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Where Does the Wage Penalty Bite?

Christian A. Gregory and Christopher J. Ruhm

11.1   Introduction

How does BMI affect wages? At fi rst blush, the answer seems obvious. 
Over the last fi fteen years, a large literature has established the negative 
correlation between obesity—the condition of having a body mass index 
(BMI) greater than thirty—and wages, at least for women. On average, obese 
women make 2 to 8 percent less than their normal weight counterparts. 
Obese men do not make any less than men of normal weight, and heavy 
black men may earn slightly more.1

The question we ask is not about obesity, however, at least not obesity 
alone. We are interested in the more general relationship between BMI and 
wages. In particular, we examine two assumptions that characterize previous 
research. The fi rst is that the BMI range above thirty is “where the action is.” 
Although there are good reasons to focus on obese persons, the rest of BMI 
distribution has been treated as an afterthought in most of this literature. 
The second is that the conditional expectation of wages is linear in BMI, 
or characterized by some other relatively simple parametric relationship 
(such as a quadratic). While specifi cations based on these assumptions are 
valuable because they are tractable and easily interpretable, there are good 
reasons to assume they are not true ex ante. In the simplest case, if  BMI 
really does refl ect something meaningful about health, it could be that wages 

Christian A. Gregory is a research economist at the Economic Research Service of  the 
USDA. Christopher J. Ruhm is Professor of Public Policy and Economics at the University of 
Virginia and a research associate of the National Bureau of Economic Research.

1. Throughout, we use the conventional defi nitions of “underweight,” “healthy” (or normal) 
weight, “overweight,” and “obese” for persons in the BMI ranges of: � 18.5, 18.5 –  � 25.0, 
25.0 –  � 30.0, and � 30.0 (National Heart, Lung and Blood Institute 1998).
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are negatively associated with both overweight and underweight. Linear 
models capture only the average effect—which, in this example, might well 
be zero—and therefore miss important ways that BMI affects earnings.

Only recently have economists begun examine the shape of the condi-
tional wage function. Wada and Tekin (2007) is the fi rst study we are aware 
of that allowed a measure of body weight to enter into a wage regression 
as a quadratic. Even more recent has been the adoption of semiparametric 
methods. Shimokawa (2008) used data from China to estimate semipara-
metric models and fi nds that wages are lower for men and women in the 
tails of  the BMI distribution. Kline and Tobias (2008), using data from 
the 1970 British Cohort study, found that marginal increases in BMI are 
most harmful for men who are overweight or obese and for women in the 
“healthy” weight range.

In addition to examining the shape of  the conditional wage function, 
we address potential biases resulting from endogeneity of BMI and pos-
sible reverse causation, whereby wages determine body weight. We deal 
with endogeneity using an instrumental variables (IV) approach, where the 
respondent’s BMI is instrumented with sibling BMI. To address the poten-
tial problem of reverse causality, we follow previous research in using lagged 
body weight to rule out the effect of  current wages on weight. However, 
our analysis employs longer lags (at least thirteen years) and BMI from 
relatively early in the typical worklife. Both general approaches have been 
used before, but ours is the fi rst application on data for U.S. subjects using 
semiparametric (SPM) methods.

We also examine potential mechanisms by which BMI affects wages and, 
in particular, are interested in understanding gender differences in these 
effects. Researchers have pursued several possibilities in this regard. One is 
that body weight affects health expenditures for women in a way that it does 
not for men, and that overweight and obese women pay for these expected 
expenditures in the form of lower wages (Bhattacharya and Bundorf 2005). 
Another is that health differences due to obesity have disparate effects on 
marginal productivity (Baum and Ford 2004). Still another is that women 
working in professions requiring public interaction are more penalized for 
obesity than corresponding men (Baum and Ford 2004; Pagan and Davila, 
1997; Han, Norton, and Stearns 2009). Or, fi nally, employers might dis-
criminate against overweight or obese women, but not men. Although direct 
evidence is only provided on the fi rst of these possibilities, we interpret our 
fi ndings in context of the growing literature examining how beauty is related 
to earnings.

Our analysis produces three main results. First, women’s wages peak at 
thresholds far below the obesity cutoff, usually at a BMI of twenty- three 
or lower. This fi nding is robust to specifi cations correcting for endogeneity 
or reverse causation and suggests that BMI does not serve as an index of 
underlying health or medical costs in a wage- setting context. We test and 
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confi rm this intuition through a nonparametric analysis of  relationship 
between BMI and medical expenditures. An alternative, which we believe 
to be more consistent with our fi ndings, is that BMI is a proxy for physical 
attractiveness (or beauty), which is known to affect earnings.

Second, the estimates for men are more dependent on the choice of pre-
ferred models. Our primary specifi cations suggest that the conditional wage 
function is increasing in BMI through the beginning of the range of over-
weight and remains constant or declines modestly thereafter. Conversely, 
models using long- lags of  BMI or instrumental variables indicate that 
male wages peak at very low BMI levels, suggesting that, as for women, the 
observed patterns are more likely to indicate physical attractiveness than 
underlying health status or medical costs.

Third, there are often substantial differences for blacks and whites, with 
the main specifi cations suggesting that the conditional wage function peaks 
at a considerably higher BMI for minorities and declines more slowly there-
after. Such fi ndings might be consistent with a role for attractiveness, if  
there are racial differences in perceptions of ideal body weight. However, 
the IV estimates reveal smaller racial disparities, so that these interpretations 
require caution.

11.2   Data

We use data on twenty- fi ve to fi fty- fi ve- year- olds from the 1986, 1999, 
2001, 2003, and 2005 waves of the Panel Study of Income Dynamics (PSID), 
a longitudinal survey that began in 1968 with 4,802 families.2 An additional 
581 immigrant families were added in 1997 and 1999, and new families were 
created from the existing ones due to the formation of new households (e.g., 
due to divorce or to grown children leaving home).3 As of 2005, the PSID 
contained 8,041 families.

Previous related studies involving U.S. subjects have used data from the 
National Longitudinal Survey of Youth 1979 (NLSY). We chose instead 
to utilize the PSID, primarily because it has characteristics of both longi-
tudinal and cross- sectional data. Since the NLSY provides information for 
a single, fairly narrow birth cohort covering a somewhat limited age range, 
previous analyses using it have been largely restricted to relatively young 
workers. By contrast, the PSID is a self- replenishing panel that began in 
1968 and so is more suitable to addressing differences in the effects across 
age groups. As we argue later, such differences point to possible mechanisms 
by which BMI affects earnings. That said, we show that our results are not 

2. The original sample includes a nationally representative group of 2,930 families, with the 
complement from a low- income sample.

3. An earlier attempt to include Latino immigrants dates to 1990, at which time 2,043 immi-
grant families from the three most prevalent Latino groups in the United States were included. 
This sample was dropped after 1995.
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driven by use of the PSID sample: similar patterns are obtained using com-
parable age ranges in the PSID and NLSY.

The PSID gathers information through an interview with one primary 
adult—usually the male head of household, referred to as the “head.” On 
occasion, the spouse or cohabiting partner, the wife/ “wife,” as she is called, 
is the family respondent. In the waves used for this study, the PSID collects 
data on height and weight of  the head and wife/ “wife” only. The survey 
respondent gives height and weight information about themselves as well as 
their spouse or cohabiting partner. In an effort to minimize reporting error, 
we include only observations for which the head or wife reports his or her 
own height and weight.

Self- reported height and weight contain errors. We adjust for these using 
the regression correction suggested by Lee and Sepanski (1995) and com-
monly employed in the literature (Cawley 2004; Chou, Grossman, and Saffer 
2004; Lakdawalla and Philipson 2007). Specifi cally, using data from the 
National Health and Nutrition Examination Survey (NHANES) III (1986 
to 1994), NHANES 1999, NHANES 2001, and NHANES 2003, we regress 
measured height (weight) on self- reported height (weight), its square and its 
cube. The results, for models stratifi ed by gender and race, are used to predict 
actual BMI (in the PSID) as a function of self- reported BMI.4

Hourly wages are constructed by dividing total earnings for the calendar 
year previous to the interview by total hours worked in that year.5 For all but 
a handful of persons, total earnings and hours refer to the main job: very few 
people report second jobs or overtime earnings. The PSID imputes wages 
for people who report earnings but not hours or vice versa. We retain these 
observations (less than 2 percent of our sample) although our results are not 
sensitive to doing so. Our sample includes twenty- fi ve to fi fty- fi ve- year- olds 
who worked at least twenty hours per week in their main job. These restric-
tions limit the sample to prime- age workers. We normalize wages to 2005 
dollars using the Consumer Price Index (CPI), drop observations reporting 
wages less than half  of the federal minimum, and trim the top 1/ 2 percent of 
wage observations.6 Our fi nal analysis sample contains 7,251 person- years 
for women and 5,775 person- years for men. Among women, we observe 
1,433, 1,095, 516, and 520 persons in 1, 2, 3, and 4 years, respectively. Among 

4. We use multiple waves of NHANES so that we can restrict the age range of the predic-
tion samples to those relevant to our earnings study: namely, persons twenty- fi ve to fi fty- fi ve 
years old.

5. Validity of the PSID income and hours data has been repeatedly evaluated. In two of the 
most cited evaluations (Bound et al. 1994; Duncan and Hill 1985) earnings were found to be 
relatively free from reporting error, but work hours were subject to signifi cant mistakes. This 
induces errors into hourly earnings unlikely to abide by textbook assumptions about correla-
tions between these variables and key regressors. However, there is no reason to believe that 
work hours in the PSID are subject to more reporting mistakes than similar measures in other 
data sets such as the Current Population Survey or NLSY (Bound, Brown, and Mathiowetz 
2001; Hill 1992).

6. This procedure drops women with a wage above $75.14 and men with a wage higher than 
$152.57.
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men, we observe 1,007, 666, 424, and 541 persons in 1, 2, 3, and 4 years, 
respectively.

11.3   Methods

The estimates were obtained using a semiparametric (SPM) local linear 
regression framework that can be usefully distinguished from both ordi-
nary least squares (OLS) and a univariate kernel regression model. As is 
well known, ordinary least squares assumes that the conditional mean of 
the dependent variable is a linear function of  the independent variables. 
This makes it easy to make predictions and to gauge statistical signifi cance 
of  the coefficients. However, the assumption of  linearity is restrictive in 
ways that can only partially be overcome through standard transformations, 
such as including higher order polynomials of the explanatory variables of 
key interest. Kernel regression drops the linearity assumption and instead 
models the expectation of the dependent variable as a weighted mean at 
every point in the distribution of the independent variable. While this model 
can produce accurate univariate estimates with relatively small samples, in 
multivariate settings, it is not possible to maintain a meaningful level of 
accuracy without the sample size increasing exponentially. In this context, 
we use the specifi cation

(1) Yi � zi � � � f (BMIi) � εi,

where Yi is hourly wages of individual i, zi is a vector individual characteris-
tics and year effects, and f(BMI) is the nonparametric function transforming 
BMI into wages, which we refer to as the “conditional wage function.”7 The 
resulting models are semiparametric because they assume that the covariates 
included in z are linearly related to wages, whereas fl exibility is maintained 
in transforming BMI into earnings.

Our estimates use the stepwise double residual method outlined in Rob-
inson (1988). In the fi rst step, we estimate Ŷi and ẑi, as predicted values from 
a nonparametric regression of  each of  the independent and dependent 
variables on BMI. From these we derive ep̂si

Y � Yi –  Ŷi and ep̂si
z � zi –  ẑi, 

representing the portions of the dependent and explanatory variables that 
are unrelated to BMI. In the second step, we regress ep̂sY on ep̂sz to get �̂eps. 
Finally, we estimate the conditional wage function, f̂ (BMIi), by nonpara-
metrically regressing the wage residual Yi –  zi � �̂eps on BMIi, using the tech-
niques detailed in the appendix.8 The intuition behind this procedure is to 
purge the dependent variable of the portion of the supplemental variables 

7. We use levels instead of logarithms of wages to make our estimates easily interpretable 
in the fi gures and tables. Using log wages as the dependent variable yields quantitatively and 
qualitatively similar results.

8. We also estimated f(BMI) using the fi rst differencing procedure outlined by Yatchew 
(2003), and obtained essentially the same results. However, we maintained the double residual 
method for our point estimates and confi dence intervals to preserve efficiency.
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that are unrelated to BMI and then provide a local linear regression estimate 
showing the relationship of this residual to BMI itself. We estimate confi -
dence intervals using the “wild” bootstrap algorithm outlined by Yatchew 
(1998, 688) and Yatchew (2003, 160ff ).9

For our instrumental variables estimates, we use the same stepwise pro-
cedure, but add to the fi rst stage the residuals of a linear regression of BMI 
on the instruments. Just as with the other explanatory variables, we form a 
nonparametric prediction of the residual conditional on BMI (ivêps) and a 
residual (ep̂siveps). We include that residual in the second stage residual regres-
sion and form our estimate of f̂ (BMI) as before. This procedure removes 
the variation in BMI not explained by the instruments from the second stage 
regression, so that what identifi es f̂ (BMI) is what the instruments do explain 
(Shimokawa 2008; Yatchew 2003).

We employ two strategies to address the problems that hamper estima-
tion of the causal effect of BMI on earnings. First, to deal with the issue 
of reverse causality, we estimate models in which the independent variable 
of interest is lagged BMI (see Seargent and Blanchfl ower 1994; Averett and 
Korenmann 1996; Baum and Ford 2004; Cawley 2004). The general argu-
ment subtending this strategy is that current wages might infl uence current 
BMI, but cannot affect BMI in previous years. However, a statistical associa-
tion may exist if  body weight or wages are correlated across time. We address 
this difficulty in two ways. First, where previous related studies have used 
BMI lags of up to seven years, we analyze wages in 1999 to 2005 as a func-
tion of BMI in 1986, or thirteen to nineteen years earlier. Second, we limit 
this portion of the analysis to individuals less than twenty- six years old in 
1986, under the assumption that wages early in the person’s work career are 
unlikely to determine BMI during middle adulthood.

To account for the potential endogeneity between BMI and wages, we fol-
low an instrumental variables strategy similar to that developed by Behrman 
and Rosenzweig (2001), and more recently used by Cawley (2004), where 
sibling BMI is the instrument.10 The validity of this strategy rests on the sup-
positions that sibling BMI is correlated with own BMI, and that it is uncor-
related with one’s own earnings, except through BMI. The fi rst assumption 
is uncontroversial and can be tested. The second is more problematic. In 

9. This algorithm is often applied when heteroskedasticity is a concern. To form 95 percent 
confi dence intervals, we resample 1,200 times from the residuals to form bootstrap data sets 
and perform the local linear regression procedure outlined in the appendix at between 200 and 
300 points in the BMI distribution.

10. Kline and Tobias (2008) have similarly used parent BMI as an instrument; Shimokawa 
(2008) has used sibling BMI and lagged child weight as instruments. An alternative is to esti-
mate fi xed effects (FE) models (Baum and Ford 2004), which automatically account for all 
time- invariant sources of heterogeneity. However, FE methods may be problematic for this 
application because they assume that weight changes translate instantly (or very rapidly) into 
wage changes, whereas current earnings are likely to be affected by both contemporaneous 
and past body weight.
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particular, sibling BMI could be independently related to wages if  siblings 
share traits affecting both weight and wage outcomes due to environmental 
infl uences or genetics.

Until recently, much of the literature suggested that the environmental 
infl uences on body weight tend to be nonshared between siblings, and that 
their importance diminishes in adolescence (Maes, Neale, and Eaves 1997). 
However, recent developments suggest that environment may be more 
important than once thought.11 Similarly, the emerging literature linking 
genetics to human behavior suggests caution. For example, certain poly-
morphisms of the D4 dopamine receptor gene are correlated with attention 
defi cit hyperactivity disorder (ADHD) (Sunohara et al. 2000; El- Faddagh 
et al. 2004).12 It is well known that the regulation of dopamine affects experi-
ences of satiation and, therefore, eating behavior.13 Research has also found 
that both childhood inattention and adult obesity are correlated with the 
dopamine D4 receptor gene in women with Seasonal Affective Disorder 
(SAD) (Levitan et al. 2004). These studies raise the possibility that child 
behaviors affecting learning and, subsequently, wages may be correlated 
with genetic factors also infl uencing body weight.14 Therefore, care is needed 
in interpreting the results of IV models (like those following) identifi ed by 
genetic variation in BMI.

11.4   Full Sample Results

We next summarize our semiparametric estimates of  the relationship 
between BMI and wages. Throughout, we stratify by sex, since BMI could 
have quite different effects for men and women.15 All models control for age, 
marital status, number of children, presence of a child less than two years 
old in the household, level of schooling, job tenure (in months), the survey 

11. Most studies attribute the effect of genetics to the difference in the covariance between 
monozygotic (MZ) and dizygotic (DZ) twins’ body weight, since DZ twins share only half  their 
genetic material with the other twin. But in addition to having different genes, DZ twins may 
also have different dominant and recessive copies of shared genes. This “nonadditive” genotype 
variation might explain a signifi cant amount of variation in traits such as body weight. One 
recent study (Segal and Allison 2002) identifying this variation through the use of “virtual 
twins”—same- aged siblings that don’t share any genetic material—found that a 5 to 45 percent 
of the variation in BMI could be due to environmental infl uences.

12. Swanson et al. (2000) found no correlation between the presence of the genetic trait and 
neuropsychological abnormalities sometimes associated with ADHD; however, they did fi nd 
a correlation between the genetic marker and extreme behavior.

13. However, at least one study failed to fi nd a direct link between obesity and the D4 dop-
amine receptor gene (Poston et al. 1998).

14. Holtkamp et al. (2004) found that children with ADHD were also more likely to be obese, 
suggesting the plausibility of a genetic connection.

15. All estimates are unweighted, in part because the PSID assigns a zero weight to anyone 
entering the sample through cohabitation or marriage. To ensure that our results are not driven 
by this choice, we estimated models using only the nationally representative sample or limiting 
the analysis to observations with positive weights and using these weights in the second- stage 
regression (of ep̂sY on ep̂sz). In both cases, the results are essentially the same as those shown.
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year, and region of residence.16 Race/ ethnicity are also held constant in the 
full sample estimates (but not when stratifying by race). Unless otherwise 
noted, the y- axis of the fi gures indicates the expected wage, calculated by 
adding f̂ (BMI) to the group- specifi c average predicted wage; results are dis-
played for BMI ranging from twenty to forty.17

11.4.1   Main Specifi cations

Figure 11.1 shows full sample estimates. The conditional wage function 
of women is characterized by a peak at a BMI of 22.8. Weight gains at lower 
BMI are associated with higher earnings, although the confi dence intervals 
are sufficiently large that we can not generally reject the null hypothesis of 
no effect. By contrast, predicted wages decline rapidly at higher BMI levels, 
and monotonically, expect for a statistically insignifi cant upwards tick just 
below the obesity threshold.

These fi ndings suggest that female wages begin to fall well before conven-
tional cutoffs for obesity or overweight, and even well within the healthy 
weight range. Thus, there is little evidence of  an obesity penalty per se. 
Instead, the data suggest that women whose weight rises above a relatively 
low threshold experience reduced earnings. Of course, BMI does not per-
fectly measure obesity and some women in the normal BMI range may 
actually be clinically obese.18 However, even if  there are classifi cation errors, 
the very low BMI at which the wage function peaks makes it much more 
probable that we are observing the effects of appearance or beauty, rather 
than obesity or poor health. A growing literature suggests that attractive 
individuals earn more than their counterparts (Hamermesh and Biddle 
1994; Biddle and Hamermesh 1998; Harper 2000; French 2002), although 
the mechanisms for this are not fully understood. A possible explanation 
for our results is that females are considered most attractive at low levels of 
BMI. Consistent with this, Maynard et al. (2006) provide evidence that the 
desired BMI of adult women is between 22 and 23, or almost exactly where 
the conditional wage function peaks.

The patterns for men differ substantially. Predicted wages are maxi-
mized at a BMI of  26.7—in the overweight range—with lower and 
higher body weight associated with substantial but imprecisely estimated 
decreases. Yet, these results also provide little evidence of a sizeable “obe-
sity penalty,” except perhaps at extremely high BMI. Instead, they raise 

16. We excluded occupation from our primary estimates, since this is one mechanism through 
which BMI could affect earnings. Specifi cations adding controls for broad occupational catego-
ries resulted in similar estimates for women and fl atter BMI- earnings profi les for men.

17. This range covers approximately the fi fth through ninety- fi fth percentiles of  women 
and the fi rst through ninety- eighth percentiles of men. We exclude from the analysis persons 
with BMI greater than forty- fi ve, as these observations exert disproportionate infl uence on the 
semiparametric estimates. This trimming drops 34 men and 125 women.

18. Burkhauser and Cawley (2008) provide evidence that BMI is more likely to understate 
than to overstate obesity prevalence.
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the possibility of wage reductions from being too light. For instance, the pre-
dicted hourly wage of a man with a BMI of thirty- fi ve is just $0.81 per hour 
below that of his peer with a BMI of twenty- seven, while a BMI of twenty 
is associated with hourly earnings that are $3.19 less. Such results are con-
sistent with the possibility, supported by previous evidence (DiGioachino, 
Sargent, and Topping 2001; Maynard et al. 2006), that males are held to 

Fig. 11.1  BMI and expected wages, full sample
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a different appearance standard than females, with thin women viewed as 
attractive while corresponding men are considered scrawny. However, as 
discussed below, we obtain considerably different estimates for men (but 
not women) when using instrumental variables techniques, so these results 
should be interpreted with some caution.

11.4.2   Are Semiparametric Estimates Worth the Effort?

Are the benefi ts from using the semiparametric models worth the added 
complexity (and computational time) needed to estimate them? Our answer 
is a qualifi ed yes. To illustrate the potential gains from these estimates, fi gure 
11.2 plots the results from modeling wages as linear or quadratic in BMI, 
alongside the SPM estimates that are novel to this analysis. The conditional 
wage function of women is monotonically decreasing in BMI for the linear 
and quadratic specifi cations, which provide essentially identical estimates. 
While generally reasonable, the parametric models miss the increase in the 
wages occurring below a BMI of twenty- three (although the differences are 
small and often not signifi cant), and understate the drop in earnings pre-
dicted immediately thereafter. At the very least, the SPM estimates suggest 
that the conditional wage function is fl at until a BMI of twenty- three, and 
decreasing nearly monotonically thereafter.

For men, the gains to more fl exible models are larger. In fi gure 11.2, it is 
clear that the linear specifi cation fares the worst. The quadratic model does 
better in approximating the conditional wage function, and is sensible if  we 
think that health effects or costs of obesity drive the BMI- wage relationship 
and begin to bind the wage function at some point in the BMI distribution. 
However, even the quadratic model is restrictive—overestimating wages at 
low BMI and in the overweight range, and indicating that the conditional 
wage function is maximized at a considerably higher BMI than the semipara-
metric model. These differences are nontrivial since the quadratic specifi ca-
tion suggests an obesity penalty, while the more fl exible estimates indicate 
that wages begin to decline much earlier, indicating that other factors may 
be at work.

Potentially useful, and computationally cheaper, alternatives to our 
SPM procedure might involve estimating models with higher order poly-
nomials in BMI or linear splines.19 Indeed, these could be time- efficient 
and relatively simple procedures for much future research. However, 
the preferred parametric specifi cation may not be obvious a priori. The 
semiparametric procedures employed here may help to guide that choice 
and provide a more complete understanding of the conditional earnings 
function.

19. For example, Stata has a preprogrammed routine (the lpoly command) that will 
estimate local polynomial fi ts with usable, although not asymptotically correct, confi dence 
intervals. This procedure does not address the issue of bandwidth selection, by which fl exible 
models minimize mean squared error. For more on this procedure, see the appendix.
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Fig. 11.2  Comparison of three estimation models
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11.4.3   PSID versus NLSY

Previous related U.S. research has generally used data from the NLSY, 
rather than the PSID. Although the PSID is more comprehensive in several 
respects, most importantly because it is not limited to a single cohort or 
narrow age range, we checked whether the results were sensitive to its use. 
To do so, we obtained NSLY data for 1998 through 2004 (approximating the 
years of our main PSID analysis), during which time NLSY respondents 
were thirty- three to forty- seven years old. We constructed a sample of cor-
respondingly aged individuals from the PSID and performed two analyses. 
First, we estimated simple OLS models for the two data sets.20 For women, 
the estimates turned out to be quite similar. For instance, the coefficient 
(standard error) on BMI was – 0.122 (0.017) in the PSID and – .168 (.024) in 
the NLSY.21 For men, the results were somewhat different: using the PSID, 
we obtained a coefficient (standard error) of 0.017 (0.044), while the esti-
mates were – .192 (.043) for the NLSY. The PSID fi ndings are consistent 
with those shown in fi gure 11.2. Although the NLSY estimates for males run 
counter to some prior research (which does not uncover an obesity effect on 
wages), this is likely due to the young age range of the men previously exam-
ined. Gregory (2010) and Han, Norton, and Stearns (2009) have recently 
shown that the negative correlation between BMI and wages strengthens as 
men age, consistent with our results.

Second, we ran semiparametric models for the PSID and NLSY sub-
samples. These estimates, summarized in fi gure 11.3, reveal generally similar 
patterns.22 However, there is evidence of greater nonlinearities for women in 
the PSID than the NLSY, while the male wage function reaches a maximum 
at a lower BMI in the NLSY. Overall, it seems likely that we would fi nd even 
less evidence of a pure obesity effect in the NLSY, since the conditional wage 
function is maximized at a lower BMI. However, since the female wage func-
tion is approximately linear in the NLSY, there might be less gain from the 
fl exible SPM estimates.

11.4.4   Reverse Causation

The preceeding fi ndings could be biased due to reverse causation, where 
higher wages lead to lower BMI. For example, this could occur because high 
earners can more easily afford expensive foods, such as fruits and produce, 
that are healthy and low in calories. Alternatively, they may have greater fl ex-
ibility in their jobs to fi nd time to exercise and could more often join health 

20. The NLSY data include only persons in the representative sample, and we use similar 
sample restrictions as in the PSID. The regressions are not weighted. Since we cannot easily 
identify pregnant women in the PSID, we run specifi cations for the NLSY data with pregnant 
women included. Separate NLSY models that exclude pregnant women yield similar results.

21. Our results are also similar to those obtained by Cawley (2004), when we estimate models 
using the log (rather than level) of earnings, as he did.

22. The smoothing estimates were normed to address some differences in scaling between 
the two data sets.
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clubs. We examine this issue in fi gure 11.4, which shows how lagged BMI 
is related to wages. Specifi cally, we measure BMI in 1986 and wages during 
1999 to 2005. To reduce the possibility that lagged BMI itself  is strongly 
infl uenced by (prior) earnings, we restrict this analysis to persons less than 
twenty- six years old in 1986, and so at the beginning of their work lives. Since 

Fig. 11.3  BMI and estimated wage differentials, PSID- NLSY comparisons
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BMI typically rises with age, the distribution of lagged BMI is to the left of 
the contemporaneous distribution. Therefore, fi gure 11.4 displays BMI (in 
1986) over the range eighteen to thirty- seven, rather than twenty to forty.23

The results for long- lags of  BMI are fairly similar to those using con-

Fig. 11.4  Lagged BMI and expected wages

23. This corresponds to approximately the fi fth to ninety- sixth percentile of the female BMI 
distribution in 1986.
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temporaneous weight (and the full sample), once we account for the lower 
average BMI of young adults, and they again provide scant evidence of an 
obesity penalty. Specifi cally, the female wage function peaks at a very low 
BMI level (below eighteen) that is actually in the underweight category, 
although the earnings penalties thereafter are not always monotonic or sta-
tistically signifi cant. For men, lagged BMI is essentially unrelated to con-
temporaneous wages, but with the peak predicted at a very low (18.6) BMI. 
These patterns are similar to those of women and suggest that being thinner 
is (almost always) better for males as well as females. We return to this result 
when examining our instrumental variables estimates.

11.4.5   Instrumental Variables

BMI could be correlated with unobserved factors also affecting wages. 
For example, persons earning high wages because they are motivated at 
work might similarly be motivated to exercise and consume healthy diets. 
The same might be true for individuals with low discount rates. In both of 
these cases, BMI will be correlated with the error term in our wage speci-
fi cation. We address this possibility by estimating instrumental variables 
estimates, using sibling BMI as the instrument.24 These results are shown 
in fi gure 11.5.

For women, the IV estimates are similar to those obtained in the main 
models. Specifi cally, the conditional wage function is maximized at an even 
lower level of BMI (21.4), with a rapid decline in earnings predicted from 
the middle of the healthy weight range to just beyond the threshold for over-
weight. However, the wage function is fl at after a BMI of twenty- six, further 
suggesting that we are not observing the effects of obesity.

The IV estimation makes a much larger difference for men. Where the 
main specifi cations indicated that the wage function increased into the over-
weight range, and then declined relatively slowly, the IV models suggest 
essentially no effect through a BMI of twenty- fi ve or so, but with wages 
predicted to fall rapidly thereafter. Such results could indicate a role of poor 
health or medical costs but only if  the effects begin to bind at the begin-
ning of the overweight category. This seems unlikely, since most available 
research (Quesenberry, Caan, and Jacobson 1998; Andreyeva, Sturm, and 
Ringel 2004; Arterburn, Maciejewski, and Tsevat 2005) suggests that health 
costs are similar for healthy weight and overweight individuals but substan-
tially higher for obese and, especially, severely obese persons.

11.5   Race

The wage functions of white and black females differ markedly (see fi g-
ure 11.6). As in the full sample, the earnings of white women are predicted 

24. In a standard linear model, fi rst- stage F- statistics on the instruments are 29.5 for women 
and 16.2 for men, well in excess of the level of ten recommended by Staiger and Stock (1997) 
to avoid problems with weak instruments.
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to peak well below the overweight threshold (at a BMI of 22.5), to decline 
markedly immediately thereafter, but then to be relatively fl at beyond the 
middle of the overweight category. By contrast, the pattern for black women 
is consistent with a true obesity penalty, since the maximum predicted wage 
occurs at a BMI of 26.1, and nearly all of the economically or statistically 
signifi cant reduction takes place at or beyond the obesity threshold. How-
ever, these results probably do not indicate that the obesity effect is due to 

Fig. 11.5  Instrumental variables estimates
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higher medical costs or health problems. Were this the case, we would expect 
the wages of severely obese individuals to be substantially below those of 
their mildly obese counterparts (since severe obesity has by far the most 
deleterious health consequences). Instead, there is no evidence that the wage 
function continues to decline beyond a BMI of thirty- fi ve.

Fig. 11.6  BMI and expected wages of women, by race
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The results for men are even more interesting. The wage function of white 
males reaches a maximum at a BMI of twenty- six, but remains relatively 
fl at subsequently, with even severely obese men predicted to earn only mod-
estly less. Conversely, the expected earnings of black males rise well past 
the obesity threshold (to a BMI of 32.1) and then remain fl at or decline 
modestly.

These fi ndings suggest substantial race differences in the BMI- wage pro-
fi le, with greater and more binding weight penalties for whites than blacks 
that, except for black men, begin well before the obesity threshold.25 Assum-
ing that the relationship between BMI and health or medical costs is similar 
for blacks and whites, the racial disparities make it unlikely that the results 
in fi gures 11.6 and 11.7 refl ect underlying effects of BMI on health condi-
tions or medical costs. Instead, we think it more probable that these refl ect 
appearance effects, combined with different standards of  desired weight 
being applied to blacks and whites (and males and females).26

11.6   Simulations

Table 11.1 displays semiparametric estimates of the difference in predicted 
wages at specifi ed BMI levels, relative to a reference group of females with a 
BMI of twenty- three or males with a BMI of twenty- seven.27 The results are 
presented for subsamples, stratifi ed by race and sex, for both our main SPM 
specifi cations (using actual BMI) as well as from semiparametric instrumen-
tal variables (SPM- IV) models. Standard errors are estimated from bootstrap 
replications, with p- values assigned using the percentile method. Coefficient 
estimates for the supplementary regressors are contained in appendix tables 
11A.1 and 11A.2.

Table 11.1 highlights several points made previously, as well as some new 
ones. First, the wage function for females begins to decline at a relatively 
low body weight. Compared to women with a BMI of twenty- three, BMIs 
of twenty- fi ve, thirty, and thirty- fi ve predict statistically signifi cant penalties 
of $0.96, $1.51, and $2.62 per hour. This pattern is driven by white females, 
where the conditional wage function indicates even larger (although less 
precisely estimated) gaps of $1.02, $1.93, and $3.51 per hour. The IV models 
reveal a similar pattern for white women, although with somewhat weaker 
predicted wage declines and standard errors that “blow up” at BMIs above 
thirty- fi ve. Conversely, the fi ndings for black females are more dependent 
on the choice of estimation techniques. Using actual BMI, predicted earn-

25. Instrumental variables suggest that this may also be the case for black males, as discussed 
below.

26. For example, college students report higher desired BMI for African American than white 
females, and for females than males (DiGioachino, Sargent, and Topping 2001).

27. The reference category is chosen to approximate the BMI level maximizing the condi-
tional wage function in the main full sample specifi cations.
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ings reach a maximum at a BMI slightly above twenty- six and then decline 
relatively slowly. However, the IV estimates suggest a fl atter conditional wage 
function prior to the peak, which occurs earlier (at a BMI of 21.6), and with 
a more rapid decline thereafter. Thus, the IV estimates for black females look 
relatively similar to the patterns seen for white women.

For men, the primary SPM estimates suggest that only a small wage pen-

Fig. 11.7  BMI and expected wages of men, by race
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alty is associated with high BMI, except perhaps for severe obesity. Thus, 
a BMI of thirty or thirty- fi ve predicts hourly wages that are a statistically 
insignifi cant $0.21 and $0.81 lower than expected at a BMI of twenty- seven, 
with larger gaps for white males but positive predicted effects for blacks. On 
the other hand, hourly earnings are anticipated to be two to four dollars 
lower at a BMI of twenty than for the reference group.

The IV results for males are quite different: the wage function is monoto-
nomically downward sloping beginning at low levels of BMI, with very large 
penalties associated with excess weight. Thus, men at the obesity threshold 
(BMI � 30) are anticipated to earn over four dollars per hour less than their 
counterparts with a BMI of twenty; those with a BMI of thirty- fi ve are pre-
dicted to receive about eight dollars less. These differences are of similar size 
for white and black men, with the most important disparity being that the 
conditional wage function declines substantially between a BMI of twenty 
and twenty- fi ve for blacks, and then fl attens temporarily, whereas the pattern 
is reversed for whites.

11.7   BMI and Medical Expenses

Obese individuals might suffer a wage penalty because they have high med-
ical costs that are partially paid by employers, through the health insurance 
system. Bhattacharya and Bundorf (2005) offer a version of this argument, 
providing evidence from the Medical Expenditure Panel Survey (MEPS) 
that the wage effects of obesity, for women, are borne entirely by those with 
employer- provided health insurance and, further, that the expected health 
costs of obesity are signifi cantly higher for women than men.28 Based on 
this, they claim that the effect of obesity on female wages is due to employers 
who offer insurance trading off wages against expected health expenditures, 
rather than because of any “beauty premium” or “appearance penalty.”

We are doubtful of such a mechanism for the simple reason that the con-
ditional wage function for women turns downwards so early—at a BMI of 
under twenty- three—far below either the obesity threshold or the level at 
which health costs might be expected to increase. Nevertheless, we directly 
test the possibility that health expenditures explain our results in two ways. 
First, we use MEPS data to produce a univariate nonparametric estimate of 
the log of total health expenditures (in 2005 dollars) as a function of BMI.29 
If  our previous results are explained by employers using body weight to 
risk- rate employees, we would expect the pattern of medical expenditures 
to approximately track that for earnings. In particular, the medical costs of 
women should begin to rise at low BMI, starting at around twenty- three. 

28. However, somewhat contradictory fi ndings are obtained by Baum and Ford (2004).
29. We used data from the MEPS 1999, 2001, 2003, and 2005 samples and trimmed the top 

1 percent of BMI observations. Using levels, rather than logs, of expenditures gives similar 
results.
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The health expenditures for men should either not increase much prior to the 
obesity threshold (if  we believe the results based on actual BMI), or show 
a similar pattern as for women, although starting to rise slightly later (if  we 
place greater trust in the IV estimates).

Figure 11.8 displays the nonparametric relationship between BMI and log 
medical costs.30 For women, predicted health expenditures change little prior 
to the obesity threshold but increase rapidly thereafter. This pattern is quite 
plausible, but almost certainly indicates that medical costs do not explain 
the observed conditional wage function, since earnings begin to fall much 
earlier—in a region where body weight is essentially unrelated to health 
costs. By contrast, we observe a monotonically increasing BMI- medical cost 
gradient for men, which has some potential for explaining the wage function 
obtained from the IV estimates (but less so when using actual BMI).

Second, we examine how the conditional wage function varies with BMI 
for subgroups stratifi ed by age and gender. The medical costs of obesity are 
likely to increase with age (Finkelstein et al. 2007). If  such expenditures are 
the source of the falloff in wages, we should therefore expect, ceteris pari-
bus, a steeper BMI- wage gradient for older than younger persons. Instead, 
fi gure 11.9 shows that the conditional wage function declines from its peak 
much more rapidly for thirty- fi ve to forty- four than for forty- fi ve to fi fty-
 fi ve- year- old women. Similarly, wages are essentially unrelated to BMI for 
the oldest (forty- fi ve to fi fty- fi ve- year- old) males, whereas the data suggest 
earnings penalties at high (and low) BMI for younger men (see fi gure 11.10). 
Finally, note that female wages are predicted to reach a maximum at a BMI 
of around twenty- two or twenty- three for all three age groups, well below the 
obesity or overweight thresholds. This seems inconsistent with the possibil-
ity that health expenditures are the primary determinant of the relationship 
between earnings and BMI.31

11.8   Discussion

The preceding analysis used semiparametric regression methods to exam-
ine how body weight is related to wages. Compared to previous research, 

30. Our analysis does not account for two important characteristics of the expenditure data. 
First, there are a lot of zeros: in our sample, accounting for roughly 12 percent (29 percent) of 
women (men). Second, the distribution is extremely skewed. A more appropriate specifi cation, 
in a semiparametric context, would be a partial general linear model using a gamma distribution 
and a log link (e.g., see Müller [2001]). However, such models are computationally expensive, 
even for parsimonious specifi cations, and we leave it to future research to explore the benefi ts 
of using them to examine the relationship between health expenditures and BMI.

31. It is less clear what age- pattern is expected if  beauty play, a key role. If  BMI becomes 
less closely tied to perceptions of beauty at higher ages, or if  appearance itself  becomes a less 
important determinant of wages, we would expect a steeper wage function for younger than 
older women. Conversely, appearance at young ages could have long- lasting consequences by 
directly infl uencing future productivity through, for example, its effects on self- esteem (Mobius 
and Rosenblat 2006; Mocan and Tekin 2006), or if  initial labor market opportunities establish 
a path for future outcomes.
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these specifi cations allow great fl exibility on the role of BMI, while imposing 
standard parametric restrictions on the other included controls.

A particularly striking fi nding is that increased BMI is associated with 
wage reductions for white females, beginning at low levels of weight—con-
siderably below conventional thresholds for obesity or overweight. These 
results are robust to accounting for reverse causation or endogeneity and 
indicate that the conditional wage function is probably not being driven 

Fig. 11.8  BMI and expected medical care expenditures



Fig. 11.9  BMI and expected wages, females by age



Fig. 11.10  BMI and expected wages, males by age
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by the health effects of  BMI or by obesity per se. Instead, they suggest 
that, over most of the BMI distribution, being “thinner is better” for white 
women, possibly due to social perceptions of beauty or desired appearance. 
The evidence for black females is more ambiguous. Our main specifi cations, 
conditioning on actual BMI, indicate that the earnings profi le is fl at prior to 
a BMI of around twenty- six, but then begins to decline fairly rapidly. This 
might refl ect a different appearance standard for nonwhites, but also raises 
the possibility of an obesity penalty for this group.32 However, instrumental 
variables estimates show a pattern more similar to that for white females, 
with earnings predicted to be maximized at a low BMI (21.8) and to decline 
rapidly thereafter.

The results for men are even more dependent on the estimation tech-
nique. In our main specifi cations, earnings increase through a BMI of 
around twenty- seven and then fall modestly. Conversely, the IV fi ndings 
look similar to those for women, in predicting that wages decrease with BMI 
throughout virtually the entire range of the latter. Controlling for reverse 
causation (by including long- lags of BMI) also yields a conditional wage 
function that is maximized at a low BMI level and is fairly fl at thereafter. 
The fi ndings for black males differ from corresponding whites in that the 
main (noninstrumented) specifi cations show an increase in the conditional 
wage function until well into the obesity range, but with a more or less mono-
tonic negative relationship between BMI and earnings predicted from the IV 
estimates.

Much can be done to clarify the interpretation of our results. Although 
health expenditures do not appear to drive the patterns, it is unclear whether 
the fi ndings for women refl ect labor market discrimination or some other 
cause. For example, females working in occupations requiring physical 
interaction might be subject to particular physical scrutiny. Adding con-
trols for broad occupational categories slightly reduces the gradient of the 
wage function for females, consistent with occupational sorting; however, 
defi nitive answers to this question require controlling for occupational 
categories measuring the level of public interaction. Some results, particu-
larly for males, are sensitive to the choice of specifi cations and we poorly 
understand why the results differ so starkly for whites and blacks. Modeling 
medical expenditures simultaneously with earnings, using data from a single 
source, could clarify the extent to which employers trade off wages for health 
expenditures.

These caveats notwithstanding, our analysis provides useful guidance 
for interpreting prior studies and conducting future research. First, when 
examining how BMI is related to earnings (and probably other outcomes), 

32. For example, Stearns (1997) and Averett and Korenmann (1996) provide evidence 
that obesity has more deleterious effects on the self- esteem of white than black or Hispanic 
females.
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it is important to allow for a variety of possible patterns rather than initially 
assuming that obesity is “where the action is.” Indeed, we fi nd little evidence 
of an obesity penalty per se, but instead often show that the conditional wage 
function is maximized at low levels of BMI, where excess weight is almost 
certainly not a key factor. Although we suspect that our results provide 
evidence of beauty or appearance effects, additional examination of these 
possibilities is needed. Second, the relationships are often highly nonlin-
ear and benefi t from models that permit considerable fl exibility. We obtain 
this using our semiparametric specifi cations, but at the cost of  consider-
able computational complexity. Simpler, although somewhat less fl exible, 
modeling techniques might involve the use of higher order polynomials or 
linear splines. One possibility is to employ univariate nonparametric meth-
ods (without controls other than body weight) to establish the basic pattern, 
which then guide the choice of parametric models containing the full set of 
covariates.

Appendix

Nonparametric Smoothing Methods 
and Additional Econometric Estimates

Kernel regression drops the assumption of  linearity and models the 
expectation of the dependent variable as a weighted mean at every point 
in the distribution of the independent variable. For example, the oft- used 
Nadarya- Watson kernel estimator can be defi ned as

(A1) r̂n(x) � 
n

∑
i�1

 �i(x)Yi,

where r̂n(x) is the predicted value of y at a given value x, and the weights are 
defi ned by the kernel function:

(A2) K(x) � 
70
�
81

(1	|x|3)3 I(x),

where

I
x= ≤⎧

⎨
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otherwise.

The choice of the kernel function—Gaussian, uniform, Epanechnikov—
generally does not affect the result. The weighting function, �(x) is 
defi ned as
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where h is the bandwidth or smoothing parameter. This kind of estimator 
has the advantage of allowing for highly nonlinear relationships that are 
frequently missed even with linear estimators that include quadratic, cubic, 
and higher order terms.

In our analysis, we use local linear regression, which is similar in spirit to 
kernel regression, but instead of modeling the data with a locally weighted 
average, it uses a locally weighted linear regression. Local linear regression 
relaxes the linearity assumption of OLS and minimizes both boundary bias 
and design bias introduced by the kernel framework.33 In general, we defi ne 
the estimator and kernel as in equation (A1), but defi ne �(x), Xx, and Wx 
as follows:

(A4) 
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This formulation implies that the predicted value for a given value of x is 
the inner product of the fi rst row of �(x) with Y.

The choice of smoothing parameter, h, involves the tradeoff between bias 
and variance, as h defi nes the window of observations that will be used in local 
regression. For nonlinear functions, small windows of observations give high 
variance and low bias, whereas large windows offer the converse. We choose 
the bandwidth by selecting the span, k, the fraction of the data to include in 
the linear estimate, to minimize mean squared error (bias2 � variance) for the 
estimator. This implies that for each realization of x the bandwidth changes 
according to the distance to the observation (k � N) /  2 observations away. 
In particular, we minimize the leave- one- out cross- validation score over the 
range of the span. The cross validation score is defi ned as

33. On this point, see Wasserman (2006, 73ff.), Fan and Gijbels, (17– 18, 60ff).
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(A5) CV(k) � 
1
�
n  

n

∑
i�1

 (Yi 	 r̂(	i)(xi))
2

where r̂(– i) is the estimator derived from leaving out the ith observation.34

34. When smoothing the dependent variables, we execute least- squares cross validation at 
the roughly 500 points .2 percentile points apart in the middle 95 percent of the distribution 
of BMI.

Table 11A.1 Semiparametric regression results for women

  Full sample  Whites  Blacks  Age � 26 in 1986  IV

Black –1.149∗∗∗ –1.597 –1.986∗∗
(0.269) (0.978) (0.766)

Hispanic –2.865∗∗∗ 3.532∗
(0.537) (1.588)

Age 0.054∗∗∗ 0.106∗∗∗ –0.005 –0.404∗ 0.032
(0.014) (0.020) (0.021) (0.190) (0.031)

Year 2001 0.214 0.298 0.151 0.989 –0.059
(0.340) (0.474) (0.498) (1.168) (0.696)

Year 2003 1.184∗∗∗ 1.323∗∗ 0.988∗ 3.173∗ 0.318
(0.332) (0.462) (0.497) (1.352) (0.673)

Year 2005 0.585∗ 0.660 0.104 2.866∗ 0.518
(0.271) (0.409) (0.352) (1.414) (0.527)

Number of kids –0.055 0.317∗ –0.269∗ –0.540 –0.025
(0.099) (0.151) (0.130) (0.368) (0.193)

Married 0.638∗ 0.174 0.708∗ –0.156 0.534
(0.261) (0.397) (0.349) (0.905) (0.489)

Child under 2 2.253∗∗∗ 3.472∗∗∗ 0.661 2.429 2.263∗∗
(0.381) (0.570) (0.502) (1.389) (0.734)

Northeast 3.284∗∗∗ 2.313∗∗∗ 4.768∗∗∗ 5.040∗∗∗ 3.506∗∗∗
(0.343) (0.462) (0.570) (1.329) (0.651)

Midwest 0.382 –0.108 0.795 –0.154 1.320∗
(0.283) (0.391) (0.411) (1.089) (0.552)

West 2.372∗∗∗ 1.817∗∗∗ 3.893∗∗∗ 1.246 3.361∗∗∗
(0.338) (0.455) (0.679) (1.166) (0.667)

HS dropout –3.008∗∗∗ –3.482∗∗∗ –1.786∗∗∗ –2.624∗ –3.597∗∗∗
(0.364) (0.621) (0.447) (1.158) (0.784)

Some college 1.386∗∗∗ 1.367∗∗∗ 1.520∗∗∗ 3.430∗∗∗ 0.350
(0.269) (0.395) (0.352) (0.942) (0.531)

College graduate 7.677∗∗∗ 7.235∗∗∗ 8.140∗∗∗ 11.803∗∗∗ 7.266∗∗∗
(0.297) (0.396) (0.477) (1.517) (0.594)

Job tenure (mos) 0.024∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.034∗∗∗ 0.027∗∗∗
(0.001) (0.002) (0.002) (0.006) (0.003)

IV residual –0.015
(0.162)

Constant 0.010 0.069 0.043 –0.111 0.014
(0.107) (0.155) (0.147) (0.354) (0.206)

N  7,251  4,047  2,638  544  2,369

Note: Regression coefficients for supplementary covariates. Standard errors in parentheses.
∗∗∗p � .001
∗∗p � .01
∗p � .05



Table 11A.2 Semiparametric regression results for men

  Full sample  Whites  Blacks  Age � 26 in 1986  IV

Black –5.310∗∗∗ –3.833∗ –5.171∗∗∗
(0.580) (1.824) (1.143)

Hispanic –7.346∗∗∗ –1.536
(0.968) (3.082)

Age 0.240∗∗∗ 0.303∗∗∗ 0.085∗ –0.102 0.375∗∗∗
(0.028) (0.037) (0.041) (0.379) (0.051)

Year 2001 0.570 0.756 –0.258 0.814 1.602
(0.635) (0.825) (0.936) (2.124) (1.140)

Year 2003 0.662 0.846 –0.470 –1.708 1.320
(0.625) (0.822) (0.902) (2.538) (1.141)

Year 2005 0.541 0.844 –0.896 0.559 0.618
(0.550) (0.745) (0.718) (2.919) (0.919)

Number of kids 1.142∗∗∗ 1.945∗∗∗ –0.317 –0.719 1.783∗∗∗
(0.206) (0.289) (0.282) (0.691) (0.368)

Married 2.641∗∗∗ 3.222∗∗∗ 2.613∗∗∗ 4.011∗ 3.501∗∗∗
(0.561) (0.788) (0.699) (1.768) (0.973)

Child under 2 0.482 0.330 –0.466 8.792∗∗∗ –0.075
(0.762) (1.051) (1.063) (2.646) (1.296)

Northeast 4.951∗∗∗ 5.772∗∗∗ 2.360∗ 5.169 5.590∗∗∗
(0.660) (0.838) (1.122) (2.648) (1.135)

Midwest 0.776 0.769 1.534 1.495 0.698
(0.561) (0.734) (0.791) (1.794) (1.028)

West 1.335∗ 1.795∗ 2.325∗ –1.126 1.254
(0.614) (0.820) (1.045) (2.216) (1.120)

HS dropout –3.942∗∗∗ –4.056∗∗∗ –2.050∗ –6.972∗∗ –5.171∗∗∗
(0.739) (1.147) (0.875) (2.686) (1.357)

Some college 3.286∗∗∗ 3.380∗∗∗ 3.498∗∗∗ 4.101∗ 3.371∗∗∗
(0.568) (0.761) (0.726) (1.920) (0.962)

College graduate 11.720∗∗∗ 12.349∗∗∗ 7.031∗∗∗ 26.354∗∗∗ 11.987∗∗∗
(0.549) (0.703) (0.872) (2.325) (1.132)

Job tenure (mos) 0.013∗∗∗ 0.009∗∗ 0.021∗∗∗ 0.020∗ 0.001
(0.002) (0.003) (0.003) (0.009) (0.004)

IV residual 0.735
(0.434)

Constant 0.322 0.037 0.341 –0.259 –0.004
(0.212) (0.282) (0.291) (0.676) (0.360)

N  5,775  3,924  1,262  427  2,333

Note: Table shows regression coefficients for supplementary covariates. Standard errors in parentheses.
∗∗∗p � .001
∗∗p � .01
∗p � .05
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