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EVALUATION OF ECONOMETRIC MODELS

Robust Analysis of the Random Model
and Weighted Least Squares Regression

BRUCE M. HILL

DEPARTMENT OF STATISTICS

UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN

1. Introduction

In this article some general approaches to robustness of inference and
decision making are formulated. The ideas are not meant to be tied down to
any particular statistical ideology and, so far as possible, are intended to
be robust to such ideologies as well as towards alternative formulations of
the model, likelihood function, prior distribution, and utility function. In
general, the spirit of the approach is one of learning to recognize and take
advantage of those situatiOns where robustness does exist and to be aware of
the alternatives when it does not. The ideas will be conveyed by consideration
of an example, which is analyzed at progressively more realistic levels. The
example, which is based upon the so-called random model, is of interest in
and of itself and is increasingly being recognized as a fundamental data
structure in many different areas of statistics. Yet even in its simplest form
there is still substantial disagreement as to the interpretation of data arising
from such a model. After first analyzing the random model under conven-
tional normality assumptions, we propose a form of analysis which is more
robust both to the form of the prior distribution and to departures from
normality. Finally, we suggest a random model for weighted regression which
leads to new types of estimators for a population regression when the data
consists of samples from a number of "blocks."

This article is meant to embody, in microcosm, the full process of statis-
tical inference, beginning with model formulation in its simplest setting,
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proceeding to obtain various insights under conventional simplifying as-
sumptions, and finally to consider questions of robustness, model reformula-
tion, and applications where full mathematical analysis is not possible. It is
hoped that the approach to model building and robustness will be adequately
conveyed by the manner in which the examples are treated. In the final
section some comments are made which may help to highlight the respects
in which the approach differs from others. In addition, interspersed through-
out the article, comments are made relating the general philosophy discussed
in Section 5 to the specific analyses proposed. Although the problems we are
dealing with are, unfortunately, sufficiently complex so that there will in-
evitably be loose ends, the reader should view the philosophy in Section 5 as
an ideal which we are hoping to approximate within the article. Many readers
may find it helpful to read Section 5 at this point. Since some aspects of our
approach may seem unusual to econometricians, we shall now briefly ex-
amine those aspects most likely to cause difficulty.

Section 2 deals entirely with the one-way random model analysis of
variance. The analysis of variance is often viewed as a rather trivial special
case of regression, so it may seem strange that much emphasis should be
placed upon it. However, one of the main purposes of this article is to reveal
the complex and subtle issues that arise in the analysis of even simple random
models. If we were to turn immediately to a realistic random regression model
(such as that in Section 4), then so many other issues would intrude themselves
that the first set of issues relating to the general case of random models would
be masked. Thus we feel that a much deeper understanding of random model
regression will arise if we first carefully explore the relatively simple analysis
of variance situation. We hope that the reader will bear with us in this. For
those who prefer to think entirely in terms of regression, we remark that much
of the analysis of Sections 2 and 3 can be carried over to random model
linear regression for which the different groups have the same known slope
and the intercepts are random effects. We do not do so because it would only
complicate the notation without adding additional insight. Furthermore, in
Section 4 we deal with the more general case in which both intercepts and
slopes are random effects.

The next source of possible difficulty concerns our use of Bayesian
methods of inference and decision making. From our point of view a posterior
distribution is meant to approximate the probabilistic knowledge about
parameters (or models) that one views as appropriate a posteriori. In con-
junction with a specific loss function such a posterior distribution yields an
optimal Bayes decision rule. It is well known that under modest regularity
conditions such decision rules are also admissible. Some methods of Bayesian
analysis are, however, easy to misinterpret when looked at from a non-
Bayesian point of view. For example, in Section 2 we derive the posterior
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distribution of an effect jig, given the ratio of the between variance to the
within variance t2. In doing so we do not mean to imply that t2 is known.
Rather this is simply a convenient intermediate step in the derivation of the

unconditional posterior distribution of which reflects our uncertainty
about r2. The unconditional analysis is, of course, more difficult and is the
stage at which interesting robustness questions arise. In a similar way a
Bayesian analysis may derive the posterior distribution for a parameter of
relatively little interest as an intermediate step in order to obtain insight and
to obtain other results of greater interest. Thus in Section 2 the posterior
distribution of the parameter y = ln(1 + Jt2) is of a much simpler form than

that of t2 or of 0(t2) Jt2/(1 + J12) and allows us to determine the important
posterior moments oft2 and 0(t2). Generally speaking, those unfamiliar with
Bayesian philosophy and methods will have no difficulty if they view a
posterior distribution as an ordinary probability distribution appropriate
for parameters and conditional upon the data.

Finally, how does the analysis of this article pertain to the evaluation of
econometric models? We have attempted to illustrate in the context of ran-
dom model analysis of variance and regression some of the considerations
that we view as essential in the choice of a model. We have suggested a
variety of choices to be made: conditioning upon both mean square error
between (MSB) and mean square error within (MSW) versus conditioning
only upon MSB/MSW as data, a priori independence of c2 from o versus
a priori independence of r from z2, use of normal theory versus use of more
general distributions, use of H(x) (to be defined in Section 3) versus ordinary
least squares theory. In each case we have attempted to make the nature of the

choice clear and to offer both mathematical and philosophical guidelines to
aid in making such choices. From our point of view realistic problems of
statistics are sufficiently complex and subtle that the choice of model and
analysis should be based as closely as possible upon such guidelines.

2. One-Way Random Model under ConventionaJ Assumptions

This simple model is increasingly being recognized as a fundamental
structure for a great variety of statistical problems ranging from sample
surveys to time series. In Section 4 a realistic example of such usage will be
presented, but before doing so it will be necessary to examine the model in
its simplest form, for even here it is widely misunderstood.

Our starting point will be the conception of the model, which we shall

view in a more general sense than is customary in statistics. By the model we

shall mean the additive data structure y = + .
Although we shall not



as yet make specific distributional assumptions as to the and , we shall
think of t as a characteristic of the ith sample category and of e as either the
jth measurement error on the ith category, or alternatively as thejth unit error
within the ith category. Furthermore, we shall regard the t, as though they
were a sample from some large finite, or infinite, population, with distribution,
say, H((x - ji)/o), i.e., with t as location parameter and o as scale param-
eter. We do not assume that the are necessarily physically sampled from
such a population, but merely that our knowledge of them is such that we
wish to act as if this were the case. Such an interpretation is especially natural
from a subjective Bayesian viewpoint but could also be appropriate from
other viewpoints, for example, the pigeonhole model of Cornfield & Tukey
(1956). We shall assume that the have expectation 0, variance a2, and dis-
tribution G(/o). Furthermore, we assume the are exchangeable within a
given category and, conditional upon a, are independent for different
categories.

The parameters that will be of interest are the individual (realized)
a2a2 and t2 = a2/a2 We shall assume t = E[Iu,a], that cx = , -

= Var(1 , au), and, of course, = Var(e
I
a). At first we shall make

conventional normality assumptions, i.e., H() and G() are both normal
distributions. This is done for two reasons. First, in many situations such
assumptions are approximately satisfied (perhaps with transformed data).
Second, as we shall see in Section 3, the mode of analysis for the normal
case provides valuable insights as to the more general case and serves as a
takeoff point from which modifications can be made.

We proceed with the conventional assumptions for the one-way un-
balanced random model, i.e., = i + a + , i = 1,. . . ,I, j = 1, . . . ,J,
where c N(0, a), N(0, a2), and {, } are conditionally independent,
given a, a2. First, consider inference about the , given 'r2 = a/a2. Since
y. = .111 L Y N(t, a2/JJ, given u1 and 2, while N(it, at), it follows
from elementary Bayesian analysis that, conditional upon , a2, and a, the
posterior distribution of the ji is

N(Oy. + (1 - O)J4,[1/o + J/a2]'),

where O = 01(T2) = Jx2/(1 + J1r2), with the ji conditionally independent,
a posteriori. Since from almost any point of view,

I/[Ifl(t2) = I Jy./(1 + J1T2) J1/(1 + Jir2)]
Li=1 i1

is the natural estimator of ,i, given 2 it follows that

= + (1 -
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is an equally natural estimator of ,i. In particular, it is the Bayes posterior
expectation of given r2, when the prior distribution of /1 is diffuse (Hill,
1965, 1977) and is admissible with respect to squared error loss.

Up to this point the analysis has been simple, and hopefully uncontrover-
sial, at least under the assumed model. However, complications crop up
as soon as we contemplate inference about t2. It has been observed by the
author that inference about other parameters in the conventional random
model is of an elementary nature, given x2, and that all difficulties in the
analysis are due solely to the complexity of the information contained in
the data concerning x2 (Hill, 1965). Let us consider inference about r2 in
the balanced case J = J, the unbalanced case having been examined in
Hill (1965). The simplest and, as will be shown later, the most robust form
of inference about t2 is that obtained by conditioning only upon the data
MSB/MSW, where

MSB = J (yt. - y..)2/(1 - 1) and MSW = (yjj - y1.)2/I(J - 1).

Since it is the vector (y.., MSB, MSW) that forms a sufficient statistic for
(i .2 0.2) something is, in principle, lost by conditioning only upon
MSB/MSW; this will be examined later. For the present, we shall base our
analysis upon the fact that, given r2, MSB/MSW (1 + Jr2)F,,,,, where
m I - 1, n = l(J - 1), and is a random variable having the F distri-
bution with m and n degrees of freedom. Letting y = ln(1 + Jr2), 51 =
ln(MSB/MSW), the likelihood function for y based upon the data53

is

1(y) cc - 51), for y 0, where is the density function of In
Although y 0, 53 can have any real value. Since 51 serves as a location
parameter for p,,m(), the data merely shift this density to have "center" 53,
and then condition y is used to truncate the shifted function from below
at 0 in order to obtain the likelihood function 1(y). In fact the mode Of Pnrn()
is 0, so that when 53 < 0, 1(y) is a portion of the upper tail of p7,(y - 53) and
is monotonically decreasing for y> 0; when 5Iis 0, 1(y) is the portion of
p,,,m(y - 53) to the right of its mode; and when 5i> 0, 1(y) is approximately

p(y - 53) itself since in this instance the truncation cuts off only a small
portion of the lower tail. Based upon this likelihood function we see that
the nature of inference about y, and hence r2, depends crucially upon the
sign of 53, i.e., upon whether or not MSB/MSW 1. When 53> 0, the maxi-
mum of I(y) occurs at 53 and the degree of concentration of l(y) near 53 depends
upon the size of in. When 53

0, the maximum of 1(y) occurs at 0 and 1(y) is
monotonically decreasing for y> 0. Since p,,,(x) is proportional to

e2I[
1(in+n)/2

1 + - ex ImJ



with logarithmic derivative

inn[(1 - e')/(m + flex)],

the logarithmic derivative can be seen to be negative for x> 0 and decreases
to the limit (- m/2) as x - cu. For 9 < 0, 1(y) declines most sharply from its
maximum at 0 when 51 = - co, and in this case 1(y) is proportional to the
exponential function e_m2 for y > 0. When m = I - 1 is not large, it is
clear on the basis of this analysis that the classical conclusion r2 = 0 or
very "small" is not warranted even when the F ratio MSB/MSW is extremely
small. On the other hand, when 51 is sufficiently positive, for example, so
that only .01 of the lower tail of p,,,(y - 9) is below 0, then, to a good
approximation, one may ignore the truncation and simply treat y - 51

as
having the distribution of ln In this case classical confidence intervals
for 'r2 based upon MSB/MSW are in substantial agreement with the above
analysis, which may be regarded either as Bayesian with a diffuse prior
distribution for r2, or as a likelihood analysis ignoring the prior distribution
for r2 or a fiducial solution. (Unfortunately, however, it is not the fiducial
solution obtained by Fisher (1935), who would censor rather than truncate

- 9) at 0, lumping the area to the left of 0 at 0. When 9>> 0, this barely
modifies the previous analysis, but, of course, for "very negative" 9, a high
fiducial probability may be attached to y = 0 or = 0, quite contrary to
the previous analysis.) When 51 < 0, there seems to be no consensus as to
the appropriate interpretation from the NeymanPearson school; some
recommend "confidence" intervals containing negative values although the
parameter is nonnegative (Scheffé, 1961, p. 230), others recommend that y
and t2 should be taken as 0, and still others recommend rejection of the model.
We shall return to the question of model rejection later, merely noting for
the present that, when x2 is small, negative 51 should arise nearly 50% of the
time when the model is "true," so that unless

51 << 0, there should be little
reason to reject the model merely because 51 is negative.

Let us consider more carefully the nature of Bayesian inference about r2,
which will then lead us to our first confrontation with the robustness problem.
Our previous analysis was based upon MSB/MSW alone and led to a simple
and seemingly quite natural interpretation of that data. Even in this case
one might wish to multiply l(y) by a suitably chosen prior density for y (as
induced by a prior density for r2), but, unless there were compelling reasons
for such a choice, it would be adequate for many purposes to employ l(y)
as an approximate posterior density for anyone whose initial opinions about

were not overly strong. In this case one might take 51 as the "estimate"
of y when 51 is sufficiently positive and take 2/rn (the expectation of the limiting
exponential distribution) as the "estimate" when

51
is sufficiently negative.

Intermediate values of 9 would require numerical integration of 1(y), when
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viewed as an approximate posterior density for y. Correspondingly, the
conditional expectations of 0(t2) are

E[0(-c2)!53] 1 - [n/(n - 2)]MSW/MSB for 53 >> 0

and

E[0(r2)153] 2/(m + 2) for 53 << 0,

which may then be used to approximate E[tdata].
However, within a Bayesian framework it would be necessary to consider

what is lost (and what is gained) by basing inference about r2 on MSB/MSW
alone, as compared to use of the sufficient statistic (y.., MSB, MSW). So far

as y.. is concerned, it seems clear that only very strong prior knowledge of
i and its relationship to a and a2 could seriously modify the previous
analysis based upon MSB/MSW (Hill, 1965, 1977). The situation with regard

to (MSB, MSW) is, however, more complicated. Some insight can be gained
by considering a Bayesian analysis with, say, (p, a, a2) 5(a2 a2) as prior

density, i.e., with diffuse prior knowledge of j, which yields the same result

as does conditioning upon (MSB, MSW) alone. The posterior density for
the variance components is then

j;U(a2 cr2) a2)(a2)12

[ nMSW1 [ mMSB

2a2
](a2 + Ja)2 ex 2(a2 + Ja)

These results are somewhat sensitive to the characteristics of the prior
density. There are two cases of primary interest. First, there is the case in
which 'r2 is a priori independent of v.2, which typically arises when the e
are unit errors as opposed to measurement errors. In this case results are
very similar to those derived above. Thus if P(t2, 2) is the initial prior
distribution for 'r2 and a2 and if P(t2, a2) = P1('r2)P2(a2), then the posterior

density is

P"(t2, a2) cc

Because of the strength of information about a2 contained in MSW, the
choice of P (.) ordinarily has only a minor effect. It is convenient and, when

n is large, more or less innocuous to take P2(a2) cc (a2)1. Then themarginal

posterior density for x2 is

n MSW
P"(r2) cc P1(r2)(1 + J2)n/2/[1 +

m MSB
(1 + Jt2)], 2 0,

[ nMSW1 P1(t2)[1 Jt] [ mMSB
X exP[ 2a2 ]

+ ex
2a2(1 + Jx2)



so that, apart from P1(t2), (MSW/MSB)(1 + Jt2) '- CF,j+2,m_2, truncated
from below at MSW/MSB. This result is in near agreement with the previous
analysis based upon MSB/MSW as data as well as the results of Hill (1965,
p. 818), where C = m(n + 2)/n(m - 2). Note that, as MSB/MSW goes to 0,
P"(v2) tends to P1('c2)(1 + Jx2)"2 for r2 0. In fact, letting 2 = a2/MSW,
the joint posterior density is

P"(t2, ö2) cx: P1(r2)[1 + fr2] _in/2 (2 )_((m+n)/2)_ 1

r 11x exp[_2 fl +
MSW(1 + Jz2)

Thus as MSB/MSW goes to 0, the limiting posterior distribution of (r2, 2)

has density

P"(r2 2) cx P1(t2)[1 + fr2] -'12(ö2) - ((ni +n)/2) exp [ - n/252],

so that r2 and 2 are independent, and a2/MSW is distributed like
where yj is a random variable having the chi-square distribution with j
degrees of freedom. Of course this limiting distribution should be interpreted
only as an approximation, valid when MSB/MSW is sufficiently small. On
the whole we may summarize this analysis as providing support for the
robustness of our previous inference about x2, based only upon MSB/MSW,
within the broader model under which t2 and a2 are a priori independent.

The situation is, however, somewhat different when a and a2 are a
priori independent, which is a generally plausible model when a2 is the
variance of a technical error (for example, of a measuring instrument) rather
than that of a unit error. Suppose, for example, that the prior density for
(at, a2) is a2) cx: &(a)42(a2), where as before, it is ordinarily innocuous
to take 2(a2) cc (a2) - Doing so, the posterior density for (t2 ö2) becomes

q'(2 ö2) cc 1(MSW52r2)(52) - (in +,O/2 exp[ - n/252] (1 + Jr2)"'12

x exp[niMSB/2(1 + Jr2)52MSW].

For insight, let 41(a) have the inverted gamma form, i.e.,

q1(a) cc (ct) YoJ2)1exp[ Cj2afl,

where y > 0 and C> 0. (As shown in Hill, 1965, p. 811, the case Ya = C, = 0
leads to nonsensical results.) Then as MSB/MSW goes to 0, with MSW held
fixed, the posterior density tends to

qY'(r2 ö2) cc (52)_[(in+n+v)I2]_ 1 exp[ - n/2ó2](1 + Jx2)_mI2(x2)_/2)_ 1

x exp[ Cj2MSW2r2].

204 BRUCE M. HILL



ROBUST ANALYSIS OF THE RANDOM MODEL 205

Hence under this model there is no limiting distribution as MSB/MSW goes

to 0 since the limit is different depending upon whether MSB goes to 0, with

MSW fixed, or MSW goes to infinity, with MSB fixed. Furthermore, in the
latter case the marginal posterior density oft2 becomes the improper density
(t2)2'(1 + Jx2)"'12, which must be interpreted as degenerate at 0. Al-

though such degeneracy has been derived here for the special inverted gamma
prior distribution of a, the result is fairly general, usually holding when a2

and a are independent a priori. The basic reason for this behavior is that
when MSW grows large, the posterior distribution of a tends to the prior
distribution of a (Hill, 1965, 1967, 1970, 1975a), while a2/MSW has a limiting

distribution. Hence typically under these conditions t2 = u2/a2 converges to
0 as MSW goes to infinity. As we saw before, however, when r2 and a2 are
independent a priori, then r2 has a limiting distribution even as MSB/MSW

goes to 0. Correspondingly, in this case it can be shown that a/MSW has a
limiting distribution as MSW goes to infinity. See Culver (1971) for a general

discussion.
The main point to be made is that one may be faced with a nonrobust

situation, so that a choice must be carefully made with respect to the appro-
priate assumptions. This can be illustrated by some numerical examples.

EXAMPLE 1. I = 3, J = 3, y = 2, C = 4, MSB = 5, MSW = 1. The exact

E(O data) is .84, while the approximation based upon the data MSB/MSW

alone is E(O ) 1 - [n/(n - 2)] MSW/MSB = .70.

EXAMPLE2. 120, J 10, ya=S, C= 10, MSB=r 10, MSW= 1. The

exact E(O data) is .91, and the approximation yields .89.

EXAMPLE3. I=5,J=2,y=8,C=1,MSB=10,MSW=1.Theexact
E(O data) is .08, while the approximation yields .83.

Note that the approximation based upon MSB/MSW alone works well

except in Example 3. This stems from the small sample sizes combined with
the relatively strong prior input. Thus in Example 3, a priori E(a) =
(y - 2) = , Var(a) = 2C/(y - 2)2(y - 4) = , so there was initially
strong opinion that a was "small." Also, the use of P2(a2) c (a2)' is not
quite so innocuous here because 2 is measured with only five degrees of
freedom. It is interesting to compare Example 1 with Example 3. In Example 1

the F ratio is only 5, and the degrees of freedom differ only slightly from those
of Example 3, so the huge difference in the two E(O I

data) for these examples
presumably stems from the much sharper prior opinion about a in Example
3, which overcomes the greater F ratio of 10 and reduces the posterior ex-
pectation of 0 to the surprisingly small value .08. Thisdramatically illustrates



the nonrobustness of this type of Bayesian analysis based upon the total
data and especially its sensitivity to the choice of y and Ca. Finally, in
Example 2, where degrees of freedom are ample, we see that life is pleasant
in any case.

Now let us relate the above analysis to our general philosophy regarding
model building and robustness. We began with conventional normality
assumptions for the one-way random model and proceeded to obtain certain
estimators and insights as to inference about the parameters. We observed
that by conditioning only upon MSB/MSW, we could obtain a "marginal"
likelihood function for x2 and that this likelihood function allowed a simple
and natural form of inference about r2. Furthermore, at least when MSB/
MSW was sufficiently large and with diffuse prior knowledge oft2, Bayesian,
fiducial, and NeymanPearson approaches led to very nearly the same in-
ference about r2. In this context the Bayesian approach merely added a few
qualifications as to the appropriateness of such inference, namely, that on the
one hand, when MSB/MSW is not large, a truncation from below at zero is
crucial with regard to y, 'r2, or a, and on the other hand, particularly when
MSB/MSW and in are small, that it may be necessary to assess prior distri-
butions very carefully. Our next observation was that the simple inference
based upon MSB/MSW alone was quite robust within the class of prior
distributions for which a2 is a priori independent of r2. Thus, provided that
one can convince oneself and/or others of the appropriateness of such a class
of prior distributions, the inferential problem is quite easy. On the other hand,
as both the numerical examples and the limiting analysis as MSW grows
large indicate, such an analysis is anything but robust for the class of prior
distributions in which a2 is a priori independent of a. Thus if such priors
are thought to be relevant, then there is no robust form of inference, and
certain hard decisions must be faced.

In this situation there are a few considerations that may be helpful. First,
it is sometimes possible by considering potential extreme data (before actually
observing it) to decide roughly how one would like to react. Thus as MSW
goes to infinity, with a priori independent of a2, a/MSW has a limiting
distribution, so that under this model a very large MSW gives evidence that
a is large; whereas, when a is a priori independent of a2, a very large
MSW provides negligible information about a. In some examples the one
type of behavior will seem more appropriate, and in other examples, the
reverse. Of course another device for choosing between the two types of
prior distribution is simply to assess, as best one can, the source of one's
prior knowledge about the parameters and choose accordingly. In situations
such as this, neither the Bayesian nor any other approach is terribly helpful,
but the Bayesian approach at least faces the problem openly, while for other
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approaches, which ignore the existence of subjective prior knowledge, the
distinction between the two types of prior independence is totally irrelevant.

We conclude this section by returning to the question of model rejection.

When either 5 is extremely negative, or if several different experiments have
led to a preponderance of negative i, then it is natural to consider alternative
models. The model that is most compelling to me for explaining such data is

one in which the within a given category are equally negatively correlated
(Hill, 1967, p. 1395, 1970, p. 33). In the extreme case where the negative corre-
lation is - (J - 1)-i, then c, = 0 with probability 1, and MSB Jo-2(m)/m,
so that no contradictory data can arise. The physical significance of such
models is discussed in Hill (1967, p. 1397).

3. Random Model without Normality

Suppose now that normality for the o and is dropped and replaced
by the assumption that cx has distribution H(c/a,) and e has distribution
G(c/a), with E(,) = E(c) 0, Var(o1) = c, Var(c1) a, and the customary
independence assumptions are retained.

Inference about r2 can still be based upon MSB/MSW alone, much as
before. Thus MSB/MSW can be written as

J [(Z1. - Z..) + r(X - X.)]2/(I - 1)
- Z.)2/I(J - 1)

where X = c/a0, and Z = ca/a, so that the distribution of MSB/MSW
depends only upon r2. If n is moderately large, then - Z..)2/n should
be approximately unity, while MSB, as a sample variance of J = Z7. + xXi,
should approximate a2JVar(J) = J(a + a2/J) = a2 + Ja. In fact, as a
first approximation one might take MSB/MSW (1 + J'r2)F,., where the
degrees of freedom m' and n' could be chosen to yield the right first and second
moments for MSB/MSW, depending on the "true" distributions H() and
G(). To the extent that such approximations are suitable, which can be in-

vestigated both theoretically and by Monte Carlo methods, then inference
about 'c2 based upon MSB/MSW will be just as before, with only the degrees
of freedom altered. Furthermore, the sensitivity of in' and n' to the choice of
H(S) and G() can also be investigated by the same methods. When m is

moderately large, hopefully inference will be robust for various a priori plausi-

ble H() and G()
Turn now to inference about the jig, given 'r2, under our more general

assumptions. As before, we can argue that given ji, a2, and a, the density
a 'H'( (it - it)/a) can be viewed as a prior distribution for jig, while given



a and jig, the function H1 G'((y - t)/a), can be viewed as a conditional
likelihood function for jt, based upon the data y,.. . , y1,. For simplicity
suppose first that the c are normally distributed as before, but allow H(S)
to be arbitrary. Then conditional upon /t,a2, and a,H'((it - ii)/a) serves as
prior density for while y. N(j, a2/J), given i1, serves as a measurement
for , which yields the conditional likelihood function exp[(J/2a2)
(ye. - J2]. Consequently, the conditional posterior density for t, is propor-
tional to

H'((u - i)/a) exp[(J/2a2)(y1. -

given 72, and a.
The behavior of /2, I' a2 y,. . . , y] will now depend upon

the form of H(). However, although precise analysis is complex, some aspects
are intuitively clear. When H() is also normal, we saw earlier that /2, is a
weighted average of 4u and y. with weights not depending upon the data.
Generally speaking, for "thicker tailed" (than normal) H(S), /2, will tend to be
closer to y. than in the normal case, while for "thinner tailed" H(S), it will
tend to be closer to z. For any specified function H() the exact value can be
obtained either analytically or by numerical analysis. For example, if H()
were double exponential, we would obtain

exp{ - exp[(J/2a2)(y. - it)2]
while if H() were a Cauchy distribution, the corresponding posterior distri-
bution would be of the form

(1 + (pt, )2/a2)' exp[(J/2a2)(y,. -
In the latter case, if i is sufficiently far out in a tail of N(y., a2/J), then the
maximum-likelihood estimate y. will be approximately /2,. In the former case
one anticipates that /2, will be closer to y. than when H() is normal, but not
so close as when H() is Cauchy. Through experience it should not be difficult
to obtain clear insights as to the effect of altering H() upon the posterior
distribution of given L, a, and a2. Note that when G() is not normal,
an appropriate analysis of this type can be obtained by choosing some
function of y,. .. , say T,, carrying most if not all of the information
about u, and employing the distribution of T1, given and a2, as the likeli-
hood function for in place of that for y., which we used when G() was
normal. When J is moderately large then of course such a likelihood function
will be approximately of normal form, as a consequence of standard theorems
on the asymptotic behavior of the likelihood function. However, in this case
the curvature of the likelihood function at its maximum will ordinarily
depend upon the data, so that no fixed weights independent of the data can
be employed, even if H(.) were of normal form. Finally, note that inspection
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of - y. and of y1. can lead to intelligent choices as to the appropriate forms
of G() and H(), respectively.

Now suppose that we have chosen, on the basis of such considerations,
weights 6, so that given i and r2,

= OT1 + (1 -

where TL is the selected statistic carrying high information about j. Here 0,
may depend upon the data and r2. It is now necessary to estimate u. To
illustrate how this might be done, suppose, for example, that G() is normal
and H(S) is double exponential. Then it would be natural to base inference

about j on y. = j + .. Since H() has thicker than normal tails, a first
approximation (particularly suitable when J is large) is to pretend that the
y. are a sample from H() and take jl to be an estimator appropriate for
H(), i.e., fl = median{y1.}, for the double exponential. We thus obtain as an
approximation in this case an estimator of the form

Et1jdata,t2} + (1 -

where we anticipate that 0. > Jr2/(1 + Jr2). Based upon our posterior distri-
bution for t2 as derived earlier, we can then obtain an overall estimator for
j. Robustness can be examined by altering H() and G(), calculating the
appropriate 0. and /2, and noting the magnitude of change in the estimator.
If such change is substantial, then of course one must make some choice as
to the appropriate G(.) and H( ), guided by inspection of the data.

The approach to nonnormality that we have suggested here is a tentative
one in which, following the general philosophy in Section 5, we have at-
tempted to base inference as far as possible on those assumptions in which
we have most confidence. Thus inference about 'r2 was based upon a relatively
simple approximation to the distribution of MSB/MSW rather than upon
all the data. Similarly, by using judgment in the choice of the statistic T1,
which we regard as carrying most of the information about we were able
to gain some insight about the appropriate modification of the posterior
distribution of when G() and H() are not of normal form.

4. Random Model Weighted Regression

There is an interesting and important application of the above ideas to
random model weighted regressions that arise in sample surveys. Suppose
there is a finite population of units and that the least squares linear regression
of the dependent variable Y on the independent variable X is of interest. If
there are N units in the population with (Xe, }) being the values of the



variables for the ith such unit, then we wish to draw inference about the two
constants A and B for which = 1?/N is minimal, where e, =
(A + BX), i = 1,. . . , N. Suppose, however, that for convenience or economic
reasons the sampling by means of which we hope to estimate A and B takes
place within well-defined blocks (some of which may be unsampled) rather
than from the population as a whole. For example, we may be interested in
the relationship between measures of household income and expenditure in
the state of Michigan as a whole, but our sampling may be performed within
counties, or perhaps within a county we sample households from within
apartment buildings, and so on. The relationship between Y and X for par-
ticular counties, or for particular apartment buildings, may or may not be of
interest in its own right, but the question that we shall consider concerns
how such data can be used to draw inference about the relationship in the
population.

To attempt to answer this question, suppose first that the population is
physically or conceptually partitioned into M "blocks," with known S
units in the ith block, S1 = N. Let Yb), i = 1, . . . , M,j = 1,. . . ,S,
label the partitioned variables, and let A, B1, and a be defined for the ith
block just as A, B, and a2 were for the population. We shall assume that
within the population as a whole the least squares regression line is such that
knowledge that X = x for a unit carries negligible information about the
associated deviation e = Y - (A + Bx) from the line. To be specific, we as-
sume, for allx, that E[YX = x,A,B] = A + Bx, Var[YX = x,A,B,a2]
a2. We shall make a similar assumption for the regression line within each
block. Heuristically, such assumptions insure that deviations from regression
lines are viewed as scattered about zero with a variance that does not depend
upon the value of the independent variable. The appropriateness of such
assumptions depends upon the nature of the blocks and will be discussed
critically below. Note that we do not assume independence of deviations.

Let us now explore the relationship between (A, B) and the vector (A, B),
where (A, B) ((A1, B1),. . . ,(AM, BM)) consists of the intercepts and slopes
of the individual block regression lines. Sometimes there are deterministic
relationships between these quantities. Suppose, for example, that the block
averages X1. are all equal, so that they have the common value X.. =
(I 1 SX1.)/N, and that the block variances - X.)2/SL are all equal
with common value a. Then

B > - X..) - X1.)

- - X..)2 - - X..)2

2 BS= X=MlWB1
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where W1 = S1/N, and it then follows easily that A = l4'A1. Note also
that if the slopes B, are identical, then without any assumption on the
independent variable, A =

However, in the applications that are to be considered it will not ordi-
narily be appropriate to make such strong assumptions as will yield B =

l4'B1 and A = J4A1. Nonetheless both linear and nonlinear
approximate Bayes estimators of the relationship between Y and X in the
popuiation will be obtained.

Suppose that the data consist of simple random samples without replace-
ment from the blocks, with J, units from block i, i = 1,. . . , M, and the
drawings from different blocks independent. We allow some of the J, to be
0 and then relabel so that J1 >0 for 1 1,... ,m and J, = 0 for i =
m + 1,. .. ,M. For simplicity assume that J1 for i = 1,. . . , m.

Let us evaluate the Bayes posterior expectation of Y for a unit with X
having value x. Thus

H(x) E[YX = x,data] = E{E[YX = x,A,B,data]}

= E[> T'(x)[A1 + B1x](data]
1=1.

M M
= T4'(x)E[A1data] + x T4'(x)E[B1data],

1=1 i1
where T'(x) is the posterior probability that a unit with value X = x belongs
to block i. Here, depending on the interpretation of probability, W(x) may or
may not be regarded as known, but in the absence of other knowledge, is
assumed to be evaluated, given the data, as

P(X=xIblocki)i4'(x) - >IP(X = xjblockj)H

where P(X = x block 1) refers to the distribution of X for block i.
The function H(x) is in general a nonlinear function of x, possessing the

usual Bayesian mean square error optimality properties. However, to make
explicit use of H(x) requires careful evaluation of the 143(x), and H(x) may be
quite sensitive to their specification. Along the lines of our general philosophy
toward robustness, it is natural to look for a simple linear approximation to
H(x) that sacrifices some degree of optimality for greater robustness. Consider
then the linear function

L(x)
=

W1E[A1ldata] + x 143E[B1data].



Suppose that there exist at least two values x1 x2 such that J4'(x) =
1,. . . , M,j = 1,2. Hence these values are completely uninformative as to

the block to which a unit belongs. In this case H(x) = L(x),j = 1,2, so that
the linear function L() intersects the optimal Bayes estimator H(S) in at
least two points. This suggests the possibility of using L(x) as an estimator
for the population least squares regression line A + Bx. Note that when the
deterministic relationships

M M

A=>HA, B=>WB
i=1 i=1

hold, then in fact E[A + Bxtdata] = L(x). However, the above argument
suggests approximating E[YX = x,data] by L(x) under the very weak
assumption of the existence of the uninformative values x1, x2. In fact, in
many applications it will suffice merely to regard lT'(x) T'V,j = 1,2, with-
out even giving careful consideration to the values xj for which this occurs
or to the sharpness of the approximation. We must, of course, rule out cases
in which the for the various blocks are known to be nearly disjoint since
in this case the value x would virtually identify the block to which the unit
belongs. Thus if X = x makes it very likely that the unit is from block i,
then

H(x) E[A1f data] + xE(BIdata),

and L(x) would not be appropriate as an estimator.
With the above discussion as motivation, let "data" refer to the sample

values = 1,... ,m,j = 1,. . . ,J, and let us evaluate
M Al

A T4'E[AIdata] and B WE[BI data].
i= 1 1=1

There are several ways in which this can be done, depending on the chosen
prior distribution for A and B. The way which corresponds most closely to
our previous random model analysis is to assume that the set of As and Bs
are conditionally independent samples from normal populations, i.e., A
N([1A,a), B, NuB,o), I = 1,. . . , M, with A independent of B, given
I1A /1B' and a. Here we shall illustrate the approximation to B. For this
purpose we shall take as the informative portion of the data in the ith block
the statistics A, = y. - and ê, where

Ji 1.Ii
= - y.)/ (x - x1.)2,

j=1 / j=1
and

=
- - - 2), J 3,
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for i = 1,2,. . . , m. Without further assumptions these are not sufficient
statistics for the ith block, but often can be anticipated to contain most of
the information concerning A1,B1, and o-. We also anticipate that to a good
approximation B N(BZ, Vt), given B, and V, where

V = [1 - (J - 1)/(S - 1)]a/ (x - x.)2

and the factor in brackets is the usual finite population correction to allow
for sampling without replacement. It follows as in our previous analysis of
the random model that

E[Bdata,uB,cr/V] 8,, ± (1 -

and

E[Bdata,4/Vfl ü,h, + (1 -
where

= [a/V][l + a/V]1
and

Ifl In

E[BJdata, /V}] + V?)[ 1/( + v]
When J 3, for i = 1,. . . , m, then a crude, but for many purposes adequate,
estimate of V can be obtained by substituting ô for a in the definition
of V, thus leading to an estimate of E[1tBdata,{a/Vt}]. Furthermore,
since Var [B1 I IUB, O, ofl = cr + V, it follows that an estimate of c can be

obtained just as in the usual one-way unbalanced random model, thereby
leading to an estimate 6, of O (Hill, 1965, p. 821). Finally, using such estimates,
we evaluate

M rn M

= T'T'E[Bdata] [& + (1 - i) /2B] Wj + ILBW
i1 i= 1 i=m+ 1

= 1B + -
Here our main purpose is not to suggest particular estimators for [1B and
O, since these are rather delicate matters, but rather to show the form
which the overall estimator must take, under our assumptions. In particular
it is important to note the quite different roles played by the FF weights and
the 6, weights (or .their estimates). The T4" enter because we are interested
in a line for the entire population, while the 9 are approximations to the
optimal weights for estimating B1 in the ith block and, if chosen carefully,



will yield admissible estimators that incorporate the prior knowledge that
one wishes to bring to bear on the problem.

As mentioned earlier, the above mode of analysis may be modified in
certain natural ways.

1. When some J, are very small, it may be wise to pooi some of the blocks,
provided there is no indication that such blocks are very disparate. On the
other hand, blocks which are viewed as very disparate from the main body
of blocks should be analyzed separately.

2 As in Section 3, inspection of the , and the = - A - B1x,
may suggest that normality is inappropriate, in which ease the analysis can
be modffied along the lines of Section 3.

3. One may wish to investigate relationships of the form B, = X + f3S +
error or In r = + /3 ln S, + error. If the data provide evidence for such
relationships, then estimation of such c and /3 will yield new estimates for
E[B I data], of the form E[B &, ], which will then be employed in the
evaluation of B.

It should be understood that carrying out the original analysis or any
of the proposed modifications is a delicate and subtle affair and that no
routine analysis is possible. In particular, it should be noted that the assump-
tion that knowledge that X = x carries negligible information about the
associated is not innocuous. For example, if the pairs (X, Y) in the popula-
tion were scattered about a convex function but we retained the linear model,
then the expectation of errors associated with extremely large or small values
x would tend to be positive rather than zero. Of course, in this case one might
fit an appropriate convex function of x, but the analysis becomes much more
complex and dubious. This suggests some restrictions on the potential
applications of the above analysis, namely, to cases where the assumption
of negligible information seems appropriate, at least within each block.
Thus the blocks must be chosen with judgment.

Finally, let us note that questions as to the appropriateness of H(x) or
L(x) are especially subtle since they depend not only upon the choice of
criteria for the performance of estimators, but also upon the choice of the
function that we use to represent the relationship between Y and X in the
population, and hence upon the purposes of the experiment. For example,
should one try to estimate the least squares regression line in the population,
A + Bx, or should one try to estimate the line >f' l4çA + x 1 J4'B? In
general they are not the same. Tentatively, for forecasting purposes, we
would advance the following argument in favor of L(x) over E [A + Bx data].
Suppose we wish to forecast Y, given that a unit has X = x. If the block
to which the unit belongs is known, then for squared error loss the Bayes
optimal forecast is the posterior expectation of the line for that block at
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that value x. On the other hand, if the block is unknown, then in the absence

of other information it is natural to use J4(x) for the probability that the
unit belongs to block i, and in this case the Bayes optimal forecast is H(x).

lithe W(x) are sufficiently well known, then H(x) is in fact available, and
there is no need to consider L(x) or E[A + Bxjdata]. Note, for example,
that if the X are known to belong to disjoint intervals I. for different blocks,
then the l4'(x) become 0 or 1, and H(x) reduces to the appropriate line
E[A + Bxldata] in the interval I,, i = 1,... ,M. It is in such a situation
of course that H(x) is most preferred over the other candidates. Now suppose
that the W(x) are not sufficiently well known to be used with confidence
for all values x. It may still be the case that there exist certain values x which

are viewed as uninformative as to the block to which the unit belongs, so

that T'(x) = W for such x. Then at least H(x) = L(x) for such x, so that
there is a clear sense in which L(x) approximates H(x), while this is not the

case for E [A + Bx data]. Furthermore, if conditions are such that A =

WA and B = l4'B, then L(x) = E[A + Bxldata], so use of L(x)

amounts precisely to estimation of the population least squares line. When

such conditions do not hold, which suggests that the X11 tend to be distributed

differently in the different blocks, then, of course, there is the greatest potential

benefit to be derived from use of H(x), and L(x) at least approximates H(x)
in a clear sense. Thus in the one case we lose nothing by use of L(x) and in
the other case we have everything to gain. H(x), itself, would of course be

the ideal.
Finally, in the case where there are only two blocks, and the X, and Y,

are one or zero corresponding to presence or absence of some characteristic,

it is easy to see that the considerations we have suggested in regard to use
of H(x), the least squares line, and L(x), are analogous to those that arise
in Simpson's paradox (Simpson, 1951).

5. On Robustness

Here I shall try to summarize briefly the attitude towards robustness
which was illustrated in the analysis of the random model.

1. In any problem there is usually some source of knowledge which has

a special status as creating those assumptions about which one is most

confident. Such knowledge may concern the model, the likelihood function,
the prior distribution, or the utility function. It is then best to make the
analysis depend most heavily upon the assumptions about which one is
most content. In the initial analysis of the random model, under conventional
assumptions, the analysis based on MSB/MSW alone, reflected such a source



of knowledge, and is, in my opinion, ordinarily the most appropriate. An
exception would occur if one felt there were compelling reasons for a par-
ticular form of prior distribution for the variance components, and such
alternative modes of analysis should be kept in mind and investigated. But
one should not feel obligated to adopt them merely because they utilize a
sufficient statistic or are admissible. Indeed, in the "big world," as opposed
to the more customary small world analysis (Hill, 1975a, p. 582, 1977, p. 31),
there are no known admissible strategies, and an overly ambitious attempt
to achieve such admissibility may produce analyses which are quite absurd.
This point of view is more fully explained by Hill (1975b, p. 1169), where it
is argued that under realistic assumptions about the global form of a distri-
bution which follows the ZipfPareto law in the upper tail, it is best to base
inference about the upper tail upon the upper order statistics alone. In this
way one obtains an analysis which is robust in the sense that it is not affected
by the nuisance parameters that characterize the global distribution. Of
course, such an analysis is not based upon a sufficient statistic, nor would
it be admissible. The trap of attempting to base inference upon all the data
is one which naive Bayesians are especially prone to fall into, but they need
not, provided that they keep in mind that a sifting of the totality of available
data into its most informative parts for the parameters of interest is necessary
in order that any analysis be feasible. Using such subjectively judged informa-
tive portion of the data, it is possible to perform a likelihood or Bayesian
analysis, which will be relatively insensitive to the nuisance parameters. See
also Hill (1969, p. 95) for another example of such robust analysis.

The mode of analysis should be such that sensitivity to the various
underlying assumptions can be examined. If changes in the assumptions
within the range of assumptions that one regards as plausible lead to quite
different inferences or decisions, then one must recognize that there is no
robustness and that any choice must be made with extreme care. It should
be understood that the data can be used to make judicious choices, for
example, as to the use of normal theory in the random model.

Finally, I should like to suggest that the way to achieve 'true"
robustness is to build better models rather than merely to "protect oneself"
against small departures from an assumed model. Such a process of building
better models was illustrated by the broadening of the usual random model
to allow for negatively correlated residuals (Hill, 1967, p. 1395, 1970, p. 33).
To worry about small departures from normality in connection with a
realistically complex data set is to worry about a mouse when confronted
by a tiger. Model building is part of a long-standing scientific tradition,
requiring, among other things, creative insight. Even small improvements in
an existing model, for example, to cover a wider range of conditions, have
enormous impact upon our understanding of real phenomena.
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