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Liquidity Constraints
in Production-Based
Asset-Pricing Models
William A. Brock and Blake LeBaron

9.1 Introduction

Economists have simulated Lucas's (1978) exchange economy asset-
pricing model to show how mean reversion could appear. (See Cecchetti,
Lam, and Mark 1988; Bossaerts and Green 1988; and Kandel and Stambaugh
1988.) In this paper we study the impact of liquidity constraints on market
valuation of firms in general equilibrium rational expectations asset-pricing
models. To do this we must introduce production.

Our approach uses the production-based asset-pricing models of Brock
(1982) and Cochrane (1987) with liquidity constraints added on the firm side.
Model parameters are chosen to line up with data in the style of the "real
business cycle" school. Hence we will concentrate on explaining phenomena
at business cycle frequencies. Robustness of the results to reasonable varia-
tions in parameter values is probed.

We show that a production-based asset-pricing model generates mean rever-
sion that is strengthened for liquidity constrained firms. In other words, vari-
ance ratio plots drop more for liquidity constrained firms. This is consistent
with Fama and French (1988), Poterba and Summers (1987), and with De
Bondt and Thaler's (1985, 1987, 1989) "over reaction" effect. We will show
that for this result to be visible credit constraints must be binding very tightly
on small firms. The fact that it takes strongly binding credit constraints and
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what amounts to 1,000 years of simulated data to show significant results
agrees with some of the recent results putting the 3-5 year mean reversion
phenomena on much weaker ground statistically.'

Large-firm returns strongly lead small-firm returns at the weekly frequency
and weakly lead at monthly and quarterly frequencies. This kind of effect is
suggested by Lo and MacKinlay (1988b) as a partial explanation for the strik-
ing results on short-term mean reversion found by Lehmann (1988). It is dif-
ficult to get this effect out of our model. We are not too unhappy with this
aspect of the model, however. This is so because we believe that the lead-lag
pattern across small- and large-firm returns found by Lo and MacKinlay is
stronger at higher frequencies than at lower frequencies.

We found two other results that are consistent with the real data, but very
weak. The model generates slightly higher unconditional variance for liquid-
ity constrained firms, and nonlinearity tests performed on simulated con-
strained and unconstrained returns are consistent with results of nonlinearity
tests performed on Center for Research in Security Prices (CRSP) decile-1
(small) firms and decile-10 (large) firms.

In equilibrium, returns Rt(t, t + 1) on firm / over [t, t + 1] are constrained
by

(E) 1 = EiR.it, t + \)b(t + l)|/(0}

where {b(t)} is the discounting process and lit) denotes information at time t.
In Lucas (1978), bit) = bu'[dt)]/u'[cit - 1)], where u is the utility function
of the representative consumer. For the economy as a whole the "market"
portfolio return over [t, t, + 1] is given by Rit, t + 1) = [v(f + 1) +
cit + l)]/v(f). Here v{t) and cii) are value of the market portfolio and aggre-
gate consumption, respectively, at date t. The constraint (E) makes interpre-
tation subtle. Economic reasoning in rational expectations general equilib-
rium asset-pricing contexts is treacherous. "Perhaps it has been good
judgment, not merely timidity, which has led aggregate theorists to steer clear
of any attempt to 'understand the market'" (Lucas 1978, 1441). However,
mean reversion in the market portfolio can be made reasonably intuitive.

Mean reversion at the market level is generated by noting that a relatively
high consumption (good times) today ic[t] is high) implies a relatively high
bit + 1) = bu'[cit + l)]/u'[cit)] because u" < 0. Hence (£) implies that/?(f,
t + 1) must be relatively low. Hence ergodicity (the tendency for relatively
high consumption c[t] to revert back to average consumption) will cause Rit,
t + 1) to revert back to its mean level. This explains mean reversion of returns
on the market portfolio. We turn now to explaining why mean reversion is
stronger for liquidity constrained firms versus unconstrained firms, ceteris
paribus.

We ignore general equilibrium feedback from both unconstrained and con-
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strained firms into the discounting process. In our model, constrained and
unconstrained firms are exactly the same in every respect except that con-
strained firms cannot borrow to finance investment. Production functions for
both types are hit by aggregate and idiosyncratic production shocks. Hence
returns are contemporaneously correlated. Unconstrained firms are always
forward-looking in choosing investment projects for the future. Therefore in
maximizing market value today they choose investment projects that trade off
systematic risk and expected return optimally. Constrained firms are con-
strained by past shocks. They are limited in borrowing by current income.
Hence they will invest less than or equal to their desired level for future peri-
ods. Therefore they cannot achieve the optimal trade-oflF between systematic
risk and expected return. This lack of optimality causes the market to push up
their expected return.

Mean reversion is magnified by liquidity constraints. On the one hand, a
low-valued constrained firm (relative to unconstrained) is relatively low val-
ued because the constraint is binding relatively tightly. Since production
shocks are independently and identically distributed (i.i.d.), the low-valued
constrained firm has an even-money chance of being loosely constrained next
period. Hence a good aggregate shock will bounce value back more than the
value of an unconstrained firm under the same conditions. This is so because
relaxation of the constraint allows the constrained firm to more closely mimic
an unconstrained firm and thus achieve a higher market value. On the other
hand, if the constrained firm is high valued this is so because the constraint is
not binding (although it may bind in the future) so that it can mimic an uncon-
strained firm. But a negative shock in the future may cause the firm to be
constrained for several periods and, hence, lose a lot of value.

The paper is organized as follows. Section 9.1 contains the introduction.
Section 9.2 presents stylized facts and the simplest model that can illustrate
the basic economic mechanism that we focus on. The basic economic mecha-
nism is the role of liquidity constraints on the firm side in transforming pro-
duction shocks of short memory into shocks of value and returns of longer
memory. Section 9.3 expands upon the simple model. The fourth section pre-
sents results of computer simulation of the model. To our knowledge this is
the first computer simulation study of production-based asset-pricing models.
In addition we add liquidity constraints. The results show that the model is
capable of generating mean reversion patterns as measured by Cochrane
(1988) and Poterba and Summers (1987). Variance ratio plots across con-
strained and unconstrained firms compare fairly well with those generated by
decile-1 (small) firm returns and decile-10 (large) firm returns. The model
does this for parameter values appropriate to the time scale of the returns
under comparison. Section 9.5 contains time-series plots illustrating the re-
sults. The paper ends with section 9.6, which is a summary with speculations
and suggestions for future research.
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9.2 The Simplest Model

In this section we present the simplest model that we can think of that gen-
erates returns consistent with the observed differences in return dynamics be-
tween the small firms and the large firms. The model will be an asset-pricing
model of Lucas's (1978) type with financing constraints. It will show how
financing constraints can turn nonpersistent production shocks into highly
persistent ex post asset returns. This simple economic mechanism shows
promise to rationalize a wide spectrum of stylized facts on differences in re-
turn behavior in smal and large firms.

Before presentation of the model we list the "stylized facts." Decile 1 (de-
cile 10) denotes the smallest (largest) 10% of CRSP firms. A nice survey of
the main stylized facts that we are interested in explaining is De Bondt and
Thaler (1989). References are given for the facts that are not in De Bondt and
Thaler.

9.2.1 Stylized Facts

1. Unconditional variance, skewness (positive), kurtosis, are larger for de-
cile 1 than for decile 10 (see table 9.1).

2. Mean reversion is stronger for small firms. Mean reversion is essentially
zero for largest firms after World War II. It is stronger during periods that
include the Great Depression and is weaker during the postwar period. See Lo
and MacKinlay (1988a), Fama and French (1988), Poterba and Summers
(1987), as well as De Bondt and Thaler (1989). The top part of figure 9.1
displays the variance ratios for the largest and smallest CRSP deciles from
monthly returns data, 1926-86.2 In this panel we see that the variance ratios
fall more for the smaller firms than the large firms. The lower panel presents
the difference of the large- versus small-firm variance ratios along with simu-
lations taken from resampled (with replacement) data taken from the respec-
tive returns series. One hundred simulations are performed on data sets of the
same size as the monthly CRSP series. Variance ratios are constructed for both
the scrambled large-firm series and small-firm series and the difference is

Table 9.1 Unconditional Moments: Smallest and Largest Deciles

Monthly (26-87)
Largest
Smallest

Monthly (47-87)
Largest
Smallest

Annual (26-87)
Largest
Smallest

Mean

.009

.017

.009

.014

.086

.139

Standard Deviation

.053

.114

.03

.07

.19

.38

Skewness

.28
2.90

.00
1.53

- .948
- .312

Kurtosis

7.45
20.7

.88
13.6

1.13
.54

BDS(2)

4.95
9.08

- . 1 7
2.71
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Fig. 9.1 Variance ratios: largest and smallest deciles

taken. This picture shows that in these small samples the variance ratios are
not very different statistically. They just barely break through the 0.75 quan-
tile at 10 years.

3. Rejection of i.i.d. returns by the nonparametric (BDS) test for indepen-
dence (Brock et al. 1988) for monthly CRSP returns from 1926 to the present
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is strongest for small firms. Decile-10 returns appear i.i.d. to the BDS test
after World War II, but decile-1 returns do not.

4. Form portfolios of stocks that are past losers and past winners over the
past few years. Price reversals are more pronounced for loser portfolios than
for winner portfolios, with much of the correction for losers occurring in Jan-
uary (De Bondt and Thaler 1989).

9.2.2 Asset-Pricing Model with Production and Fixed Cost of
Stock Issue

Fazzari, Hubbard, and Petersen (1988a, 1988b) have documented and
stressed the influence of financing hierarchies across firm size. These financ-
ing hierarchies are due to the relative cost of using different modes of finance
across different size classes of firms. Table 2 of Fazzari, Hubbard, and Peter-
sen (1988b) shows financing for firms with assets under $10 million (over $1
billion) coming from short-term bank debt, long-term bank debt, other long-
term debt, and retained earnings in percentages 5.1 ( - . 6 ) , 12.8 (4.8), 6.2
(27.9), 75.9 (67.9). New equity issue seemed to be used as a last resort even
for large firms. This may be due to higher tax costs. The idea is that relative
costs are such that internal funds are used by the smallest, bank loans are used
by the next smallest, and bonds and equity are used by the largest. We are
going to use an asset-pricing model with financing costs to show:

Persistence result: Independent and identically distributed shocks to profits
and production cause non i.i.d. returns when financing costs loom large rela-
tive to profits. Thus i.i.d. production shocks lead to i.i.d. returns when financ-
ing costs are zero.

Consider the following model, which is an adaptation of Brock (1982, 36)
which, in turn, introduces production into the model of Lucas (1978). There
are two size classes of firms. Both are all equity financed. Balance sheet dy-
namics are given by

(1) />,(t)[z,.(0 - z,.(t - 1)] - [F + c(t)]I(t) + /.[*,(; - 1), r(t)] =
xff) + dtfizfr - 1),

where F + c(t) denotes fixed cost plus variable cost of issuing new equity at
date t, and I(t) is one when new equity is issued [z.(f) — z.(f — 1)] > 0 and 0
otherwise. Here x denotes capital stock,/denotes current profit plus undepre-
ciated capital stock, r(i) denotes stochastic process (assumed i.i.d. for now),
d denotes dividend payout per share, and z denotes number of shares of secu-
rity outstanding. We can view z as a type of long-term bond if the "divident
payout" is constant. This interpretation is more consistent with the Fazzari,
Hubbard, and Petersen (1987, 1988) evidence because new-share issues are a
small part of actual financing.

At first, suppose that small firms, denoted by / = 1, choose not to issue
new securities because F is too high relative to/ . So their balance sheet dy-
namics are given by
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(2) f,[x,(t - 1), r(t)] = x,(t) + d,(t)z,(t - 1).

At first we suppose that large firms can issue new securities for free. The idea
is that F + c(t) is so small relative to/that to a first approximation we can
ignore the floatation costs. Large-firm balance sheet dynamics are given by

(3) />,(0[z,(0 " z,« ~ 1)] +fMt ~ 1), lit)] = x,(t) + dt(t)z,(t - 1),

Turn now to the consumer side. As in Lucas (1978), the Euler equation of the
consumer is given by

(4) Pl(t - 1) = E{b(t)[Pi(t) + <*,(*)] |/(r - 1)},

where b(t) denotes a discounting process (the marginal rate of substitution
between date t — 1 and date t consumption) and I(t — 1) denotes information
available to condition on at date t — 1. Let the process b(t) be the constant b,
0 < b < 1, for now. Let both firms be intial stock market value maximizers.
Assume, for all values of r, that/is zero at x = (),/'(•) is infinity at JC = 0,
/'(•) is zero at JC equal to infinity, and that/is strictly concave and continuously
differentiable.

It is easy to see that the large firms jump to a steady state x2 given by the
unique solution to,

(5) bEf'2(x, r) = 1.

Net cash flow is given by

(6) n2(t) = f2[x2, r(t)] - x2.

Now multiply both sides of the Euler equation by the number of equities out-
standing and use the balance sheet to find

(7) Pi(t - l)z,(r - 1) = v.(r - 1) = E{[Vi(t) + ni(t)]\l(t - l))}.

Ex post returns are given by

,n, p ,A _ [v2(0 + n2(t)} _ [v2 + n2(t)}
V2(t - 1) V2

for the large firms, where v2 is the constant solution of (6) and (7) for the large
firms. Hence we have proved:

PROPOSITION 1. Ex post returns are i.i.d. when production shocks are
i.i.d. provided that financing costs are zero so that there are no constraints on
borrowing through the stock market.

Let us now examine the polar case of the small firms who cannot borrow at
all and, hence must finance accumulation to the desired level of capital stock
internally. Since the small firms choose not to issue new securities, and since
they are not allowed to pay out negative "dividends," one can show that initial
"stock market value" maximization implies that the optimal investment path
takes the form
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(9) *i(0
x, = argmax {^[/jfor,)] - *}•

It is instructive to graph the stochastic dynamics of (9) assuming that higher r
generates higher/. Look at net cash flow and ex post returns:

(10) /!,(*) =f[xl(t- l),r,(r)] -x.it),

(11) R{(t - l,f) = — — ,

(12) vi(0 = E{bnx(t + 1) + . . . } = expected discounted sum

of future net cash flow.

The desired level of capital stock is xv When a low shock occurs, the firm
wants to accumulate at the maximal rate and pay no dividends. If it gets hit
with a very low shock at t it is likely that several periods will pass before it
has reached xv Hence there will be spells where zero dividends are paid out.
We sum this up into:

PROPOSITION 2. The solution of (9)—(12) transforms i.i.d. production
shocks into non-i.i.d. ex post returns.

Unfortunately, we can not hope to explain mean reversion or the phenome-
non of large-firm returns leading small-firm returns with this model.

PROPOSITION 3. Returns across size classes of firms are uncorrelated at all
leads and lags.

Proof. This follows from the Euler equation:

(13) Mb = E{R,(t,t + 1)}, / = 1,2.

We must show that

E{R,(t,t + l)Rj(t + L,t + L + 1)} = (l/b)2, forL > 0, Vij.

To do it use iterated expectations and (13). Q.E.D.
REMARK. Any formulation where conditional expectations are indepen-

dent will yield this result. Dependence induced by the discounting process is
a useful way to remove this independence.

9.3 The Extended Model: The Case bit) Stochastic

In order to get mean reversion and large-firm returns leading small-firm
returns we must have bit) stochastic since returns are uncorrelated when
bit) = b for all t. In the case bit) stochastic the Euler equation for a value-
maximizing firm can be written in terms of returns:

(14) 1 = E{bit + l)Rit,t i

where lit) denotes information available at date t.
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It is relatively straightforward to work out some results for the case u(c) —
ln(c),f(x,r) = rxd. Unfortunately, this form of the prodution function implies
that capital lasts only one period. Nevertheless, working out the solution is
instructive.

Let the economy as a whole choose nonanticipating functions {JC},{C} (as in
Brock [1982]) to solve

(15) maxE'Zb<t-1Hn[c(t)],

subject to

(16) c(t) + x(t) = r(t)[x(t - l)]d, x(0) given.

Here the sum runs from t = 1,2, . . . ,o°.
It is well known that the solution is given by

(17) x{i) = ey{t),e = bd,y{i) = r(t)[x(t - l)]d.

The value of the "market portfolio" is given by

(18) v(r) = bE({u'[c(t + \)]/u'[c(t)]}Mt + 1) + n(t + 1))
= bE{[y(t)/y(t + l)][v(t + 1) + (1 - e)y(t + 1)]},

where net cash flow n(t + 1) = c(t + 1) equals aggregate consumption at
date t + 1. Conjecture a solution v(t) = vy(t),v constant. We find

(19) v = b[v + (1 - e)].

Returns are defined by

R(t,t + 1) = [v(t + 1) + n(t
(20) = {[v + (1 - e)Vv}[y(t + l)/y(t)]

= k[y(t + l)/y(t)] = lcr(t + l)[x(t)Y/y(t)
= ked[r(t

It is well known that (17) converges to a stationary distribution (see Brock
[1982] for references). This is easy to see by noting that (17) is linear in logs.
The ergodic property inherent in (17) leads to behavior much like "mean re-
version" in returns (20). For example, both E{R(t,t + l)\t}, var{R(t,t + \)\t}
fall as y(t) increases. Hence, since a high return last period is associated with
a low y this period, and since y converges to a limit distribution, this will
cause a tendency for high past returns to be followed by lower future returns.
Turn now to the effect of introducing credit-constrained firms.

Look at the valuation equation for firm /,

(21) v,(0 = bE{u'[c(t + l)]/«'[c(0][v.(f + 1) + nft + 1)]},

where

(22) nff + 1) = yt(t + 1) - Xi(t + 1)

= at{t + \)r(t + l)[Xi(t)Y - x((t + 1).
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Here at(t),(t) are i.i.d. and independent of each other. We will assume that
constrained firms at date t maximize market value subject to the constraint

(23) x£s)<y,is) Vs.

Unconstrained firms just maximize market value. Both types face the dis-
counting process parametrically. It is easy to find the solutions if we ignore
general equilibrium feedback from the firms i to the economy as a whole. We
assume that the collectivity of firms to be valued is small relative to the econ-
omy as a whole.

9.3.1 Unconstrained Firms

For / in U (U = unconstrained), conjecture xJ(f) = ety(t), v.(0 = v.y(0
and insert this into the valuation equation (21). Use (17) and simplify to obtain

(24) v,. = b[v, + EfalMeJeY - et],

(25) et = (MEW)})1*1"*,

(26) Rt(t,t + 1) = [y(t + l)/v,j(0][v. + a(t

9.3.2 Constrained Firms

For / in C(C = Constrained), one can show the optimum x satisfies,

(27) xjit + 1) = min{a,(r + l)r(t + l)xtfY,e,y(t + 1)}.

Conjecture a solution to the valuation equation of the form

(28) v,.(0 = v[i,y.(t),y(t)] = yiOjU^^t)],

w,-(0 = y,{t)/y(t)'

Use (17), (18), and (28) to obtain

(29) j[i,Wi(t)] = bE{j[i,wt{t + 1)] + max[0,w,.(/ + 1) - e$,

(30) w,{t + 1) = a,(t + l){(l/e)min[wJ(t),ei\}
d.

Apply standard techniques as in Lucas (1978), for example, to show that
(29) has a unique solution. (It is a contraction map since 0 < b < 1.) Note
that,/[/, 0] = 0 and j[i,w] < v(. This is so because the value of a constrained
problem must be less than or equal to the value of an unconstrained problem,
and j is nondecreasing in w. Note that if the dynamics (30) ever hits zero, it
stays at zero forever. Let us now look at returns.

Returns, Rftj + 1) are given by

p(t. . n = y(t + WVMt + 1)1 + mjjt + 1)}
(31) A y(0;[*>,.(0]

mft + 1) = max(0,a,.(' + \){(l/e)min[w,{t),e$d - e,).

Although (31) is a complicated expression, it is not hopeless to compare con-
strained returns with unconstrained returns ceteris paribus. Let w.(0 tend to
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zero. Notice that unconstrained returns (26) do not depend upon y{i,t). The
only date t data they depend upon is y(t). So let a firm take a very negative
shock relative to the whole economy so that w.(f) is small. Then if the firm is
constrained its returns will "tend" to be high from [t,t + 1] relative to the re-
turns of a constrained firm. But at each point in time the pricing equation (21)
must be satisfied. Hence for conditional expected returns of a constrained firm
to be higher than that for the unconstrained firm, the constrained firm must
put more of its payoff on states of the world where marginal utility is low. This
effect is not easy to get out of the analytics, but it appears in the computer
results reported in Section 9.4 below. We are still working on an analytic for-
mulation of this effect.

9.4 Computer Results

Some of the models presented in the previous sections are simulated in this
section. The models are designed to look like real business cycle models and
generate reasonable numbers for aggregate fluctuations. From the simulations
of aggregate fluctuations, policy and pricing functions are developed for the
"small" firms (unconstrained and constrained). With these functions, com-
plete returns series can then be simulated and compared.

The first part of the exercise is to solve for the optimal policy function for
the economy as a whole. The economy is assumed to chose nonanticipating
{x},{c} to maximize

(32) E^b'^-c(i)\
< = i j

where

(33) y(t) = r(t)x{t - 1)« + (1 - b)x(t - 1),
c(t) = y(t) - x(t).

Here {r} is i.i.d. with finite mean and variance, and is bounded away from
zero and infinity. This can be easily solved numerically on a discrete grid,
given the parameters and the stochastic process r(t). The solution to problem
(32) gives a policy function for c(t) = g[y(t)], and therefore gives us the
means to simulate the c(t) and y(t) processes.

With the aggregate c(t) process our small firms taking the aggregate as ex-
ogenous can be priced as follows:

(34) yf?) = r(t)ai(t)Xi(t - \Y + (1 - h)xff - 1)

xff) = y,.(0 - 6[y.(0,y(f)].

Here 6(y/,y) is the optimal policy for the firm given its output and the aggre-
gate output levels. The price of the small firm is a function of both its output
level and the aggregate consumption level.
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(35) p[y{t),y(t)] = max£{r[y(0,y(f + DMy/f + l),y(f + 1)]
l),y(t + 1)]},

(36) T[y(t),y(t + 1)1 =

Here Qiy^y) is the optimal policy for the firm given its output and the aggre-
gate output levels. In the unconstrained case 0 may take on any value positive
or negative. For the constrained firms we force the firms to pay out a mini-
mum dividend, c, in every period. If they cannot meet this payment they will
pay out dividends of zero. More formally this puts the following constraint
on 6.

e fc, if y^c;
[0, otherwise.

These models will now be simulated for several different parameter values.
For the first set of simulations we will use (d = 0.4;c = 0A;b = 0.9;8 =
0.2;7 = 0). This is the case of logarithmic utility. The two shock processes
are simulated with discrete random variables. The aggregate shock, r(t) =
{0.9,0.95,1,1.05,1.1}, each with probability 0.2. The small-firm shocks for
both the unconstrained and constrained cases will be at(i) = {0,0.8,1,1.2,2},
each with probability 0.2, and at{t) is independent of r{f). The structure of the
stochastic shocks for production will remain the same for all the examples in
this paper. Some experiments have been done to see that minor changes in
these distributions will have no effect on the results here. It remains to be seen
what effect major changes to the shock processes will have.

Time series of percentage changes of consumption and returns are presented
in figures 9.2 and 9.3, respectively. Figure 9.2 shows the consumption series
to be a choppy series reflecting the discrete shocks that it is built from. The
mean percentage change in consumption is 2%, which is comparable to that
for the United States (see Mehra and Prescott 1985). One problem with com-
paring our numbers with others' estimated numbers is that the model simu-
lated here is stationary. It is hoped that growth can be worked into this system
without affecting the results, but this has not been tested yet.

The returns time series in figure 9.3 shows more blurring around the main
bands. This is due to the additional shocks for small firms. Simulated time
series of length 1,000 are replicated 100 times to produce the results in figures
9.4-9.10 and table 9.2 below. For these simulations, two sets of shocks are
drawn, the r(t) aggregate shocks and the at(t) individual shocks. The results
for the constrained and unconstrained firms are simulated for the same set of
individual shocks, the only difference being the constraint.

Figure 9.4 presents the variance ratio tests used by Cochrane (1988) and
Poterba and Summers (1988). Under the hypothesis that the generated returns
are i.i.d., the expected value of the variance ratio should be one. (We follow
the same bias adjustment of Cochrane 1988 and Poterba and Summers 1987.)
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We do not have any reason to believe that the returns from either generated
series are i.i.d. What we are interested in here is comparing the results for the
two different types of firms. The top two panels of figure 9.4 show the median
and 5% and 95% quantiles for the simulations performed on the unconstrained
and constrained firms, respectively. We see that the constrained firms generate
more evidence of variance ratios dropping off. This is made clearer in the
lower panel where we look at the difference between the variance ratios for
each type of firm for a given set of individual shocks. The differences here are
significantly positive.

Table 9.2 presents some statistics on the simulated series. The first four
columns present the mean, standard deviation, skewness, and kurtosis. For
these simulations compare the first two rows. The numbers in parenthesis are
the 5% and 95% quantiles. This table shows very little difference between the
two series. The constrained series does have a "significantly" larger standard
deviation, but it is no where near the order of magnitude difference in the
actual data (about a factor of 2). The other moments show few patterns that
line up with the data. The hope here was not to line up all moments, but to see
that the simulated data generated roughly the same type of results as the data.
The last column gives the BDS statistic (Brock et al. 1988, Hsieh and Le-
Baron 1988). This is a nonparametric test for any kind of dependence in the
data. Under the null hypothesis of i.i.d., the BDS statistic is distributed nor-
mal with mean zero and unit variance. In table 9.1, the BDS statistic is applied
to the monthly series. It is not used for the annual series since this series has
too few points. In table 9.2 we see that the BDS statistic generates slightly
larger values for the constrained firms. This is consistent with the presence of
more dependence of any form in the constrained samples.

To test robustness of these results they are first tested against other prefer-
ences. They are run for y = —0.5 and y = —1.5. Figures 9.5 and 9.6
present variance ratios and differences for these preferences. They repeat the
results obtained with logarithmic preferences. In table 9.2 we see that the
results for the logarithmic case are repeated for the other two preferences.

The next experiment is to check the importance of c, the constrained payout
amount. We will repeat the first three simulations for c = 0. In figure 9.7 the
variance ratios for logarithmic preferences are given. The differences here are
much smaller. Very little difference can be seen in the first two figures. The
differences show that the variance ratio are still smaller for the constrained
firms, but the magnitude of the spread is now much smaller. Table 9.2 shows
very little difference in the statistics from the unconstrained and constrained
firms. These results are repeated for the other preference parameters y =
- 0 . 5 , and 7 = - 1.5 in figures 9.8 and 9.9 and in table 9.2.

From these results we see that the value of c is crucial for obtaining mean
reversion for our parameter values. It is necessary to keep the constrained firm
up against the constraint for a large enough fraction of time to generate differ-
ent numbers. So far, our most efficient way to do this is to increase c. At the



246 William A. Brock/Blake LeBaron

Table 9.2 Simulated Moments and BDS results

7 Mean Std. Skewness Kurtosis BDS(2)

Experiments 1-3 :a

Unconstrained .0 .13 .11 - .15 - .51 .31
(.12, .13) (.10,. 11) (- .20, -.11) (- .65, -.36) (-1.15,1.97)

Constrained .0 .13 .12 - .30 - .35 1.78
(.12,.13) (.12,.12) (- .36, -.24) (- .49, -.18) (.01,3.95)

Unconstrained - . 5 .13 .11 - .12 - .47 .99
(.13, .14) (.11, .12) (- .18, -.06) (- .62, -.31) (-.49,2.74)

Constrained - . 5 .13 .13 - .25 - .34 1.76
(.13,.14) (.12,.13) (- .32, -.18) (-.50, -.15) (.14,3.46)

Unconstrained -1.5 .13 .11 - .14 - .50 .58
(.12,.13) (.11,-11) (- .19, -.08) (-.64, -.33) (-1.25,2.23)

Constrained -1.5 .13 .12 - .29 - .34 1.91
(.12,.14) (.12, .13) (- .36, -.22) (- .47, -.15) (.29,3.66)

Experiments 4-6:b

Unconstrained .0 .13 .11 - .15 - .52 .38
(.12,-13) (.10,-11) ( - .21 , -.09) (-.64, -.36) (-1.08,2.02)

Constrained .0 .13 .11 - .12 - .50 .61
(.12,-13) (.10, .11) (- .18, -.07) ( - .63, -.35) (-.64,2.01)

Unconstrained - . 5 .13 .11 - .12 - .48 .98
(.12, .13) ( . l l , . l l ) (- .19, -.06) (-.60, -.32) (-.52,2.50)

Constrained - . 5 .13 .11 - .09 - .47 1.38
(.12,.13) (.11, .11) (- .16, -.02) (- .57, -.31) (-.31,2.98)

Unconstrained -1.5 .12 .11 - .05 - .53 .38
(.12, .13) (.10,-11) (- .20, -.09) (-.67, -.38) (-1.13,2.16)

Constrained —1.5 .12 .11 - .12 - .52 .63
(.12, .13) (.10, .11) (- .17, -.07) (- .66, -.36) (-.93,2.29)

Experiment 7:c

Unconstrained .0 .07 .07 .06 - .42 .49
(.07,-07) (.06, .07) (.01,-11) (-.54, -.27) (-1.05,2.26)

Constrained .0 .07 .07 - .03 - .36 1.05
(.O7,.O7) (.07,-07) (- .08, .03) (-.50, -.15) (-.84,3.41)

Note: Results for seven experiments performed on varying parameters. The parameter values (c, b, d, 8,
-y) are given in notes. Each experiment is run for one firm subject to the c constraint (constrained) and
one firm not subject to the constraint (unconstrained). Numbers in parentheses are 5% and 95% quantiles
from 100 replications of length 1,000.
*c = A;b = .9; d = .4; 8 = .2.
»c = 0; b = .9; d = .4; 8 = .2.
*c = .6;b = .95; d = .4; 8 = .1.

current values of c the constrained firm is at the constraint about one-third of
the time.

The last simulation changes b and 8 to more common real business cycle
values. The first parameters were chosen to generate roughly the same levels
of volatility and consumption and returns as in the data. These are chosen as
being a little closer to those used in other simulations. (King, Plosser, and
Rebelo 1988 and Cecchetti, Lam, and Mark 1988). Here we run b = 0.95,
d = 0.4,8 = 0.1,"y = 0. For these values we needed to increase c to a larger
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level, 0.6, to keep the constrained firm against the constraint. These results
repeat those of the first three experiments. The plots of variance ratios are in
figure 9.10. The differences here appear a little smaller than in the first set of
runs, but still detectable. In table 9.2 the results show very little difference
between the constrained and unconstrained firms for these parameters.

9.5 Speculations

In this section we make speculations about the possibility of credit con-
strained asset pricing models along the lines of the above to rationalize styl-
ized facts.

/ . De BondtlThaler (1985),(1987),( 1989) loser/winner effect. Look at firm i
whose production function is afayifixft — \)d'\n Section 9.3 above. Imagine
conducting De Bondt and Thaler's (1985,1987) study on data generated by
our model for i = 1,2, . . . , F firms where the smaller ones are credit con-
strained because of scale economies in underwriting loans. Past loser firms
would be ones whose borrowing constraint binds tightly because, as was
shown in Section 9.3, the value function is smaller for a firm that is con-
strained. One would expect the value of a firm that had experienced a spell of
bad shocks to be low because it is very tightly constrained, but it should be a
good bet because there is a good chance in the future that it will be positively
shocked. Hence, its value will revert upward. This is what our variance ratio
plots suggest.

2. (Capital asset-pricing model) CAPM returns are received only in January.
And excess CAPM-adjusted returns appear for small firms in January (De-
Bondt and Thaler 1989, Haugen and Lakonishok 1988, Lakonishok and
Smidt 1987). Barsky and Miron (1989) have documented a strong yearly sea-
sonal in output with a sharp drop from the fourth quarter to the next first
quarter. If we put a yearly seasonal in both the systematic shocks and the
specific shocks in the above model, then smaller firms may exhibit high re-
turns and high own variance over the turn of the year. Yet the covariance with
the market may not move that much. Hence it is possible that there are
CAPM-adjusted excess measured returns over the turn of the year for small
firms.

3. Low price/earnings ratio firms exhibit "excess" returns (De Bondt and
Thaler 1989). In Section three we showed that the value of firm i is low when
it is credit constrained and y(i,t)/y(t) is low. In price/earnings (P/E) ratio stud-
ies the current price P is compared with some measure of intrinsic earning
power. Since that measure is usually some kind of backward or estimated
forward average, therefore, the measure of P/E will proxy current y{i)ly in our
model. We have shown by simulation that low enough current y{i)ly predicts
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high returns next period. Hence it seems plausible that P/E ratio studies con-
ducted on simulated data from a many firms version of our model may show
"excess" returns to low P/E firms.

This paper set out to explain some stylized facts about small firms using a
production-based asset-pricing model. We have been successful in some areas
and unsuccessful in others. Simple credit-constraint restrictions, when the
constraints are binding, much of the time can account for mean reversion
types of effects in return series. There were several other issues that we had
hoped to explain, but have been unable to do so with this model. Differences
in unconditional moments do not show up in this model with these simple
discrete shocks. Also, the lead-lag patterns discovered by Lo and MacKinlay
(1988) were not seen here.

Notes

1. See Kim, Nelson, and Startz (1988) and Richardson (1988) for some of this
evidence. Bruce Lehmann has chosen the term "factoids" for these stylized facts of
questionable significance.

2. Variance ratios are calculated following Poterba and Summers (1987) and Coch-
rane(1988).
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