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The Diffusion of Scientifi c 
Knowledge across Time and Space
Evidence from Professional 
Transitions for the Superstars 
of Medicine

Pierre Azoulay, Joshua S. Graff Zivin, 
and Bhaven N. Sampat

If Whitehead’s characterization of modern philosophy as “a series of foot-
notes to Plato” is perhaps a slight exaggeration, then the claim that contem-
porary scholarship on the economics of innovation is largely an extension 
of themes laid out in the 1962 Rate and Direction volume is no more of one. 
The contributors’ prescience about the potential economic importance of 
academic science is particularly impressive, since at the time the conference 
was held (in 1960), the post- Sputnik transformation of the academic enter-
prise into the behemoth we know today had only just begun. The volume laid 
out a belief  that basic research was important for innovation, marshalling 
theory, case studies, and data to support the assertions about the economic 
payoffs from basic research made in Vannevar Bush’s “Science: the Endless 
Frontier” just fi fteen years before. However, the conference volume was very 
much a call for more research, emphasizing the need for more data, and 
deeper understanding. In this chapter we attempt to rise to this challenge 
by examining the diffusion of knowledge across time and space within the 
life sciences. This endeavor remains as important at the beginning of this 
century as it was in the middle of  the last one, given perennial calls for 
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justifi cation of substantial public funds for biomedical research (especially 
during periods of fi scal austerity) and current attempts to ground “science 
of science policy” on stronger theoretical and empirical footing (Marburger 
2005).

Our analyses share a main motivation with the original conference, to 
understand how nonmarket controls and incentives at universities oper-
ate, and affect innovation. (The subtitle of the Rate and Direction volume 
is, after all, “Economic and Social Factors.”) Over the past fi ve decades, a 
voluminous literature on the workings of  academic science has emerged 
in economics, sociology, and other disciplines (Stephan 2010; Dasgupta 
and David 1994; Merton 1973). Similarly, the rise of endogenous growth 
theory (Romer 1990; Aghion and Howitt 1992) and its emphasis on spill-
overs has focused attention on how knowledge fl ows across individuals, loca-
tions, and institutional settings. A particular focus has been on the extent 
to which knowledge fl ows are geographically localized (see, inter alia, Jaffe, 
Trajtenberg, and Hendeson [1993]; Thompson and Fox- Kean [2005]; and 
the response by Henderson, Jaffe, and Trajtenberg [2005]). Location was 
not a central concern in the 1962 volume (with the exception of the chapter 
by Wilbur Thompson). However, it has become an important policy issue 
since. The extent to which knowledge fl ows are geographically mediated is 
relevant to local and national policymakers, in deciding whether the benefi ts 
of the research they fund will accrue to those that fund it, or diffuse more 
generally.

A second theme in the volume is the difficulty in measuring economic 
activity. Several chapters explored the utility of patent data as indicators 
of  innovation, and also emphasized that patent data alone may paint a 
distorted picture of the rate and direction of innovation (Kuznets 1962). 
Measuring knowledge fl ows is perhaps even more difficult than measuring 
innovation, since these fl ows leave few footprints (Krugman 1991). Nonethe-
less, a long literature in sociology and bibliometrics has attempted to mea-
sure knowledge fl ows among academics, using publication- to- publication 
citations. More recently, economists have employed patent- to- patent cita-
tions to examine knowledge fl ows from academics to industry (Jaffe and 
Trajtenberg 1999). A few papers (Branstetter 2005; Belenzon and Schanker-
man 2010) also use patent- publication citations.

Our study joins a small but distinguished literature relating patterns of 
citations to individual mobility. Almeida and Kogut (1999) use a sample of 
highly cited semiconductor patents, and information on citations to these 
patents (and a control sample of other patents in the same class as citing 
patents) to examine the extent and determinants of citation localization in 
this industry. They also identify the set of inventors on these patents who 
had moved previously, constructing career paths using patent records. The 
authors use these data to distinguish between regions with high intra-  and 
interregional mobility, and fi nd that patents from regions with high intra-
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regional mobility are more likely to have citations that are local, and patents 
from regions with high interregional mobility are less likely to have local 
citations.1

Using a similar research design, but one more closely related to our own, 
Agrawal, Cockburn, and McHale (2006) examine all US patents applied for 
in 1989 and 1990 by movers, operationalized as individuals with the same 
names who had previously patented in the same patent class. Their analysis 
shows that the citations to postmove patents emanating from the inventors’ 
prior location are disproportionately high, estimating that 50 percent more 
of  the citations to postmove patents come from the prior location than 
would have if  the inventor had not previously lived there. Since this citation 
premium to postmove patents is unlikely to refl ect low communication costs 
or direct interaction (variables often invoked in explaining why geography 
matters), they interpret these results as evidence of the enduring importance 
of social relationships.

Our analysis also departs from these previous analyses in important 
ways: we identify movers from scientists’ vitae (rather than patent data); 
we examine cited and citing knowledge longitudinally, exploiting detailed 
information on the timing of the move; and we look at three distinct mea-
sures of knowledge fl ows. The use of multiple indicators allows us to assess 
not only whether knowledge fl ows from academe are geographically medi-
ated, but also to probe some of the mechanisms that might underlie this 
relationship—in short, to deepen our understanding of knowledge diffusion 
and its implications for the level and rate of technological innovation within 
the economy.

We examine these issues using a novel identifi cation strategy that exploits 
labor mobility in a sample of 9,483 elite academic life scientists to examine 
the impact of moving on the citation trajectories associated with individual 
articles (respectively patents) published (respectively granted) before the sci-
entist moved to a new institution. This longitudinal contrast purges our esti-
mates of most sources of omitted variable bias that can plague cross- sectional 
comparisons. However, the timing of mobility itself  could be  endogenous. 
To address this concern, we pair each moving scientist/ article dyad (respec-
tively scientist/ patent dyad) with a carefully chosen control article or patent 
associated with a scientist who does not transition to a new position. In addi-
tion to providing a very close match based on time- invariant characteristics, 
these controls also share very similar citation trends prior to the mobility 
event. By analyzing the data at the matched- pair level of analysis, this simple 
difference- in- difference framework provides a fl exible and nonparametric 
methodology to evaluate the effects of labor mobility on knowledge fl ows. 

1. In some analyses, Almeida and Kogut also explore individual (rather than regional) level 
mobility, fi nding that inventors who move within a region tend to have citations that are geo-
graphically local.
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Indeed, conditional on the assumption that the matching algorithm we 
employ successfully pairs articles and patents of comparable quality, we are 
able to present the fi ndings in a straightforward, graphical form.

The results reveal a nuanced story. We fi nd that article- to- article cita-
tions from a scientist’s origin location are barely affected by their depar-
ture. In contrast, patent- to-article citations, and especially patent- to- patent 
citations, decline at the origin location following a superstar’s departure, 
suggesting that spillovers from academia to industry are not completely 
disembodied. We also fi nd that article- to- article citations from a scientist’s 
destination location markedly increase after they move. To the extent that 
academic scientists do not internalize the effect of their location decisions 
on the circulation of ideas, our results raise the intriguing possibility that 
barriers to labor mobility in academic science limit the recombination of 
individual bits of  knowledge, resulting in a suboptimal rate of  scientifi c 
exploration.

The chapter proceeds as follows. The next section discusses the construc-
tion of our multilevel panel data set and presents relevant descriptive sta-
tistics. Section 2.2 discusses our econometric approach and identifi cation 
strategy. Section 2.3 reports the results. The fi nal section includes a discus-
sion of policy implications, caveats, and directions for future research.

2.1   Data and Sample Characteristics

The setting for our empirical work is the academic life sciences. This sec-
tor is an important one to study for several reasons. First, there are large 
public subsidies for biomedical research in the United States. With an annual 
budget of $29.5 billion in 2008, support for the National Institutes of Health 
(NIH) dwarfs that of other national funding agencies in developed countries 
(Cech 2005). Deepening our understanding of how the knowledge generated 
by these expenditures diffuses across time, space, and institutional settings 
will allow us to better assess the return to these public investments.

Second, technological change has been enormously important in the 
growth of  the health care economy, which accounts for roughly 15 per-
cent of US gross domestic product (GDP). Much biomedical innovation 
is science- based (Henderson, Orsenigo, and Pisano 1999), and interactions 
between academic researchers and their counterparts in industry appear to 
be an important determinant of research productivity in the pharmaceuti-
cal industry (Cockburn and Henderson 1998; Zucker, Darby, and Brewer 
1998).

Lastly, the existence of geographic research clusters in the life sciences has 
been extensively documented, raising the possibility that scientifi c knowl-
edge diffuses only slowly and with a lag from areas richly endowed with 
academic research institutions to others. To the extent that scientist labor 
mobility is needed to support the circulation of ideas to the periphery, a 
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dearth of mobility events might be one of the centripetal forces leading to 
the persistence of such clusters.

In the next section, we provide a detailed description of  the process 
through which the matched scientist/ article (resp. scientist/ patent) data set 
used in the econometric analysis was assembled. We begin by describing 
the criteria used to select our sample of superstar life scientists, along with 
basic demographic information. Next, we explore the prevalence and char-
acteristics of  mobility events; the set of  products (i.e., journal articles and 
patents) generated by these elite scientists along with the citations they 
accrue. Finally, we discuss the matching procedure implemented to identify 
control articles and patents associated with scientists who do not change 
their location.

2.1.1   Superstar Sample

Our basic approach is to rely on professional transitions in a sample of 
“superstar” scientists in the United States to estimate the extent to which 
citation fl ows to individual pieces of  knowledge are constrained by their 
producers’ geographic location.

The study’s focus on the scientifi c elite can be justifi ed both on substan-
tive and pragmatic grounds. The distribution of publications, funding, and 
citations at the individual level is extremely skewed (Lotka 1926; de Solla 
Price 1963) and only a tiny minority of scientists contribute through their 
published research to the advancement of  science (Cole and Cole 1972). 
Furthermore, analyzing the determinants of citations fl owing to the ideas of 
elite scientists is arguably more interesting than conducting the same exercise 
for a sample of  less distinguished scientists, since superstars presumably 
produce knowledge that is more important to diffuse.

From a practical standpoint, it is also more feasible to trace back the 
careers of eminent scientists than to perform a similar exercise for less emi-
nent ones. We began by delineating a set of  10,450 “elite” life scientists 
(roughly 5 percent of the entire relevant labor market) who are so classifi ed 
if  they satisfy at least one of the following criteria for cumulative scientifi c 
achievement: they are (a) highly funded scientists; (b) highly cited scientists; 
(c) top patenters; or (d) members of the National Academy of Sciences.

These four criteria naturally select seasoned scientists, since they cor-
respond to extraordinary achievement over an entire scientifi c career. We 
combine these measures with three others that capture individuals who 
show great promise at the early and middle stages of their scientifi c careers, 
whether or not these episodes of productivity endure for long periods of 
time: scientists who are (e) NIH MERIT awardees; (f ) Howard Hughes 
Medical Investigators; or (g) early career prize winners. Appendix A pro-
vides additional details regarding these seven indices of “superstardom.”

We trace back these scientists’ careers from the time they obtained their 
fi rst position as independent investigators (typically after a postdoctoral 
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fellowship) until 2006. We do so through a combination of curricula vitæ, 
NIH biosketches, Who’s Who profi les, accolades/ obituaries in medical jour-
nals, National Academy of  Sciences biographical memoirs, and Google 
searches. For each one of these individuals, we record employment history, 
degree held, date of degree, gender, and up to three departmental affiliations. 
We also cross- reference the list with alternative measures of scientifi c emi-
nence. For example, the elite subsample contains every US- based Nobel 
Prize winner in Medicine and Physiology since 1975, and a plurality of the 
Nobel Prize winners in Chemistry over the same time period.2

The 9,483 scientists who are the focus of this chapter constitute a subset 
of this larger pool of 10,450. We impose several additional criteria to derive 
the fi nal list. First, we eliminate from the sample scientists who transition 
from academic positions to jobs in industry; second, we eliminate scientists 
who move to foreign institutions, since we have less ability to track knowl-
edge fl ows to these locations; third, we eliminate scientists who move twice 
in quick succession, since these cases make it difficult to assign to these 
individuals unique origin and destination locations. Finally, we eliminate 
scientists who moved to new institutions prior to 1975, the beginning of 
our observation window.

Turning to patterns of labor mobility, we fi nd that 2,894 scientists (30 per-
cent) in the sample transitioned between two academic institutions between 
1975 and 2004. Our mobility data is tabulated precisely from biographical 
records, rather than inferred from affiliation information in papers or pat-
ents (cf., Almeida and Kogut 1999; Fallick, Fleischmann, and Rebitzer 2006; 
Marx, Strumsky, and Fleming 2009). In particular, we observe the exact 
timing of professional transitions even in the cases in which a scientist has 
ceased to be active in research; for example, because she or he has moved into 
an administrative position. Because the overwhelming majority of mobility 
events take place in the summer, we adopt the following convention: a sci-
entist is said to move from institution A to institution B in year t whenever 
the actual timing of his or her move coincided with the summer of year 
t –  1. Incorporating a lag is necessary, since life scientists need to move en-
tire laboratories rather than simply books and computer equipment. Anec-
dotal evidence suggests that mobility disrupts the pace of these scientists’ 
research activities, if  only temporarily.

We focus on transitions between distant institutions; that is, those sepa-
rated by at least fi fty miles. This limitation can be justifi ed on both substan-
tive and pragmatic grounds. First, many of the social impediments to labor 
mobility (such as dual- career concerns or disruption in the lives of these 
scientists’ children) are less salient for professional transitions that do not 
compel an individual to change his place of residence. Second, our ability 

2. Though we apply the term of superstar to the entire group, there is substantial heterogene-
ity in intellectual stature within the elite sample (see table 2.1).



The Diffusion of Scientifi c Knowledge across Time and Space    113

to assign precisely the institutional affiliation of citing authors and inven-
tors is limited. Therefore, we defi ne an elite scientist’s location by drawing 
a twenty- fi ve- mile radius circle centered around the middle of the zip code 
in which his employer is located. Combined with our emphasis on moves 
between institutions separated by at least fi fty miles, this ensures that ori-
gin and destination locations never overlap in the subsample of scientists 
that move.

Tables 2.1 and 2.2 provide descriptive statistics for the superstar sample. 
The gender composition of the sample is heavily skewed, no doubt because 
our metrics of superstardom favor more seasoned scientists, who came of 
age before female scientists had made signifi cant inroads in the professoriate. 
The average degree year is 1971, and MDs account for a third of the sample. 
On the output side, the stars received an average of roughly seventeen mil-
lion dollars in NIH grants and published 172 papers that garnered close 
to 11,000 citations as of early 2008. The number of patents per scientist is 
considerably smaller, and close to 40 percent of the sample scientists have no 
patent at all. While patents and papers can each appear as prior art cited in 
subsequent patents, the number of such citations is quite modest compared 

Table 2.1 Superstar scientists’ cumulative output by 2006 or career end

  Mean  Median  Std. dev.  Min.  Max.

Stayers (N � 6,589)
  NIH funding $17,491,538 $11,261,535 $25,598,484 $0 $588,753,152
  Publications 171 142 125 2 1,167
  Patents 3.29 0 9.79 0 258
  Paper cites [to papers] 10,639 7,332 11,248 15 139,872
  Patent cites [to papers] 117 67 166 0 1,728
  Patent cites [to patents] 91 19 240 0 5,596
Movers (N � 2,894)
  NIH funding $16,256,723 $12,373,582 $16,243,082 $0 $195,611,552
  Publications 174 144 121 1 1,631
  Patents 3.15 0 8.30 0 117
  Paper cites [to papers] 10,878 7,455 10,533 2 83,301
  Patent cites [to papers] 120 69 159 0 1,821
  Patent cites [to patents]  67  15  164  0  2,079

Notes: Sample consists of  9,483 elite academic life scientists. Movement is defi ned by a change in aca-
demic institution with at least fi fty miles separating origin and destination.

Table 2.2 Demographic characteristics

   Degree year  Female  MD  PhD  MD/PhD

Stayers (N � 6,589) 1970.3 0.14 0.33 0.58 0.10
Movers (N � 2,894) 1972.7 0.14 0.30 0.61 0.10
Total (N � 9,483)  1971.0  0.14  0.32  0.59  0.10
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to the number of article- to- article citations.3 Achievement and demographic 
characteristics appear broadly similar between “moving” (i.e., treated) and 
“staying” (i.e., control) stars.

Figure 2.1 displays the distribution of career age at the time of move in 
the subsample of movers. The likelihood of a mobility event peaks at about 
twelve years (career age is measured as the number of years that elapsed since 
the receipt of one’s highest degree). Figure 2.2 displays the distribution of 
distance moved, conditional on a move. That the shape of this distribution 
is strongly bimodal is not surprising, given the existence of  life sciences 
research clusters on both coasts of  the United States. Finally, fi gure 2.3 
examines whether our elite scientists systematically drift from areas rich 
in the relevant type of  intellectual capital to areas less well endowed (or 
vice versa). We compute total NIH funding fl owing to scientists’ origin and 
destination areas (panel A) and repeat the same exercise with the number 
of patents issued to inventors located in these same areas (panel B). While 
not symmetric in a strict statistical sense, these histograms make clear that 
most of the transitions in the sample involve relatively little difference in the 
resource endowments of the relevant locations, while a few are big moves in 
the sense of taking a scientist away from a less prestigious institution into a 
more intellectually vibrant climate (or vice versa).

3. Nonetheless, it is striking that the mean number of citations to these scientists’ papers is 
larger than those to their patents. This difference (even more pronounced when considering the 
medians) is consistent with the results of Cohen, Nelson, and Walsh (2002), who fi nd that the 
bulk of knowledge fl ows from academe to industry occur via open science channels.

Fig. 2.1  Career age at time of move
Note: Nine observations between 46 and 54 years omitted.
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2.1.2   Matching Scientists with Their Output

The second step in the construction of our data set is to link scientists 
with the knowledge they generate in tangible form, namely journal articles 
and patents. A useful metaphor for this exercise is that of linking producers 
with their products. Past scholarship in the fi eld of the economics of science 
has generated numerous studies that rely on variation between individual 
producers, either cross- sectionally (Zucker, Darby, and Brewer 1998), or 
over time (Azoulay, Ding, and Stuart 2009; Azoulay, Graff Zivin, and Wang 
2010), while paying scant attention to the detailed characteristics of  the 
products involved. Conversely, a more recent and vibrant strand of the lit-
erature has exploited the availability of citations to individual products over 
time, for the most part abstracting away from the characteristics of their 
producers (Furman and Stern, forthcoming; Aghion et al. 2009).4

A major innovation in our study is to link detailed producer and prod-
uct characteristics to create a multilevel panel data set.5 Social scientists 
face difficult practical constraints when attempting to attribute individual 
products to particular producers. When the products involved are journal 
articles, there are thorny issues of name uniqueness: common names make 
it difficult to distinguish between scientists, and even scientists with relatively 

Fig. 2.2  Distance moved
Note: Five observations between 2,500 and 4,500 miles omitted.

4. In what follows, the use of the word “product” will also be useful whenever we want to 
refer to the output of our elite scientists in a generic way so that our statements apply equally 
well to journal articles and to patented inventions.

5. Recent efforts along the same line include Agarwal and Singh (forthcoming) and Azoulay, 
Stuart and Wang (2010).
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rare names sometimes are inconsistent in their use of publication names. 
By adopting the labor- intensive practice of  designing customized search 
queries for each scientist in the sample, we ensured the accuracy of their 
bibliomes. Further details on the linking process are provided in appendix 
B. Linking scientists with their patented inventions is considerably easier, 
since the United States Patent and Trademark Office (USPTO) data records 
inventors’ full names (as opposed to fi rst and middle initials), and we can 
further make use of assignee information to distinguish between the patents 
of inventors with frequent names. Further details on the linking process are 
provided in appendix C.

We select from these publication and patent data to construct the fi nal 
sample. For journal articles, we eliminate from the consideration set letters, 
comments, and editorials. Second, we eliminate all articles published eleven 
or more years prior to the date of the earliest move in the sample (1976); 
similarly, we eliminate all articles published in 2004 (the latest move year we 
observe) or in subsequent years. Third, we delete from the sample all articles 
published by moving scientists after they moved. We proceed similarly for 
patents. To account for potential truncation, we assume an average grant 
lag of three years, and we ignore all patents applied for after the year 2001.

2.1.3   Three Measures of Knowledge Flows

As noted by many authors, beginning with the seminal work of Jaffe, Tra-
jtenberg, and Henderson (1993), knowledge fl ows sometimes leave a paper 
trail, in the form of citations in either patents, or journal articles. The inno-
vation in the present study is that we present evidence pertaining to three 
distinct measures of knowledge fl ows: citations to articles authored by our 
elite scientists in the open science literature; citations to articles authored by 
our elite scientists listed in the prior art section of patents issued by the US 
Patent and Trademark Office (USPTO); and citations to patents granted to 
our elite scientists in patents subsequently granted to other inventors by the 
USPTO. Each of these measures exhibits a particular set of strengths and 
weaknesses. We describe them in turn.

Patent- to- Patent Citations. The bulk of  the voluminous research on 
knowledge spillovers has relied on patent citations in other patents to 
infer patterns of knowledge diffusion (cf. Jaffe and Trajtenberg 1999). The 
difficulties involved in interpreting these citations as evidence of knowledge 
fl ows—mostly because of the high share of citations added by examiners, 
rather than assignees—have been explored in detail (Alcácer and Gittelman 
2006; Alcácer, Gittelman, and Sampat 2009) and need not be repeated here. 
Despite these acknowledged problems, survey results confi rm that roughly 
50 percent of patent- to- patent citations represent some sort of knowledge 
fl ow (Jaffe, Trajtenberg, and Fogarty 2002). Moreover, the prevalence of 
examiner- added citations is much smaller in the life sciences than in other 
fi elds (Sampat 2010).
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Article- to- Article Citations. Beyond the low “signal- to- noise” ratio asso-
ciated with patent citations, a more serious limitation for our purposes is that 
the bulk of the output of the academics we study is in publications, rather 
than patents. Fully 60 percent of the scientists in our superstar sample never 
apply for a patent, and the great majority of those who do patent have only 
one or two inventions to their credit. Therefore, we also collect the number 
of citations in subsequent journal articles that fl ow to each of the papers 
generated by our superstars, over time. A great advantage of these citations 
is that they are numerous, making it possible to parse these data in ever fi ner 
slices to tease out the underlying mechanisms that support the diffusion of 
scientifi c knowledge. Their main drawback is that 95 percent of citations 
fl owing to the articles in our sample come from other academics. These 
data are therefore less useful to track the fl ow of ideas across the boundary 
between academia and for- profi t fi rms.

Patent- to- Article Citations. These limitations lead us to introduce a novel 
measure of knowledge fl ows, namely, references to the open science liter-
ature found in the nonpatent prior art section of  patents granted by the 
USPTO. This is appealing both because publications rather than patents are 
the main output of scientifi c researchers (Agrawal and Henderson 2002), 
but also because the vast majority of patent- to- paper citations, over 90 per-
cent, come from applicants rather than examiners, and are thus more plau-
sible indicators of  real knowledge fl ows than patent- to- patent citations 
(Lemley and Sampat 2010). Another advantage of these data comes from 
the greater diversity of citing institution types, relative to the patterns exhib-
ited by the more traditional data sources mentioned earlier. In previous 
work, systematic analyses of these nonpatent references has been limited, 
since they are free- form text and difficult to link to other data. Our work 
relies on a novel match between nonpatent references and biomedical articles 
indexed in PubMed, described in detail in appendix D. While programming 
improvements and computing speed have enabled us to mine this source of 
data, only 12 percent of the published output of the scientists in our sample 
is ever cited in patents. For this reason, the bulk of our analyses will focus 
on citation fl ows inferred from article- to- article citations.

After collecting the citation data, we further process it in order to make 
it amenable to statistical analysis. First, we eliminate all self- citations since 
these do not correspond to knowledge fl ows in the traditional sense.6 Sec-
ond, we parse the address fi elds in both the citing patents and citing pub-
lications to associate each citing product with a set of  zip codes (for US 
addresses) or country names (for foreign addresses). Third, we parse the cit-
ing assignee names and citing institution names and tag these fi elds with an 

6. In the case of patents, we infer self- citation from overlap between the names of inventors 
in the cited and citing patents, rather than overlap in assignee names.
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indicator variable denoting an industrial affiliation, making use of suffixes 
such as Inc., Corp., Ltd. (or their international variants). In a fi nal step, we 
aggregate the data from the cited product- citing product pair level up to 
the cited product- year level of analysis. In other words, we can track the 
fl ow of citations from birth to 2006 for each producer/ product tuple in the 
sample.7

We can further separate those citations that accrue to a scientist’s origin 
location, to his or her destination, or to all other locations. A complica-
tion arises because it is not clear what destination means for the sample 
of superstars who do not transition to a new location. Ideally, we would 
select as a counterfactual location the institution that provides the highest 
degree of fi t for these scientists outside of their actual home institution. In 
practice, it is very difficult to model the determinants of fi t, and we select a 
location at random from the set of locations that moving scientists transi-
tion to, provided they are separated by at least fi fty miles from the stayers’ 
actual locations.

2.1.4   From Control Producers to Control Products: 
A Nonparametric Matching Procedure

A perennial challenge in the literature on the localization of  knowl-
edge fl ows is whether citing and cited producers’ locations can be credibly 
assumed to be exogenous. Henderson, Jaffe, and Trajtenberg (2005) describe 
this thorny issue:

Professor Robert Langer of MIT, for example, is one of the world’s lead-
ing experts in tissue engineering, and is the author of over 120 patents in 
the area. A large fraction of the citations to these patents are geographi-
cally localized. Are they local just because the authors of the citing patents 
lived in the same city and hence were more likely to learn about Langer’s 
work (i.e., knowledge spillovers)? Or because Boston is one of the world’s 
centers for tissue engineering, and so people working in the area are dis-
proportionately likely to live in Boston (i.e., geographic collocation due 
to other common factors)? Or perhaps it is the case that Boston is one of 
the world’s centers for tissue engineering precisely because fi rms locate in 
the area in order to be able to take advantage of spillovers from people 
like Robert Langer?

Previous scholars faced severe data constraints in their attempts to divine 
whether a particular citation would have taken place, if  contrary to the fact, 
either the citing or the cited producer had been located elsewhere (Jaffe, 
Trajtenberg, and Henderson 1993; Jaffe and Trajtenberg 1999). In this study, 

7. Since the latest year in which a scientist moves is 2004, and the latest product vintage 
we include in the sample is 2003, the postmove observation period will always extend for a 
minimum of three years.
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we can relax these constraints and design more credible counterfactuals, 
since we can “unbundle” producers from their products, and we are able to 
observe two different locations for a signifi cant subset of the producers in 
the sample.

Yet, relying on labor mobility to generate variation in the geographic 
distance separating the source and potential recipients of knowledge is not 
a panacea for two reasons. First, producer mobility might infl uence the qual-
ity of the underlying products, for instance, because the scientist fi nds him-
self  or herself  located in an institution for which she or he is a better match. 
We deal with the threat of unobserved heterogeneity of this type by nar-
rowing our focus to products generated by scientists prior to their move. 
It is difficult to imagine a mechanism through which the quality of these 
products could have been affected by the characteristics of the destination 
location.

Second, it is possible that job transitions for academic scientists are partly 
driven by expectations of interactions with academic peers in their home 
institution, or with the local industrial base. To generate a set of estimates 
that can be given a causal interpretation, we create the matched sample of 
“staying” producers described earlier, which we link to their products fol-
lowing the exact same techniques.

Coarse Exact Matching Procedure. We design a procedure to cull from 
the universe of products associated with “control” producers (i.e., scientists 
who do not change locations) a subset that provides a very close match with 
the products of “treated” producers (i.e., those scientists who do move to 
another institution at some point during the observation period). The goal 
of the construction of this matched sample is to create for the nonmovers a 
counterfactual set of products that mimic the citation trajectories associated 
with movers’ papers and patents.

What makes a good control? Control and treated products should be well 
matched on time- invariant characteristics that have an important impact 
on the magnitude of citation fl ows. For journal articles, such characteristics 
might include the journal in which the article appeared, the exact time of 
publication, the number of scientists on the article’s authorship list, and so 
forth. For patents, fi nding a control such that application year, issue year, 
number of inventors, assignee type, and patent classes/ subclasses coincide 
would be valuable. More importantly, there should be no differential citation 
trends that affect treated products, relative to control products, in the period 
that precedes the move. Finally, in an ideal world, the match would operate 
at the producer/ product pair level, such that focal producer characteristics 
(age, gender, and eminence) would also be comparable between treated and 
control observations.

In practice, identifying close matches is difficult. Because we are interested 
in the fate of individual products, but the shock we observe (mobility) oper-
ates at the scientist- level of analysis, semiparametric matching techniques 
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(such as the propensity score and its variants) are of limited use in our con-
text. We propose instead a nonparametric matching approach, a so- called 
“coarse exact matching” (CEM) procedure (Blackwell et al. 2009).

The selection of controls proceeds in a series of sequential steps. The fi rst 
task is to select a relatively small set of covariates on which we would like 
to guarantee balance between the treatment and control group. The second 
step is to create a large number of strata to cover the entire support of the 
joint distribution of the covariates selected in the previous step. Next, each 
observation is allocated to a unique strata; any strata that either has no 
product associated with a mover, or that has less than fi ve potential con-
trol products, is then dropped from the data. In a fourth and fi nal step, we 
select in each strata a unique control product such that the sum of squared 
differences in citation fl ows between the treated and control product from 
the year of publication/ issue up to the year preceding the move year is mini-
mized. We break ties at random when there are several candidate products 
that minimize this distance metric.

Internal versus External Validity. The procedure is coarse because we do 
not attempt to precisely match on covariate values; rather, we coarsen the 
support of the joint distribution of the covariates into a fi nite number of 
strata, and we match a treated observation if  and only if  a control observa-
tion can be recruited from this strata. An important advantage of CEM is 
that the analyst can guarantee the degree of covariate balance ex ante, but 
this comes at a cost: the more fi ne- grained the partition of the support for 
the joint distribution (i.e., the higher the number of strata), the larger the 
number of unmatched treated observations. In general, the analyst must 
trade off the quality of the matches with external validity: the longer the list 
of matching covariates, the more difficult it is to identify an “identical twin” 
for each article or patent in the treatment group.

We illustrate the essence of  the matching procedure in fi gures 2.4 (for 
articles) and 2.5 (for patents). Implementation details can be found in appen-
dix E. In the case of article- to- article citations, we start from a universe 
of 40,023 papers corresponding to the published output of movers in the 
10 years that precede their change in location. We match 10,249 out of these 
40,023 tuples (25.61 percent). This relatively low match rate is not surprising. 
Nonparametric matching procedures such as CEM are prone to a version 
of the “curse of dimensionality” whereby the proportion of matched units 
decreases rapidly with the number of strata. For instance, requiring a match 
on an additional indicator variable (e.g., matching on focal scientist gender 
in addition to the covariates mentioned earlier) would result in a match 
rate of  about 10 percent. Conversely, failing to impose that control and 
treated articles are drawn from the same scientifi c journal would increase 
the match rate to 70 percent, but doing so might threaten the internal valid-
ity of our empirical exercise. In the case of article- to- patent citations, we 
match 2,435 articles out of a potential 6,492 (37.51 percent). In the case of 
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patent- to- patent citations, the match rate is higher still: 41.36 percent (1,417 
matched patents out of a potential 3,426 matches).

Descriptive Statistics. We present univariate statistics at baseline—that 
is, in the year preceding the (possibly counterfactual) move year—for the 
matched product data sets in tables 2.3, 2.4, and 2.5. Examining the raw data 
across these three panel data sets, a number of stylized facts emerge.

First, in all three cases, the match is “product- centric” rather than 
“producer- centric.” That is, product- level attributes exhibit a high level of 

Table 2.3 Article- to- article citation fl ows: Descriptive statistics (n � 2 � 10,249), articles 
published before the move

  Mean  Median  Std. dev.  Min.  Max.

Journal Articles by Stayers
  Number of authors 4.463 4 2.980 1 129
  Focal author is last 0.653 1 0.476 0 1
  Article age at baseline 2.483 2 2.055 1 10
  Focal author gender 0.098 0 0.297 0 1
  Focal author graduation year 1967.491 1968 10.893 1931 2001
  Article baseline stock of article citations 27.666 3 66.750 0 2399
  Article baseline stock of article citations from 
  industry

1.023 0 3.731 0 135

  Article baseline stock of article citations at 
  origin

1.952 0 6.550 0 135

  Article baseline stock of article citations at 
  destination

0.355 0 2.210 0 80

Journal Articles by Movers
  Number of authors 4.489 4 3.238 1 180
  Focal author is last 0.653 1 0.476 0 1
  Article age at baseline 2.483 2 2.055 1 10
  Focal author gender 0.084 0 0.277 0 1
  Focal author graduation year 1972.603 1973 9.289 1940 1997
  Article baseline stock of citations 27.824 3 63.855 0 1226
  Article baseline stock of article citations from 
  industry

1.036 0 3.477 0 103

  Article baseline stock of article citations at 
  origin

1.834 0 6.284 0 149

  Article baseline stock of article citations at 
  destination  0.624  0  3.249  0  131

Notes: The match is article centric; that is, the control article is always chosen from the same journal in 
the same publication year. The control article is coarsely matched on the number of authors (exact match 
for one, two, and three authors; four or fi ve authors; between six and nine authors; and more than nine 
authors). We also match on focal scientist’s position in the authorship roster (fi rst author; last author; 
middle author). For articles published one year before appointment, we also match on the month of 
publication. For articles published two years before appointment, we also match on the quarter of  pub-
lication. In addition, the articles in the control and treatment groups are matched on article citation dy-
namics up to the year before the (possibly counterfactual) transition year. The cost of  a very close, 
nonparametric match on article characteristics is that author characteristics do not match closely. Impos-
ing a close match on focal scientist age, gender, and overall productivity at baseline would result in a 
match rate which is unacceptably low.
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covariate balance between treated and control products, whether these char-
acteristics are time- invariant (such as number of authors or focal scientist 
position on the authorship roster) or time- varying (such as the stock of 
overall citations, whose distributions we display graphically in fi gure 2.6). 
In contrast, producer characteristics do not match as well, as can be seen by 
examining the distribution of covariates such as degree year or gender.

Second, most citations do not accrue in the areas corresponding to these 

Table 2.4 Patent- to- article citation fl ows: Descriptive statistics (n � 2 � 2,435), articles 
published before the move

  Mean  Median  Std. dev.  Min.  Max.

Journal articles by stayers
  Number of authors 5.062 5 2.596 1 38
  Focal author is last 0.598 1 0.490 0 1
  Article age at baseline 3.118 2 2.333 1 10
  Focal author gender 0.083 0 0.276 0 1
  Focal author graduation year 1965.539 1967 12.022 1931 1999
  Article baseline stock of patent citations 0.499 0 1.649 0 29
  Article baseline stock of patent citations from
  industry

0.352 0 1.375 0 24

  Article baseline stock of patent citations at 
  origin

0.040 0 0.449 0 16

  Article baseline stock of patent citations at 
  destination

0.012 0 0.306 0 14

Journal articles by movers
  Number of authors 5.049 5 2.433 1 26
  Focal author is last 0.598 1 0.490 0 1
  Article age at baseline 3.118 2 2.333 1 10
  Focal author gender 0.086 0 0.281 0 1
  Focal author graduation year 1974.161 1975 8.709 1940 1995
  Article baseline stock of patent citations 0.540 0 1.889 0 46
  Article baseline stock of patent citations from 
  industry

0.367 0 1.652 0 46

  Article baseline stock of patent citations at 
  origin

0.029 0 0.284 0 6

  Article baseline stock of patent citations at 
  destination  0.019 0  0.236  0  7

Notes: The match is article centric; that is, the control article is always chosen from the same journal in 
the same publication year. The control article is coarsely matched on the number of authors (exact match 
for one, two, and three authors; four or fi ve authors; between six and nine authors; and more than nine 
authors). We also match on focal scientist’s position in the authorship roster (fi rst author; last author; 
middle author). For articles published one year before appointment, we also match on the month of 
publication. For articles published two years before appointment, we also match on the quarter of  pub-
lication. In addition, the articles in the control and treatment groups are matched on patent citation dy-
namics up to the year before the (possibly counterfactual) transition year. The cost of  a very close, 
nonparametric match on article characteristics is that author characteristics do not match closely. Impos-
ing a close match on focal scientist age, gender, and overall productivity at baseline would result in a 
match rate which is unacceptably low.
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scientists’ location. As an example, only 6.82 percent of citations up to the 
baseline year have accrued at the origin location; the fi gure is 1.77 percent 
in the destination location.

Third, whereas citations at the origin location are well matched at base-
line, this is not the case for citations at destination. In all cases, movers have 
accrued many more citations in the area they will soon transition to, rela-
tive to the citations that have accrued to the products of stayers in a loca-
tion picked at random. This is consistent with the view that mobility events 
are jointly determined with expected spillovers of knowledge; for instance, 
because scientists who know your work are more likely to win the competi-
tion to lure you away. These baseline differences further justify our emphasis 
on identifying a closely matched set of control products.

Finally, the salience of industrial citers varies greatly across our  measures 
of knowledge fl ows, accounting for only 3.61 percent of article- to- article 

Table 2.5 Patent- to- patent citation fl ows: Descriptive statistics (n � 2 � 1,417), patents issued 
before the move

  Mean  Median  Std. dev.  Min.  Max.

Patents by stayers
  Patent age at baseline 4.579 4 2.610 1 10
  Focal author gender 0.056 0 0.231 0 1
  Focal author graduation year 1969.762 1970 10.806 1932 1996
  Patent baseline stock of patent citations 7.076 1 14.770 0 135
  Patent baseline stock of patent citations from 
  industry

5.880 0 12.830 0 98

  Patent baseline stock of patent citations at 
  origin

0.563 0 2.899 0 48

  Patent baseline stock of patent citations at 
  destination

0.167 0 1.439 0 37

Patents by movers
  Patent age at baseline 4.579 4 2.610 1 10
  Focal author gender 0.047 0 0.212 0 1
  Focal author graduation year 1976.711 1978 8.678 1950 1996
  Patent baseline stock of patent citations 7.198 1 15.608 0 148
  Patent baseline stock of patent citations from 
  industry

5.787 0 13.239 0 137

  Patent baseline stock of patent citations at 
  origin

0.370 0 1.714 0 34

  Patent baseline stock of patent citations at 
  destination  0.231  0  1.966  0  53

Notes: The match is patent centric; that is, the control patent is always chosen from the same application 
year and the same issue year. In addition, control and treatment patents are matched on patent citation 
dynamics up to the year before the (possibly counterfactual) transition year. The cost of  a very close, 
nonparametric match on patent characteristics is that author characteristics do not match closely. Im-
posing a close match on focal scientist age, gender, and overall productivity at baseline would result in a 
match rate which is unacceptably low.
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cites, but 80.72 percent of  article- to- patent cites, and 83.04 percent of 
patent- to- patent citations.

2.2   Econometric Considerations

A natural starting point for a difference- in- difference (DD) analysis of the 
causal effect of labor mobility on knowledge fl ows is to conduct the statisti-
cal analysis using all product- year observations (treated and control) as the 
estimation sample. Since the mobility effect is mechanically correlated with 
the passage of time, as well as with an article’s age, it is necessary to include 
life cycle and period effects, as is the norm in studies of scientifi c productivity 
(Levin and Stephan 1991).

In this framework, the control group that pins down the counterfactual 
vintage and calendar time effects for the products that were generated by sci-
entists currently transitioning to new positions contains three categories of 
products: (a) those generated by movers who transitioned in earlier periods, 
(b) those generated by scientists who will move in the future, and (c) those 
generated by stayers. This approach is problematic insofar as products that 
appeared after a scientist has moved are not appropriate controls if  the 
mobility event negatively affects the trend in their citations. If  this is the case, 
fi xed effects may underestimate the true effect of mobility.

To produce an analysis in which the control group consists solely of prod-
ucts associated with stayers, we instead perform the statistical analysis at the 
product- pair level. Specifi cally, the outcome variable is the difference between 
the citations received in a given year by a treated product and its associ-
ated control identifi ed in the matching procedure previously described. Let 
i denote an article associated with a mover and let i� index the correspond-
ing control product. Then our estimating equation relates �CITESii�t � 
CITESit –  CITESi�t with the timing of mobility in the following way:

(1) E [�CITESii�t | Xijt] � �0 � �1AFTER_MOVEjt � f (AGEjt) � �ii�,

where AFTER_MOVE denotes an indicator variable that switches to one 
in the year focal scientist j moves, f(AGE) corresponds to a fl exible function 
of the scientist’s age, and the �ii’ correspond to product- pair fi xed effects, 
consistent with our approach to analyze changes in the pair’s citation rate 
following the move of investigator j.8 We also run slight variations of this 
specifi cation in which the dependent variable has been parsed so that we 
can break down citation fl ows by location or by citer type (i.e., industrial 
vs. academic citers).

There is another benefi t to conducting the analysis at the product- pair 
level: since treated and control products always originate in the same year, 

8. We do not need to include product vintage or year effects in the specifi cation, since both 
products in the pair appeared in the same year, by construction.
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experimental time and calendar time coincide, making it simple to display 
the results of the analysis graphically. The graphical approach is advanta-
geous because it makes the essence of the empirical exercise transparent. The 
regression analysis, however, will prove useful when exploring interactions 
between the treatment effect and various star or product characteristics.

2.3   Results

2.3.1   Effect of Mobility on Citation Rates 
to Articles Published After the Move

As explained earlier, the bulk of our analysis focuses on citation fl ows to 
articles (respectively to patents) published (respectively issued) before the 
move so that we can separately identify the effect of mobility from that of 
correlated infl uences that might have an impact on the quality of the research 
itself. For example, mobility events such as those analyzed in this chapter 
might be driven by the availability of resources in the destination location, 
including laboratory equipment, trainees, or potential collaborators. From a 
descriptive standpoint, it is still interesting to examine the geographic spread 
of citations that accrue to products that postdate the mobility event, and 
these results are reported in fi gure 2.7. For the sake of brevity, we examine 
this for article- to- article citation fl ows only.9

We pair articles written by superstar movers with articles written by super-
star stayers who are observationally quite similar at the time of the mobility 
event, so that the match is both “article- centric” and “scientist- centric.” 
The scientist- level covariates used to create the match are (a) year of highest 
degree (coarsened in three- year intervals); (b) gender; (c) NIH funding sta-
tus (funded vs. not funded at the time of the move); and (d) the total number 
of citations having accrued by 2006 to all premove publications. This ensures 
that the scientists being compared are not only demographically similar, 
but also of comparable renown at the time of the (possibly counterfactual) 
move. In addition, we match on article characteristics, including the jour-
nal, the length of the authorship roster, the focal author’s position, and the 
publication year. Descriptive statistics for the resulting sample of 2 � 26,254 
� 52,508 articles are displayed in table 2.6.

In the three panels of fi gure 2.7, we display the difference in average cita-
tion trends for the article pairs in the sample (the solid line), along with a 
95th confi dence interval (the dashed lines). Panel A focuses on differential 
citation patterns at the origin location. Relative to articles by stayers, it 
appears that postmove research is cited less in the area the moving scientist 
departed from; this citation discount is small (less than one citation per year 

9. Our discussant Adam Jaffe uses the metaphor of carefully examining the dirty bath water 
before throwing it out to focus on the (hopefully clean) baby.
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on average), but it is enduring. Panel B repeats the same analysis for the 
destination location; we fi nd the opposite pattern, in that postmove articles 
benefi t from a lasting citation premium equal to less than one citation per 
year in the new location, relative to the number of citations accruing to the 
matched articles of stayers in a random location. Finally, Panel C exam-
ines citation outcomes in all other locations. Though the articles of movers 
appear to benefi t from more “buzz” than those of stayers, this effect is both 
very small and imprecisely estimated.

From these results, it would appear that scientist mobility slightly shifts 
the allocation of citations across scientifi c areas without much of an impact 
on the diffusion process in the aggregate. Of course, because our controls 
for scientist- level and article- level quality are imperfect, we should resist the 
temptation to overinterpret these patterns. For instance, a citation discount 
at origin could mean that the superstar’s former colleagues are quick to 
forget his or her research after the mobility event. But she or he may have 

Table 2.6 Article- to- article citation fl ows: Descriptive statistics (n � 2 � 26,254), articles 
published after the move

  Mean  Median  Std. dev.  Min.  Max.

Journal articles by stayers
  Number of authors 4.915 4 4.077 1 255
  Focal author is last 0.661 1 0.473 0 1
  Article stock of citations up to 2006 273.818 133 542.514 1 22,336
  Article publication year 1992.271 1992 6.208 1977 2003
  Move year 1986.912 1987 6.212 1976 2002
  Focal author graduation year 1970.270 1970 8.198 1931 1996
  Focal author gender 0.023 0 0.149 0 1
  Scientist citations at baseline 5,283 3,623 5,215 0 60,496
  Scientist NIH funding at baseline $3,828,267 $2,412,251 $5,297,164 $0 $101,678,352
Journal Articles by movers
  Number of authors 4.887 4 3.843 1 255
  Focal author is last 0.661 1 0.473 0 1
  Article stock of citations up to 2006 279.845 134 576.462 0 22,298
  Article publication year 1992.271 1992 6.208 1977 2003
  Move year 1986.912 1987 6.212 1976 2002
  Focal author graduation year 1970.422 1970 7.990 1940 1996
  Focal author gender 0.023 0 0.149 0 1
  Scientist citations at baseline 5,248 3,584 5,157 0 51,174
  Scientist NIH funding at baseline  $3,563,252  $2,306,315  $4,381,859  $0  $118,257,904

Notes: The match is both scientist centric and article centric. The control article is always chosen from 
the same journal in the same publication year. The control article is coarsely matched on the number of 
authors (exact match for one, two, and three authors; four or fi ve authors; between six and nine authors; 
and more than nine authors). We also match on focal scientist’s position in the authorship roster (fi rst 
author; last author; middle author). In addition, the following individual covariates for the moving and 
staying stars match: gender, year of highest degree (in three- year bins), NIH funding status as of  the 
moving year (funded vs. not); and total number of citations having accrued by 2006 to all premove pub-
lications (below the 10th percentile; between the 10th and 25th percentile; between the 25th percentile 
and the median; between the median and the 75th percentile; between the 75th and 95th percentile; 
between the 95th and 99th percentile; and above the 99th percentile).
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moved to a new location precisely because his or her research was delving 
into areas that appealed less to his or her old peers. In this case, the causality 
would fl ow from (expected) impact to job mobility, rather than in the direc-
tion we hypothesize. Similarly, at destination, the citation premium might 
refl ect the interest of colleagues who extended an offer to the mover precisely 
in the expectation of deeper intellectual connections.

For these reasons, the rest of the chapter will focus on changes in citation 
rates following mobility events (and their allocation across geographic areas) 
for articles published before the move. This research design will enables us 
to better isolate the effect of mobility per se from that of correlated and 
competing infl uences.

2.3.2   Effect of Mobility on Citation Rates to Articles 
and Patents Published Before the Move

Our primary results are presented in fi gures 2.8 through 2.13. Table 2.7 
presents estimates from simple ordinary least squares (OLS) regressions with 
article- pair fi xed effects, corresponding to the earlier estimating equation. 
Robust standard errors, clustered at the scientist level, appear below the 
coefficient estimates in parentheses.

Article- to- Article Citation Flows. Panel A of fi gure 2.8 displays the cita-
tion dynamics corresponding to article- to- article fl ows, without disaggre-
gating these fl ows by citer location or institutional type. It is clear from the 
picture that our matching procedure succeeded in identifying good control 
articles, since there is no evidence of deviation from zero in the years pre-
ceding the move. Moreover, there is a clear uptick in the rate of citations 
after the move, though it is modest in magnitude and relatively short- lived, 

Table 2.7 Effects of professional move on citation rates, by location

Article- to- article 
citations

Patent- to- article 
citations

Patent- to- patent 
citations

Origin Destination Origin Destination  Origin  Destination
  (1a)  (1b)  (2a)  (2b)  (3a)  (3b)

After appointment 0.026 0.069∗∗∗ –0.026 0.007 –0.121∗∗∗ 0.041∗∗
(0.026) (0.015) (0.012) (0.006) (0.036) (0.017)

Nb. of observations 175,715 175,715 41,114 41,114 21,221 21,221
Nb. of article pairs 10,249 10,249 2,435 2,435 1,417 1,417
Nb. of scientists 2,106 2,106 928 928 426 426
Adjusted R2  0.295  0.323  0.157  0.125  0.215  0.214

Notes: Standard errors in parentheses, clustered by scientists. All specifi cations are estimated by OLS; 
the models include article- pair fi xed effects.
∗∗∗Signifi cant at the 1 percent level.
∗∗Signifi cant at the 5 percent level.
∗Signifi cant at the 10 percent level.



F
ig

. 2
.8

  
E

ff
ec

t o
f 

pr
of

es
si

on
al

 tr
an

si
ti

on
s 

on
 a

rt
ic

le
- t

o-
 ar

ti
cl

e 
ci

ta
ti

on
 ra

te
s,

 b
y 

ci
ti

ng
 in

st
it

ut
io

n 
ty

pe
 (a

rt
ic

le
s 

pu
bl

is
he

d 
b

ef
o

re
 th

e 
m

ov
e)

N
ot

es
: 

D
yn

am
ic

s 
fo

r 
th

e 
di

ff
er

en
ce

 in
 y

ea
rl

y 
ci

ta
ti

on
s 

be
tw

ee
n 

m
ov

er
s’

 a
nd

 s
ta

ye
rs

’ m
at

ch
ed

 a
rt

ic
le

s 
w

ri
tt

en
 in

 t
he

 p
re

m
ov

e 
pe

ri
od

. A
rt

ic
le

s 
in

 e
ac

h 
pa

ir
 a

p-
pe

ar
ed

 in
 t

he
 s

am
e 

ye
ar

 a
nd

 jo
ur

na
l, 

an
d 

ar
e 

al
so

 m
at

ch
ed

 o
n 

fo
ca

l s
ci

en
ti

st
 p

os
it

io
n 

on
 t

he
 a

ut
ho

rs
hi

p 
lis

t,
 a

s 
w

el
l a

s 
ov

er
al

l n
um

be
r 

of
 a

ut
ho

rs
. F

ur
th

er
, 

co
nt

ro
l a

rt
ic

le
s 

ar
e 

se
le

ct
ed

 s
uc

h 
th

at
 t

he
 s

um
 o

f 
sq

ua
re

d 
di

ff
er

en
ce

s 
in

 c
it

at
io

ns
 b

et
w

ee
n 

co
nt

ro
l a

nd
 t

re
at

ed
 a

rt
ic

le
 u

p 
to

 y
ea

r 
t 0 –

  1
 is

 m
in

im
iz

ed
—

w
he

re
 t

0 
is

 th
e 

ye
ar

 o
f 

(p
os

si
bl

y 
co

un
te

rf
ac

tu
al

) m
ov

e.
 I

n 
ad

di
ti

on
, w

he
n 

th
e 

ye
ar

 o
f 

pu
bl

ic
at

io
n 

is
 in

 th
e 

ye
ar

 p
ri

or
 to

 th
e 

m
ov

e,
 th

e 
ar

ti
cl

es
 in

 e
ac

h 
pa

ir
 a

pp
ea

re
d 

no
t 

on
ly

 in
 th

e 
sa

m
e 

ye
ar

, b
ut

 a
ls

o 
in

 th
e 

sa
m

e 
m

on
th

. S
im

ila
rl

y,
 w

he
n 

th
e 

ye
ar

 o
f 

pu
bl

ic
at

io
n 

is
 in

 th
e 

pe
nu

lt
im

at
e 

ye
ar

 p
ri

or
 to

 th
e 

m
ov

e,
 th

e 
ar

ti
cl

es
 in

 e
ac

h 
pa

ir
 

ap
pe

ar
ed

 n
ot

 o
nl

y 
in

 th
e 

sa
m

e 
ye

ar
, b

ut
 a

ls
o 

in
 th

e 
sa

m
e 

qu
ar

te
r.



134    Pierre Azoulay, Joshua S. Graff Zivin, and Bhaven N. Sampat

 fading out  completely seven years later. Panel B examines whether the same 
patterns can be observed when restricting the outcome variable to article 
citations from industrial fi rms. The scale of  the vertical axis is different, 
since these industrial cites account for a relatively tiny fraction of the total. 
Due to the paucity of the industrial citations, the results are very imprecise, 
though there is a very modest upward deviation from trend one year after 
the move.

Figure 2.9 display the results for citation fl ows disaggregated by citer loca-
tion. Perhaps surprisingly, citations at the origin location do not appear to 
decline upon a star’s departure (panel A). This lack of forgetting on the 
part of academics points to a capacity to absorb scientifi c knowledge that 
is disembodied from the producer of a particular idea. However, this view 
needs to be tempered in light of  the results displayed in panel B, which 
focuses on citations accruing at the destination location. Relative to the 
fl ows in a random—but distant—location for the stayer, the level of fl ows is 
higher for movers at destination even before the move, with an upward trend 
starting two years before the move is effective. This provides strong evidence 
that academic superstars are, at least in part, “recruited for ideas” (Agarwal 
and Singh, forthcoming). Furthermore, this upward trend becomes more 
 pronounced after the move, peaking two years later, but fading out only 
slowly over time. In other words, there is clear evidence that itinerant sci-
entists circulate their old ideas in their new locations. The magnitude of 
this effect is not trivial: by the end of the observation period, movers have 
accrued more than twice as many citations to their old ideas at destination 
than stayers have in their counterfactual, random location.

Panel C examines citation dynamics in all locations, save for the origin 
and destination. One can discern a slight increase in citations after the 
move, though it is neither large nor precisely estimated. Yet, this should not 
be surprising if  we think that mobility events give scientists looking for a 
new position an opportunity to give their ideas—old and new—a boost in 
ex posure.

The asymmetry between the citation dynamics at location and origin 
strikes us as noteworthy, since it provides clear evidence that labor mobility 
increases the circulation of scientifi c ideas. If  one espouses the view that 
knowledge fl ows are economically and socially valuable, then our results 
raise the intriguing possibility that scientists move too little, relative to what 
would lead to an optimal rate of scientifi c exploration. We return to this 
point in the discussion.

Tables 2.8 and 2.9 explore whether the magnitude of the treatment effect 
is affected by a number of article and scientist characteristics, at the origin 
and destination locations, respectively.10 We do not discuss these in detail, 
since they tend to be quite noisy. Furthermore, with an unlimited number of 

10. We do not repeat these analyses for patent- to- patent and patent- to- article citations, since 
they are sparse as is, and analyses that separate them into bins would be very noisy.
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potential contingencies, pure luck would dictate that at least some interac-
tion effects would be statistically signifi cant. In table 2.8, we fi nd almost all 
interaction effects to be imprecisely estimated zeros.

New results, some reassuring, others more puzzling, emerge when focus-
ing on citation fl ows at destination (table 2.9). We examine whether the 
mobility premium at destination varies with authorship credit for the focal 

Table 2.8 Effects of professional move on article- to- article citation rates at origin location

Novel vs. not Young vs. old Journal prestige

Novel Not Young Old Low JIF High JIF
  (1a)  (1b)  (2a)  (2b)  (3a)  (3b)

After appointment –0.054 0.083∗∗ –0.000 0.045 0.032 0.022
(0.039) (0.034) (0.041) (0.033) (0.028) (0.040)

Nb. of observations 80,165 95,550 82,580 93,135 84,114 91,601
Nb. of article pairs 3,713 6,536 4,524 5,725 4,884 5,365
Nb. of scientists 1,273 1,648 1,192 914 1,698 1,489
Adjusted R2   0.243  0.320  0.290  0.299  0.269  0.305

Pre-  vs. post- Internet
Big vs. small 
status change

PI vs. non- PI pubs

First or last Middle 
1975–1994 1995–2003 Big Small position position

(4a)  (4b)  (5a)  (5b)  (6a)  (6b)

After appointment 0.023 0.038 –0.014 0.037 0.045∗ –0.026
(0.028) (0.067) (0.057) (0.029) (0.025) (0.066)

Nb. of observations 150,880 24,835 34,414 141,301 130,230 45,485
Nb. of article pairs 7,456 2,793 2,049 8,200 7,315 2,934
Nb. of scientists 1,782 564 417 1,689 1,872 1,200
Adjusted R2  0.251  0.361  0.322  0.289  0.253  0.334

Well- cited at baseline
Well- funded 
at baseline

Prolifi c patenter 
at baseline

No Yes No Yes No Yes
(7a)  (7b)  (8a)  (8b)  (9a)  (9b)

After appointment 0.011 0.043 0.021 0.044 0.016 0.054
(0.032) (0.040) (0.030) (0.052) (0.028) (0.057)

Nb. of observations 88,823 86,892 131,548 44,167 135,818 39,897
Nb. of article pairs 5,240 5,009 7,787 2,462 7,477 2,772
Nb. of scientists 1,406 700 1,708 398 1,732 374
Adjusted R2  0.276  0.306  0.285  0.322  0.275  0.328

Note: Standard errors in parentheses, clustered by scientists. All specifi cations are estimated by OLS; the 
models include article- pair fi xed effects.
∗∗∗Signifi cant at the 1 percent level.
∗∗Signifi cant at the 5 percent level.
∗Signifi cant at the 10 percent level.
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scientists. For this purpose, we exploit a robust social norm in the natural and 
physical sciences, whereby last authorship is systematically assigned to the 
principal investigator of a laboratory, fi rst authorship is generally assigned 
to the junior author who was responsible for the actual conduct of the inves-
tigation (or, more rarely, to the principal investigator (PI) of a collaborating 
lab), and the remaining credit is apportioned to authors in the middle of 

Table 2.9 Effects of professional move on article- to- article citation rates at 
destination location

Novel vs. not Young vs. old Journal prestige

Novel Not Young Old Low JIF High JIF
  (1a)  (1b)  (2a)  (2b)  (3a)  (3b)

After appointment 0.036∗ 0.093∗∗∗ 0.035 0.094∗∗∗ 0.078∗∗∗ 0.063∗∗∗
(0.021) (0.020) (0.025) (0.018) (0.014) (0.024)

Nb. of observations 80,165 95,550 82,580 93,135 84,114 91,601
Nb. of article pairs 3,713 6,536 4,524 5,725 4,884 5,365
Nb. of scientists 1,273 1,648 1,192 914 1,698 1,489
Adjusted R2  0.237  0.360  0.343  0.305  0.256  0.345

Pre-  vs. post- Internet
Big vs. small 
status change

PI vs. non- PI pubs

First or last Middle 
1975–1994 1995–2003 Big Small Position Position

(4a)  (4b)  (5a)  (5b)  (6a)  (6b)

After appointment 0.046∗∗∗ 0.164∗∗∗ 0.039 0.077∗∗∗ 0.077∗∗∗ 0.047
(0.015) (0.043) (0.038) (0.016) (0.016) (0.030)

Nb. of observations 150,880 24,835 34,414 141,301 130,230 45,485
Nb. of article pairs 7,456 2,793 2,049 8,200 7,315 2,934
Nb. of scientists 1,782 564 417 1,689 1,872 1,200
Adjusted R2  0.295  0.361  0.355  0.315  0.313  0.342

Well- cited at baseline
Well- funded 
at baseline

Prolifi c patenter at 
baseline

No Yes No Yes No Yes
(7a)  (7b)  (8a)  (8b)  (9a)  (9b)

After appointment 0.077∗∗∗ 0.061∗∗ 0.078∗∗∗ 0.043∗∗ 0.066∗∗∗ 0.078∗∗
(0.016) (0.025) (0.018) (0.026) (0.016) (0.034)

Nb. of observations 88,823 86,892 131,548 44,167 135,818 39,897
Nb. of article pairs 5,240 5,009 7,787 2,462 7,477 2,772
Nb. of scientists 1,406 700 1,708 398 1,732 374
Adjusted R2  0.253  0.350  0.331  0.297  0.309  0.340

Notes: Standard errors in parentheses, clustered by scientists. All specifi cations are estimated by OLS; 
the models include article- pair fi xed effects.
∗∗∗Signifi cant at the 1 percent level.
∗∗Signifi cant at the 5 percent level.
∗Signifi cant at the 10 percent level.
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the authorship list, generally as a decreasing function of the distance from 
the extremities (Riesenberg and Lundberg 1990). We split the cited- article 
sample in two by consolidating the fi rst and last authorship categories, and 
contrasting it with those article- pairs in which the focal scientists appear 
in the middle of the authorship list. We fi nd clear evidence of a more pro-
nounced mobility effect for article pairs in which the departing scientist is 
either fi rst or last author. The evidence for middle- position authors is much 
smaller in magnitude. This is reassuring because the level of contribution 
of middle authors is often sufficiently small that one would not expect these 
old, marginal articles (from the point of view of the mover’s overall corpus 
of work) to gain signifi cant exposure at the new destination.

Second, we fail to detect a mobility premium of larger magnitude for the 
citations to the papers of superstars who shine particularly bright, regardless 
of the ways in which we seek to distinguish the elite from others who might 
be less accomplished (models 7a through 9b of table 2.9).

The anomalous result that bears mention pertains to the sample split 
corresponding to articles of  recent versus older vintage. We separate the 
analysis for papers that appeared prior to and after 1995, a date that we pick 
as a marker for the Internet becoming ubiquitous in academia. We fi nd that 
the mobility premium is four times higher for papers written in the Internet 
era than for papers published in the pre- Internet times. These results are 
inconsistent with the widespread belief  that the diffusion of the Internet 
led to the “death of distance,” though they should be interpreted cautiously 
since they may also refl ect other changes over time.

Patent- to- Article Citation Flows. Figure 2.10 and 2.11 present the evi-
dence on the second measure of knowledge fl ows, citations made to articles 
published in the open science literature in patents granted by the USPTO. 
In panel A of fi gure 2.10, we cannot detect any differential citation trend 
for the overall citations fl owing to treated, rather than control articles. In 
fact, there is only the faintest evidence of a decline after the move. Panel B, 
which focuses on citations from industrial assignees alone, similarly shows 
no clear result.

The evidence on localization, presented in fi gure 2.11, is also relatively 
weak. This time, we observe a meaningful decline of citations at the origin 
location following the departure of a superstar, but this temporary dip is not 
pinned down precisely. Table 2.7, column (2a) presents the same analysis in 
regression form, but uses a longer postmove observation period, and con-
strains the mobility effect to be constant over time. In this case, we can detect 
a statistically signifi cant decline equal to a quarter of a citation per year on 
average. Similarly, we observe a small increase in citations for treated articles 
at destination, relative to controls, but we cannot reject the hypothesis of a 
mobility premium equal to zero.

Patent- to- Patent Citation Flows. We employ the more traditional mea-
sure of knowledge fl ows—patent- to- patent citations—in the next batch of 
analyses, presented in fi gures 2.12 and 2.13. Once again, premove citation 
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dynamics appear very similar up until the year of the move, which is expected 
given the extensive efforts we deployed in our search for appropriate control 
patents. There is no evidence that mobility increases citation fl ows overall 
(fi gure 2.12).

The localization effects presented in fi gure 2.13 are much more dramatic. 
First, there is a decline in the rate of citations in the location of origin, which 
becomes more pronounced over time and shows no sign of abating even ten 
years after the scientist has departed (panel A). This may refl ect the impor-
tance of physical proximity to university laboratories for helping industrial 
fi rms develop the inventions of academic entrepreneurs (Zucker, Darby, and 
Brewer 1998; Audretsch and Stephan 1996). However, this interpretation 
is undermined by evidence that the onset of this decline precedes the move 
by almost four years (though this preexisting downward trend is small in 
magnitude and imprecisely estimated).

The upward trend at destination (panel B) is not quite as dramatic, but 
clear. Here again, there is some weak evidence of anticipation, with cita-
tions being slightly higher for movers in the baseline year at destination, 
relative to stayers. It is therefore difficult to distinguish between the view that 
physical proximity to academic entrepreneurs begets absorptive capacity, 
from the alternative perspective that a scientist’s assessment that the local 
industrial base has grown stale (or at least less receptive to his/ her ideas) 
triggers mobility.

2.4   Discussion

In this chapter, we examine the impact of geography on knowledge trans-
fer by exploiting professional transitions within the academic life sciences 
coupled with publication and patent citation data over time. The results 
reveal a rather nuanced story. Consistent with models of localized knowl-
edge diffusion, we fi nd strong evidence that publication- to- publication cita-
tions (to papers published before the move) rise at destination locations 
after the move takes place. We also fi nd, however, persuasive evidence of a 
legacy effect at the origin institution—citation rates do not decline after the 
scientist departs. While the fi ndings on the patent side are less conclusive 
than those on publications alone, they reveal a slightly different role for 
geography. Here again citations at the destination location rise (or at least 
remain the same) after the move, while citations at the origin location appear 
to fall, particularly for patent- to- patent citations.

The normative implications of our fi ndings are not straightforward, espe-
cially since there may be fi rst- order effects of job mobility we do not observe. 
Nonetheless, we offer some broader speculations here. Let’s begin with a 
deeper look at the publication- to- publication citation results. A surge in 
citations at the new location with little drop off at the old location under-
scores the importance of scientist interactions, but also makes clear that 
these interactions are not easily forgotten. Since the sharing and recombin-
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ing of existing ideas is viewed as an essential component in the innovation 
process (Weitzman 1998; Burt 2004; Simonton 2004), might our evidence 
suggest that scientists are moving too little?

The answer to this will, of course, depend upon the degree to which sci-
entists internalize the impacts of their location decisions, but suboptimal 
levels of mobility seem likely. Nearly all of the costs of moving are borne 
privately, yet much of the credit associated with new scientifi c discoveries 
is apportioned out narrowly to the lead scientists on that project, leaving 
researchers with incentives that appear too weak from a societal perspec-
tive. While the best way to address this limited mobility is unclear, it has 
potentially large and important implications for the rate, and especially the 
direction of technological innovation within the economy, and eventually 
for economic growth.

The analysis of patent citations—most of which are generated by bio-
medical fi rms—suggests a distinct knowledge production process within 
industry. The output of local talent is most infl uential when it remains local. 
That ideas are quickly forgotten after a scientist departs suggests an impor-
tant role for face- to- face interactions. One possible explanation for this 
fi nding is that the limited absorptive capacity within most fi rms necessitates 
a substantive dialogue with academic scientists in order to translate scien-
tifi c output into something more useful for organizations concerned with its 
translation into marketable products. Such dialogues are clearly less costly 
with local talent, especially if  the fruitful search for ideas is not one that 
is narrowly circumscribed around a well- defi ned issue. The opportunities 
that are lost when a scientist departs, however, are not entirely clear. Even 
if  fi rms are abandoning science that the academy believes is still useful, 
what is the proper benchmark here? The academy and industry may simply 
value different types of ideas. Even still, some ideas that fi rms should value 
are likely to fall off the radar screen when scientists depart, offering at least 
some temperance to the idea that the innovative costs of scientist mobility 
are negligible.

These conjectures assume the construct validity of  our measures: that 
publication- publication citations actually measure knowledge fl ows among 
academics, and that patent- patent and patent- publication citations actually 
measure academic industry spillovers. In the spirit of recognizing measure-
ment difficulties (see e.g., Kuznets and Schmookler in the 1962 volume) we 
acknowledge these are assumptions. For example, numerous scholars of 
bibliometrics have noted the ceremonial function of publication citations 
(Merton 1968; MacRoberts and MacRoberts 1996). While we have inter-
preted the fi nding that there is little forgetting of superstars research after 
a move as evidence that face- to- face interaction may not be so necessary 
for knowledge fl ows, it could instead refl ect that the scientists continue to 
be cited for ceremonial reasons. A related explanation: if  citations are less 
about intellectual infl uence than just knowing about research (MacRoberts 
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and MacRoberts 1996), we may not expect any decay after professional 
transitions.

Similar concerns could be raised about citations in patents. As Jaffe and 
Trajtenberg and others have emphasized, the claim that these citations 
refl ect real knowledge fl ows, or spillovers, is only an assumption. Survey 
work (Jaffe, Trajtenberg, and Fogarty 2002) suggests they are noisy mea-
sures. Recent analyses (Alcácer, Gittelman, and Sampat 2009; Sampat 2010; 
Hegde and Sampat 2009) on the importance of patent examiners in generat-
ing these citations may undermine the notion that they are true knowledge 
fl ows. One of the reasons for using patent- to- publication citations is that 
these are less affected by examiner infl uence (Lemley and Sampat 2010) and 
potentially better measures of knowledge fl ows (Roach and Cohen 2010), 
though here too there are questions of whether applicants have incentives 
to disclose all relevant knowledge, and only relevant knowledge (Cotropia, 
Lemley, and Sampat 2010). All this granted, it is difficult to construct an 
explanation of our “forgetting” result for patent- to- patent and patent- to-
 publication citations that is driven only by incentives to cite (or citation 
practices).

Appendix A

Criteria for Delineating the Set of 10,450 “Superstars”

We present additional details regarding the criteria used to construct the 
sample of 10,450 superstars.

Highly Funded Scientists. Our fi rst data source is the Consolidated 
Grant/ Applicant File (CGAF) from the US National Institutes of Health 
(NIH). This data set records information about grants awarded to extramu-
ral researchers funded by the NIH since 1938. Using the CGAF and focusing 
only on direct costs associated with research grants, we compute individual 
cumulative totals for the decades 1977 to 1986, 1987 to 1996, and 1997 
to 2006, defl ating the earlier years by the Biomedical Research Producer 
Price Index.11 We also recompute these totals excluding large center grants 
that usually fund groups of investigators (M01 and P01 grants). Scientists 
whose totals lie in the top ventile (i.e., above the 95th percentile) of either 
distribution constitute our fi rst group of superstars. In this group, the least 
well- funded investigator garnered $10.5 million in career NIH funding, and 
the most well- funded $462.6 million.12

11. http:/ / officeofbudget.od.nih.gov/ UI/ GDPFromGenBudget.htm.
12. We perform a similar exercise for scientists employed by the intramural campus of the 

NIH. These scientists are not eligible for extramural funding, but the NIH keeps records of 
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Highly Cited Scientists. Despite the preeminent role of the NIH in the 
funding of  public biomedical research, the previous indicator of  super-
stardom biases the sample toward scientists conducting relatively expen-
sive research. We complement this fi rst group with a second composed of 
highly cited scientists identifi ed by the Institute for Scientifi c Information. 
A Highly Cited listing means that an individual was among the 250 most 
cited researchers for their published articles between 1981 and 1999, within 
a broad scientifi c fi eld.13

Top Patenters. We add to these groups academic life scientists who belong 
in the top percentile of the patent distribution among academics—those 
who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Sciences. We add to these groups 
academic life scientists who were elected to the National Academy of Science 
between 1975 and 2007.

MERIT Awardees of the NIH. Initiated in the mid- 1980s, the MERIT 
Award program extends funding for up to fi ve years (but typically three 
years) to a select number of NIH- funded investigators “who have demon-
strated superior competence, outstanding productivity during their previous 
research endeavors and are leaders in their fi eld with paradigm- shifting 
ideas.” The specifi c details governing selection vary across the component 
institutes of the NIH, but the essential feature of the program is that only 
researchers holding an R01 grant in its second or later cycle are eligible. 
Further, the application must be scored in the top percentile in a given fund-
ing cycle.

Former and Current Howard Hughes Medical Investigators. Every three 
years, the Howard Hughes Medical Institute selects a small cohort of mid-
career biomedical scientists with the potential to revolutionize their respec-
tive subfi elds. Once selected, HHMIs continue to be based at their insti-
tutions, typically leading a research group of ten to twenty- fi ve students, 
postdoctoral associates, and technicians. Their appointment is reviewed 
every fi ve years, based solely on their most important contributions during 
the cycle.14

Early Career Prize Winners. We also included winners of the Pew, Searle, 
Beckman, Rita Allen, and Packard scholarships for the years 1981 through 
2000. Every year, these charitable foundations provide seed funding to 
between twenty and forty young academic life scientists. These scholarships 

the number of internal projects each intramural scientist leads. We include in the elite sample 
the top ventile of intramural scientists according to this metric.

13. The relevant scientifi c fi elds in the life sciences are microbiology, biochemistry, 
psychiatry/ psychology, neuroscience, molecular biology and genetics, immunology, pharma-
cology, and clinical medicine.

14. See Azoulay, Graff Zivin, and Manso (2011) for more details and an evaluation of this 
program.
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are the most prestigious accolades that young researchers can receive in the 
fi rst two years of their careers as independent investigators.

Appendix B

Linking Scientists with Their Journal Articles

The source of our publication data is PubMed, a bibliographic database 
maintained by the US National Library of Medicine that is searchable on 
the web at no cost.15 PubMed contains over 14 million citations from 4,800 
journals published in the United States and more than 70 other countries 
from 1950 to the present. The subject scope of this database is biomedicine 
and health, broadly defi ned to encompass those areas of the life sciences, 
behavioral sciences, chemical sciences, and bioengineering that inform 
research in health- related fi elds. In order to effectively mine this publicly 
available data source, we designed Publication Harvester, an open- source 
software tool that automates the process of gathering publication informa-
tion for individual life scientists (see Azoulay, Stellman, and Graff Zivin 
2006 for a complete description of the software). Publication Harvester is 
fast, simple to use, and reliable. Its output consists of a series of reports that 
can be easily imported by statistical software packages.

This software tool does not obviate the two challenges faced by empirical 
researchers when attempting to link accurately individual scientists with 
their published output. The fi rst relates to what one might term “Type I 
error,” whereby we mistakenly attribute to a scientist a journal article actu-
ally authored by a namesake; the second relates to “Type II error,” whereby 
we conservatively exclude from a scientist’s publication roster legitimate 
articles.

Namesakes and Popular Names. PubMed does not assign unique identi-
fi ers to the authors of the publications they index. They identify authors 
simply by their last name, up to two initials, and an optional suffix. This 
makes it difficult to unambiguously assign publication output to individual 
scientists, especially when their last name is relatively common.

Inconsistent Publication Names. The opposite danger, that of recording 
too few publications, also looms large, since scientists are often inconsistent 
in the choice of names they choose to publish under. By far the most com-
mon source of error is the haphazard use of a middle initial. Other errors 
stem from inconsistent use of suffixes (Jr., Sr., 2nd, etc.), or from multiple 
patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-

15. http:/ / www.pubmed.gov/ .
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 intensive approach: the design of individual search queries that relies on rele-
vant scientifi c keywords, the names of frequent collaborators, journal names, 
as well as institutional affiliations. We are aided in the time- consuming pro-
cess of query design by the availability of a reliable archival data source, 
namely, these scientists’ curriculum vitaes (CVs) and biosketches. Publica-
tionHarvester provides the option to use such custom queries in lieu of a 
completely generic query (e.g., “azoulay p” [au] or “sampat bn” [au]). As 
an example, one can examine the publications of  Scott A. Waldman, an 
eminent pharmacologist located in Philadelphia, PA, at Thomas Jefferson 
University. Waldman is a relatively frequent name in the United States (with 
208 researchers with an identical patronym in the Association of American 
Medical Colleges (AAMC) faculty roster); the combination “waldman s” is 
common to three researchers in the same database. A simple search query 
for “waldman sa” [au] OR “waldman s” [au] returns 302 publications at the 
time of  this writing. However, a more refi ned query, based on Professor 
Waldman’s biosketch returns only 210 publications.16

The previous example also makes clear how we deal with the issue of 
inconsistent publication names. PublicationHarvester gives the end- user 
the option to choose up to four PubMed- formatted names under which 
publications can be found for a given researcher. For example, Louis J. 
Tobian, Jr. publishes under “tobian 1,” “tobian 1 jr,” and “tobian 1j,” and 
all three names need to be provided as inputs to generate a complete pub-
lication listing. Furthermore, even though Tobian is a relatively rare name, 
the search query needs to be modifi ed to account for these name variations, 
as in (“tobian l” [au] OR “tobian 1j” [au])

We are confi dent that this labor- intensive customization ensures the accu-
racy of our superstar scientists’ bibliomes.

Appendix C

Linking Scientists with Their Patents

A number of recent efforts have been devoted to assigning unique identi-
fi ers to inventors in the US Patent Data (Trajtenberg, Shiff, and Mclamed 
2006; Marx, Strumsky, and Fleming 2009). Rather than relying on recursive 
algorithms that help group together patents issued to the same inventors, we 
make use of the richness of our data to improve the quality of the matched 
inventor/ invention links.

In a fi rst step, we eliminate from the set of potential patents all patents 

16. (((“waldman sa” [au] NOT (ether OR anesthesia)) OR (“waldman s” [au] AND (murad 
OR philadelphia [ad] OR west point [ad] OR wong p [au] OR lasseter kc [au] OR colorectal))) 
AND 1980:2010 [dp])
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issued in classes that appear unrelated to the life sciences, writ large. Sec-
ond, we focus on the set of superstars with relatively rare names, and auto-
mate the match with the patent data by declaring as valid any link in which 
(a) the inventor’s full name matches, and (b) at least one patent assignee 
matches with one of the scientist’s employer, past or present. We then relax 
these constraints one at a time, examining potential matches by hand. Using 
knowledge about the research of these scientists stemming from their bio-
graphical records, we then pass judgement on the validity of  these more 
uncertain matches. The same procedure is repeated for the set of inventors 
with common names, though these records often require the inspection of 
each potential patent to ascertain whether they correspond to legitimate or 
spurious matches.

Following Thursby, Fuller, and Thursby (2009), we fi nd that many pat-
ents associated with the elite scientists in our sample are not assigned to 
their employer, but rather unassigned, or assigned solely to an industrial 
fi rm. As a result, we are very careful to inspect manually records for which 
the inventor name matches that of one of our superstars, but there is no 
assignee information to match with the available biographical record for 
this individual.

One objection to this linking procedure is that it is ad hoc, and difficult to 
replicate across different empirical contexts. Moreover, it is very labor inten-
sive, and therefore would not scale up to a much larger sample of inventors. 
Yet, we suspect that using prior knowledge about the direction of an inven-
tor’s research to link them precisely with their patented inventions results in 
higher- quality matches.

Appendix D

Linking PubMed References to USPTO Patents

Determining whether patents cite publications is more difficult than trac-
ing patent citations: while the cited patents are unique seven- digit numbers, 
cited publications are free- form text (Callaert et al. 2006). Moreover, the 
USPTO does not require that applicants submit references to literature in a 
standard format. For example, Harold Varmus’s 1988 Science article “Ret-
roviruses” is cited in twenty- nine distinct patents, but in numerous different 
formats, including Varmus; “Retroviruses” Science 240:1427– 1435 (1988) 
(in patent 6794141) and Varmus et al., 1988, Science 240:1427– 1439 (in 
patent 6805882). As this example illustrates, there can be errors in author 
lists and page numbers. Even more problematic, in some cases certain fi elds 
(e.g., author name) are included, in others they are not. Journal names may 
be abbreviated in some patents, but not in others.
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To address these difficulties, we developed a matching algorithm that com-
pared each of several PubMed fi elds—fi rst author, page numbers, volume, 
and the beginning of  the title, publication year, or journal name—to all 
references in all biomedical and chemical patents issued by the USPTO since 
1976. Biomedical patents are identifi ed by technology class, using the patent 
class- fi eld concordance developed by the National Bureau of  Economic 
Research (Jaffe and Trajtenberg 2005). We considered a dyad to be a match 
if  four of the fi elds from PubMed were listed in a USPTO reference.

Overall, the algorithm returned 558,982 distinct PMIDs (unique article 
identifi ers in PubMed) cited in distinct 172,815 patents. Since it neces-
sarily relied on probabilistic rather than exact matches, we also tested it 
across a sample of  references where we were confi dent the match to the 
PubMed data was accurate. Specifi cally, we sampled 200 references from 
the biomedical/ chemical patents, and two research assistants and one of the 
authors (Sampat) manually investigated whether the references had associ-
ated PMIDs. Sampat carefully reviewed and adjudicated any cases where 
there was disagreement among the three coders.

Manual matching, while cumbersome, provides an extremely reliable 
match, a gold standard against which we can gauge the algorithm. The 
algorithm returned the correct PMID information for 86 percent of  the 
references. There were no false positives: if  our manual match returned no 
PMID, neither did our algorithm. And in almost all cases, if  the algorithm 
generated a PMID, it was the correct one. But for 14 percent of the references 
there were false negatives; that is, a PMID was found via the manual match, 
but none was found via the algorithm. While these errors are unlikely to be 
related to any variables of interest, we can also test robustness of any results 
obtained using these data using matches from a more liberal implementation 
of the algorithm (based on matching three rather than four elements of the 
PubMed record to the patent references), which returns fewer false negatives 
but more false positives.

Choosing between the loose and strict algorithms involves making 
tradeoffs between the Type I and Type II errors. In the analyses following, 
we rely primarily on the strict algorithm, erring on the side of understating 
the extent to which patents cite the biomedical literature.

Appendix E

Construction of the Product Control Group

We detail the “coarse exact matching” (CEM) procedure implemented to 
identify the sample of control products from among the universe of products 
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associated with stayers. As opposed to methods that rely on the estimation 
of a propensity score, CEM is a nonparametric procedure.17

In its basic outline, the matching procedure is very similar across the three 
measures of knowledge fl ows; whether we are focused on journal articles or 
patents, the sample of control products is constructed such that the follow-
ing two conditions are met:

1. Treated articles/patents exhibit no differential citation trends relative 
to control products up to the time of mobility.

2. Treated and control articles/patents match on a number of  time-
 invariant article characteristics.

However, implementation details vary with cited and citing product type, 
as explained later.

Journal Articles. We identify controls based on the following set of cova-
riates: (1) year of  publication; (2) specifi c journal (e.g., Cell or the New 
England Journal of Medicine); (3) number of  authors (the distribution is 
coarsened into six bins: one, two, three, four or fi ve, between six and nine, 
and ten or more authors); (4) focal- scientist position on the authorship 
list (fi rst author, middle author, or last author). In the case of articles pub-
lished in the year immediately preceding appointment, the list of matching 
covariates is expanded to also include the month of publication. In the case 
of  articles published two years before appointment, the list of  matching 
covariates is expanded to also include the quarter of publication. To ensure 
that premove citation trends are similar, we proceed in two steps. First, we 
also match on cumulative number of citations at baseline, coarsened into 7 
strata (0 to 10th; 10th to 25th; 25th to 50th; 50th to 75th; 75th to 95th; 95th 
to 99th; and above the 99th percentile). However, we have found that this is 
not enough to eliminate premove citation trends. As a result, we select all 
control articles that match according to the previous covariates, and pick 
among those potential matches a single article that further minimizes the 
sum of squared differences in the number of citations up until the year before 
the year of move.

Patents. We identify controls based on the following set of time- invariant 
covariates: (1) year of issue; (2) year of application; and (3) main patent 
class. To ensure that premove citation trends are similar, we match on cumu-
lative number of citations at baseline, coarsened into 4 strata (0 to 50th; 50th 
to 95th; 95th to 99th; and above the 99th percentile).

17. A propensity score approach would entail estimating the probability that the scientists 
in the data move in a given year, and then using the inverse of this estimated probability to 
weight the data in a second stage analysis of the effect of mobility on subsequent citation rates. 
However, because citations occur at the article level, achieving covariate balance by weighting 
the data by the scientist- level likelihood of moving, even if  the determinants of mobility were 
observable, would not resolve the problem of controlling for article- level quality.
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Coarse Exact Matching. We create a large number of strata to cover the 
entire support of the joint distribution of the covariates mentioned earlier. 
Each observation is allocated to a unique strata. We then drop from the data 
all observations corresponding to strata in which there is no treated article 
and all observations corresponding to strata in which there are less than fi ve 
potential controls.

The procedure is coarse because we do not attempt to precisely match on 
covariate values; rather, we coarsen the support of the joint distribution of 
the covariates into a fi nite number of strata, and we match a treated observa-
tion if  and only if  a control observation can be recruited from this strata. An 
important advantage of CEM is that the analyst can guarantee the degree of 
covariate balance ex ante, but this comes at a cost: the more fi ne- grained the 
partition of the support for the joint distribution (i.e., the higher the number 
of strata), the larger the number of unmatched treated observations.

We implement the CEM procedure year by year, without replacement. 
Specifi cally, in move year t, 1976 � t � 2004, we do the following:

1. Eliminate from the set of potential controls all products published by 
stayers who have collaborated with movers prior to year t

2. For each year of publication/ issue t –  k, 1 � k � 10
a. Create the strata
b. Identify within strata a control for each treated unit; break ties 

at random
c. Repeat these steps for year of publication/ issue t –  (k � 1)

3. Repeat these steps for year of appointment t � 1

Sensitivity Analyses. The analyst’s judgement matters for the outcome of 
the CEM procedure insofar as he must draw a list of reasonable covariates to 
match on, as well as decide on the degree of coarsening to impose. Therefore, 
it is reasonable to ask whether seemingly small changes in the details have 
consequences for how one should interpret our results.

Nonparametric matching procedures such as CEM are prone to a ver-
sion of the “curse of dimensionality” whereby the proportion of matched 
units decreases rapidly with the number of strata. For instance, requiring 
scientist- level characteristics to match in addition to article- level charac-
teristics would result in a match rate below 10 percent, which seems to us 
unacceptably low.

However, we have verifi ed that slight variations in the details of the imple-
mentation (e.g., varying slightly the number of cutoff points for the stock 
of citations) have little impact on the basic results we present. To conclude, 
we feel that CEM enables us to identify a population of control products 
appropriate to guard against the specifi c threats to identifi cation mentioned 
in section 2.1.4.
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