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11.1   Introduction

Forecasts of electricity demand are of central importance to policymakers 
and utilities for purposes of adequately planning future investments in new 
generating capacity. Total electricity consumption in California has more 
than quadrupled since 1960, and the share of residential consumption has 
grown from 26 percent to 34 percent (Energy Information Administration 
[EIA] 2008). Today, California’s residential sector alone consumes as much 
electricity as Argentina, Finland, or roughly half  of Mexico. The majority 
of electricity in California is delivered by three investor- owned utilities and 
over a hundred municipal utilities.

On a per capita basis, California’s residential consumption has stayed 
almost constant since the early 1970s, while most other states have experi-
enced rapid growth in per capita consumption. The slowdown in growth of 
California’s per capita consumption coincides with the imposition of aggres-
sive energy efficiency and conservation programs during the early 1970s. 
The average annual growth rate in per capita consumption during 1960 to 
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1973 was approximately 7 percent and slowed to a remarkable 0.29 percent 
during 1974 to 1995. Growth rates during the last decade of available data 
have increased to a higher rate of 0.63 percent, and this difference in growth 
rates is statistically signifi cant.

California’s energy system faces several challenges in attempting to meet 
future demand (California Energy Commission [CEC] 2005). In addition 
to rapid population growth, economic growth and an uncertain regulatory 
environment, the threat of  signifi cant global climate change has recently 
emerged as a factor infl uencing the long- term planning of electricity supply. 
The electric power sector will be affected by climate change through higher 
cooling demand, lower heating demand, and potentially stringent regula-
tions designed to curb emissions from the sector.

This chapter simulates how the residential sector’s electricity consump-
tion will be affected by different scenarios of climate change. We make three 
specifi c contributions to the literature on simulating the impacts of climate 
change on residential electricity consumption. First, through an unprec-
edented opportunity to access the complete billing data of California’s three 
major investor- owned utilities, we are able to provide empirical estimates of 
the temperature responsiveness of electricity consumption based on micro-
data. Second, we allow for a geographically specifi c response of electricity 
consumption to changes in weather. Finally, we explore socioeconomic and 
physical characteristics of the population, which help explain some of the 
variation in temperature response.

The chapter is organized as follows: section 11.2 reviews the literature 
assessing the impacts of climate change on electricity consumption. Sec-
tion 11.3 describes the sources of the data used in this study. Section 11.4 
contains the econometric model and estimation results. We simulate the 
impacts of climate change on residential electricity consumption in section 
11.5. Section 11.6 explores the heterogeneity in temperature response, and 
section 11.7 concludes.

11.2   Literature Review

The historical focus of the literature forecasting electricity demand has 
been on the role of changing technology, prices, income, and population 
growth (e.g., Fisher and Kaysen 1962). Early studies in demand estimation 
have acknowledged the importance of weather in electricity demand and 
explicitly controlled for it to prevent biased coefficient estimates as well as 
wanting to gain estimation efficiency (e.g., Houthakker and Taylor 1970). 
Simulations based on econometrically estimated demand functions had, 
therefore, focused on different price, income, and population scenarios, while 
assuming a stationary climate system. The onset of anthropogenic climate 
change has added a new and important dimension of uncertainty over future 
demand, which has spawned a small academic literature on climate change 
impacts estimation, which can be divided into two approaches.
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In the engineering literature, large- scale bottom- up simulation models 
are utilized to simulate future electricity demand under varying climate sce-
narios. The advantage of the simulation model approach is that it allows one 
to simulate the effects of climate change given a wide variety of technological 
and policy responses. The drawback to these models is that they contain a 
large number of response coefficients and make a number of specifi c and 
often untestable assumptions about the evolution of the capital stock and its 
usage. The earliest impacts papers adopt this simulation approach and sug-
gest that global warming will signifi cantly increase energy consumption. 
Cline (1992) provides the earliest study on the impacts of climate change 
in his seminal book The Economics of Climate Change. The section dealing 
with the impact on space cooling and heating relies on an earlier report by 
the U.S. Environmental Protection Agency (1989). That study of the poten-
tial impact of climate change on the United States uses a utility planning 
model developed by Linder, Gibbs, and Inglis (1987) to simulate the impact 
on electric utilities in the United States and fi nds that increases in annual 
temperatures ranging from 1.0°C to 1.4°C (1.8°F to 2.5°F) in 2010 would 
result in demand of 9 percent to 19 percent above estimated new capacity 
requirements (peak load and base load) in the absence of climate change. 
The estimated impacts rise to 14 percent and 23 percent for the year 2055 
and an estimated 3.7°C (6.7°F) temperature increase.

Baxter and Calandri (1992) provide another early study in this literature 
and focus on California’s electricity use. In their study, they utilize a partial 
equilibrium model of  the residential, commercial, agriculture, and water 
pumping sectors to examine total consumption as well as peak demand. 
They project electricity demand for these sectors to the year 2010 under two 
global warming scenarios: a rise in average annual temperature of 0.6°C 
(1.1°F—low scenario) and of 1.9°C (3.4°F—high scenario). They fi nd that 
electricity use increases from the constant climate scenario by 0.6 percent 
to 2.6 percent, while peak demand increases from the baseline scenario by 
1.8 percent to 3.7 percent. Rosenthal, Gruenspecht, and Moran (1995) focus 
on the impact of global warming on energy expenditures for space heating 
and cooling in residential and commercial buildings. They estimate that a 
1°C (1.8°F) increase in temperature will reduce U.S. energy expenditures in 
2010 by $5.5 billion (1991 dollars).

The economics literature has favored the econometric approach to 
impacts estimation, which is the approach we adopt in the current study. 
While there is a large literature on econometric estimation of  electricity 
demand, the literature on climate change impacts estimation is small and 
relies on panel estimation of  heavily aggregated data or cross- sectional 
analysis of  more microlevel data. The fi rst set of  papers attempts to explain 
variation in a cross section of  energy expenditures based on survey data to 
estimate the impact of  climate change on fuel consumption choices. Man-
sur, Mendelsohn, and Morrison (2008) and Mendelsohn (2003) endog -
enize fuel choice, which is usually assumed to be exogenous. They fi nd that 
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warming will result in fuel switching toward electricity. The drawback of 
the cross- sectional approach is that one cannot econometrically control 
for unobservable differences across fi rms and households, which may be 
correlated with weather or climate. If  that is the case, the coefficients 
on the weather variables and corresponding impacts estimates may be 
biased.

Instead of looking at a cross section of fi rms or households, Franco and 
Sanstad (2008) explain pure time series variation in hourly electricity load 
at the grid level over the course of a year. They use data reported by the 
California Independent System Operator (CalISO) for 2004 and regress it 
on a population- weighted average of daily temperature. The estimates show 
a nonlinear impact of average temperature on electricity load and a linear 
impact of maximum temperature on peak demand. They link the econo-
metric model to climate model output from three different global circulation 
models (GCMs) forced using three quasi- official scenarios based on the 
Intergovernmental Panel for Climate Change (IPCC) Special Report on 
Emissions Scenarios (SRES) to simulate the increase in annual electricity 
and peak load from 2005 to 2099. Relative to the 1961 to 1990 base period, 
the range of increases in electricity and peak load demands are 0.9 percent 
to 20.3 percent and 1.0 to 19.3 percent, respectively. Crowley and Joutz 
(2003) use a similar approach where they estimate the impact of temperature 
on electricity load using hourly data in the Pennsylvania, New Jersey, and 
Maryland interconnection. Some key differences, however, are that they 
control for time- fi xed effects and defi ne the temperature variable in terms 
of heating and cooling degree days. They fi nd that a 2°C (3.6°F) increase 
in temperature results in an increase in energy consumption of 3.8 percent 
of actual consumption, which is similar to the impact estimated by Baxter 
and Calandri (1992).

Deschênes and Greenstone (2007) provide the fi rst panel data- based 
approach to estimating the impacts of climate change on residential total 
energy consumption, which includes electricity, natural gas, and oil as the 
main nonrenewable sources of energy. They explain variation in U.S. state-
 level annual panel data of  residential energy consumption using fl exible 
functional forms of daily mean temperatures. The identifi cation strategy 
behind their paper, which is one we will adopt here as well, relies on random 
fl uctuations in weather to identify climate effects on electricity consumption. 
The model includes state fi xed effects, census division by year fi xed effects, 
and controls for precipitation, population, and income. The temperature 
data enter the model as the number of days in twenty predetermined tem-
perature intervals. The authors fi nd a U- shaped response function where 
electricity consumption is higher on very cold and hot days. The impact of 
climate change on annual electricity consumption by 2099 is in the range of 
15 percent to 30 percent of the baseline estimation or 15 to 35 billion (2006 
US$). The panel data approach allows one to control for differences in unob-
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1. The premise identifi cation number does not change with the occupant of the residence. 
The service account number, however, changes with the occupant of the residence.

servables across the units of observation, resulting in consistent estimates 
of the coefficients on temperature.

The current chapter is the fi rst study using a panel of  household level 
electricity billing data to examine the impact of  climate change on resi-
dential electricity consumption. Through a unique agreement with Cali-
fornia’s three largest investor- owned utilities, we gained access to their 
complete billing data for the years 2003 to 2006. We identify the effect of 
temperature on electricity consumption using within- household variation 
in temperature, which is made possible through variation in the start dates 
and lengths of billing periods across households. Because our data set is a 
panel, we can control for household fi xed effects, month fi xed effects, and 
year fi xed effects. The drawback of this data set is that the only other reli-
able information we have about each individual household is price and its 
fi ve- digit zip code location.

11.3   Data

11.3.1   Residential Billing Data

The University of California Energy Institute (UCEI) jointly with Cali-
fornia’s investor- owned utilities established a confi dential data center, which 
contains the complete billing history for all households serviced by Pacifi c 
Gas and Electric (PG&E), Southern California Edison, and San Diego Gas 
and Electric (SDG&E) for the years 2003 to 2006. These three utilities pro-
vide electricity to roughly 80 percent of California households.

The data set contains the complete information for each residential cus-
tomer’s bills over the four- year period. Specifi cally, we observe an ID for the 
physical location, a service account number, bill start date, bill end date, total 
electricity consumption (in kilowatt- hours [kWh]) and the total amount 
of the bill (in $) for each billing cycle as well as the fi ve- digit zip code of 
the premises.1 Only customers who were individually metered are included 
in the data set. For the purpose of this chapter, we defi ne a customer as a 
unique combination of premise and service account number. It is important 
to note that each billing cycle does not follow the calendar month, and the 
length of the billing cycle varies across households with the vast majority 
of households being billed on a twenty- fi ve to thirty- fi ve- day cycle. While 
we have data covering additional years for two of the utilities, we limit the 
study to the years 2003 to 2006 to obtain equal coverage. Hereafter, we will 
refer to this data set as “billing data.” Figure 11.1 displays the zip codes we 
have data for, which is the majority of the state.

Due to the difference in climate conditions across the state, California is 
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2. The California climate zones shown are not the same as what one would commonly call 
an area like desert or alpine climate. The climate zones are based on energy use, temperature, 

divided into sixteen building climate zones, each of which require different 
minimum efficiency building standards specifi ed in an energy code. The cli-
mate zones are depicted in fi gure 11.2.2 We expect this difference in building 
standards to lead to a different impact of temperature change on electricity 
consumption across climate zones. We will, therefore, estimate the impact 

Fig. 11.1  Observed residential electricity consumption 2003–2006 and National 
Oceanic and Atmospheric Administration cooperative weather stations
Note: The map displays fi ve- digit zip codes with available geographic boundaries.
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weather, and other factors. They are essentially a California Energy Commission (CEC)- defi ned 
geographic area that has similar climatic characteristics. Each climate zone has a representa-
tive city. These are for each of the climate zones: (1) Arcata, (2) Santa Rosa, (3) Oakland, (4) 
Sunnyvale, (5) Santa Maria, (6) Los Angeles, (7) San Diego, (8) El Toro, (9) Pasadena, (10) 
Riverside, (11) Red Bluff, (12) Sacramento, (13) Fresno, (14) China Lake, (15) El Centro, and 
(16) Mount Shasta.

of mean daily temperature on electricity consumption separately for each 
climate zone. We later empirically explore the sources of this variation in 
section 11.6. We assign each household to a climate zone via their fi ve- digit 
zip code through a mapping, which we obtained from the California Energy 
Commission.

Fig. 11.2  California Energy Commission building climate zones
Source: California Energy Commission.
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3. With the regular billing cycle, there should be forty- eight bills for the households in our 
sample during the period 2003 to 2006.

4. After removing outlier bills, we compared the population average daily consumption of 
bills with billing cycles ranging from twenty- fi ve to thirty- fi ve days to the average daily con-
sumption of bills for any length. The average daily consumption by climate zone in the subset 
of bills we sample from is roughly 1/10th of a standard deviation higher than the mean daily 
consumption of the complete population including bills of any length.

The billing data set contains 300 million observations, which exceeds 
our ability to conduct estimation using standard statistical software. We, 
therefore, resort to sampling from the population of residential households 
to conduct econometric estimation. We designed the following sampling 
strategy. First, we only sample from households with regular billing cycles, 
namely twenty- fi ve to thirty- fi ve days in each billing cycle which have at 
least thirty- fi ve bills over the period of  2003 to 2006.3 We also removed 
bills with an average daily consumption less than 2 kWh or more than 
80 kWh. The reason for this is our concern that these outliers are not resi-
dential homes but rather vacation homes and small- scale “home based 
manufacturing and agricultural facilities.” Combined with the fact that 
our data does not contain single- metered multifamily homes, our sampling 
strategy is likely to result in a slight under representation of multifamily and 
smaller single- family homes. These are more likely to be rental properties 
than larger single- family units. Our results should be interpreted keeping 
this in mind.4

From the population subject to the preceding restrictions, we take a ran-
dom sample from each zip code, making sure that the relative sample sizes 
refl ect the relative sizes of the population by zip code. We draw the largest 
possible representative sample from this population given our computa-
tional constraints. For each climate zone, we test whether the mean daily 
consumption across bills for our sample is different from the population 
mean and fail to reject the null of equality, suggesting that our sampling is 
indeed random, subject to the sample restrictions discussed above. We pro-
ceed with estimation of our models by climate zone, which makes concerns 
about sampling weights mute. Figure 11.3 displays the spatial distribution 
of 2006 consumption shares across zip codes.

Finally, California has a popular program for low- income families—
California Alternate Rates for Energy (CARE)—where program- eligible 
customers receive a 20 percent discount on electric and natural gas bills. 
Eligibility requires that total household income is at or below 200 percent 
of federal poverty level. For the fi rst set of models, we exclude these house-
holds from our sample. We then explore the robustness of our simulations 
by including these households in a separate simulation. The concern here is 
that omitting these smaller homes with lower HVAC saturation rates may 
lead to an overestimation of impacts.

No single zip code is responsible for more than 0.5 percent of total con-
sumption. Table 11.1 displays the summary statistics of our consumption 
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sample by climate zone. There is great variability in average usage across 
climate zones, with the central coast’s (zone 3) average consumption per 
bill at roughly 60 percent that of the interior southern zone 15. The average 
electricity price is almost identical across zones, at thirteen cents per kWh.

11.3.2   Weather Data

To generate daily weather observation to be matched with the household 
electricity consumption data, we use the Cooperative Station Dataset pub-
lished by National Oceanic and Atmospheric Administration’s (NOAA) 
National Climate Data Center (NCDC). The data set contains daily obser-
vations from more than 20,000 cooperative weather stations in the United 
States, the U.S. Caribbean Islands, the U.S. Pacifi c Islands, and Puerto Rico. 
Data coverage varies by station. Because our electricity data cover the state 
of California for the years 2003 to 2006, the data set contains 370 weather 

Fig. 11.3  Share of total residential electricity consumption for 2006 by fi ve- digit 
zip code
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5. The cutoff of 300 valid days is admittedly arbitrary. If  we limit the set of weather stations to 
the ones providing a complete record, we would lose roughly half  of all stations. We conducted 
robustness checks using different cutoff numbers, and the results are robust.

stations reporting daily data. In the data set, we observe daily minimum 
and maximum temperature as well as total daily precipitation and snowfall. 
Because the closest meaningful geographic identifi er of our households is 
the fi ve- digit postal zip code, we select stations as follows. First, we exclude 
any stations not reporting data in all years. Further, we exclude stations 
reporting fewer than 300 observations in any single year and stations at 
elevations more than 7,000 feet above sea level, which leaves us with 269 
“valid” weather stations.5 Figure 11.1 displays the distribution of  these 
weather stations across the state. While there is good geographic coverage 
of weather stations for our sample, we do not have a unique weather station 
reporting data for each zip code. To assign a daily value for temperature and 
rainfall, we need to assign a weather station to each zip code. We calculate 
the Vincenty distance of a zip code’s centroid to all valid weather stations 
and assign the closest weather station to that zip code. As a consequence of 
this procedure, each weather station on average provides data for approxi-
mately ten zip codes.

Because we do not observe daily electricity consumption by household, 
but rather monthly bills for billing periods of differing length, we require a 
complete set of daily weather observations. The NCDC data have a number 
of missing values, which we fi ll in using the following algorithm. First, we 
calculate the Vincenty distance of each zip code’s geographic centroid to all 
qualifying weather stations. We then identify the ten closest weather stations 
to each centroid, provided that each is less than fi fty miles from the monitor. 
Of these stations, we identify the “primary station” as the closest station 
reporting data for at least 200 days a year. We fi ll in missing values by fi rst 
regressing, for observations in which the primary weather station was active, 
the relevant climate weather variable for the primary station onto the same 
variable for the remaining nine closest stations. We use the predicted values 
from that regression to replace missing values. Following this step, primary 
station observations are still missing whenever one of the remaining nine 
closest stations is also missing an observation. To estimate the remaining 
missing values, we repeat the preceding step with the eight closest stations, 
then the seven closest, and so on. To check the performance of our algo-
rithm, we conduct the following experiment. First, we select the set of data 
points for which the primary weather station has an observation. We then 
randomly set 10 percent of the temperature data for this station to missing. 
After applying the algorithm described in the preceding to this sample, we 
compare the predicted temperature data to the observations we had set aside. 
Even for observations in which a single additional weather station was used 
to predict a missing temperature, the correlation coefficient between actual 
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6. We also tried an inverse distance weighting algorithm for fi lling in missing data, and the 
results are almost identical.

and predicted temperatures exceeds 0.95. Plotting the actual and predicted 
series against each other provides an almost perfect fi t. We, therefore, feel 
confi dent that our algorithm provides us with a close representation of the 
true data generating process for missing weather observations. We end up 
with a complete set of  time series for minimum temperature, maximum 
temperature, and precipitation for the 269 weather stations in our sample. 
For the remainder of our empirical analysis, we use these patched series as 
our observations of weather.6

There is an important caveat to using daily weather data when study-
ing households’ response to climate change. By using daily weather shocks, 
we implicitly estimate individuals’ response to changed daily temperatures. 
While climate change will affect daily temperatures on average, it is a more 
long- run process and should be thought of as the long- run moving average 
of weather. The estimated impacts for this reason may, on the one hand, be 
too high if  individuals have lower cost options in the long run and relocate to 
cooler climates. The estimated impacts based on daily weather, on the other 
hand, may be too low if  individuals adapt in the sense that areas that do not 
currently cool using electricity start seeing a high degree of air conditioner 
penetration. The overall sign of the bias is not clear. Unfortunately, it is not 
clear whether the perfect counterfactual to study this problem exists. One 
would require randomly assigned climate (not weather) to study this issue. 
This randomization would affect technology adoption. Electricity demand, 
in turn, is determined at the daily level by fl uctuations in weather around a 
long- run trend.

The second caveat is that it would be preferable to have a weather index, 
which counts all relevant dimensions of  weather, such as minimum and 
maximum temperature, humidity, solar radiation, and wind speed and direc-
tion. Unfortunately, these indicators are not available for the vast majority 
of stations at the daily level. One could, however, estimate a response func-
tion using such an index for locations that have sufficient data. We leave this 
for future research.

11.3.3   Other Data

In addition to the quantity consumed and average bill amount, all we know 
about the households is the fi ve- digit zip code in which they are located. We 
purchased sociodemographics at the zip- code level from a fi rm aggregating 
this information from census estimates (zip- codes.com). We only observe 
these data for a single year (2006). The variables we will make use of are 
total population and average household income. The fi nal sample used for 
estimation comprises households in zip codes that make up 81 percent of 
California’s population. Table 11.2 displays summary statistics for all zip 
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codes in California with registered residential population, broken down by 
whether we observe households in a given zip. We observe households for 
1,325 zip codes and do not observe households for 239 zip codes. The 239 
zip codes are not served by the three utilities, which provided us with access 
to their billing data. Table 11.2 shows that the zip codes in our sample are 
more populated, have larger households, are wealthier, and are at lower 
elevations. There seems to be no statistically signifi cant difference in popu-
lation, median age, or land area. Taking these differences into consideration 
is important when judging the external validity of our estimation and simu-
lation results.

Finally, we will explore which observable characteristics of households 
are consistent with differences in the temperature repose function. We use 
the year 2000 long form census data for the state of California to calculate 
indicators of observable characteristics of the average household or struc-
ture in that zip code. We obtain measures of the share of households using 
gas or electricity as heating fuel, year the average structure was built, the 
percent of urban households, and the percent of rental properties.

11.4   Econometric Estimation

As discussed in the previous section, we observed each household’s 
monthly electricity bill for the period 2003 to 2006. Equation (1) shows our 
main estimating equation, which is a simple log- linear specifi cation com-
monly employed in aggregate electricity demand and climate change impacts 
estimation (e.g., Deschênes and Greenstone 2007).

(1) log(qit) � 
p=1

k

∑ �pDpit � �Zit � �i � �m � �y � εit

log(qit) is the natural logarithm of household i’s electricity consumed in 
kWhs during billing period t. For estimation purposes, our unit of observa-
tion is a unique combination of premise and service account number, which 
is associated with an individual and structure. We thereby avoid the issue of 
having individuals moving to different structures with more or less efficient 
capital or residents with different preferences over electricity consumption 
moving in and out of a given structure. California’s housing stock varies 
greatly across climate zones in its energy efficiency and installed energy con-
suming capital. We estimate equation (1) separately for each of the sixteen 
climate zones discussed in the data section, which are also displayed in fi gure 
11.2. The motivation for doing so is that we would expect the relationship 
between consumption and temperature to vary across these zones as there is 
a stronger tendency to heat in the more northern and higher altitude zones 
and a stronger tendency to cool, but little heating taking place, in the hotter 
interior zones of California.

The main variables of interest in this chapter are those measuring tem-
perature. The last fi ve columns of table 11.1 display the median, 1st, 5th, 
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7. We use mean daily temperature as our temperature measure. This allows a fl exible func-
tional form in a single variable. An alternate strategy we will explore in future work is sepa-
rating the temperature variables into minimum and maximum temperature, which are highly 
correlated with our mean temperature measure.

90th, and 95th percentile of  the mean daily temperature distribution by 
climate zone. The table shows the tremendous differences in this distribution 
across climate zones. The southeastern areas of the state, for example, are 
signifi cantly hotter on average yet also have greater variances.

Following recent trends in the literature, we include our temperature vari-
ables in a way that imposes a minimal number of functional form restrictions 
in order to capture potentially important nonlinearities of the outcome of 
interest in weather (e.g., Schlenker and Roberts 2006). We achieve this by 
sorting each day’s mean temperature experienced by household i into one 
of k temperature bins.7 In order to defi ne a set of temperature bins, there 
are two options found in the literature. The fi rst is to sort each day into a 
bin defi ned by specifi c equidistant (e.g., 5°F) cutoffs. The second approach 
is to split each of the sixteen zones’ temperature distributions into a set of 
percentiles and use those as the bins used for sorting. The latter strategy 
allows for more precisely estimated coefficients because there is guaranteed 
coverage in each bin. The equidistant bins strategy runs the risk of  hav-
ing very few observations in some bins, and, therefore leading to unstable 
coefficient estimation, especially at the extremes.

There is no clear guidance in the literature on which approach provides 
better estimates, and we, therefore, conduct our simulations using both 
approaches. For the percentile strategy, we split the temperature distribution 
into deciles yet break down the upper and bottom decile further to include 
buckets for the 1st, 5th, 95th, and 99th percentile to account for extreme 
cold or heat days. We, therefore, have a set of fourteen buckets for each of 
the sixteen climate zones. The thresholds for each vary by climate zone. For 
the equidistant bins approach, we split the mean daily temperature for each 
household into a set of 5° bins. In order to avoid the problem of imprecise 
estimation at the tails due to insufficient data coverage, we require that each 
bin have at least 1 percent of the data values in it for the highest and lowest 
bin. The highest and lowest bins in each zone therefore contain a few values 
that exceed the 5° threshold.

For each household, bin defi nition and billing period we then counted the 
number of days the mean daily temperature falls into each bin and recorded 
this as Dpit. The main coefficients of interest to the later simulation exercise 
are the �ps, which measure the impact of one more day with a mean tem-
perature falling into bin p on the log of household electricity consumption. 
For small values, �ps interpretation is approximately the percent change in 
household electricity consumption due to experiencing one additional day 
in that temperature bin.

Zit is a vector of observable confounding variables which vary across billing 
periods and households. The fi rst of two major confounders we observe at the 
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8. The full set of estimation results are available upon request from the authors.
9. Clustering along the time dimension would be desirable but due to the temporal nesting 

structure of the billing dates not possible to our knowledge. We also used the White sandwich 
variance covariance matrix, which yielded smaller standard errors than the ones obtained from 
clustering by zip.

household level are the average electricity price for each household for a given 
billing period. California utilities price residential electricity on a block rate 
structure. The average price experienced by each household in a given period 
is, therefore, not exogenous because marginal price depends on consumption 
(qit). Identifying the price elasticity of demand in this setting is problematic, 
and a variety of approaches have been proposed (e.g., Hanemann 1984; Reiss 
and White 2005). The maximum likelihood approaches are computationally 
intensive and given our sample size cannot be feasibly implemented here. 
More important, however, we do not observe other important characteristics 
of households (e.g., income) that would allow us to provide credible estimates 
of these elasticities. For later simulation, we will rely on the income specifi c 
price elasticities provided by Reiss and White (2005), who used a smaller 
sample of more detailed data based on the national level Residential Energy 
Consumption (REC) survey. We have run our models by including price 
directly, instrumenting for it using lagged prices, and omitting it from esti-
mation. The estimation results are almost identical for all three approaches, 
which is reassuring. While one could tell a story that higher temperatures 
lead to higher consumption and, therefore, higher marginal prices for some 
households, this bias seems to be negligible given our estimation results. In 
the estimation and simulation results presented in this chapter, we omit the 
average price from our main regression.8 The second major time varying 
confounder is precipitation in the form of rainfall. We calculate the amount 
of total rainfall for each of the 269 weather stations, fi lling in missing values 
using the same algorithm discussed in the previous section. We control for 
rainfall using a second- order polynomial in all regressions.

The �i are household fi xed effects, which control for time invariant unob-
servables for each household. The ϕm are month- specifi c fi xed effects, which 
control for unobservable shocks to electricity consumption common to all 
households. The �y are year fi xed effects, which control for yearly shocks 
common to all households. To credibly identify the effects of temperature on 
the log of electricity consumption, we require that the residuals conditional 
on all right- hand side variables be orthogonal to the temperature variables, 
which can be expressed as E(εitDpit | D–pit, Zit, �i, ϕm, �y) � 0. Because we con-
trol for household fi xed effects, identifi cation comes from within- household 
variation in daily temperature after controlling for shocks common to all 
households, rainfall, and average prices.

We estimate equation (1) for each climate zone using a least squares fi t-
ting criterion and a clustered variance covariance matrix clustered at the 
zip code.9 Figure 11.4 plots the estimated temperature response coefficients 



Fig. 11.4  Estimated climate response functions for California Energy Commission 
climate zones 1–16
Notes: The panels display the estimated temperature slope coefficients for each of the fourteen 
percentile bins (solid) and the equidistant bins (dashed) against the midpoint of each bin. The 
plots were normalized using the coefficient estimate for the 60 to 65 temperature bin. The title 
of  each panel displays the name of a representative city for that climate zone.
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for each of the climate zones against the midpoints of the bins for the per-
centile and equidistant bin approaches. The coefficient estimates are almost 
identical, which is reassuring. We do not display the confi dence intervals 
around the estimated coefficients. The coefficients are so tightly estimated 
that for visual appearance, displaying the confi dence intervals simply makes 
the lines appear thick. From this fi gure, several things stand out. First, there 
is tremendous heterogeneity in the shape of the temperature response of 
electricity consumption across climate zones. Many zones have almost fl at 
temperature response functions, such as southern coastal zones (5, 6, and 7). 
Other zones display a very slight negative slope at lower temperatures, espe-
cially the northern areas of the state (1, 2, and 11), indicating a decreased 
consumption for space heating as temperatures increase. California’s house-
holds mostly use natural gas for space heating, which explains why for most 
areas we do not see a steeper negative slope at lower temperatures. This is 
consistent for a lower share of homes using electricity for heat in California 
(22 percent) than the national average (30 percent). Further, many of these 
electric heaters are likely located in areas with very low heating demand, 
given the high cost of using electricity for space heating compared to using 
natural gas. While there is use of electricity for heating directly, a signifi -
cant share of the increased consumption at lower temperatures is likely to 
stem from the operation of fans for natural gas heaters. On the other end 
of the spectrum, for most zones in the interior and southern part of  the 
state, we note a signifi cant increase in electricity consumption in the high-
est temperature bins (4, 8, 9, 10, 11, 12, 13, and 15). We further note that 
the relative magnitude of this approximate percent increase in household 
electricity consumption in the higher temperature bins varies greatly across 
zones as indicated by the differential in slopes at the higher temperatures 
across zones.

We now turn to simulating electricity consumption under different sce-
narios of climate change using these heterogeneous response functions as 
the underlying functional form relationship between household electricity 
consumption and temperature.

11.5   Simulations

In this section, we simulate the impacts of climate change on electricity 
consumption under two different Special Report on Emissions Scenarios 
(SRES). We calculate a simulated trajectory of aggregate electricity con-
sumption from the residential sector until the year 2100, which is standard 
in the climate change literature.

To simulate the effect of a changing climate on residential electricity con-
sumption, we require estimates of the climate sensitivity of residential elec-
tricity consumption as well as a counterfactual climate. In the simulation 
for this section, we use the estimated climate response parameters shown in 
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fi gure 11.4. Using these estimates as the basis of our simulation has several 
strong implications. First, using the estimated �p parameters implies that 
the climate responsiveness of consumption within climate zones remains 
constant throughout the century. This is a strong assumption because we 
would expect that households in zones that currently do not require cooling 
equipment may potentially invest in such equipment if  the climate becomes 
warmer. This would lead us to believe that the temperature responsiveness 
in higher temperature bins would increase over time. On the other hand, one 
could potentially foresee policy actions, such as more stringent appliance 
standards, which improve the energy efficiency of  appliances such as air 
conditioners. This would decrease the electricity per cooling unit required 
and shift the temperature response curve downward in the higher buckets.

As is standard in this literature, the counterfactual climate is generated 
by a GCM. These numerical simulation models generate predictions of past 
and future climate under different scenarios of  atmospheric greenhouse 
gas (GHG) concentrations. The quantitative projections of global climate 
change conducted under the auspices of the IPCC and applied in this study 
are driven by modeled simulations of two sets of projections of twenty- fi rst 
century social and economic development around the world, the so- called A2 
and B1 storylines in the 2000 Special Report on Emissions Scenarios (SRES; 
Intergovernmental Panel on Climate Change [IPCC] 2000). The SRES study 
was conducted as part of the IPCC’s Third Assessment Report, released in 
2001. The A2 and B1 storylines and their quantitative representations repre-
sent two quite different possible trajectories for the world economy, society, 
and energy system and imply divergent future anthropogenic emissions, with 
projected emissions in the A2 being substantially higher. The A2 scenario 
represents a “differentiated world,” with respect to demographics, economic 
growth, resource use, energy systems, and cultural factors, resulting in con-
tinued growth in global CO2 emissions, which reach nearly 30 gigatons of 
carbon (GtC) annually in the marker scenario by 2100. The B1 scenario can 
be characterized as a “global sustainability” scenario. Worldwide, environ-
mental protection and quality and human development emerge as key pri-
orities, and there is an increase in international cooperation to address them 
as well as convergence in other dimensions. A demographic transition results 
in global population peaking around midcentury and declining thereafter, 
reaching roughly 7 billion by 2100. Economic growth rates are higher than 
in A2 so that global economic output in 2100 is approximately one- third 
greater. In the B1 marker scenario, annual emissions reach about 12 GtC in 
2040 and decline to about 4 GtC in 2100.

We simulate consumption for each scenario using the National Center 
for Atmospheric Research Parallel Climate Model 1 (NCAR). These mod-
els were provided to us in their downscaled version for California using 
the Bias Correction and Spatial Downscaling (BCSD) and the Constructed 
Analogues (CA) algorithms (Maurer and Hidalgo 2008). There is no clear 
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guidance in the literature as to which algorithm is preferable for impacts 
estimation. We, therefore, provide simulation results using both methods. 
To obtain estimates for a percent increase in electricity consumption for the 
representative household in zip code j and period t � h, we use the follow-
ing relation:

(2) 
qj,t�h
�

qj,t

 � 

exp �̂p j Dp j,t + h
p=1

k

∑
⎛

⎝⎜
⎞

⎠⎟

exp
p=1

k

∑�̂p j Dp j,t

⎛

⎝⎜
⎞

⎠⎟

We implicitly assume that the year fi xed effect and remaining right- hand 
side variables are the same for period t � h and period t, which is a stan-
dard assumption made in the majority of the impacts literature. Figure 11.5 
shows the change in the number of days spent in each 5° bin of the tempera-
ture distribution from 1980 to 1999 to 2080 to 2099 using the NCAR Paral-

Fig. 11.5  Change in number of days in each 5- degree temperature bin for 2080–
2099 relative to 1980–1999 for six selected California cities and Intergovernmental 
Panel for Climate Change Special Report on Emissions Scenarios A2 (black) and 
B1 (white) using the National Center for Atmospheric Research Parallel Climate 
Model with the constructed analogues downscaling method
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lel Climate Model (PCM) forced by scenarios A2 and B1 for six selected 
California locations. A clear upward shift of the temperature distribution is 
apparent for all six locations. For locations with upward sloping temperature 
response functions, this entails increases in electricity consumption due to 
more days spent in higher temperature bins. Inspecting these graphs for 
all major urban centers in California, in addition to the six displayed here, 
confi rms the pattern emerging from fi gure 11.5. The areas with the steepest 
response functions at higher temperature bins happen to be the locations 
with highest increases in the number of high and extremely high temperature 
days. While this is not surprising, this correspondence leads to very large 
increases in electricity consumption in areas of the state experiencing the 
largest increases in temperature, which also happen to be the most tem-
perature sensitive in consumption—essentially the southeastern parts of 
the state and the Central Valley.

The fi rst simulation of interest generates counterfactuals for the percent 
increase in residential electricity consumption by a representative household 
in each zip code. We feed each of the two climate model scenarios through 
equation (2) using the 1980 to 1999 average number of days in each tempera-
ture bin as the baseline. Figure 11.6 displays the predicted percent increase 
in per household consumption for the periods 2020 to 2039, 2040 to 2059, 
2060 to 2079 and 2080 to 2099 using the NCAR PCM model forced by the 
A2 scenario using the percentile bins. Figure 11.7 displays the simulation 
results for the SRES forcing scenario B1.

Changes in per household consumption are driven by two factors: the 
shape of the weather- consumption relationship and the change in projected 
climate relative to the 1980 to 1999 period. The maps show that for most 
of California, electricity consumption at the household level will increase. 
The increases are largest for the Central Valley and areas in southeastern 
California, which have a very steep temperature response of consumption 
and large projected increases in extreme heat days. Simulation results for this 
model and scenario suggest that some zip codes in the Central Valley by the 
end of the century may see increases in household consumption in excess 
of 100 percent. The map also shows that a signifi cant number of zip codes 
are expected to see drops in household level electricity consumption—even 
at the end of the current century. It is important to keep in mind that the 
current projections assume no change in the temperature electricity response 
curve. Specifi cally, the current simulation rules out an increased penetration 
of air conditioners in areas with currently low penetration rates (e.g., Santa 
Barbara) or improvements in the efficiency of these devices. The projected 
drops essentially arise from slightly reduced heating demand. We conduct 
a simulation in the following, which addresses this concern. Figure 11.7 
displays the simulated household increase in electricity consumption by zip 
code for the lower emissions scenario B1. The maps display an almost identi-
cal spatial pattern yet a smaller overall increase in consumption.
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While changes in per household consumption are interesting, from a 
capacity planning perspective, it is overall consumption that is of  cen-
tral interest from this simulation. We use the projected percent increase 
in household consumption by zip code and calculate the weighted overall 
average increase, using the number of  households by zip code as weights, 
in order to arrive at an aggregate percent increase in consumption. The 
top panel of  table 11.3 displays these simulation results for aggregate con-
sumption. Predicted aggregate consumption across all zip codes in our 

Fig. 11.6  Simulated increase in household electricity consumption by zip code for 
the periods 2020–2039 (a), 2040–2059 (b), 2060–2079 (c), and 2080–2099 (d) in per-
cent over 1980–1999 simulated consumption. National Center for Atmospheric Re-
search Parallel Climate Model forced by Intergovernmental Panel for Climate 
Change Special Report on Emissions Scenario A2.
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data set ranges from an 18 percent increase in total consumption to 55 per-
cent increase in total consumption by the end of  the century. To put this 
into perspective, this represents an annual growth rate of  aggregate elec-
tricity consumption between 0.17 percent and 0.44 percent, if  all other 
factors are equal. These growth rates accelerate from period to period as 
the number of  extreme heat days predicted from the GCMs increases in a 
slightly nonlinear fashion. For the fi rst twenty- year period, the simulated 
annual growth rates range from 0.10 percent per year to 0.29 percent per 

Fig. 11.7  Simulated increase in household electricity consumption by zip code for 
the periods 2020–2039 (a), 2040–2059 (b), 2060–2079 (c), and 2080–2099 (d) in per-
cent over 1980–1999 simulated consumption. National Center for Atmospheric Re-
search Parallel Climate Model forced by Intergovernmental Panel for Climate 
Change Special Report on Emissions Scenario B1.
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year. Because these simulations hold population constant, the correct com-
parison of  these growth rates for the current simulation is, therefore, one 
with current growth in per capita household electricity consumption for 
California. Figure 11.8 depicts historical per capita electricity consump-
tion since 1960 (EIA 2008). The average annual growth rate in per capita 
consumption during 1960 to 1973 was approximately 7 percent and slowed 
down to a remarkable 0.29 percent during 1974 to 1995. Growth rates 
during the last decade of  available data have increased to a higher rate of 
0.63 percent, and this difference in growth rates is statistically signifi cant. 
The estimates from our simulation are lower than this growth rate and for 
the 2000 to 2019 period suggest that 26 percent to 60 percent of  this growth 
may be due to changing climate.

All of the results presented in the chapter so far have excluded CARE 
customers from the estimation sample. One potential concern is that these 
households live on fewer square feet, are more likely to be renting, have 
lower average use and lower HVAC saturation rates. This would suggest 

Table 11.3 Simulated percent increase in residential electricity consumption relative 
to 1980–2000 for the temperature only, price � temperature and 
population growth � temperature (%)

  
Price 

increase  

Equidistant

 

Percentile

BCSD

 

CA BCSD

 

CA

A2  B1 A2  B1 A2  B1 A2  B1

Temperature only scenario
2000–2019 	0 5 2 5 3 6 3 5 3
2020–2039 	0 5 8 7 8 6 9 7 8
2040–2059 	0 15 9 17 10 17 11 17 10
2060–2079 	0 24 15 28 16 28 17 28 16
2080–2099 	0 48 18 50 20 55 21 50 20

High price � temperature scenario
2000–2019 	0 5 2 5 3 6 3 5 3
2020–2039 �30 –6 –3 –5 –4 –5 –3 –4 –3
2040–2059 �30 3 –2 3 –2 6 –1 5 –1
2060–2079 �30 11 3 11 2 15 5 15 4
2080–2099 �30 33 6 29 4 39 9 35 7

Population � temperature scenario
2000–2019 	0 17 13 16 14 18 14 16 15
2020–2039 	0 31 34 33 34 32 35 34 35
2040–2059 	0 48 41 50 41 52 42 53 42
2060–2079 	0 66 52 68 51 72 55 73 54
2080–2099 	0  113 65  113 65  124 70  123 70

Notes: Equidistant and Percentile pertain to bin type. BCSD � bias correction and spatial 
downscaling; CA � constructed analogues. A2 and B1 represent the Intergovernmental Panel 
for Climate Change scenarios.
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that the temperature response for these households is potentially lower 
than for the households in the full sample. The number of CARE house-
holds in California is large. The SCE reports over 1 million customers on 
CARE, which is roughly one- quarter of residential accounts. For PG&E 
and SDG&E, the share of accounts is roughly 20 percent. We, therefore, 
separately sample from only the CARE households by zip code, adopting 
the same sampling restrictions as in the non- CARE sample. We then esti-
mate temperature response functions by climate zone, which are slightly less 
steep in the higher temperature bins. We then conduct the simulations for the 
CARE households separately. To obtain an estimate of the overall impacts, 
when we include CARE, we weight impacts for each zip code by the share 
of CARE to non- CARE households in that zip code. Table 11.4 reports 
these results for the Bias Correction Spatial (BCS) downscaling algorithm 
and equidistant bin simulations. As suspected, the CARE households are 
slightly less affected by higher temperatures, yet the overall weighted average 
is very close to the simulations presented in table 11.3.

11.5.1   Temperature and Price Simulations

The assumed fl at prices from the previous section should be considered 
as a comparison benchmark. It is meaningful and informative to imagine 
climate change imposed on today’s conditions. It is worth pointing out, 

Fig. 11.8  California residential per capita electricity consumption
Source: Author’s calculations based on EIA (2008) SEDS data.
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however, that real residential electricity prices in California have been, on 
average, fl at since the early- mid 1970s spike. In this section, we will relax the 
assumption of constant prices and provide simulation results for increasing 
electricity prices under a changing climate.

While we have no guidance on what will happen to retail electricity prices 
twenty years or further out into the future, we consider a discrete 30 percent 
increase in real prices starting in 2020 and remaining at that level for the 
remainder of  the century. This scenario is based upon current estimates of 
the average statewide electricity rate impact by 2020 of  AB 32 compliance 
combined with natural gas prices to generators within the electric power 
sector. These estimates are based on analysis commissioned by the Cali-
fornia Public Utilities Commission. This scenario represents the minimum 
to which California is committed in the realm of electricity rates. This sce-
nario could be interpreted as one assuming very optimistic technological 
developments post- 2030, implying that radical CO2 reduction does not 
entail any cost increases, or as a California and worldwide failure to pur-
sue dramatic CO2 reductions such that California’s AB 32 effort is not 
expanded.

To simulate the effects of price changes on electricity consumption, we 
require good estimates of the price elasticity of demand. In this chapter, 
we rely on the estimates of  mean price elasticity provided by Reiss and 
White (2005). Specifi cally, they provide a set of average price elasticities for 
different income groups, which we adopt here. Because we do not observe 
household income, we assign a value of price elasticity to each zip code based 
on the average household income for that zip code. Households are sepa-
rated into four buckets, delineated by $18,000, $37,000, and $60,000 with 
estimated price elasticities of –0.49, –0.34, –0.37, and –0.29, respectively. It 
is important to note that these price elasticities are short- run price elastici-
ties. These are valid if  one assumes a sudden increase in prices, as we do in 
this chapter. To our knowledge, reliable long- term price elasticities based on 
microdata for California are not available, but in theory, they are larger than 

Table 11.4 Simulated percent increase in residential electricity consumption relative 
to 1980–2000 for California Alternate Rates for Energy (CARE) and 
non- CARE households (%)

  
Price 

increase  

Non- CARE

 

CARE

 

Weighted

A2  B1 A2  B1 A2  B2

2000–2019 	0 5 2 4 2 5 2
2020–2039 	0 5 8 4 6 5 7
2040–2059 	0 15 9 12 8 14 9
2060–2079 	0 24 15 20 12 23 14
2080–2099 	0  48  18  39  15  46  17

Notes: For this table, an equidistant bins approach was used, as well as the BCSD downscal-
ing. A2 and B1 represent the Intergovernmental Panel for Climate Change scenarios.
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the elasticities used in this chapter. The second panel in table 11.3 presents 
the simulation results under the scenarios of climate change given a sudden 
persistent increase in electricity prices in the year 2020. Given the sizable 
assumed price elasticity estimates, it is not surprising that the simulated 
increases in residential electricity consumption for the fi rst period after the 
price increase are roughly 6 percent to 12 percent lower than the predicted 
increases given constant prices. For the NCAR model under both consid-
ered forcing scenarios the path of electricity consumption under this price 
scenarios returns to levels below its 1980 to 2000 mean for the 2020 to 2040 
period, given this assumed price trajectory. By the end of the century, we 
still observe signifi cant increases in electricity demand for the higher forcing 
scenario (A2). It is important to note that these effects are conditional on the 
estimated price elasticities being correct. Smaller elasticities would translate 
into price- based policies, such as taxes or cap and trade systems, being less 
effective at curbing demand compared to standards.

11.5.2   Temperature and Population

California has experienced an almost sevenfold increase in its population 
since 1929 (Bureau of Economic Analysis [BEA] 2008). California’s popu-
lation growth rate over that period (2.45 percent) was more than twice that 
of the national average (1.17 percent). Over the past fi fty years, California’s 
population has grown by 22 million people to almost 37 million in 2007 
(BEA 2008). To predict what the trajectory of California’s population will 
look like until the year 2100, many factors have to be taken into account. 
The four key components driving future population are net international 
migration, net domestic migration, mortality rates, and fertility rates. The 
State of California provides forecasts fi fty- fi ve years out of sample, which is 
problematic because we are interested in simulating end- of- century electric-
ity consumption. The Public Policy Institute of California has generated a 
set of population projections until 2100 at the county level.

For illustration purposes, we use their “low” series, where population 
growth slows as birth rates decline, migration out of the state accelerates, 
and mortality rates show little change. This low series is equivalent to a 
0.18 percent growth rate and results in a population 18 percent higher than 
today’s. Projections are available at the county level and not at the zip code 
level. We, therefore, assume that each zip code in the same county experi-
ences an identical growth rate.

The bottom panel of table 11.3 displays the simulated aggregate electricity 
consumption given the “low” population growth scenarios. This table holds 
prices constant at the current level. It is not surprising to see that population 
uncertainty has much larger consequences for simulated total electricity con-
sumption compared to uncertainty over climate or uncertainty over prices. 
The simulations for the low forcing scenario B1 and the low population 
growth scenario show 65 percent to 70 percent increase in residential electric-
ity consumption. If we consider the A2 forcing, the predicted low population 
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average increase in consumption is a 118 percent increase. The source of this 
disproportionate increase in overall consumption from a relatively modest 
increase in population the predicted increases in population in areas with 
steeper response functions (e.g., the Central Valley).

11.6   Adaptation

The major fi nding in the chapter so far is the heterogeneity in temperature 
response of residential electricity consumption across climate zones. While 
geographic location clearly plays an important role in determining this 
responsiveness, we wish to study whether there are household or structure 
characteristics, which help explain some of this difference in temperature 
response. We, therefore, construct a statewide sample by sampling 10 percent 
of the households from each of the sixteen climate zone- specifi c data sets 
used in the preceding. We restrict ourselves to non- Care customers in this 
exercise. We construct 10 percentile temperature bins, where the cutoffs are 
at every 10th percentile of the California- wide temperature distribution for 
the years 2003 to 2006. The smaller number of bins and percentile approach 
guarantee that there are enough observations in the extreme bins at mean-
ingful cutoff points.

We then slice the preceding data set along several dimensions in order to 
see whether the temperature response varies with certain variables of interest 
from the census 2000 Summary File 3 (SF 3). Specifi cally, for each indicator, 
we divide this sample into two groups, a “low group” and a “high group,” 
based on the value of the variables of interest. The following are the variables 
of interest and percentiles used in estimation:

1. Percentage of household using electricity as heating fuel.
 •  Low group: households in zip code with this variable 
 30 percent
 •  High group: households in zip code with this variable � 60 per-

cent
2. Percentage of household using gas as heating fuel.

 •  Low group: households in zip code with this variable 
 40 percent
 •  High group: households in zip code with this variable � 60 per-

cent
3. Percentage of households in an urban area.

 •  Low group: households in zip code with this variable 
 40 percent
 •  High group: households in zip code with this variable � 60 per-

cent
4. Median year of structure built.

 •  Low group (older building): zip codes with median year of struc-
ture built � 1959

 •  High group (newer building): zip codes with median year of struc-
ture built  1979
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For each variable of interest, we estimate the same models as previously, 
while making sure that we are making a fair comparison across groups. For 
our regressions, we, therefore, limit the sample for both groups to those 
households with median household income between 40 to 60 percent of the 
distribution of census 2000 zip- code- level median household income.

For each variable of interest, we plot the estimated coefficients for each 
temperature bin against their midbin temperature. Each of the graphs has 
two sets of  lines, one for “low group” (thin lines) and the other one for 
“high group” (thick lines). We also plot the 95 percent confi dence intervals 
for each group. Figure 11.9 plots the response functions for households in 
zip codes with a high penetration of electricity as the major heating fuel 
against the response functions for households from zip codes with a low 
penetration of  electricity of  a heating fuel. The difference is drastic and 

Fig. 11.9  Temperature response for households by major heating fuel
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statistically signifi cant. The zip codes using electricity as the major source of 
heat have signifi cantly higher electricity consumption at low temperatures, 
while the low penetration zip codes have an almost fl at response. The fol-
lowing panel displays the fi gure for natural gas. It is switched, which is not 
surprising, given that electricity and natural gas are the two major heating 
fuels in California. In the top panel, it is also noteworthy that households 
with higher electric heating have a drastically higher temperature response 
at high temperatures.

Figure 11.10 displays the temperature response functions for older houses 
versus newer houses in the top panel. At the low- temperature spectrum, 
newer houses seem to require more electricity to heat compared to older 
houses. At the high end of  the temperature spectrum, older and newer 
houses appear to have an almost identical temperature response. The bottom 
panel of fi gure 11.10 displays the temperature response for houses located 
in mostly urban zip codes versus the temperature response of households 
located in mostly rural zip codes. The difference is quite drastic, with rural 
households having an almost fl at temperature response function and urban 
households having the typical U- shaped response. This fi nding is due to the 
fact that much of the Central Valley and the greater Los Angeles area are 
considered urban.

Fig. 11.10  Temperature response for households by year built and urban location
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11.7   Conclusions

This study has provided the fi rst estimates of California’s residential elec-
tricity consumption under climate change based on a large set of  panel 
microdata. We use random and, therefore, exogenous weather shocks to 
identify the effect of weather on household electricity consumption. We link 
climate zone specifi c weather response functions to a state of the art down-
scaled global circulation model to simulate growth in aggregate electricity 
consumption. We further explore the household characteristics potentially 
responsible for the heterogenous temperature response of consumption.

There are two novel fi ndings from this chapter. First, simulation results 
suggest much larger effects of climate change on electricity consumption 
than previous studies. This is largely due to the highly nonlinear response 
of consumption at higher temperatures. Our results are consistent with the 
fi ndings by Deschênes and Greenstone (2007). They fi nd a slightly smaller 
effect using national data. It is not surprising that impacts for California, a 
state with a smaller heating demand (electric or otherwise), would be big-
ger. Second, temperature response varies greatly across the climate zones in 
California—from fl at to U- shaped to hockey stick- shaped. This suggests 
that aggregating data over the entire state may ignore important nonlineari-
ties, which combined with heterogeneous climate changes across the state 
may lead to underestimates of future electricity consumption.
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