function, approaching 0 as x approaches negative infinity,
and approaching positive infinity as x approaches positive
infinity. When x equals 0, the ratio equals one, indicating that
in this region A’s and B’s are equally numerous. Because the
ratio is an increasing function, all regions to the right of 0
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contain more A’s than B’s, and conversely for all regions to the
left of 0.

If species A and species B are to be differentiated on the
basis of the value of x, several schemes are possible. One com-
mon scheme is to use the point 0, the midpoint between the
means, as a criterion; values greater than O are classified as
probably belonging to group A, and vice versa. Under this
scheme the probability of misclassifying either an A or a B,
P(Mis), is the ratio of the area of the portion of the A curve

Figure 1
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left of O to the total A area, which is the same as the area of the
B portion right of O to the total B area. P(Mis) is therefore equal
to one-half the probability that the absolute value of a normal
variate will exceed the absolute value of the ratio o/2s. The
ratio a/o, or v, will be used in the future as a measure of the
effectiveness of a criterion as a means of differentiating the two
species. P(Mis) = 1 when v is 0; it decreases as v becomes
larger, approaching 0 as v becomes infinite. The quantity
1 — P(Mis), the probability of classifying correctly, varies from
% to 1 as v varies from O to infinity. Earlier in this study we have
used the quantity 1 — 2P(Mis), which we have called the
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cfliciency index, to measure the effectiveness of the variate x
as a means of distinction. This index, which varies from 0 to 1,
can be expressed in terms of the ratio v by the following integral:

1 v/z _ t?
Index = / e *dt

Vo

Equally numerous species differentiated by the midpoint
between the means are a special case of a much more general
situation. In credit analysis the generalization is desirable, for
the special case is far from realistic. Good loans and bad loans
are not equally numerous. If the ratio of good to bad—i.c.,
A to B—is k, then the relative frequency ratio

—v/2

is no longer equal to unity when x is zero; it is equal to unity at
some other point ¢y, which depends on k, a, and ¢. But the
P(A)
P(B)
demarcation because the net loss on a bad loan is likely to be
considerably greater than the net profit on a good loan; the
P(A)
P(B)
of the average profit on good loans to the average loss on bad
loans. In risk selection, two points of demarcation, q»” > qJ/,
may be required in place of only one. For example, applicants
to the right of 2" could be accepted unconditionally; appli-
cants to the left of q." could be rejected unconditionally; and
those between ¢’ and g2’ could be given a more rigorous
investigation and be required to furnish additional collateral.

For the general case, the concept of the probability of mis-
classification is substantially altered. Instead of one simple
quantity, there are now four as follows: (I) the probability that
species A will be misclassified; (IT) the probability that species
B will be misclassified; (II1) the probability that an observation

point qi, where

is unity, i1 not a satisfactory point of

suitable point, qg, is determined by equating to the ratio

|
i
4
|
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with a value of x greater than the critical value (qs) will be mis-
classified; (IV) the probability that an observation with a
value less than g, will be misclassified. In Figure 2, (I) is rep-
resented by the fraction of curve A to the left of the critical
value qz; (II) by the fraction of B to the right of qq; (III) by
the ratio of the tail of B (to the right of ¢s) to the sum of the
tails of A and B; and (IV) by the ratio of the main portion of A
(to the left of q2) to the sum of the main portion of A and the
main portion of B.

Figure 2

In practice, all these values can be determined from tables
of the normal curve. These four quantities are not entirely
independent; they can be reduced to two quantities. For
example,

N (I1).

M= k= o+
- K ()

V) =1z II) + K1)’

where K is the ratio of A’s to B’s. In the special case, where
the two species are equally numerous and where 0 is the point

of demarcation, P(Mis) = (I) = (II) = (III) = (IV).
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A new set of complications is introduced when the two
species have different variances as well as different means. The
situation is illustrated in Figure 3, where the A variance is
larger than the B variance. For the case of equal variances,

. . P(A %\ . .
the logarithm of the ratio P—((—B% (equal to %—) is the equation
g
of an upward sloping straight line through the origin; all values
are possible from negative infinity to positive infinity. This
means that the ratio of A’s to B’s can be increased indefinitely

Figure 3

by taking a region to the right of a sufficiently large value of x,
and conversely. With unequal variances, however, the situation
is entirely changed. The logarithm of the probability ratio
represents a second degree parabola. In general, the relative
frequency ratio is unity at two points, q; and qz. In all regions
between these two points, B’s are preponderant, but the ratio
of B’s to A’s is everywhere bounded. In the two external regions,
the A’s are preponderant, and the ratio of A’s to B’s can be
increased indefinitely by taking sufficiently large or sufficiently
small values of x.

When several variates or criteria are available for differenti-
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ating the two species, the one dimensional case, already dis-
cussed, can be generalized. The appropriate method is by
means of discriminant functions, which have been developed
by R. A. Fisher and a few other writers.! Fisher’s discriminant
function is a linear function of n-variables,
Z = 11X1 + ].2X2 + ..... + lep
where the x’s represent the p criteria available for differentia-
tion. This function has a mean for the A species of Za = Zlx,
where x; is the mean of the it® variate for the A species; the
function has a similar mean Zp for the B species, and a pooled
variance (based on both species) of s> = 2Zlil;s;; where the
si;’s are the pooled variances and covariances of the x’s. Here
the means, the variances, and the covariances refer to some
specific sample. The problem is to determine the coeflicients I;
7o 7.2
so that the ratio U% = LZﬁ—;—Z—l;)—
8,7

accomplished by solving the following set of equations for the
Is:?

will be maximized. This is

sidi - swele -+ . . L L + S1plp = a1

82111 + 82212 e + Szplp = Qg

s Lol o W
In these equations a; is the mean difference x; — x;’, and
813 = #/ [Z(xi— ;ix) (x; — §:) + Z(xv — ;(i’) (xir — gi')],

n-n
where n is the number of degrees of freedom in one sample and
n’ is the number in the other sample. The solution is

I = Z%

LR. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,”
Annals of Eugenics, vol. 7, part 2 (September 1936) pp. 179-88; and “The Statis-
tical Utilization of Multiple Measurements,” ibid., vol. 8, part 4 (August 1938)
pp- 376-86.

2 Fisher presents these equations in terms of the actual sums S;; instead of the
covariances sij; the result is to multiply the I’s by a constant.
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where [s;;] is the determinant of the s;;’s and si is the cofactor
of s;; in that determinant.

A somewhat different approach, which yields the same
results with the proper assumptions, is to investigate the rela-
tive frequency of species A to species B in various regions of the
p-dimensional variate space. Assume two multivariate normal
distributions

P(A) = Ce-12220s(x-5) (x-5) dx . . . dx, (@)

P(B) = Ce-12=203(x+5) (3 +%) dx; . . . dx,,
which are identical except for the mean values of the variates.
The Q;’s and the a;’s are supposed to be true population
parameters and not sample estimates. In this particular form,
which entails no loss of generality, «; is the difference between
the i-mean of the A’s and the i-mean of the B’s, and 0 is the
midpoint between those means; but other forms in which the

midpoints are not 0 are sometimes convenient. The ratio %%AE;
has the form ¢ which may also be written ¢™** where
A= EjQijaj.
The e on D) _ s _ K is the locus of all points
quation (®) e is P
in the vicinity of which the ratio of A’s to B’s is K. This can
be transformed into

EXi)\i = ].Oge K,
which is the equation of a hyperplane. In particular Ex\; = 0
is the equation of a hyperplane through the origin, which is the
locus of all points in whose vicinity A’s and B’s are equally
numerous. Since the matrix of Q ;; is the inverse of that of o3;,
the covariances of the x’s,

ol
A= Za
i IO'ijl
This is the same as the solution of (1) if s;; = ¢;; and a; = a;.

The function Z = Zx;\; provides a unique means of differen-
tiating the two species. According to (2), the function Z is nor-
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mally distributed with variance ¢,2 = ZZ\\j05;; 1t has a mean

p
for the A species of Zy = k;xl and for the B species o
— L @ - o
Zp = — ~’2-’, where 5‘ is the A-mean of x; and — 7‘

=1
is the B-mean. The function Z therefore transforms the multi-
variate problem into a one-variate problem exactly analogous
to that considered earlier.

If A and B are equally numerous, all regions for which Z is
greater than 0, which is the midpoint between Zx and Zs,
contain a preponderance of A’s, and conversely. If A’s are K
times as numerous as B’s, and if some adjustment must be
made to equate the average loss on bad loans to the average
profit on good loans, then an alternative point of demarcation
Z, can be determined.

In the one-variate case with normal distributions and equal
variances, the ratio v was advanced as a measure of the effec-
tiveness of the variate as a differentiator. Two other measures,
the probability of misclassification and the efficiency index,
were also introduced, but for the case in point these measures
depend only on v and are merely supplementary to it. For
the multivariate case, the ratio T is exactly analogous to v
in the one variate case; it serves as a measure of the effective-
ness of the discriminant function as a differentiator. The proba-
bility of misclassification and the efficiency index for a dis-
criminant function are determined by T just as they were
determined by v for one variate. It is interesting to note that U,
the sample estimate of T, is related 'to Hotelling’s generalized
T? and to the D?statistic of Bose and Roy by the following:

n+n+2 :
U= T1/n+1 w1y s VP

3 By definition U = . The numerator of this fraction can be rewritten

\/ iJ
S i
Zaas
=S since agd; = a; Za,l

ol ; moreover, the quadratic form in the denomi-
ij

U‘
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(where n -+ 1 is the number of cases in one sample; n’ + 1 is
the number in the other samples; and p is the number of
variates).

The ratio T cannot be smaller than any of the individual
ratios v, and in general it will be larger. It may be considerably
or only slightly larger; and if it is only slightly larger, the neces-
sary labor of computing the discriminant function may be hardly |
worthwhile. Consideration of the conditions that make for a '
larger ratio and those that make for a small one is therefore

pertinent.

In general, the computation of the discriminant function and
of the ratio T is a difficult task, which grows more difficult as
the number of variates increases; but for the special case of
complete independence of variates, the computation is almost
simple. For the case of complete independence o;; = 0 except
when i = j; therefore, \; = 3%- This means that the discrimi-

1
nant function can be computed as soon as the o’s and ¢’s are
known. The ratio T, equal to

E)\;ai
pen—————— ]
\/EZMMJi,-

simplifies to

and thence to

. ok st
nator, 1iljsij, is equal to its inverse, £Za;a; ]S_"l’ for the same reason (Cf. Bécher,
ij

Introduction to Higher Algebra, 1936, p. 160). Therefore, U = 1/

ZZajasi n’+n+2 1 st

: 2 — . ince D? = ~$Taa; o— " Ap-
Since T o B D F 1) and since D pZZa a; B (cf. p

pendix C, pp. 146, 148, 150-51) the relation of U to T? and D? follows casily.

ZZa;ast!
[sis}
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which will be written hereafter V' Zvi%. This also is extremely

.o
easy to compute when the ratios — = v; are known.

1

It would be very convenient if the expression v/Zv could be
used as a first approximation for the true value of T. One
might be able to predict whether the actual computation of a
discriminant function would be justified by the results obtain-
able. The following pertinent relation has been worked out
for the case of two variates; but a simple generalization for more
than two variates appears to be impossible.

The true ratio T is equal to Vv, + v,? at two points, p = 0

and (where p is the correlation coefficient between

151 V2

w v
x; and xp). The ratio reaches a minimum value of v; or w,
whichever is larger, at the point p = Z—; or Z—i, whichever is less
than one in absolute value. Naturally the minimum point lies

between 0 and . On either side of the minimum point,

Ui 123

— _+, =

Ug v1
the ratio increases steadily, approaching infinity as p ap-
proaches 1.4

2 2
. afoyy — 2anesoy + adlony
4 For two variates T = [ !

Py
]2 (see footnote 3). Di-

11022 — 012
viding both numerator and denominator by ¢110732, and writing p = 12/ 11022,
vt = o1/ \/Gr1, vs = s/ 7o, we get
I:v12 — 2uyvap - v27]3
T | 2T 2MLU20 7T V2
1-p" ]

When |o| approaches unity, T becomes infinite except in two special cases:
when v; = v; and p approaches one, or when v; = — vy and p approaches minus
one, then |T| approaches [vi| = |vs]. The derivative of T2 with respect to p,
which is

2p(vi + v — 2uw(1 + o)

(1 =02
is equal to zero at the point vi/v; or va/v;, whichever is less than one in absolute
value. At this point T has a minimum value of v; or vs, whichever is larger.
We now inquire: At what values of p will T = /u2 + vs?? We get
2

v1? — 2v1v9p + ve? = (1 — p) (v + vs2), whence p = 0 or

vi/ve 4+ va/vr’
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There are, then, four different types of cases, which are
illustrated in Figure 4. To make the example concrete, imagine
that A represents good loans, that B represents bad loans, and
the two correlated criteria for differentiation are number of
years at present address and number of years at present occu-
pation. In the first two of these (4a and 4b), the true ratio is
higher than Vil + w?; in the second two it may be higher or
lower depending on the value of p.

A few concrete applications of this theory may be in order.
Suppose that for stability of occupation v = .5, which corre-
sponds to an efficiency index of about 20; and that for stability
of residence v = .4, which corresponds to an efficiency index
of 16. (These are approximately the efficiency indices actually
obtained in the commercial bank samples.) If there is no cor-
relation between stability of residence and stability of employ-
ment, the ratio T will be .64, which corresponds to an efficiency
index of 25. But actually a positive correlation is to be expected.
The situation is like that of Figure 4c below; if the correlation

lies between 0 and .976 = the actual ratio will be

2
4 5
574
less than .64. Furthermore, since the actual correlation is very
likely to lie between 0 and .976, it is a fairly safe prediction
that T will actually be less than .64. In the commercial bank
samples an estimate of the correlation between stability of
residence and stability of occupation was made from a small
number of cases. The result, .15, was well within the limits of
0 and .976. (See Table B-3, p. 132))

In the commercial bank samples no appreciable difference
was found between the good- and bad-loan samples in con-
nection with either borrower’s income or amount borrowed.
What then can be inferred about the ratio of amount borrowed
to income? Under the assumptions of normality and of equal
standard deviations and correlation coefficients, two definite
conclusions are possible: (1) as a means of differentiating good
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and bad loans, the ratio of the amount of the loan to bor-
rower’s income, which is just one possible way of combining
amount and income, will be inferior to a linear discriminant
function; (2) the discriminant function will not show any
appreciable difference between good and bad loans. Under the
assumed conditions, an independent study of the amount/in-
come ratio, or any other combination of income and amount,
would not be warranted. Actually, the distribution of loans
according to the amount/income ratio was determined, and
the results were negative.

Conclusions such as the above rest on the assumption of
normality and the equality of standard deviations and cor-
relation coefficients. Since these assumed conditions do not
exist in the loan samples, any of the foregoing conclusions may
be invalid. Situations that will upset almost any conclusions
based on the theory of this chapter are easily invented. No
standardized procedure can be worked out for handling such
cases, for each one presents its own problem. A few examples
will be shown.

Although a linear discriminant function is entirely appro-
priate for multivariate normal distributions with equal vari-
ances and covariances, it is not so appropriate for most other
forms of distributions. For example, when the logarithms of
the variates are distributed normally with equal variances and
covariances, the appropriate discriminant function has the form

Z=>\110gX1+)\210gX2+ “ e ey

for which we may conveniently substitute

A very interesting case occurs when there are only two variates.
If A = £, as will be the case when ay (2 &= o12) = oz (o2 & o11),

. e . . X
then the appropriate discriminant function will be x;%x, or ;1
2

When the distributions are normal but with the variances
and covariances of A unequal to those of B, the appropriate
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discriminant function is a general second degree function.
g g

We have

P(A) CA e—EZAu(x;—m) {x; —ai)

P(B) = Ciy o SSBmA) B —

,(]_A —ZZ[(Ay —Bixix; —2xile; Aij —BiBi) +Aijaic; —BiBiBil

€
Cs ’

which indicates a discriminant function of the form
ZE)\inin + E)\;Xj.
Such a function will not be normally distributed.

It is even conceivable that the means of the sample may be
equal and that the only differences may be in the variances or
covariances. A single example is cited by way of illustration.
Assume only two variables, and assume the distributions are
given by

1
- (%12 2 pX1X2 +X22)
P(A) = Ce **7# dx;dx,
1
= =g (X12-+2pxixs+x2t)
P(B) = Ce *¢*7# dx;dxe;
in other words, the means are equal; the variances are both
unity; and the correlation coefficients are equal in absolute
magnitude but opposite in sign, the A correlation being posi-
tive. (See Figure 5.) The probability ratio is

2 pxixz 2px1%2

K = ", whence log K = 477,

When K is greater (less) than one, the above equation repre-
sents a pair of hyperbolas lying in the lower right (left) and
upper left (right) quadrants; and as K approaches =1, the
hyperbolas approximate the coordinate axis. Thus, when A’s
and B’s are equally numerous, all regions in the upper right
and lower left quadrants contain a preponderance of A’s.
Enough examples have been presented to show that for
departures from ideal conditions a linear discriminant function
is less appropriate than some other form, the precise nature of
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which depends on the nature of the distribution. For special
cases like the above, the task of determining the appropriate
function would not be unduly onerous; but for more general
cases the task would be next to impossible. Most practical

Figure 5
° .
o ° 8 o A .
o
© ° - . -
© ° . . -
° o
° . .
° .
s © o o . .
bl o
< -
o o ° . M
o © . . . .
o o g 0° " e
© 4 .
& 0 . .
< oo - 4 ) .. -
.
° . .
. o0 Bk ote - .
o © ° o* . s e v, .
. °
© 0% . . Y. .
o
° o ° o © 5000 .o ©
° 0,0 * 0-02. .O.Dou' N
° oo .
A s <8 # Ce0 o .
s ) - *
EECEY oo 3“6%. %2 8 @, o4 M
° o N o
X1 o Ao o o O yo © O ¢ L2
. . N R0 A VA 0 Xy
o 30 8005452 T o o »
e DS S LI
o o¥o808 o o C8O ©
o, o Pe. i 0ia0 O 0y °
. - © s 0 & O g.Qo © L0
o . . ? 4o, 8¢ o . °
. . .° LY 4 o°o°o o
. . ° * ° o
. o . %0, o
. . " © ° o °®
. o
. .
. .. . o0° S e o0 8, %0
Ll . o . .
. . e | ° o
. . . o ° o ©
. . ° © o
. .. . o o 0o
. v. . ° o °
. . ° o o ©°
.. °
.
. . o ° o °
. ° o
. . ) °
. . ° °
- L4 o Q
.
. * A
A Bo

investigators will probably prefer to determine a linear func-
tion, even when the ideal conditions do not exist; and in many
instances the resulting approximations will probably be sat-
isfactory.



