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Abstract

We present new evidence on the relationship between weather and corn yields in Indiana
between 1901 and 2005, extending earlier results for corn from 1950-2005. Indiana, a major
corn-producing state has the best coverage of daily weather records for the early half of
the 20th century. The effects of precipitation and extreme heat are shown to evolve over
time as new seed varieties, supplemental irrigation systems and management practices are
introduced. In particular, we find that the detrimental effects of either too much or too little
precipitation diminish over time. In contrast, the evolution of tolerance to extreme heat
is highly nonlinear, growing with the adoption of double-cross hybrid corn in the 1940’s,
peaking around 1960, and then declining sharply as single-cross hybrids come online. Corn
in Indiana is most sensitive to extreme temperatures at the end of our sample. Since climate
change models predict an increase in extreme temperatures, the big question is whether the
next breeding cycles can increase both average yields and heat tolerance simultaneously as in
the period 1940-1960, or whether continued increases in average yields can only be achieved
at the expense of heat tolerance as in the period from 1960 onwards. Finally, we discuss
these impacts in relation to possible distortionary effects of current agricultural subsidies in
the United States.
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1 Introduction

With evidence accumulating that greenhouse gas concentrations are warming the world’s

climate, there is growing interest in the potential impacts that may occur under different

warming scenarios, and on how economies might adapt to changing climatic conditions.

Agriculture is of particular interest due to the fact that climate is a direct natural input in

the production process. Agriculture in developed nations, and particularly in the United

States, has received considerable attention. This attention may derive from the fact that

wealthier nations produce a disproportionate share of the world’s agricultural commodities,

at least partly due to their relatively more temperate climates. Accordingly, climate change

impacts on agriculture in developed nations, and particularly the United States, the world’s

largest producer, have broad implications for food supply and prices worldwide.

In recent research, we conducted detailed statistical analyses of the relationship between

weather and crop yields of corn, soybeans, and cotton in 1950-2005. These crops are among

the four largest U.S. crops, all of which are important for world commodity prices (Schlenker

and Roberts 2009). Corn and soybeans are two of the world’s four key staple commodities

that comprise about three quarters of calories produced worldwide (rice and wheat are the

other two). The U.S. produces about 40 percent of world production in these two crops,

making it, by far, the world’s largest producer and exporter. While less important for global

food supply, cotton is grown in the warmer Southern areas of the United States and might

be better suited to warmer temperatures.

We found that yields of all three crops grow roughly linearly in temperature up to a

threshold, above which yield growth declines sharply. The threshold varies by crop: 29◦C

(84◦F) for corn, 30◦C (86◦F) for soybeans, and 32◦C (90◦F) for cotton. For all three crops, the

slope of the decline above the optimum temperature for yield growth is significantly steeper

than the incline below the optimum temperature. Cumulative exposure to cumulative heat

above the threshold is the strongest single predictor of yield outcomes. One implication is

that a modest amount of warming could change, markedly, the best locations for growing

these key crops.

In this paper we extend the analysis and construct a fine-scaled weather data set for

the entire 20th century in Indiana. This prolonged period covers weather extremes of the

1930s that led to the Dust Bowl and includes observation both before and after the Green

Revolution, allowing us to examine how the relationship between weather and corn yields

evolved over time as new seed varieties (double- and single-crossed hybrids) were introduced.

Historic adaptation to weather extremes, or the failure to do so, can give valuable insights
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on how difficult it is to adapt to conditions that are predicted to become more frequent

under climate change. We find that the relationship between various weather measures and

log yields evolves over time. Most notably, thee detrimental effects of too much or too little

precipitation vanishes continuously over time, while the robustness to withstand extremely

warm temperatures peaks around 1960.

Extrapolating the relationship we previously discovered for the entire United States while

holding growing areas fixed results in severe impacts: average yields decrease by 30-46%

before the end of the century under the slowest (B1) warming scenario and decrease by

63-82% under the most rapid warming scenario (A1FI) under the Hadley III climate model.

These projected declines are driven by sharp yield reductions when temperatures exceed

29-32 degrees Celsius combined with the sizable increase in the projected frequency of these

extreme temperatures.

There are several reasons why these projected damages might overstate actual potential

damages. As the climate warms, agricultural production will work to adapt to this warming.

The most difficult economic questions pertain to how large these adaptation possibilities

may be.

One form of adaptation would be to change the locations where particular crops are

grown. As climates change, so will geographical comparative advantages. We should not

expect crops to be grown in the same locations as they are grown today. Ascertaining the

potential impact of climate changes therefore calls for an analysis of the yield potential of

major crops across the globe, even in places where agricultural production does not exist

today. Such analysis can be quite complex and requires strong assumptions about the poten-

tial suitability of many crops in various climates and soils. For example, there is uncertainty

about soil dynamics in the Tundra, a region that is currently too cold to farm but might be-

come farmable under warming. Chapin et al. (1995) conduct experiments of soil changes in

Alaska and find that the 3-year response in experimental plots are a bad predictor of 9-year

changes in experimental plots. The authors emphasize the difficulty of predicting long-term

changes using short-term heat waves.

A recent study by the International Food Policy Research Institute (Nelson et al. 2009)

conducts a comprehensive, worldwide analysis that incorporates shifts in growing locations.

Given its inherent complexity, many assumptions enter their model. The amount of un-

certainty surrounding their projections is probably unquantifiable. But this is the most

recent, careful, and comprehensive study to date. The study predicts significant declines in

commodity production and increases in commodity prices stemming from global warming.
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Calorie availability will not only be less that the no-climate-change scenario, but less than

availability in 2000. South Asia will be hit particularly hard as yields for rice and wheat

decrease significantly.

In neither our earlier work nor in this paper do we attempt such a comprehensive analysis.

Rather, by focusing on major crops in the U.S., a climatically diverse country that generates

the world’s largest agricultural output and exports the most, we examine forms of potential

adaptation observable in historical data. These historical adaptations (or lack thereof) may

provide some insight into the scope and nature of potential adaptations that may be available

as climate changes.

Finally, we briefly discuss our impacts in the context of current agricultural subsidies in

the United States. Some might argue that negative impacts to U.S. grain production will

be welfare enhancing because they will offset positive production distortions stemming from

subsidies. Journalists and authors like Michael Pollan have popularized the idea that our

diet rich in corn-based processed foods and corn-fed beef, dairy, poultry and pork stems in

part from the fact that corn production is so heavily subsidized.

While clear evidence on the net influence of subsidies on agricultural production is lack-

ing, most subsidies today are more-or-less “decoupled” from production decisions and are

therefore probably small in magnitude. An exception is the recent subsidy for ethanol pro-

duction, which has clearly stimulated demand for corn and caused commodity prices to

increase. About a third of U.S. corn production is converted into biofuels, reducing the

quantity of grains going toward food production. While the evidence is mixed, there is little

reason to believe that food production would be much less than it is currently in the absence

of U.S. agricultural policies. Indeed, we show that U.S. conservation policies may reduce

U.S. commodity production more than subsidies increase it.

2 Implications of Earlier Findings for Adaptation

Our earlier research found the same nonlinear relationship between yield growth and tem-

peratures, described in the introduction, when the analysis is narrowed to consider only

cooler northern U.S. states or only warmer southern U.S. states. This evidence supports

the idea that the nonlinear temperature relationship is a generalizable phenomenon. Adding

to this evidence, we found the same relationship if we examined only the early half of the

sample (1950-1977), or only the latter half of the sample (1978-2006). This was particularly

surprising given the significant increase in average yields.
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These comparisons suggest that innovations since 1950, while increasing average yields

approximately threefold, did not increased relative heat tolerance. And since most regions of

the U.S. currently have temperature distributions that are warmer than optimal, there has

existed at least some incentive to breed or engineer more heat tolerance into plants. Note

that our earlier examination of heat tolerance over time was relatively crude: we merely split

the sample into an earlier and later period. A key focus of new analysis presented below is

to examine the evolution of heat tolerance more thoroughly and over a longer time period.

The stability of the nonlinear temperature-yield relationship over different subsets of the

data helps to provide powerful evidence of a causal link. This is particularly true as each

specification includes county fixed effects to control for time-invariant heterogeneity of soils

and farming practices. While cross-sectional variation in temperatures may be associated

with other factors correlated with geography, county fixed effects purge this variation from

the regression. Remaining variation in weather outcomes over time are arguably random

from the vantage point of farmers, and thereby constitute a viable natural experiment. The

stability of results combined with strong exogeneity of weather variations in a fixed location

are what make the empirical results persuasive.1

While correlations between time-series weather variations and economic outcomes are

persuasively causal, a problem with focusing only time-series variations is that they cannot

account for adaptation. When farmers operate in a different climate, the set of adaptation

strategies will be very different compared to unanticipated changes in weather.

One might be tempted to interpret short-run response to weather as a useful lower bound

of the impact stemming from climate change. The idea is that adaptation would mitigate

damages and exploit new opportunities which are not available in the short run. Thus,

the argument goes, adaptation necessarily improves the outcome relative to the short-run

response to weather. In our view, such an inference is incorrect. It is true that some decisions

are available in the long run that are unavailable in the short run. But the converse is also

true. For example, an aquifer with limited replenishment may provide irrigation water to

help a farmer cope with a temporary drought, but may be insufficient for maintaining crop

production if precipitation were permanently reduced.2

1Deschênes and Greenstone (2007) use year-to-year variation in weather to estimate the relationship
between profits or yields and weather. They find that agricultural profits and yields are independent of
weather. However, their weather data set contains many irregularities and their profit measure, which is
the difference between sales in a given year minus expenditures, does not account for storage behavior that
smoothes profits between periods. Once the data errors are corrected, projected climate change effects on
yields are again unambiguously negative (Fisher et al. 2009).

2Other examples are provided in Fisher et al. (2009).
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Adaptations to changing climate conditions are better captured by cross-sectional com-

parisons. The potential downside is that cross-sectional comparisons are more easily con-

founded by unobserved factors that happen to correlate with location. Since many economic

and social factors correlate with geography, and climate itself is correlated with geography,

there is a distinct possibility that any observed association between climate and an economic

outcome is not causal, but rather reflects the influence of some unmeasured factor associated

with location and climate.

Considering the strengths and weaknesses of both cross-sectional climate variations and

time-series weather variations, in our view it is important to consider both. And in this

respect perhaps the most compelling finding of our earlier research is that both methods of

comparison give very similar results. We isolated the pure cross-sectional relationship be-

tween climate and yields by pairing the average distribution of temperature and precipitation

outcomes with each county’s average deviation from the nationwide U.S. yield.3 To isolate

the pure time-series we paired the nationwide average yield with the crop-area-weighted

average weather distribution in each year.

Both of these methods of identification show the same distinctly non-linear relation-

ship between temperature and yield growth described in the introduction. While the cross-

sectional relationship may be potentially confounded by omitted variables, it is robust to

inclusion or exclusion of controls for soils and other factors. Moreover, we also find it unlikely

that unobserved confounding factors would happen to align in such a manner that would

give rise to the same nonlinear relationship as observed in the time series relationship that

is identified with presumably random weather fluctuations. The fact that these relation-

ships are similar suggests that, at least historically from 1950 to 2005, there has been little

scope for adaptation conditional on the locations where these key crops were grown. This

finding is consistent with some earlier work using the hedonic approach, which considers

cross-sectional variations in climate to land values (Schlenker et al. 2006).4 The hedonic

3Subtracting each year’s nationwide yield from each county’s yield removes the aggregate upward trend,
which is substantial.

4Mendelsohn et al. (1994) first introduced the Ricardian method to measure the effects of climate change
on agriculture by estimating a cross-sectional relationship between county-level farmland values and climatic
variables in the United States. The predicted impact of changing climatic variables depend largely on the
set of weights. Under the cropland weights (fraction of a county that is cropland) the predicted impacts are
severely negative, and under the crop-revenue weights (the value of agricultural production sold) the effects
are beneficial. The reason why the results diverged under various weights is access to highly subsidized
irrigation water rights in the Western United States. These subsidized water rights capitalize into farmland
values (Schlenker et al. 2007). Since access to subsidized water rights is correlated with temperature, an
increase in temperature implicitly assumes an increase in subsidies, which should not be counted as a societal
benefit. The crop-revenue weights aggravate the problem because highly irrigated counties in the Western
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approach also accounts for crop switching in response to climate change.

3 The Evolution of Weather-Yield Relationships over

the 20th Century

Our earlier work found little evidence of adaptation to warmer temperatures between 1950

and 2006. In this paper we extend the analysis to include the earlier and potentially more

interesting period between 1901 and 1950. Our focus on this period is motivated in large

part by Sutch’s (2008) research. Sutch argues that the adoption of hybrid corn, one of

history’s most remarkable and well documented technological revolutions, was precipitated

in part by the extreme weather events of the 1930s. In particular, he argues that hybrid corn

demonstrated particularly high yields relative to open-pollinated (non-hybrid) corn during

1934 and 1936, which (by our own key crop-related temperature measures) remain the most

extreme on record. Thus, it could be that our earlier analysis did not look back far enough

to the timing of the key innovation leading to the green revolution.

Specifically, in this paper we examine a panel of corn yields from 1901-2005, a time period

that includes a full 35 years before the beginning of the green revolution as well as some 70

years after the first adoption of hybrid corn. Our analysis focuses on the state of Indiana,

which sits in the middle of the so-called “Corn Belt” and is the nation’s third largest corn

growing state. Our focus on Indiana is mainly due to data availability: it turns out that

Indiana has the most comprehensive record of detailed daily weather records in the station

data maintained by the National Climatic Data Center. Detailed daily weather data are

necessary to estimate the effect of the entire temperature distribution on yields. The data

accounts for variations in temperatures, both within and across all days of each growing

season. This detail facilitates correct identification of nonlinear temperature effects, which

can be diluted from measurement error, or if temperatures are averaged over time or space.

The key focus of our analysis is to examine how heat tolerance and drought tolerance has

changed over time, with some particular focus on the time period following the great heat

waves of 1934 and 1936 and subsequent widespread adoption of hybrid corn.

United States account for a large share of overall revenues, yet the fraction of the county that is cropland
(cropland weights) is small. Schlenker et al. (2005) show that if the analysis is limited to rainfed agriculture,
the results converge and become unambiguously negative under both sets of weights.
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3.1 Data: A Century of Yields and Weather in Indiana

Figure 1 shows corn yields in Indiana over the 20th century. These yield data are publicly

available from the U.S. Department of Agriculture’s National Agricultural Statistical Service

(USDA-NASS). All of our data sources are described in further detail in the data appendix.

The graph shows the average yield in the state for all years between 1901 and 2005 as black

diamonds. For years after 1928, when county-level data becomes available, a box plot shows

the range and inter-quartile range of yields across counties in Indiana.

Before 1940 there was no discernible trend in yields. This is true even if one were to

extend the time series back many decades before 1901, the earliest year shown in the figure.

Around 1940 yields started a sharp upward trend that appears ongoing even today. Typical

yields in Indiana were between 30 and 40 bushels per acre before 1940, yet today, a typical

Indiana farmer can expect 150 to 160 bushels per acre. Yield variance increased along with

typical yields, so we model the natural log of yield per acre.

As discussed in great detail by Sutch (2008), the beginning of the upward trend in

yields began around the time when many key events occurred simultaneously. The Great

Depression in the 1930s was followed by the onset of World War II in 1938, which caused

large fluctuations in commodity prices. At least equally important was the early adoption

of hybrid corn, starting in Iowa and quickly expanding to Illinois, Indiana, and beyond. The

superior yields of hybrid corn was discovered in 1918 but it was not until later, perhaps

after 1936, that seed production became commercially viable and high-yielding enough for

farmers to adopt.

Also, in the decade before 1940, the Midwest, including Indiana, experienced both the

hottest and driest temperatures on record for the growing-season months between March

through August, shown in Figure 2 and 3. The former shows yearly weather shocks in

extreme heat (degree days above 29◦C, further described below) over the growing season.

The latter shows precipitation deviations from average climatic conditions. The decade of

poor weather in the 1930s was most accentuated in the two drought years of 1934 and 1936,

which brought about the great Dust Bowl, an event of massive wind erosion in states west

and south of Indiana. In those years average yields in Indiana were just 27.6 and 25.6 bushels

per acre, two of the three worst yields on record for the state during the 20th century. Note

that drought years also showed the largest exposure to extreme heat as temperatures and

precipitation are interrelated. Indiana still fared much better than states west and south

of Indiana. Iowa harvested just 60 percent of its planted acreage in 1934, an all time low,

and Dust Bowl states of Nebraska and Kansas lost nearly all of their corn plantings in these
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years.

It is interesting to note that more recently, and particularly in the last two decades, the

weather has been good for corn yields. This is in sharp contrast with what climate models

project in the decades to come. Under the slowest-warming scenario (B1) in the Hadley III

model, average projected extreme heat for the years 2070-2099 is predicted to increase by

103 degree days above 29◦C compared to the 1960-1989 baseline under the Hadley III model.

It is added as a horizontal line in Figure 2. While the B1-scenario assumes we curb CO2

emissions sharply in the near future, the predicted increase is still worse than the worst of

the Dust Bowl years. Average projected increase in extreme heat under fast-warming A1FI

scenario is way off the chart at 310 additional degree days above 29◦C.

Construction of the weather variables presented in Figure 2 and 3 is further detailed in

the appendix. We construct these data from daily individual weather stations in Indiana.

Geographical interpolation is achieved by linking it with the PRISM weather data sets, which

gives monthly observations on a 2.5x2.5 mile grid for the entire United States. Indiana is the

only state in the U.S. for which the National Climatic Data Center of the National Oceanic

and Atmospheric Administration reports having more than three weather stations in the

early part of the century. The availability of good, fine-sale weather data is essential for

identifying non-linear weather effects since these effects can be diluted with measurement

error or if values are averaged over time and space. The geographical locations of weather

stations in Indiana that we use to construct our data set for each 25-year period are shown

in Figure 4.

The challenge for a regression model that relates yields to weather outcomes is in map-

ping an entire season of temperature and precipitation outcomes to a single yield outcome.

We achieve this by assuming temperature effects on yields are cumulative over time and that

yield is proportional to total exposure. This implies temperature effects are additively sub-

stitutable over time. That is, we sum the daily outcomes associated with each temperature

over all days of the growing season. The benefit of assuming additive separability is that it

allows us to keep the underlying relationship between temperatures and yields fully flexible.

Earlier work has shown that there are three weather variables that give the best out-of-

sample predictions of corn yields: (i) total precipitation pit in county i in year t; (ii) degree

days above 29◦C (ddH
it ), which captures the harmful effects of high temperatures; and (iii)

degree days between 10◦C and 29◦C degrees (ddM
it ), which measures the beneficial effects of

moderate temperatures (Schlenker and Roberts 2009). Each measure is simply a truncated

integral over the temperature distribution within each day, and then summed over all days
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in the growing season, as given below.

Degree days above 29◦C (high temperature measure) are defined as:

ddH
it =

August 31st∑
j=March 1st

∫ ∞

T=29

(T − 29)hitj(T )dT

where T is temperature (in degrees Celsius) and hitj(T ) is the estimated density of time at

each degree during day j in year t in county i. Since the measure is sensitive to geographic

variation in temperatures, as wells as variations within and across all days of the growing

season, we spend considerable care in estimating hitj(T ). Further details are given in the

data appendix.

The second temperature measure is degree days between 10◦C and 29◦C (moderate tem-

perature measure) are defined as:

ddM
it =

August 31st∑
j=March 1st

∫ 29

T=10

(T − 10)hitj(T )dT.

3.2 Regression Model

In this paper we take as given the two temperature measures that our earlier work found to

be the best predictor of corn yields in 1950-2005. Our focus is to explore how the relationship

between yields and weather has changed over the 105 years from 1901 to 2005. We use a

flexible restricted cubic spline model that allows temperature and precipitation associations

to change smoothly and flexibly over time. Specifically, the regression model is:

yit = β0ddM
it + β1ddH

it + fp(pit) + ft(t) + fM (t) ∗ ddM
it + fH(t)ddH

it + ft2(t)fp2(pit) + ci + ǫit

where yit denotes the natural log of yield in county i and year t, ddM
it and ddH

it are the degree

day measures described above, pit is total precipitation. The functions fx(·) are cubic splines

of time or precipitation.5 We also include separate intercepts for each county (i.e., fixed

effects, denoted ci) to account for unobserved time-invariant heterogeneity, like soil quality.

5In the baseline model each of the spline functions is approximated using 5 knots, located at the 0.05,
0.275, 0.5, 0.725 and 0.95 quantiles of the empirical distribution of the relevant explanatory variables. For
the time trend, knot locations are 1932, 1949, 1967, 1984, and 2001. The early knot in the time trend is due
to the fact that we have only state-level observations prior to 1929, and thus fewer data points per year than
after 1929 when we have county-level observations. To check the stability of the results to specification, we
also estimated models with 3, 4, 6, and 7 knots for each spline function below.
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Since we combine state-level averages before 1929 with county-level averages starting in

1929, we use the corn acreage as weights in the regression equation to make the two set

of aggregation measures comparable. Estimation of restricted cubic spline models is easily

done using ordinary least squares. Since the errors within each year are likely correlated in

space, we adjust our standard errors to account for this (clustering the errors by year) and

possible heteroscedasticity using the Huber-White method.

3.3 Results

Figure 5 shows the effects of each of the four variables: time, precipitation, ddM and ddH

while holding all other three variables at their median values. These results are characteristi-

cally similar to what we found in our earlier work that focused on the period from 1950-2005:

there is a sharp upward trend in yields over time as shown in the top left panel. Yields have

an inverted-U shape with rainfall as shown in the top right panel. Yields increase gradu-

ally with temperate degree days between 10◦C and 29◦C as shown in the bottom left panel.

Finally, yields decline sharply with extreme heat, measured as degree days above 29◦C, as

shown in the bottom right panel. Since all regressions include county fixed effects, the graph

will be shifted up-or down by the county-specific intercepts. We hence normalize each graph

and display impacts relative to optimal outcome of each variable in question. For example,

by how much do yields decline if precipitation deviates from the optimum for the season.

All four panels of Figure 5 use the same scale on the y-axis to make the contribution of each

variable comparable across plots. The time trend is responsible for the largest effect followed

by degree days above 29◦C.

These median-value predictions, however, do not show how these relationships have

changed over time. We explore how these relationships change over time in Figure 6 for

precipitation, Figure 7 for extreme heat ddH , and Figure 8 for moderate temperatures ddM .

Each of these figures plots the relationship of the three weather variables at fifteen points in

time.6

The effects of all three weather variables have shifted markedly over time. Figure 6

shows that the influence of precipitation continuously vanishes over time. Deviations from

the optimal precipitation levels have limited effects on yields in 2000. We believe that two

explantation are most likely responsible for the fact that yields are no longer directly linked

to rainfall during the growing season. First, a lack of precipitation in the growing season

might be counter-balanced with irrigation. Continued mechanization of agriculture has led

6We report the confidence bands obtained from the R package Design after clustering errors by year.
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to the gradual expansion of pivot irrigation systems that can provide supplementary water

during especially dry periods. While only a minority of corn fields in Indiana have pivot

irrigation systems, the ones that do are probably more prone to dryness or have sandier soils.

Second, seed companies may have bred increased drought tolerance into corn plant varieties.

While climate models vary considerably in their predictions for precipitation changes, with

some forecasting increases and others decreases, evidence from weather and yields in Indiana

suggest this may be of little economic consideration.

The evolution of heat tolerance in Figure 7 differs from that of precipitation. Heat

tolerance increased until 1960 followed by a decline after 1960. Figure 9 shows the marginal

effect of extreme heat, i.e., the slope of the regression line in Figure 7 over all years in our

sample. The negative influence of an additional degree day above 29◦C is lowest around 1960

and most damaging in recent years when corn varieties were optimized for maximum average

yields. The magnitude of the negative coefficient on ddH is nearly three times as large in

2000 as it is in 1960, and about twice as large in 1901 as compared to 1960. This result is

qualitatively insensitive to how many knots we use in the spline once we include at least 4

knots to make the model flexible enough to capture the nonlinearities. Figure 10 replicates

this analysis for the marginal effect of moderate temperature as measured by degree days

between 10◦ and 29◦C.

Estimated slopes in the early years of Figure 9 should be interpreted with some caution

because there are much fewer data points before 1929 as only state level data are available.

Our spline model places more emphasis on subperiods with more data and linearizes the

model in the tails of the data. Closer inspection of the data do suggest that much of the

increase in heat tolerance actually took place between 1940 and 1960, rather than being

a steady smooth trend up from 1901. This interpretation would be consistent with the

relatively stable farming technologies between 1901 and 1936 and rapid technological progress

after 1940. This would also be consistent with Sutch’s historical account of the adoption of

hybrid corn.

The most interesting and relevant finding that speaks to implications for climate change

is the sharp decline in tolerance to extreme heat since 1960. This finding is a powerful coun-

terpoint the apparent increase in drought tolerance. Under the latest climate change models,

a sharp rise in maximum temperatures is predicted to significantly increase the occurrence

of temperatures above 29◦C. Since degree days above 29◦C are a truncated temperature

variable, modest shifts in the temperature distribution can have a large relative influence on

this temperature measure. For example, a 1◦C warming from 29.5◦C to 30.5◦C triples degree
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days above 29◦C. The historic average number of degree days above 29◦C is 25 in Indiana.

Under the Hadley II model (IS92a scenario) the number is predicted to increase by 19 at

the end of this century. Under the much warmer Hadley III model, degree days above 29◦C

are projected to increase by 103 under the slow-warming B1 scenario. Thus, even under the

slowest-warming scenario, typical weather outcomes in the latter part of this century will

be far worse than the worst drought years in the historical record, 1934 and 1936 (refer to

Figure 1). Under the fastest-warming A1FI scenario, degree days above 29◦C are projected

to increase by 310, making the measure in a typical year about 3.5 times worse than the

worst year on record.

Finally, the relationship between the precipitation and log yields is highly significant, but

the interaction between time and precipitation has a p-value of 0.06. For all factors besides

precipitation, both the combined effect as well as non-linear interactions with time, are

significant at the 5% level, suggesting that the relationship was not stable over the century

but evolved. A summary of significance tests is reported in Table 1.

3.4 Discussion of New Results

The last section extended earlier research on the the link between weather and yields by

examining how key weather variables are associated with corn yields in Indiana over the time

period 1901-2005. We use restricted cubic spline regressions to let the effect of precipitation,

moderate heat, and extreme heat evolve smoothly over time in a flexible way. Results for

each variable, while holding all other variables constant at their median observed outcomes,

are comparable to earlier results we obtained for a model using county-level corn yields for

all counties east of the 100 degree meridian in the years 1950-2005.

The median association, however, obscures significant evolution of precipitation and tem-

perature effects over time, effects that we had not examined in our earlier research. The

overall influence of precipitation during the growing season has diminished with time.7 We

hypothesize that attenuation of precipitation effects stems from increased use of supple-

mental irrigation and possibly the development of more drought tolerant seed varieties and

cropping systems that have increased planting densities and canopy cover of the soil.

The evolution of temperature effects looks rather different from that of precipitation

7A cross-validation analysis shows the fine-scale precipitation data to be less accurate than the fine-
scale temperature data. Since error in an explanatory variable causes attenuation bias, it is likely that
precipitation is more important in reality than our regressions imply. But since the data are likely more

accurate in the recent period as compared to the earlier period, attenuation bias cannot explain the general
trend of decreasing importance of precipitation.
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effects. The evolution of heat tolerance over time is nonlinear, increasing sharply between

about 1940 and about 1960 and then declining. We found corn in Indiana to be most

sensitive to extreme heat in the more recent years of our sample. The later decline in heat

tolerance might be due to the fact that maximizing corn plants for average yields also makes

them more sensitive to suboptimal growing conditions. It is interesting to note that the

key turning points in evolution of heat tolerance align almost perfectly with the adoption

of double-cross hybrid corn (around 1940) and single-cross hybrid corn (around 1960). It

is also notable that, from inspection of Richard Stuch’s figure showing U.S. aggregate corn

yields from 1866-2002 and our own Figure 1, yields became noticeably more variable as corn

transitioned from double-cross to single-cross varieties, a pattern that could be indicative of

greater heat sensitivity.

Why did we find relative heat tolerance to be stable in our earlier study and not in this

one? We believe there are several interrelated reasons. First, our earlier study began in

1950, awhile after first adoption of hybrid corn and growth in heat tolerance, but well before

hybrid corn had been universally adopted in all states. Second, we simply split the sample

into two sub-periods, 1950-1977 and 1978-2005, while pooling all states east of the 100th

median. Since different states adopted hybrid corn at different times, and heat tolerance

grew and then declined, our regressions would have picked up average heat tolerance in each

sub-period. When pooling all states, it is likely that average heat tolerance was about equal

in these two sub-periods. Note that Indiana was relatively early on the adoption curve for

hybrid corn.

Our new findings have mixed implications for climate change impacts: on the one hand,

sensitivity to extreme heat is highest at the end of the sample and the one feature all climate

models agree on is that these extreme heat events are likely to increase, even though the

size of the increase varies tremendously between model and emission scenarios. On the other

hand, there was a period between 1940-1960 when both heat tolerance and average yields

increased at the same time. The question is whether recent increases in yields could only be

achieved by making plants less heat resistent, or whether future breeding cycles can increase

both heat tolerance and average yields at the same time.

4 Current Policy Distortions and Climate Impacts

One argument, notably popularized by Michael Pollan, is that we currently produce too much

corn and soybeans, and this contributes to obesity and other problems. The claim is that
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these commodities are used to produce an overabundance processed foods like corn syrup and

of animal-based food products like meat, eggs, and cheese. All of these foods are unhealthy

if over-consumed. Many experts do point to excessive sugar consumption (particularly corn

syrup in sodas) and marbled fatty meat from corn-fed animals as important contributors to

the obesity epidemic in the United States and other developed nations. But Pollan (and

others) go much further (New York Times Magazine, October 12, 2003):

The rules of classical economics just don’t seem to operate very well on the farm.

When prices fall, for example, it would make sense for farmers to cut back on

production, shrinking the supply of food to drive up its price. But in reality,

farmers do precisely the opposite, planting and harvesting more food to keep their

total income from falling, a practice that of course depresses prices even further.

What’s rational for the individual farmer is disastrous for farmers as a group.

Add to this logic the constant stream of improvements in agricultural technology

(mechanization, hybrid seed, agrochemicals and now genetically modified crops

– innovations all eagerly seized on by farmers hoping to stay one step ahead of

falling prices by boosting yield), and you have a sure-fire recipe for overproduction

– another word for way too much food.

All this would be bad enough if the government weren’t doing its best to make

matters even worse, by recklessly encouraging farmers to produce even more un-

needed food. Absurdly, while one hand of the federal government is campaigning

against the epidemic of obesity, the other hand is actually subsidizing it, by writ-

ing farmers a check for every bushel of corn they can grow. We have been hearing

a lot lately about how our agricultural policy is undermining our foreign-policy

goals, forcing third-world farmers to compete against a flood tide of cheap Ameri-

can grain. Well, those same policies are also undermining our public-health goals

by loosing a tide of cheap calories at home.

If Pollan is correct, then perhaps climate change, by reducing corn and soybean yields,

would actually improve welfare by making unhealthy meats and processed foods more ex-

pensive. In terms of economic welfare, the claim is that farmers currently produce more than

socially optimal because crops are subsidized and because farmers fail to maximize profits.

To economists, there is an obvious logical problem with Pollan’s argument: the first

paragraph in the quote contradicts the second. If farmers produce more when prices are

lower then how could they also produce more when the government writes “farmers a check

14



for every bushel of corn they can grow,” which effectively increases the price. There is a

difference between a shift in the supply curve, stemming from technological advance, and

a movement along the curve. There is, in fact, strong evidence supporting the idea that

commodity supply curves slope upward (e.g., see Roberts and Schlenker (2009)).

So let’s consider the case of agricultural subsidies. The critical issues concern (1) how

much more farmer produce as a result of subsidies, and (2) whether the effect of subsidies

causes enough of a difference in food prices to affect consumers’ food choices. On both

counts, there is little reason to believe agricultural subsidies have much influence on the

obesity crisis. In response to a question about whether there is evidence to support the

claim that agricultural subsidies contribute to obesity, Dan Sumner wrote (Freakonomics

blog at the New York Times July 24, 2008. For analysis related to this quote, see Alston et

al. (2007)):

The reasoning is that, although farm subsidies programs have made the price of

corn and soybeans slightly cheaper for buyers in the U.S., the accompanying trade

policies have raised the prices of sugar and dairy products. Furthermore, farm

costs comprise such a small fraction of the retail price, the small farm price effects

have tiny retail price impacts. Finally, in rich countries such as the U.S., buyers

respond little to any food price declines or increases.

We might also note that Australia, which has no farm subsidies, just passed the

U.S. as the fattest nation.

With respect to the first issue, the size of the production response to subsidies, we

need to correct Pollan’s notion that U.S. farmers receive a check from the government for

every bushel of corn they grow. This assertion is false. In reality, the nature of subsidies

is quite complex, has changed a lot over time, and, particularly since the 1996 Federal

Agricultural Improvement and Reform (FAIR) Act, typically has only oblique connections

to the quantities that farmers produce. Since the FAIR Act, the bulk of payments have

been (with a few important exceptions) “decoupled” from farmers decisions about which

crops they choose to grow. Instead, farmers have been paid according to their historical

“base” acreage in subsidized crops. And until 2002, payment rates were set according to

yields farmers received in the early 1980s.8 The exceptions were that farmers had to keep

their land in some kind of agricultural use (pasture and fallow cover crops do count as an

8Payment rates were reset for some farmers in 2002, but they were still based on historical yields, not the
yields farmers obtained in the year they received payment.
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agricultural use) and could not be used to plant fruit or vegetable crops. The first restriction

is innocuous and largely unenforceable. Leading experts believe that the second restriction

is not binding as land which historically has been used to produce grains would not be well

suited to fruit for vegetable cultivation (Babcock 2006). But this particular restriction has

been at the center of trade-related debates about the impact of subsidies, particularly cotton.

While empirical research on the effects of agricultural subsidies continues, and no par-

ticularly compelling natural experiment has yet been found, the current consensus appears

to be that total production impacts stemming from traditional subsidies are modest. There

may, however, be a link between subsidy rates and the rate of farm size growth (Roberts

and Key 2008).

The component of subsides most connected to production quantities stems from loan

deficiency payments. Historically these “loans” were nominally designed to help farmers

better time the sale of their commodities relative to market conditions. But if farmers could

not find a price for their commodities above the loan rate paid by the government, the

government would effectively purchase commodities at the loan rate. Today the government

no longer takes farmers’ production quantities as collateral; instead, in the event price falls

below the loan rate, they simply pay farmers a deficiency payment equal to the difference

between the loan rate and price the farmer received. Loan rates are quite low relative to

market rates and so the expected amount of this subsidy is small.

Another important feature of production-based subsidies is that they have generally been

counter-balanced with required set-asides or payments that compensate farmers for retiring

land from crop production since their inception in the 1930s. Demand for commodities is very

inelastic, so the easiest way to support farm incomes and land values is to restrict the quantity

produced. Before the FAIR Act there was some paid land retirement for conservation uses,

plus farmers were often required to “set aside” (not plant) some portion of their base acres

in order to receive production-based subsidy payments. By the time of the FAIR Act,

land retirement was completely separated from other subsidies and focused more squarely

on conservation. Today all land retirement, about 34 million acres worth, is part of the

Conservation Reserve Program.

The goals of set aside and land retirement programs have been to stabilize commodity

prices (or keep them higher) and for soil conservation.9 The critical issue to note is that

these policies have always worked in tandem with production-based subsidies, and have

9Since the mid 1980s, the conservation goals have expanded to include other environmental objectives
besides soil erosion, like improved water quality and wildlife preservation.
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acted strongly to reduce production, perhaps even more than production-based subsidies

(particularly the “decoupled” variety) have acted to increase production.

The data illustrated in Figure 11 provide an indication of the overall importance of set

asides and land retirement programs. The figure plots total acres harvested in the United

States from 1910 to 2006 together with failed cropland (crops planted but never harvested)

and land in set aside and land retirement programs. Note that total cropland harvested has

been relatively stable for nearly 100 years. The relative stability of acreage in production

stands in contrast to large fluctuations and a general downward trend in real commodity

prices. Empirical evidence indicates supply is upward sloping, although it is very inelastic.

We also note that most variation in cropland harvested is associated with equal and opposite

changes in land placed in set-aside and retirement programs. While one cannot be sure about

the causal link, the pattern suggests that without compensated land retirement there would

be even more grain production. Another way to judge the magnitude of set-asides and

conservation is to compare them to failed acreage (planted but not harvested) during the

dust bowl years of 1934 and 1936.

Data from the National Resources Inventory (NRI), which tracks land use over time on

about 800,000 fixed points throughout the United States, show that specific land use changes

match the more recent aggregated fluctuations in Figure 11. Indeed, the NRI data show

that transitions into and out of the Conservation Reserve Program constitute, by far, the

largest component of land use changes in the United States between 1982 and 1997.10 Over

this time frame, net conversions of cultivated cropland to less-intensive uses (conservation,

uncultivated cropland, pasture or range) were ten times conversions of cropland to urban

development (Lubowski et al. 2006a, Lubowski et al. 2006b).

With regard to how much commodity prices affect food demand, it is important to

recognize how little commodities prices factor into the retail prices of food in developed

nations. For example, about six pounds of corn are used to produce each pound of beef

(Cornell University Cooperative Extension n.d.). Six pounds of corn amounts to a little

more than one tenth of a bushel, which today costs less than four dollars. So at today’s

prices, the corn in a pound of beef costs about 40 cents, or 10 cents for the corn in a

quarter-pound hamburger. If corn prices were to triple to 12 dollars a bushel, the price of

a hamburger would rise just 20 cents, all else the same. Clearly most of what goes into

the retail price of most food products are the processing, transportation and retailing costs,

which are not directly influenced by food commodity prices. Moreover, in the United States

10NRI data after 1997 have not been released by USDA’s National Resource and Conservation Service.
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and other developed nations, consumers tend to respond to lower prices by substituting food

they eat at home with food eaten at restaurants, which does not necessarily affect how much

they eat.

The largest distortion in crop production likely comes from a 51 cents per gallon subsidy

on ethanol, mandates for continued growth in ethanol production, coupled with restrictions

on ethanol imports. Ethanol now consumes about a third of the U.S. corn crop, 13% of

the world’s corn, and about 5% of the world caloric production of corn, soybeans, wheat

and rice combined (Roberts and Schlenker 2009). U.S. ethanol subsidies were one of several

factors blamed for the nearly four-fold rise in worldwide commodity that occurred between

the winter of 2006 and summer of 2008. Over this time frame, corn prices rose from less

than $2/bushel to nearly $8/bushel, and commensurate price increases were seen for wheat,

soybeans, and rice. While these subsides are widely believed to have increased commodity

prices and production, they have reduced the amount of commodities going toward food

production. Thus, while ethanol subsidies likely have negative welfare impacts, climate-

change impacts lowering yields would not attenuate these impacts.

The picture is entirely different in less developed nations. Almost half of the world,

around 3 billion people, live on less than $2.50 per day. Consequently, they spend a large

portion of their income on food and buy raw commodities rather than processed foods or

meat. To the poor, a four-fold increase in commodity prices translates into nearly the same

proportional influence on prices they pay for food. In poor countries demand response to the

price spike was more elastic than that it was in rich countries, sometimes to the detriment

of meeting basic caloric needs. So while the recent price increases had little influence food

consumption in the United States, high prices did contribute to problems of hunger and civil

conflict in the poorest nations.

On a related note, many have claimed that agricultural subsidies in rich countries (and

low commodity prices) are helping to keep the developing world poor. Jagadish Bhagwati

regards this view as a “pernicious fallacy.” He writes (Bhagwati 2005):

The removal of subsidies is desirable, as it promises aggregate income gains,

and many economists have therefore campaigned against them for nearly four

decades. But Oxfam and the heads of several international aid institutions have

now added the twist that the removal of these subsidies will also help the poorest

countries known as the “least developed countries.” This is dangerous nonsense.

The economists Alberto Vales and Alex McCalla have shown that as many as 45

LDCs, out of 49, are net food importers; and as many as 33 are net importers
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of all agricultural products together. As prices rise with the removal of subsidies,

surely the importers will be harmed, not helped, except in the singular cases where

the importers switch to becoming significant exporters. The mistake on the part

of Oxfam, the leadership at the World Bank and countless journalists who have

followed in their wake is easily understandable but not to be condoned: They have

simply assumed that what is true of cotton subsidies in the rich countries, because

there are four African countries that rely on cotton exports, must be true more

generally. This is the fallacy of using an unrepresentative sample!

And for the poor, cotton would seem to be somewhat less essential a commodity as compared

to food commodities. We should keep in mind that inexpensive food historically has been the

precursor to growth and prosperity. Indeed, it is inexpensive food that laid the foundation

for the industrial revolution and escape from Malthusian cycles (Clark 2007). It is therefore

hard to see how higher food prices could be good for developing nations where many still

live near the fringe of survival. The recent spike in commodity prices made this connection

between food prices and welfare in less developed nations painfully vivid. Thankfully, the

prices have fallen since the summer of 2008.

U.S. agriculture, mainly due to its tremendous endowment of fertile cropland and efficient

production systems, has a major influence on world prices of basic agricultural commodities.

It is also likely that current subsidies to US agricultural producers cause many kinds of

distortions to agricultural commodities markets. But placed in a broader context, it is

hard to see how the US would produce significantly less than it currently does if subsidies

were diminished or removed. All of this is to point out that the importance of the United

States to world food production is not simply an artifact of its subsidies. This means

negative climate impacts to crop production in the United States would in no way be welfare

improving. And because the United States is the world’s largest exporter, and most poor

countries are food importers, the burden of climate change impacts on US production will

fall disproportionately on the least developed nations.

5 Conclusions

Since the late 1930s when US farmers began using hybrid corn, commercial fertilizers and

other modern farming techniques, average crop yields in the United States and around the

world have grown tremendously. Today corn yields in the United States equal more than

four times the best yields of the 1930s. Yields of most other staple commodities have more
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than tripled. Over the same time period, world population grew slightly less than three

fold. Higher yields have brought lower commodity prices, which have relieved hunger in

less developed nations and have fed a growing (and likely unhealthful) appetite for meat

and processed foods in rich countries. Yield growth has probably also attenuated expansion

of cropping areas and deforestation. Recent adoption of genetically modified seeds have a

spurred yield gains in developing nations that have adopted them (Qaim and Zilberman 2003)

and may hold promise for further yield gains in both developed and developing nations.

But global warming now poses a significant threat to crop yields. Crop scientists have

long predicted that warming will cause yield declines in tropic and subtropic regions of the

world. Climates in these regions are already too warm for optimal growing conditions for

most crops so further warming will not help. More recent evidence suggests warming will also

harm yields in more temperate regions where current production is greatest. Our previous

statistical analysis of the United States, by far the world’s largest producer and exporter of

agricultural commodities, is dismal. Holding growing areas fixed (an important caveat) we

predict yield declines of 38-46% for soybeans and corn between 2070-2099 under the Hadley

III slow warming scenario (B1, which presumes sharp reductions in CO2 emissions), and

declines of 75-82% under the Hadley III fast-warming scenario (A1FI, which presumes the

fastest growth in CO2 emissions). Projected declines in medium term (2020-2049) are also

substantial, 18-23% under the slow-warming scenario and 22-30% under the fast-warming

scenario. The largest driver behind these reductions is the predicted increase in very hot

temperatures. It is important to note that these predicted declines are relative to what

yields would be without climate change, not what yields are today. They also hold growing

locations fixed and do not account for CO2 fertilization, which may increase yields.

One way of adapting to warmer climates will be to change the locations where crops are

grown. Corn and soybean production is likely to shift northward toward traditional wheat

growing regions, and wheat (perhaps) to areas that were not previously cropped. Given the

world’s currently most productive areas are predicted to be harmed significantly, it is not

clear how much of these losses may be mitigated by crop switching.

A team of researchers at the International Food Policy Research Institute, led by economist

Gerald Nelson, recently developed the most comprehensive analysis to date (Nelson et

al. 2009). Their model accounts for yield effects, crop switching, trade and price effects

throughout the world, but takes population and GDP as exogenous to agriculture, and does

not account for sea-level rise, which could be important for rice production in south Asia.

They predict that by 2050 calorie availability “will not only be lower than in the no-climate-
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change scenario–it will actually decline relative to 2000 levels throughout the developing

world.”

Thus, at present, it would appear that technological solutions, in addition to crop switch-

ing, will be necessary to overcome anticipated impacts from global warming. It is in this

vein that we have explored historical innovation as it relates to heat tolerance. In particular

we examined the evolution weather effects on corn yields in Indiana, and how these effects

have changed over time with adoption of new crop varieties and farming techniques.

Sensitivity to extreme heat is critical determinant of corn yields. In recent research we

have found this sensitivity to be similar in warmer southern states and cooler northern states.

Moreover, we found no evidence that warmer areas have adapted to warmer-than-optimal

climates: the cross-section of yields and climate matches the link between yields and weather

in a fixed location.

In this paper we present new evidence that may be somewhat more encouraging. We find

that, following the dust bowl years–the hottest, driest and lowest-yielding years on record–

heat tolerance in corn grew markedly until about 1960. After 1960, however, heat tolerance

declined, even though average yields continued their steady rise. At the end of our sample

in 2005, corn appears to be less tolerant to extreme heat than it was in the 1930s.

The key question is whether plant scientists and seed companies can continue to breed or

engineer crops that have both greater yield potential and greater tolerance to extreme heat.

At present these prospects seem uncertain, and greater agricultural productivity investments

would seem prudent. The private sector may foresee higher future commodity prices and

thus engage in these investments on their own. There may also be a role for public sector

investments in basic research, particularly since these have been the source of critical in-

novations in the past. Such innovations have important positive spillovers that can lead to

suboptimal private investment.

On the demand side, we believe it important to recognize that global income inequality

is a critical obstacle to adaptation. The issue is not so much whether it will be technically

feasible to feed the world’s population, we see little doubt that there will be. But when

median incomes of the richest nations are hundred times those of the poorest nations, it

is easy to see how lower commodity supply combined with, say, a taste for meat in rich

countries, could drive prices of staple commodities to the point that the poorest simply

cannot afford to survive. Despite the necessity of food, demand response of the poor is

larger than than that of rich due to a much larger income effect.

There is no market failure or malthusian cycle in this story. It’s simply a matter of
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income inequality. If incomes were not so divergent, prices would simply rise until enough

people substituted to a presumably more healthy diet with less meat. The greatest hope is

an uncertain one: that technological change will obviate the need for behavioral change.
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Figure 1: Average Yields in Indiana 1901-2008
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Notes: Graph shows history of corn yields in Indiana. State level averages are shown as diamonds. The

range of yields among Indiana’s counties is shown as boxplots: The box give the 25%-75% quartile range,

the median is shown as a solid line, and whiskers extend to the minimum and maximum. A locally weighted

regression of the state averages (bandwidth of 10 years) is shown as black line.
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Figure 2: Shocks in Extreme Heat in Indiana 1901-2005
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Notes: Graph shows weather shocks (deviations from averages) for degree days above 29◦C during the

growing season March-August. State level averages are shown as diamonds. The range of weather shocks

among Indiana’s counties is shown as boxplots: The box give the 25%-75% quartile range, the median is

shown as a solid line, and whiskers extend to the minimum and maximum. A locally weighted regression of

the state averages (bandwidth of 10 years) is shown as black line.
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Figure 3: Precipitation Shocks in Indiana 1901-2005
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Notes: Graph shows weather shocks (deviations from averages) for total precipitation during the growing

season March-August. State level averages are shown as diamonds. The range of weather shocks among

Indiana’s counties is shown as boxplots: The box give the 25%-75% quartile range, the median is shown as

a solid line, and whiskers extend to the minimum and maximum. A locally weighted regression of the state

averages (bandwidth of 10 years) is shown as black line.
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Figure 4: Weather Stations in Indiana By Time Period.

Weather Stations Used For Years 1901−1925 Weather Stations Used For Years 1910−1935 Weather Stations Used For Years 1920−1945 Weather Stations Used For Years 1930−1955 Weather Stations Used For Years 1940−1965

Weather Stations Used For Years 1950−1975 Weather Stations Used For Years 1960−1985 Weather Stations Used For Years 1970−1995 Weather Stations Used For Years 1980−2005

Notes: Weather stations used in interpolation are displayed as red dots for minimum temperature, green triangles for maximum temperature

and blue diamonds for precipitation.
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Figure 5: Regression Results at Median Values
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Notes: Graphs display regression results of one variable while keeping other variables at median outcomes (shown as vertical line in each

graph): top left panel shows yield trend, top right panel shows effect of precipitation, bottom left panel shows effect of degree days 10-29◦C

and bottom right panel shows effect of degree days above 29◦C. Graphs are normalized relative to the optimal outcome of a variable.
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Figure 6: The Evolution of the Impact of Precipitation on Log Corn Yields
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Notes: Graphs display the effect of total precipitation during the growing season on log yields at fifteen periods in time. Graphs are normalized

relative to the best value of precipitation in each year.
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Figure 7: The Evolution of the Impact of Extreme Heat on Log Corn Yields
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Notes: Graphs displays the effect of extreme temperatures during the growing season on log yields at fifteen periods in time. Graphs are

normalized relative to the best value of degree days above 29◦C.
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Figure 8: The Evolution of the Impact of Moderate Heat on Log Corn Yields
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Notes: Graphs displays the effect of moderate temperatures during the growing season on log yields at fifteen periods in time. Graphs are

normalized relative to the best value of degree days 10-29◦C.
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Figure 9: The Evolution of the Marginal Impact of Extreme Heat on Log Corn Yields
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Notes: Graph displays the marginal effect of extreme temperatures (degree days above 29◦C) on log yields,

i.e., the slope of the regression lines in Figure 7. Cubic splines with various number of knots are used.
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Figure 10: The Evolution of the Marginal Impact of Moderate Heat on Log Corn Yields
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Notes: Graphs displays the marginal effect of moderate temperatures (thousand degree days 10-29◦C) on

log yields, i.e., the slope of the regression lines in Figure 7. Cubic splines with various number of knots are

used.
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Figure 11: Cropland Failure and Retirement Programs in Indiana (1910-2005)
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Notes: Graph shows the total acreage in Indiana that is harvested, the planted acreage that is not harvested

due to crop failure, and the acreage set aside in retirement programs.
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Table 1: Analysis of Variance for Log Yield

d.f. F − stat p − value

Degree Days Above 29◦C

All Terms 5 18.99 <0.0001
Interaction Terms with Time 4 2.82 0.0289

Degree Days 10-29◦C

All Terms 5 5.07 0.0003
Interaction Terms with Time 4 3.30 0.0138

Precipitation

All Terms 11 4.09 0.0001
Interaction Terms with Time 7 2.00 0.0624

Time Trend

All Terms 19 83.80 <0.0001
Time Trend Only 4 9.08 <0.0001

R-square (all variables) 0.95

Notes: Table reports F-tests for the joint significance of key explanatory variables and their interactions

with time. Our baseline model uses restricted cubic regression splines with 5 knots, which will result in

four factors (variables) in the regression equation. The weather variables Degree Days Above 29◦C and

Degree Days 10-29◦C consist of the weather variable (1 degree of freedom - d.f.) as well as the interactions

with the four time factors (4 d.f.). The weather variable Precipitation consists of four factors in the amount

of precipitation (4 d.f.) as well as the interaction of the linear time and precipitation term (1 d.f.) and the

interaction of precipitation with the three higher order precipitation factors and vice versa (3 d.f. each).

Finally, the Time Trend consists of 4 factors, and it is interacted with the 15 terms outlined for the three

weather variables.

We use both the STATA command mkspline as well as the R-package Design. The point estimates are

identical, but the clustering option is implemented differently in both languages. We report the results from

STATA, which tend to be more conservative (with the exception of precipitation).
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Appendix

A1 Data Appendix

This appendix outlines in further detail how we construct our data set.

A1.1 Yield Data

Yield data was obtained from the National Agricultural Statistics Service (accessed March

2009). Yearly state-level yields in Indiana are available from 1866 onwards.11 County-level

yields in Indiana are available starting in 1929.12 We follow the definition of the Department

of Agriculture and calculate yields as the ratio of total production divided by area harvested.

The traditional definition of yields might overstate actual yields if some fields are not

harvested. In a sensitivity check we define yields as total production divided by all acres

planted. Unfortunately, area planted is only available from 1926 onwards for state totals and

from 1972 for individual counties and hence significantly reduces our sample period. The left

panel of Figure A1 displays the fraction of the planted area that was harvested in Indiana

over time. While there is an upward trend, especially during the 30s, the right panel shows

that the year-to-year variation in yields is similar for each definition of yields.

A1.2 Weather Data

Degree days were constructed from daily weather data. We obtained daily observations from

the National Climatic Data Center Cooperative station network.13 The data include daily

minimum and maximum temperature as well as precipitation. While the NCDC data has

great temporal coverage, we combine it with the PRISM weather data set that provides

better spatial coverage.14 The latter gives monthly minimum and maximum temperatures

on a 2.5x2.5 mile grid for the United States from 1895 onward.

To construct a consistent set of weather data, we followed the following procedure for

each 25-year period starting in 1901, 1910, 1920, 1930, ..., 1980.

(i) For each of our three weather variables (minimum and maximum temperature as well

as precipitation) we determine the set of stations with a consistent record, which we

11http://www.nass.usda.gov/QuickStats/Create Federal All.jsp
12http://www.nass.usda.gov/QuickStats/Create County All.jsp
13http://ols.nndc.noaa.gov/plolstore/plsql/olstore.prodspecific?prodnum=C00447-CDR-S0001
14http://www.prism.oregonstate.edu/
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chose to be stations that moved at most by 2.5 miles during the time period and had

at most three missing values in at least 90 percent of the months.

(ii) We fill the missing observations at stations with consistent records obtained in step

(i) by regressing daily values at each station on daily values at the seven closest sta-

tions including half-month fixed effects. We use a linear regression for minimum and

maximum temperature and a Tobit regression for precipitation, which has several ob-

servations at the truncation value of zero. Intuitively, the regression estimates are

used to fill the missing values with a weighted average of surrounding stations with

non-missing observations to give us a complete weather record at the stations with

consistent weather records.

(iii) We calculated monthly averages for the stations with consistent records in step (i)

(iv) We regress the monthly values at each PRISM grid on the monthly averages at the

seven closest weather stations from step (iii) including month fixed effects, again using

a linear regression for minimum and maximum temperature and a Tobit model for

precipitation. The R-squares are generally in excess of 0.999, suggesting that the

PRISM data set is a weighted average of individual stations and we uncovered the

weights.

(v) We apply the regression results from step (iv) to the daily weather station data from

step (ii) to derive daily weather measures at each 2.5x2.5 mile PRISM grid cell.

(vi) We fit a sinusoidal curve between the minimum and maximum temperature of each

day to calculate degree days accounting for the within day distribution of temperatures

(Snyder 1985). We evaluate degree days for each bound between -5◦C and +50◦C using

1◦ steps at each 2.5x2.5 mile PRISM grid.

Once we have the daily observations on the PRISM grid, we aggregate them spatially

(vii) We obtained the fraction of each PRISM grid cell that is cropland from a one-time

LandSat satellite scan in 1992. County-level weather variables are the cropland-

weighted average of all PRISM grid cells in a county.

(viii) State-level weather data are the weighted average of all county-level measures in step

(vii), were the weights are the amount of harvested corn area reported in the yield

data. Since harvested corn area is not reported on a county-level before 1929, we use
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the average harvested corn area in each county in the years 1929-2005 as weights for

years prior to 1929.

Finally, we aggregate the data temporally

(ix) We define the growing season as the months March through August and add degree

days as well as precipitation for all days in these months. Since total precipitation over

the growing season is insensitivity to the within-day and between-day distribution, we

use the monthly totals in the PRISM data set. For possibly daily interactions between

precipitation and temperature we use the interpolated daily precipitation data.

Since it was impossible to get a sufficiently large set of weather stations which had

consistent nonmissing records for the entire sample period 1901-2005, we instead derived

the measure for 25-year intervals, starting in 1901, 1910, 1920, up to 1980. The results of

interpolation series for extreme heat in the state of Indiana (degree days above 29◦C) are

displayed in colors in Figure A2. They appear to overlap tightly. One might still wonder

whether the state results hide the fact that there are substantial errors in the county level

data that get averaged out. To examine this further, we take the difference of all overlapping

series in the county data. The mean absolute difference is 2.2 degree days above 29◦C and

the root mean squared prediction error is 3.1 degree days above 29◦C, suggesting that the

overlapping fit is reasonably close. Our weather data uses the average of all overlapping

series.
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Figure A1: Fraction of Corn Area Planted that is Harvested
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Notes: Left panel shows the ratio of the corn area harvested to the area planted in Indiana 1926-2005

as black diamonds as well as a locally weighted regression with a bandwidth of one decade as grey solid line.

The right panel shows yields under the two different definitions. Production divided by area harvested is

show as black diamonds, and production divided by area planted as grey triangle.
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Figure A2: Interpolation Accuracy (1901-2005)
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Notes: Graph shows degree days above 29◦C in Indiana for each overlapping 25-year interpolation period

starting in 1901-1925, 1910-1935, ..., until 1980-2005.
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