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ESTIMATION OF THE MODEL:
TOTAL MANUFACTURING

THIS chapter contains estimates of model (2.7) using total manu-
facturing data as described in Chapter 3. An important problem of
specification of this model concerns the content of the permanent and
transitory shocks that drive the system, as was noted in Chapter 2. Many
alternative approximations are possible, and we have experimented with
a number of them. These experiments will be summarized in the following
chapter. As will be shown there, the main conclusion to be drawn from
these experiments is that alternative specifications of sales forecasts do
not change the results in any substantive way. Therefore, we present
our preferred set of estimates of model (2.7) in which target input values

• are considered to be log-linear functions of actual sales, relative prices,
and trend. This choice is dictated by the ease of computation in view
of the insensitivity noted above.

On these assumptions the model is
• 6

— = 1J(YJ — Y.1) + s; i = 1, 6;

and

= a05 + a5S + a25(w/c) + a31 T + e; j = 1,.. . , 6;

where all variables are measured in logarithms and e and e' are random
variables. The change in each input in period t is taken to be a function

• of the deviations of all the inputs from their target values at the end of
period I — 1. In addition, the target value of each input is taken to be
a function of sales, relative input prices, and a trend term. T is a trend
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56 Estimation of the Model: Total Manufacturing

term taking integer values and with its origin in 1947. Combining these
two relations, the equations to be estimated are

= mj0 + mS + m12(w/c) + m3 T + b1Y1_1
+ b2Y,._1 + . . . + b16Y6_1 + u; I = 1, 2,... , 6; (4.1)

where the terms are linear functions of /, and a above, and the b,
terms are naturally related to that is, b, = — for i j and b1 =
(1 — ). The u are random error terms. As before, all the variables
except for trend are measured in natural logarithms.

A. PROBLEMS OF ESTIMATION

Two issues must be considered prior to estimation. One is the question
of imposing production function restrictions on the estimates of equations
(4.1) a priori. The other is the selection of an appropriate estimation
technique.

Although it is computationally inconvenient, imposition of production
function constraints is feasible. It requires estimation of all six equations
at the same time, with an appropriate adjustment of the over-all Co.
variance matrix. At an early stage of the investigation, we decided
not to follow that procedure for three reasons. First, it seems to us that
imposing such restrictions makes too much of a presumption that the
model is completely correct. If the model is truly "correct" then the
unrestricted estimates should satisfy the a-priori restrictions. Second,
data limitations already noted necessarily force us to maintain certain
hypotheses concerning omitted variables. It might be appropriate to
relist these factors. We have no data on "user Cost" of labor inputs and
hours of work of nonproduction workers. Average wage rates have
been used rather than marginal wage rates; inventories consist of goods
in process plus final goods rather than each component separately; we
have no price data for inventories and nonproduction labor; and our
utilization estimates fall short of an ideal measure. Third, the data are
highly aggregated. As Fisher [1971] has shown, aggregate data in this
context often conceal true underlying microrelationships. Therefore
stringent tests of the restrictions undoubtedly require much better and
more disaggregated data than two-digit classifications provide.

It is well known that choice of an estimation technique depends on
properties of the residuals in the model to be estimated. The presence
of serially dependent residuals in almost all economic time-series models
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is very well documented. Use of ordinary least squares procedures under
such circumstances leads to biased results. To avoid this situation, the
hypothesis of first-order serially correlated residuals in each equation
of model (4.1) is maintained and the implied first-order serial correlation
in the residuals for each equation is estimated by the Cochrane and Orcutt
[1949] search method. This method combines ordinary least squares
(OLS) and estimation of the first-order serial correlation of the distur-
bances. It uses an (internal) ordinary least-squares (OLS) regression to
form an initial guess of the first-order correlation coefficient p. Then the
iterative process finds the value of p (denoted by ) which minimizes
the sum of squares of the residuals for the particular equation.' The
range of search for the value for p was chosen in the interval— 0.9900
to 0.9900. The iterations were terminated either when p changed by less

• than 0.005 from one iteration to another or when twenty iterations had
• occurred.

We calculated an F statistic, testing the null hypothesis that each
equation of the model prior to the p transformation did not differ statisti-
cally from its counterpart after the transformation. For testing p = 0

against p = , the approximate F statistic is

[SSR(p = 0) — SSR(p =
F(1,n—k—1)= SSR(p=)/n—k—l

where Ic is the number of parameters estimated (including p), n is the
number of observations, and SSR stands for the sum of squared residuals.
The calculated values of this test for n = 80 and Ic = 10, using SSR
from ordinary least squares and generalized least squares for each equation

• of the model are:

• mY1 laY2 mY3 laY4 mY5 mY6

• Calculated F 17.02 3.40 189.3 3.15 53.11 27.43

The critical F values are: 7.04 at 0.01 per cent and 3.99 at 0.05 per cent
(1, 69) degrees of freedom. The comparison clearly suggests rejection of
the null hypothesis for all equations except for the utilization rates Y2

I. The procedure uses an internal OLS regression to form an initial guess of p, say po.
Then all the variables are transformed by p to form the new data set (1's — pol'ei), and
the regression is fitted to the transformed data. The regression coefficients are trans-
formed back into the original variables for re-calculating the serially correlated errors,
which provides a new estimate of p. The process continues until it converges toasingle gS.
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and Y4 at the 0.01 level of significance. We accept the presence of first-
order serial correlation in each equation.

It should be noted that the Cochrane-Orcutt method applied to our
model implicitly assumes serial independence of residuals across equations.
If this more complex pattern of serial dependence is present, maximum
likelihood methods require estimation of a 6-by-6 matrix of correlation
coefficients within and across equations in which the off-diagonal
elements are not necessarily zero as has been assumed in our procedure.
An investigation of cross-equation serial correlation is presented below.

B. STRUCTURAL ESTIMATES

Structural estimates of model (4.1) for total manufacturing are ex-
hibited in Table 4.1. Judging by the high adjusted R2 statistics and small
standard errors and suims of squared residuals, shown at the bottom of
the table, the fit of the model in the sample period is impressive.2
The goodness of fit is clearly indicated by Charts 4.1 to 4.6, which
show actual and predicted values of each variable over the sample
period. Note, in particular, that cycle turning points are tracked extremely
well, an attribute not often achieved with the same degree of success in
alternative models of input demand.

Initial impact effects of sales, trend, and relative prices are indicated
in the second, third, and fourth rows of Table 4.1. The sales variable is
highly significant in all equations except that of capital stock (ln 1's) and
inventories (in Y5). Judging by the magnitude of the regression coefficients,
the impact of sales is strongest on the generalized utilization rate (in Y4),
followed by production worker employment (in Y1), and hours per man
(In Y2). Its effect on nonproduction workers is small, but significant. With
the exception of the coefficient in the inventory equation, these results are
much as expected. However, inventories serve as a buffer between pro-
duction and sales and are closely related to decisions of the firm on the
acquisition and utilization of the stock of inputs. For example, as in-
ventories of finished goods are drawn down to meet the demands for
output, the firm may replenish its stock of goods in process and raw
materials; these in turn require higher rates of utilization of the existing
stocks of capital and labor and/or additions to them. Therefore, we

2. Note that levels of inputs rather than first differences have been used as dependent
variables. R2 statistics would have been lower had first differences been used, though
parameter estimates would have been identical to those reported in Table 4.1.
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TABLE 4.1

ESTIMATED STRUCTURE OF MODEL (4.1) FOR TOTAL MANUFACTURING

(sample period: 19481—19671V; all variables except trend are in natural
logarithms)

Dependen t Variables

Indepen-
dent

Variables

Prod.
Emp.
(Y11)

Hours
(Y2)

Capital
(Y3g)

Util.
(Y4e)

Inven.
(Y5)

Nonprod.
Emp.
(Y't)

Constant —2.708
(3.266)

.3186
(.8357)

.1137
(.5412)

.8643
(.4129)

—1.344
(1.226)

.0911
(.1529)

Sales .4394
(12.84)

.1554
(7.891)

—.0048
(.7009)

1.100
(10.62)

.0004
(.0096)

.0531
(2.657)

Trend —.0004
(6.035)

.—.0010
(5.595)

.0001
(.6421)

—.0085
(7.415)

.0012
(1.405)

.0015
(1.889)

Rel. prices —.0177
(w/c) (.7669)

— .0058
(.7324)

.0017
(.3268)

—.0986
(2.127)

—.0267
(.9263)

—.0112
(.7564)

Y1_1 .4575
(7.417)

— .0992
(4.040)

.0435
(2.608)

— .2295
(1.658)

.3139
(4.000)

.0352
(.7474)

Y2_1 .4447
(2.286)

.8525
(8.709)

.0168
(.4322)

— .5874
(1.045)

.5626
(2.115)

.0057
(.2043)

Y3...1 .1784
(1.877)

—.0137
(.4671)

.9050
(27.94.)

—.2794
(1.683)

—.1114
(1.043)

—.0093
(.3150)

Y...1 —.0236
(.9932)

—.0820
(5.997)

—.0093
(1.837)

.1953
(2.686)

—.0931
(2.813)

.0408
(2.820)

Y_1 .0053
(.1093)

—.0400
(1.982)

.0114
(.9492)

—.6623
(5.892)

.6244
(10.03)

.0153
(.4470)

Y...1 —.0649
(.8616)

.0462
(1.814)

.0767
(2.459)

.9811
(6.889)

.3432
(4.047)

.7133
(8.180)

RI

SEE
SSR

.9855

.6665

.0072

.0036

.9414
— .2378

.0047
.0015

.9999
.9330
.0015
.0002

.9088

.0181
.0231
.0367

.9982

.5086

.0099
.0068

.9995

.9255

.0044

.0013

Nom: Figures in parentheses are : statistics. R is the coefficient of determination;
SEE, the standard error of estimate; and SSR, the sum of squared residuals. For , see

text note I.
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CHART 4.1
ACTUAL MD ESTIMATED VALUES OF THE STOCK OF PRODUCTION WORKERS (Y1),

19481— 19671V

SouRcE: Based on model (4.1.)
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CHART 4.2
ACTUAL AND ESTIMATED VALUES o HOURS OP WORK OF PRODucTIoN

WORKERS (Yb), 19481—19671V

SouRcE: Based on model (4.1).
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CHART 4.3
ACTUAL AND ESTIMATED VALUES OF DEFLATED CAPITAL STOCK (1'3),

19481—19671V

Log of Y3 (bosee)
4.90

480 ctuaI
Predicted

4.70— —

4.60— —

4.50— —

4.40— —

4.30— —

4.20 —

40 I I I I I I I I I

1948 '50 '55 '60 '65 '67

SOURCE: Based on model (4.1).
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CHART 4.4
ACTUAL AND ESTIMATED VALUES OF THE UTILIZATION RATE (Y4),

19481—19671V

SouRcE: Based on model (4.1).
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CHART 4.5
ACTUAL AND ESTIMATED VALUES OF MANUFACTURERS' TOTAL INVENTORIES IN

CONSTANT DOLLARS (1's), 19481—19671V

LogofY5 (basee)
4.40

Actual
Predicted

4.00 — —

3.80 —

3.60 — —

3.40 liii! IItlt.II!IIIIII
1948 '50 '55 '60 '65 '67

SOURCE: Based on model (4.1).
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CHART 4.6

ACTUAL A?D ESTThIATED VALUES OF THE STOCK OF NONPRODUCTIO WORKERS (Y6),
19481—19671V

Log of Y6 (base e)
1.7C

160 — —————— Actual /'
Predicted

1.50 —

1.40—

1.30— -

1.20— -

1.10— -

too— —

.90 I I I I I

1948 '50 '55 '60 '65 '67

SouRcE: Based on model (4.1).
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TABLE 4.2
DlazcTIoN EFFECT OF EXOGENOUS VARIABLES AND ADJUSTMENT COEFFICIENTSa

Dependent Variables

Prod. Nonprod.
Independent Emp. Hours Capital Util. Inven. Emp.

Variables (Y1) (1'2) (Y3) (l'4) (Y5) (Y6)

(a) Direction of Impact Effects
Sales + + - + + +
Trend - - + - + ±
Rel. prices (w/c) — — + — — —

(b) Cross- and Own-Adjustment Signs
Yle_1 () ± — + — —

Y2t-1 () — + — —

Y3_i — + () + + +
Y4tl + + + () + —
Y5j.1 + — + () —Y1 + — — — —

a. These directional effects are based on the signs of the structural coefficients reported
in Table 4.1. Entries in panel (b) are estimated signs of,1, based on the relation = — b0,
for I ,j in model (4.1). The underlying data are in logarithms.

generally expect inventories to be inversely related to the sales variable.
However, this relationship is not immutable. It depends on whether the
depletion of finished goods inventories is offset or exceeded by the increase
in goods in process and raw materials. This compositional effect cannot
be ascertained with the aggregate data available. The estimates suggest
that the effects are approximately equal in the initial period of the shock.

The time trend is significant in all equations (at 0.05) except for capital
stock and inventories. It has negative signs in production worker employ-
ment and both utilization rate equations, but is positive in the equation
for nonproduction worker employment. The coefficients on the relative
price variable are extremely small in magnitude and are insignificant in
all equations except in the equation for the general utilization rate, 14.
This result may be due to high collinearity between trend and relative
prices in the sample period, suggesting that the parameters of substitution
and technological change cannot be identified in this data. The direction
of impact effects is compactly presented in Table 4.2.

The cross- and own-adjustment effects in each equation are shown
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in Table 4.1 by the columns of regression coefficients of lagged input
variables. In each column the own lag coefficient b4, (e.g., the coefficient
of in Y.1 in the 14 equation) is an estimate of 1 — /3 in model (4.1). The
other coefficients, b1, are estimates of — , or the cross-adjustment
parameters of the model. Of course, own-adjustment coefficients are
expected to be positive and less than unity, and that is the case in all
equations. However, cross-adjustment coefficients can take either sign.
The direction of these effects are summarized in Table 4.2. Judging
from the t values in Table 4.1 and using 1.6 as the cutoff point, 18 out
of 30 possible cross-adjustment coefficients are significantly different
from zero. Since all cross adjustments need not be nonzero a priori, this
is strong evidence in favor of an interrelated model.3

The largest number of nonsignificant cross effects occurs in the equation
for nonproduction worker employment (Y6), followed to a lesser extent
by production worker employment (Y1). Even so, both production and
nonproduction worker employment strongly interact with all other
variables in the system. Moreover, at least one variable interacts signifi-
cantly with hours of work of production workers and with the generalized
utilization rate of nonproduction workers. Therefore, all the input
adjustments are interrelated. Furthermore, the signs of the cross adjust-
ments in Table 4.2 indicate that there is no special tendency toward
symmetry. In only 9 out of 15 possible paired comparisons ( and ) are
the signs identical.

The signs of the cross-adjustment coefficients, , can be given a worth-
while interpretation in terms of "dynamic substitution." This concept
differs in meaning from the conventional concepts of substitution and
complementarity, which are equilibrium concepts. In a dynamic
setting, firms may temporarily substitute one factor for another, even
though the factors are complements in the long run, because short-run

• adjustment costs make it advantageous to do so. If 1 is positive, excess
demand for factor j increases the short-run demand for factor i, and
consequently i and j can be considered as dynamic substitutes. If j3,
is negative, they can be considered complements.

To illustrate this point, consider the equation for production worker
employment (Y1) in Table 4.1 and also the effect of excess demand for
production workers—the coefficient of Y11_1—in other equations. For

• all practical purposes, disequilibria in the levels of inventories, non-

3. If 1.85 is used as the cutoff, one-half of the coefficients are significant.



68 Estimation of the Model: Total Manufacturing

production workers, and generalized utilization rates have negligible
effects on demand for production workers in the short run. However,
demand for Y1 is significantly affected by disequilibria in hours (Y_1)
and in capital stock (Y_1). Excess demand for hours and capital stock
decreases production worker employment, suggesting short-run comple-
mentarity relationships between these inputs. Examining the impact
of disequilibrium in nonproduction worker employment on other variables
of the system, note a similar complementary relation with capital stock
and inventories (i.e., the coefficient of Y11 in the Y and Y5 equations
is positive). However, the coefficients suggest substitution between Y1 and
hours and the generalized utilization rate. Thus, we again note some non-
symmetry in dynamic responses among certain inputs, making it impos-
sible to identify dynamic substitutes and complements in all cases. The
feedback relationships among other variables can be interpreted in a
similar manner by reference to the signs in panel (b) of Table 4.2.

C. THE GOODNESS OF FIT AND FORECASTING
PERFORMANCE

We shall examine the goodness of fit of the model and its performance
against an autoregressive model such as

Ye = a0 + a1Y_1 + + a3 + Ye_3 + e; i = 1, . . . , 6;

where is the stochastic residual, and all the variables are measured in
natural logarithms. This third-order autoregressive model is essentially
a generalization of the familiar naive models often used in the literature
(Christ [1956] and Jorgenson-Hunter-Nadiri [1970]). Comparison with
an autoregressive model is a very stringent test of quarterly models,
and many analytical models often fail to pass it. The sum of squared
residuals for each equation of model (4.1) and its autoregressive counter-
part were used to compute F statistics. These results indicate that the null
hypothesis of no difference between the analytical model (4.1) and the
autoregressive model is rejected. Comparison of the turning points pre-
dicted by the two models also clearly shows the superiority of model (4.1),
especially for the more fluctuating series such as the utilization rate.

Using the structural estimates of model (4.1) reported in Table 4.1,

4. More complicated autoregressive models with fourth- and fifth-order lags were
used, but the results were similar to those of the third-order autoregressive model.
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conditional forecasts for each dependent variable for the next ten quarters
can be generated. We used the following performance indexes to test
forecasts of the model for the period 19681—19701V:

Mean forecast error:

m1 —

Absolute mean error:

rn, =-Y—Y;
Mean square error:

rn3
= [ k

(Y

The summary statistics on the forecast errors of the estimated equations
of Table 4.1 are shown in Table 4.3. Several characteristics of the results

TABLE 4.3

FORECAST PERFORMANCE INDEXES FOR MODEL (4.1)
FOR ToT.z.. MANUFACTURING

(forecast period: 19681-197011; all variables are measured in natural
logarithmsa)

Prod. Nonprod.
Emp. Hours Capital Util. tnven. Ernp.

(Y1) (Y'2) (Y3) (Y4) (Y5) (Y8)

Mean error (m1) — .0030 — .0003 .0005 — .0099 — .0027 — .0026

Mean absolute
error(m2) .0051 .0048 .0007 .0174 .0071 .0038

Mean square
error (m3) .0059 .0061 .0012 .0219 .0085 .0049

a. The original units are: I', millions of workers; I's, hours per man per week; Y,
billions of 1954 dollars; Y4, fraction of full capacity; Y5, billions of 1954 dollars; Y8
millions of workers.
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are worth noting. The mean error, m1; the absolute mean error, m2;
and the mean square error, m3, are all very small (as a percentage of the
means) for each variable. The mean error of each equation, except for
capital stock, is negative, which indicates that, on the whole, the model
slightly overforecasts the value of most dependent variables. The m2's
and rn3's are all positive, of course, and naturally larger than m1 for each
equation. The size of forecast errors relative to mean values of the de-
pendent variables in the forecast period are about 0.10 to 0.15 per cent
for production worker employment, hours, capital stock, and non-
production worker employment. It is about 0.065 per cent for inventories
and about 40.0 per cent for capital utilization. The latter value results
from restricting capital utilization to the interval (0, 1). Our measure
uses the logarithms of such numbers, which are often close to zero.

All these summary statistics, though different in magnitude, suggest
the same story. They are relatively larger for the capital utilization
rate and inventory equations. Forecast errors for production workers
exceed those of nonproduction workers and capital stock.

A fruitful way to examine the forecasting performance is to look at
the pattern of forecast errors during the period 19681—197011 and see how
closely the level and turning points of the actual data are predicted. The
forecast errors are presented in Charts 4.7 and 4.8. Actual and conditional
forecasts of the dependent variables are also indicated. The sign and
magnitudes of residuals in each equation vary over the period. The model
on the whole overpredicts the level of the dependent variables in 1969
and the first two quarters of 1970. The forecast errors are generally negative
in this range of the forecast period. The level of the stock variables is
very well forecasted for production workers, capital stock, and non-
production workers. The turning points are perfectly forecast for pro-
duction workers and capital stock. The model wrongly predicts one
turning point and does not predict another one for nonproduction
workers in the last two quarters, 19701 and 197011. In the inventory
equation two turning points are missed, as in the hours equation. However,
the model is not as successful in calling the turning points of the rates
of utilization. As can be seen from Chart 4.7, forecasted hours lag behind
the actual series by one quarter. If the predicted values are displaced
by one quarter, very few of the turning points will be missed in this
series. Once again, this result may occur because actual hours lead all
other series used in the model by one or two quarters. The same picture
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is drawn for the general rate of utilization. Two out of three turning
points are not predicted.5

An alternative way of testing forecast performance is based on certain
test statistics on forecast errors. These are reported in Table C. I and
indicate no evidence of structural change between sample and forecast
periods, confirming the stability of the estimates in Table 4.1.

D. RESPONSE CHARACTERISTICS OF THE MODEL
This section examines distributed lag patterns and estimated long-run
scale and price elasticities of demand for various inputs that are implicit
in the estimate of model (4.1). As discussed at length in Chapter 2,
distributed lag properties of the model are found by transforming the
systematic part of(4. 1) intO an equivalent reduced form. Long-run elastici-
ties are merely the sums of corresponding distributed lag responses in
each period.

i. Computational Ivlethods

To summarize the earlier discussion, specifying desired inputs, in Yr',
to be log-linear functions of sales, trend, and relative prices, we have
estimated A1 and (I — ) in

= A1q + (I — p)Y1, (4.2)

where A1 is a matrix of fixed coefficients, q is a vector of the exogenous
variables: sales, trend, and relative prices (i.e., Y = A1q), and all are
measured in natural logarithms. By recursion, equation (4.2) may be
transformed to a reduced form

= flA1q, + (I — fl)flA1q5_1 + (I —

+ (I — )3flA1q3 + .... (4.3)

5. When the forecasting performance of the model for each equation is compared
• with those of the autoregressive model, above, model (4.1) does better (in terms of the

forecast statistics of Table 4.3). This is especially true of inputs such as nonproduction
workers and the rate of utilization of capital. The autoregressive model underpredicts
all the variables during the forecast period, though in the last four quarters (196911!—
1970111) the magnitude of this underestimation becomes very small for Y, and Y4. The
turning points are more often missed by the autoregressive model in the fluctuating
series than in our model. On the other hand, the autoregressive model performs as well
in predicting both the level and the turning points of series for capital stock and non-
production workers.
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Equivalently, the reduced form may be expressed in terms of the lag
operator L, with LY = Y1, and so on. In these terms (4.2) is

[I — (I — ,6)L]Y =

= [I — (I — fl)L] (4.4)

Thus (4.3) and (4.4) are different ways of expressing the same thing.
It was demonstrated in Chapter 2 that the matrix [I— (I — )L]-' is a
rational function of L, i.e., a ratio of two polynomials in L. The determin-
ant is a sixth-order polynomial in L (fifth order if the restrictions hold),
and each cofactor is a fifth-order polynomial. Hence, each term in the
inverse is a ratio of a fifth- to sixth-order polynomial. This implies what
might be termed "semireduced form" expressions, in which each equation
in (4.2) can be written in terms of a finite number of lagged values of
q and Y's own lagged values. Indeed, it is this particular form that is most
often utilized in the literature.

At the risk of repetition, an illustration might be in order. Consider a
2 x 2 case, in which there are only two variables in I'. Then

fill P12

P21 P22

If q has three components, then A1 is 2 x3. Ignoring restrictions, we have

1
— (1 — fi22)L fi21L

[I— (I—8)L}=———
0(L) fi12L 1 — (I —

= 0(L)
{01(L)},

with 0(L) = 1 —(2 — — ,822)L+(l — fi11) (1 — fi2) _p1fi21L2. Hence,
carrying through the multiplication it is seen that

V1,
= q,, (4.5)

where ® (L) is a row vector of polynomial functions of L related to the
0 (L) terms above (along with the appropriate elements of.fi and A),
and all variables are measured in logarithms, as usual. Multiplying
through by 0(L) and operating with L, it is seen that in Y, can be expressed



Response Characteristics of the Model 75

as a linear function of the natural logarithms of q, q_1, Y_1, and Y.2.
Therefore, the ratio of 0(L)f® (L) is the generating function of the lag
distribution (Griliches [1967]) of the variables in q and 1nY. In the 6 x 6
case considered here, 0(L) is a fifth-order polynomial, and 0(L) is
sixth order. Thus, expressions such as (4.5) are also equivalent to (4.2)
and (4.4).

Define the matrix B" = (1 — p)kpAi, which is seen to enter the
corresponding lagged value of in (4.3). In our model there are six
variables in Y. Hence ,13 and (I — /3) are square matrices of order six.
Moreover, there are three variables in q (ignoring constant terms);
thus A has six rows and three columns. Hence B has dimension 6 x 3.
Consider the sequence of coefficients in the ith row and jth column of
B" for k = 1, 2 These coefficients are in fact the (nonnormalized)
distributed lag responses of input Y to a unit impulse in q1,. Since
(I — /3) and /3A1 have been estimated and reported in Table 4.1, these
responses can be calculated by picking off successive ijth elements in Bk.
All variables (other than trend) are measured in logarithms; so the
sums of these elements are the long-run elasticities of response of each
input to the corresponding variable in q. Of course, there is no need
to sum these infinite series to obtain long-run responses. Instead, set

•

•
= = F, and let q be Constant in (4.3). Then long-run responses

• are computed from [I— (1 — )}-'pA, which of course yields an estimate
of the matrix of "long-run" coefficients.

Figure 4.1 presents responses of distributed lag sales implicit in the
• estimates of Table 4.1, model (4.1). They have been computed in the

• manner described above. Similarly, distributed lag patterns can be ob-
tained for relative price responses. Since impact responses of relative

• -
prices are so small and unreliable, we do not present them here.

In panel (a) of Figure 4.1, the distributed lag response of production
worker employment is related to a unit impulse in sales. Most of the
response of employment occurs in the first five or six quarters, and there
is no evidence that production worker employment overshoots its ultimate
value. The transient sales response of hours per man to sales is shown
in panel (b), and that for general utilization in panel (d). These results
imply that hours and general utilization are truly 'variable factors of
production and tend to absorb shocks in the face of slowly adjustingstocks.
Both Y2 and Y4 overshoot their ultimate long-run values after very large initial
responses in the first two quarters so that production and sales are maintained
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as other inputs are slowly adjusted. They then slowly converge to their long-run
equilibrium values as other inputs steadily increase in response to
the stimulus. Panel (c) contains the distributed lag response of capital
stock to sales; the curve shows a characteristic bell-shaped pattern found
in many other studies. It is noteworthy that these results are based entirely
on a first-order system and that no second-order lag terms in capital stock
have been used. Evidently, the mean lag is long for capital, suggesting
that capital stock is the most "fixed" of all inputs.

The distributed lag response of total inventory to sales is shown in
panel (f). In interpreting this result, notice that our measure of inventory
includes both raw materials and goods in process as well as stocks of finished
goods. One might anticipate that the latter component would tend to
fall after an initial sales impulse and that this would show up in the lag
patterns that display some initial negative values. However, the goods-
in-process component would not be expected to behave in this manner
but, so long as some part of the shock was anticipated, quite the reverse.
The net effect of both types of change is shown in the diagram. It is
quite clear that the net effect during the first ten to twelve periods
after the shock is positive, and so increased holdings of goods in process
and raw materials dominate the observations during that period. After
about twelve periods, the distributed lag response turns negative, that is,
inventories overshoot their ultimate long-run equilibrium value. By that
time most of the production labor adjustments have been made, and
inventories are run down. Evidently, production is speeded up after
the initial shock, and goods in process and raw materials increase suffici-
ently to meet sales out of finished inventories long after most of the
other inputs have been adjusted, and while capital stock is still being
built up.

A pattern similar to that of inventories characterizes responses of non-
production labor. The patterns of initial positive response are like those
of production workers, though somewhat delayed and more dispersed
over time. This suggests that nonproduction labor is subject to greater
adjustment costs than production labor, as might be expected a priori.
The pattern in Figure 4.1 indicates some overshooting of the long-run
values for nonproduction workers, in distinction to the result for pro-
duction labor. Perhaps nonproduction workers are more necessary, in
the earlier periods, to supervise the great changes in utilization rates that
occur at such times. After these changes have damped out, nonproduction
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labor is laid off. Again, such an explanation is consistent with the notion
that labor stocks and utilization as well as capital utilization and in-
ventories bear the brunt of short-run adjustments, while capital stock
slowly adjusts to its ultimate long-run value.

ii. Stability

The extended discussion in Chapter 2 showed that the dynamic
stability of the difference equation system (4.1) depends on the magnitude
of the characteristic roots of (I — ). The distributed lag patterns in
Figure 4.1 all show that the system is in fact stable. Otherwise, the lag
responses would not converge to zero. Another way of examining this
behavior is to compute the characteristic roots themselves. For the
estimates of Table 4.1 these are 0.9752, 0.8231, 0.8231, 0.5567, 0.5567,
0.0 132. The largest root does not exceed unity in absolute value, indicating
stability. However, sampling distributions of these statistics are not
available, precluding a precise test of stability. The two repeating roots
have complex parts that are very small, implying very small oscillations
that have no perceptible effect on distributed lag patterns, as is also
apparent from Figure 4.1. The convergence properties of the system depend
essentially on the largest root, for it dominates response patterns as t
grows larger; after the shock, the smaller roots converge at a much
faster pace. The largest root is about 0.975 in absolute value. Hence,
though the system does indeed converge, its rate of convergence to steady
state values is very slow. The diagrams clear]y reveal this sluggishness to
be due to the unusually long lags in capital stock responses.

It is very important to note that the smallest root is very small by
comparison with the others. In fact, it is only about 0.013, whereas the
next largest is forty times as great, 0.56. As was argued in Chapter 3,
production function restrictions depend on the singularity of the adjust-
ment matrix (I — ). The magnitude of the smallest root does suggest
the near singularity of $, even though no a-priori restrictions were
imposed on the estimates. This fact and the overshooting of the distributed
lag response for utilization rates are strong verifications of the model
specification.

E. LONG-RUN RESPONSE

As noted above, long-run response elasticities are computed from
[I—. (I — )] ',SA1 = A1, since regression estimates in the tables above con-
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vey the necessary information about (I — 6) and /3A . Computations based
on the estimates of Table 4.1 are shown in Table 4.4. These figures
have been calculated by using double-precision computer algorithms
and should be as accurate as the regression coefficients on which they are
based.

Later on, we present evidence of high sensitivity of estimated long-run
elasticities to changes in specification. For now, note the following:

i. There is little evidence of significant long-run price or substitution
effects in this data. The relative price elasticity for production workers
is positive but rather small in absolute value. The relative price elasticity
for capital stock is 0.045 and positive as expected. These results are con-
sistent' with those of many independent investigations, where estimated
time-series elasticities of substitution are found to be very small (Nerlove
[1967b]). Relative price elasticities of hours per man are also small, but
positive, contrary to hypothesis. The relative price elasticity of non-
production workers is negative, perhaps because our procedure, in which
wage rates and hours per man of nonproduction workers are derived
from the rates and hours of production workers, is untenable. The relative
price elasticity of inventories (In Y5) is positive, suggesting that inventories
are substitutes for capital in the "sales production function." The
relative price elasticity of the general utilization variable is strongly

TABLE 4.4
LONG-RUN E1sncrrxEs ron TOTAL MANUFACTURING

(all variables except trend are measured in natural logarithms)

Indepen-
dent

Variables

Dependent Variables

Prod.
Emp.
(1')

Hours
(Y2)

Capital
(Y3)

Litil.
(Y4)

Inven.
(1's)

Nonprod.
Emp.
(i'6)

Sales (S)
Relative prices

(wfc)

Trend (T)

.7301

.1067
.0010

— .1302

.1005
.0064

.2933

.0451

.0051

1.200

—0.5463
—0.0366

.1774

.1634
.0175

.1595

— .1393
.0028

NoTE: Computational formula: [I — (I — )1_'A. Each entry gives estimated long-
run response elasticity of each input (columns) to a I per cent change in each exogenous
variable (rows).

SOURCE: Table 4.1.
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negative. However, caution is in order in interpreting this result because
of the problems, mentioned earlier, of measuring the utilization rate.

Recall that these results are based on very small estimated coefficients on
in (w/c) in the structural equations. Since in (w/c) has a substantial trend,
the impact effects of the structure may only capture transitory price
responses and, consequently, our "long-run" estimates of Table 4.3 do
not necessarily reflect full responses of permanent changes in relative
prices. Also, note again that price variables used in the estimates are far
from ideal due to data limitations. Consequently, the estimates may be
biased.

ii. There is some evidence of increasing returns to production worker
employment, since the sales elasticity is about 0.73, suggesting returns
to scale of about 1.3. Note, however, that the sales production function
is overidentified, since the restrictions do not hold exactly, and that sales,
rather than output, are used. Hence, lack of identification precludes any
strong statement about returns to scale. No evidence of long-run scale
effects on hours per man is present, consistent with our a-priori hypothesis.
This implies that variations in hours per man are almost completely short
run and serve a buffer function of insulating changes in demand• from
changes in input stocks. However, there is some evidence of significant
long-run scale effects on general utilization. There is evidence of strong in-
creasing returns to scale for capital stock, inventories, and nonproduction
workers, their output elasticities falling far short of unity. Nonuniformity
of these effects is not consistent with the type of multiplicative production
function postulated in Chapter 2, but might be expected to be the case
on the basis of more general considerations. Again, however, the produc-
tion function is overidentifled. -

iii. The trend coefficients for production worker employment and
general utilization are consistently negative, while the remaining co-
efficients are positive. Though these results are not consistent with Cobb-
Douglas assumptions because embodied and disembodied technical
change cannot be identified in that case, they might be consistent with
a more general production function.




